EP3175195A1 - Wärmeübertrager und verfahren zur herstellung des wärmeübertragers - Google Patents

Wärmeübertrager und verfahren zur herstellung des wärmeübertragers

Info

Publication number
EP3175195A1
EP3175195A1 EP15742244.5A EP15742244A EP3175195A1 EP 3175195 A1 EP3175195 A1 EP 3175195A1 EP 15742244 A EP15742244 A EP 15742244A EP 3175195 A1 EP3175195 A1 EP 3175195A1
Authority
EP
European Patent Office
Prior art keywords
housing
accumulator
coil
heat exchanger
helix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15742244.5A
Other languages
English (en)
French (fr)
Other versions
EP3175195B1 (de
Inventor
Uwe FÖRSTER
Wolfgang Geiger
Christoph Kästle
Andreas König
Karl-Gerd Krumbach
David Mayor Tonda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3175195A1 publication Critical patent/EP3175195A1/de
Application granted granted Critical
Publication of EP3175195B1 publication Critical patent/EP3175195B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • F28D1/0473Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/122Fastening; Joining by methods involving deformation of the elements by crimping, caulking or clinching

Definitions

  • the invention relates to a heat exchanger for cooling a fluid, with an accumulator, a housing and a helix-shaped tube, wherein between the accumulator and the housing, a gap is formed, in which the tube formed into a helix is arranged. Moreover, the invention relates to a method for manufacturing a heat exchanger.
  • refrigerant R-134a is no longer permitted for use in air conditioning systems in the future.
  • refrigerant R-744 C0 2
  • the refrigerant R-744 is much more environmentally friendly compared to R-134a and still allows for a higher cooling capacity with a comparable volume of the air conditioning system.
  • COP Coefficient of Performance
  • a so-called internal heat exchanger is additionally used in air conditioning systems, wherein the refrigerant in this internal heat exchanger is further cooled by a heat transfer between the refrigerant tel on the low pressure side of the refrigerant circuit and the warmer refrigerant on the high pressure side of the refrigerant circuit takes place.
  • EP 2 136 160 A2 shows a heat exchanger and a method for producing the heat exchanger.
  • the heat exchanger has a collector, which is arranged in a housing. Between the housing and the collector, a coiled tubing is arranged. To create a contact between the coiled tubing, the collector and the housing, a hydroforming process is used, whereby the coiled tubing is widened and comes into abutment with the collector and the housing.
  • an air conditioner which has an internal heat exchanger.
  • the internal heat exchanger is combined with the condenser.
  • the inner heat exchanger on a coiled tubing which is arranged between a collector and a housing.
  • a disadvantage of the devices in the prior art is in particular that the tube which carries the refrigerant on the high pressure side is either only flows around the refrigerant on the low pressure side or reaches the generation of a defined counterflow between the refrigerant of the high pressure side and the low pressure side by consuming manufacturing processes becomes.
  • the generation of leaks can lead to a drastic reduction in the efficiency of the heat exchanger.
  • An embodiment of the invention relates to a heat exchanger for cooling a fluid, comprising a rechargeable battery, a housing and a helix-shaped tube, wherein between the accumulator and the housing, a gap is formed, in which the helix-shaped tube is arranged, wherein a frictional connection is formed between the housing and the helix, wherein the non-positive connection is produced by a plastic deformation of the housing.
  • a frictional connection between the housing and the helix is particularly advantageous in order to prevent the helix from flowing uncontrolled along its turns.
  • gaps between the coil and the housing leakage currents can occur, which adversely affect the efficiency of the heat exchanger.
  • Particularly advantageous is the generation of a frictional connection by a plastic deformation of the housing.
  • a compression of the housing is advantageous, by which the diameter of the housing is reduced, whereby an investment of the helix is generated on the housing.
  • both the housing and the helix is plastically deformed, whereby a frictional connection is generated both between the accumulator and the helix and between the housing and the helix.
  • This is particularly advantageous in order to produce a fluid-tight as possible flow channel, along which a Fiuidstrom can flow along the helix.
  • the housing is hereby compressed until it rests against the coil.
  • the force component then continues to act on the housing, so that the housing is further compressed until the coil undergoes a compression.
  • the helix is advantageously plastically deformed by a compression until it comes into a frictional connection with the accumulator as a result of a reduction in the diameter.
  • plastic deformation is generated by a radially inwardly acting force component on the housing.
  • a radial direction is always meant a direction which is normal to the central axis of the heat exchanger.
  • axial direction is meant a direction along the center axis of the heat transfer.
  • a preferred embodiment is characterized in that the accumulator, the helix and the housing are cylindrical.
  • a cylindrical configuration of the accumulator, the helix and the housing is advantageous in order to achieve a uniform and circumferential compression of the individual elements along the circumferential direction. In alternative embodiments, however, oval cross-sections or square cross-sections of the elements may also be provided.
  • the application of the force component is preferably adapted to the respective cross-sections of the elements in order to generate a frictional connection that completely revolves in the circumferential direction. By an unadjusted application of the force component, it may, for example, come to corrugations and bulges of the elements, whereby a fluid-tight formation of a flow channel between the coil and the accumulator or the housing is prevented.
  • a helical flow channel is formed between the accumulator and the housing through the helix, through which a fluid can be flowed in the circumferential direction with a gradient that can be predetermined by the turns of the helix.
  • the helical flow channel is advantageously formed by the spaces formed between the individual windings. By formed in the helix pitch and the free spaces get a slope, which also represents the slope of the resulting flow channel at the same time.
  • In the radial direction of the flow channel is completed by the system of the housing inner wall on the radially outwardly directed side of the coil and by the system of the outer wall of the accumulator on the radially inwardly directed side of the coil.
  • the individual turns of the helix are formed spaced apart in the axial direction. By spacing the turns to each other in the axial direction, the free spaces between the turns, which form the flow channel arise.
  • the size of the free spaces is determined mainly by the selected slope of the individual turns.
  • the individual turns may also have diverging pitches, whereby along the axial direction of the helix arise different sized free spaces.
  • the tube from which the helix is formed has a round cross section or an oval cross section or an angular cross section.
  • An oval tube may be particularly advantageous when the broad sides of the tube extend in a radial direction, while the narrow sides extend in the axial direction.
  • the tube has an inner ribbing and / or an outer ribbing.
  • Taps are advantageous in order to achieve a targeted influencing of the fluids flowing through the heat exchanger.
  • the generation of a turbulent flow is advantageous in order to increase the heat transfer.
  • the object with regard to the method is achieved by a method having the features of claim 9.
  • An embodiment of the invention relates to a method for producing a heat exchanger with an accumulator, with a housing and with a tube formed into a helix, the method comprising the following steps: ⁇ Inserting the accumulator into the coil,
  • a method which provides for a plastic deformation of the housing to produce 'a frictional connection between the helix and the inner surface of the housing is especially advantageous because it is easy to use and can be easily adapted to a variety of differently dimensioned heat exchanger.
  • different outer diameters of the heat exchangers can be taken into account by a corresponding adaptation of the device in which the heat exchanger is accommodated for deformation.
  • the accumulator is preferably arranged in the center of the heat exchanger.
  • the helix is attached to the accumulator, so that the accumulator is arranged in the inner space formed within the helix.
  • the housing is placed over the coil, so that the coil and the accumulator are arranged in the housing.
  • the accumulator, the helix and the housing preferably have the same cross-sections, which differ only by the respective inner diameter and outer diameter.
  • the force component is preferably removed from the housing when a certain predetermined deformation is achieved or other predetermined control values have been achieved.
  • a control value for example, a measured force or a covered working distance into consideration.
  • the individual steps of the method lead to an arrangement of an accumulator within a coil, wherein the coil itself is disposed within the housing. By the action of force on the housing, a frictional connection between at least the housing and the coil is generated. After reaching a predefined adhesion, the force is finally removed from the housing, whereby the heat exchanger is formed with the frictionally connected elements.
  • the helix bears with the radially inwardly directed side on the radial outer surface of the accumulator and / or the helix with the radially outwardly directed side on the radially inner surface of the housing is applied.
  • the coil can rest on the accumulator and / or rest against the housing. This is particularly advantageous in order to facilitate assembly. In particular, when the coil rests only on one of the two other elements, the assembly is particularly simple. If the accumulator and the housing abut the helix, different fits can be provided between the helix and the accumulator and / or the housing, whereby an assembly with higher or lower force is possible.
  • a gap is formed between the housing and the helix in order to allow mounting.
  • a gap between the coil and the housing is particularly advantageous when the accumulator and the coil are already pre-assembled as a unit and formed between the coil and the accumulator a fit with low tolerances. The assembly can then be easily mounted in the housing.
  • a gap is advantageous in order to first only achieve a deformation of the housing during the plastic deformation before the housing comes into contact with the housing Wendel comes. As a result, the housing can be deliberately transferred beyond the elastic deformation area into the plastic deformation area without already having an effect on the filament or the accumulator,
  • Cold deformation is particularly advantageous in order to achieve increased stability of the heat exchanger.
  • the lattice structure of the materials of the individual elements is changed, whereby a consolidation of the individual elements and thus of the entire heat exchanger is achieved.
  • the force component is generated by a pressing device on the radially outer surface of the housing.
  • a pressing device can be formed, for example, by one or more punches, which can be moved radially inwards so as to be able to apply a force component to the housing.
  • the heat exchanger facing surfaces of the stamp can be easily adapted to the cross section of the housing of the heat exchanger, which also different heat exchanger can be made in a simple manner.
  • the pressing device can act on the housing in the axial direction over the entire length of the housing or only along a partial area.
  • a further preferred embodiment is characterized in that the application of the force component is steered away and the duration of the force application and / or the nominal force is dependent on the deformation of the housing generated by the force component or in that the application of the force component is force-controlled and the duration of the Force application and / or the nominal force is dependent on a measured or predefined force.
  • a path-controlled device preferably detects the working path of the pressing device or the deformation path of the housing. From this it can be concluded that the already existing deformation, whereby a very accurate deformation can be achieved.
  • a force-controlled pressing device in particular on the punches, a force is measured which arises in response to the applied force component. This changes depending on whether only the housing is deformed or the helix and / or the accumulator, in this way the deformation can be carried out purposefully even without direct insight into the interior of the housing.
  • the nominal force is meant the force component and in particular its magnitude, which is applied to the housing for the purpose of deformation.
  • the deformation of the housing and / or the coil and / or the accumulator has an elastic component, wherein after the action of the radially inwardly directed force component ikros palte between the housing and the coil and / or between the coil and form the accumulator.
  • the emergence of microspheres increases the heat transfer surface of the accumulator, tube and housing. This is done by an upstream deformation of the individual elements and a subsequent widening of the elements in the elastic region of the overall deformation.
  • the deformed areas then have, in particular, a larger surface area.
  • the microcolumns are preferably so small that the disadvantages due to the microcolumn are less than the advantages achieved by the surface enlargement.
  • Fig. 1 is a perspective view of a coil formed into a helix
  • FIG. 2 shows an alternative view of the tube formed into a helix, wherein the free spaces formed between the turns are shown
  • FIG. 3 is a detail view of the upper end portion of the coil, wherein one of the Rohrend Suitee is shown, through which the helix is flowed through,
  • FIG. 4 shows a plan view of the helix, wherein the cylindrical interior, which is formed in the interior of the helix, is shown,
  • FIG. 5 shows a sectional view through a heat exchanger, wherein a state is shown before the last processing step and a gap is formed between the coil and the housing,
  • FIG. 6 shows a sectional view through the heat exchanger according to FIG. 5, wherein the housing is plastically deformed and is in contact with the coil,
  • FIG. 7 is a sectional view through an alternatively designed heat exchanger, wherein a state before the last processing step is shown and between the coil and the accumulator and the coil and the housing is formed in each case a gap
  • Fig. 8 is a sectional view through a heat exchanger according to Figure 7, wherein by a plastic deformation of the housing and the
  • FIG. 9 is a block diagram showing the procedure of the method of manufacturing the heat exchanger.
  • the helix 1 shows a perspective view of a helix 1.
  • the helix 1 is produced by a tube 2, which was wound into a helix 1.
  • the coil 1 has a plurality of turns 3, which are formed spaced apart in the axial direction of the coil 1 and each form a free space 4 between the mutually adjacent turns 3.
  • the axial direction runs along the central axis, which extends from top to bottom through the interior 7 formed inside the turns 3 of the helix 1.
  • the radial direction extends from this central axis to the turns 3.
  • the tube 2 has two Rohend Schemee 5, 6, which are arranged at the top and bottom of the end of the coil 1 and serve as fluid connections for the flow through the tube 2.
  • FIG. 2 shows a further view of the helix 1, as has already been shown in FIG.
  • the free spaces 4 can be seen, which are formed between two mutually adjacent turns 3.
  • the turns 3 each have an identical outer diameter and an identical inner diameter.
  • FIGS. 1 and 2 which show a helix 1 of cylindrical design, a cylindrical inner space 7 is formed and a cylindrical outer surface on the outer diameter of the turns 3.
  • FIG. 3 shows a detailed view of the upper end region of the helix 1.
  • the upper Rohrend Scheme 5 can be seen, which is formed by a bend of about 90 ° from the upper turn 3 upwards.
  • the pipe end region 5 can also be at other angles to the rest of the helix 1 or have additional connection elements.
  • the cylindrical interior 7 is shown inside the coil 1, and furthermore the free spaces 4 between the mutually adjacent turns 3.
  • FIG. 4 shows a plan view of the helix 1 along the central axis, which is formed centrally in the cylindrical interior 7.
  • all windings 3 are in alignment with one another and have identical inner and outer diameters, whereby a cylindrical inner lateral surface and a cylindrical outer lateral surface are formed on the helix 1.
  • FIG. 5 shows a sectional view through a heat exchanger 20.
  • the coil 1 is arranged, which is carried out according to the embodiments of Figures 1 to 4.
  • a likewise cylindrical body 10 is arranged, which forms an accumulator.
  • This accumulator 10 is used in particular for the storage and / or filtering and / or drying of a refrigerant which can flow through the heat exchanger 20.
  • the accumulator 10 has at its upper end portion a nozzle, which communicates with a fluid port 16 in fluid communication.
  • This fluid connection 16 is formed in the housing 1 1, which accommodates both the coil 1 and the accumulator 10 in itself.
  • the accumulator 10 has a radially outwardly directed surface 14, on which more in the embodiment of Figure 5, the radially inwardly directed side 13 of the coil 1 is applied.
  • the surface 14 may have any contour, ie, for example be cylindrical, as shown, or be designed as a single or multi-start thread. Accordingly, the helix 1 is dimensioned such that the accumulator 10 can be received in an exact fit in the cylindrical interior 7.
  • Between the accumulator 10 and the coil 1 may preferably be provided a press fit, a clearance fit or a transition fit. Accordingly, the coil 1 can be pushed over the accumulator 10 with or without force.
  • the upper Rohrend Scheme 5 of the coil 1 is connected to a further fluid port 25, which is also formed in the housing 1 1, in Fluid communication, whereby the coil 1 can be flowed through with a fluid.
  • the housing 1 1 is also cylindrical and has a radially inwardly directed surface 21.
  • the inner diameter of the housing 11 is larger than the outer diameter of the helix 1. This creates a gap 12 between the helix 1 and the housing 11.
  • the cylindrical wall of the housing 11 is formed in a straight line in the region of the helix in the axial direction and has no recesses or indentations.
  • FIG. 5 shows a mounting state of the heat exchanger 20 before final processing, which provides for fixing the coil 1 between the accumulator 10 and the housing 11.
  • the accumulator 10 and the housing 11 or half of the accumulator 10 formed cavity 17 can also be traversed by a fluid.
  • the helix 1 would merely flow around it, since the gap 12 is located between the helix 1 and the housing 11.
  • a contact between the inwardly directed surface 21 of the housing 1 1 and the radially outward directed side 22 of the helix 1 are generated. This should in particular reduce or completely exclude a leakage flow past the turns 3.
  • a flowing through the cavity 17 fluid can then flow only in a helical channel structure, which is formed by the free spaces 4, between the windings 3, whereby improved heat transfer between the fluid flowing in the helix 1 and the fluid flowing through the cavity 17 can be generated.
  • FIG. 6 shows the heat exchanger 20 of FIG. 5, wherein a deformation of the housing 11 in a radially inward direction provides an abutment between the radially inwardly directed surface 21 of the housing 11 and the radially outwardly directed side 22 of the helix 1 is generated.
  • This can be seen in particular by the portion 18 of the housing 1 1, which is deflected by the action of a radially inwardly directed force component from the plane of the original wall 19.
  • both the radially outwardly directed surface of the accumulator 10 is applied to the coil 1 and the radially inwardly directed surface of the housing 1 1.
  • the flow channel is thus defined in particular by the free spaces 4 between the turns 3.
  • the heat exchanger 20 can be inserted in the state of Figure 5, for example in a pressing device and then a force component on the housing 1 1 are exercised.
  • FIG. 7 shows an alternative embodiment of the heat exchanger 20.
  • FIG. 7 represents a partially assembled state of the heat exchanger 20.
  • the helix 1 and the radially outwardly directed surface 14 of the accumulator 10 are located between the inwardly directed side 13 as well as between the radial direction outwardly directed side 22 of the coil 1 and the radially inwardly directed surface 21 of the housing 11 each have a gap 12 and 24, respectively.
  • FIG. 7 shows the heat exchanger as already shown in FIG. 7, whereby the housing 11 has developed a deformation in the housing region 18 by means of a force component which has acted on the outer surface of the housing 11 in a radially inward direction.
  • the deformation in the region 18 of the housing 11 is stronger in comparison to the deformation of Figure 6, so that in addition to an investment of the housing ses on the coil 1 and a system of the coil 1 was generated at the accumulator 10.
  • the housing 1 1 is deformed, but also the helix 1 compressed in radially inward direction.
  • the accumulator 10 can also experience a compression by the action of the radially inward force component.
  • the deformation of the housing 1 1 and / or the coil 1 and / or the accumulator 10 results in a work hardening in the respective elements, which is particularly advantageous for generating a higher stability of the heat exchanger 20.
  • FIGS. 1 to 8 in particular a tube 2 with a circular cross-section is shown.
  • tubes with an oval, elliptical or angular cross-section.
  • the respective shape shown by cylindrical cross sections of the coil 1, the accumulator 10 and the housing 1 1 are merely exemplary. Again, different cross sections can be used without departing from the spirit of the invention.
  • the tube may also have inner ribs or outer ribs, through which the flow in the individual flow channels can be influenced.
  • the free spaces 4 between the windings 3 can be designed with turbulence-generating rib elements.
  • FIG. 9 is a block diagram illustrating the steps of the method in sequence.
  • the accumulator 10 is inserted into the coil.
  • the helix 1 forms an inner space 7, which is arranged in the center of the helix 1. In this interior of the accumulator 10 is inserted. Alternatively, the helix 1 can be pushed over the accumulator 10.
  • the block 31 represents the step in which the housing 1 1 is plugged onto the coil 1.
  • the housing 11 is preferably tubular, wherein the cross section of the housing 1 1 is adapted to the cross section of the coil 1 and / or the accumulator 10.
  • a force component is applied to the radially outer surface of the housing 11. This can preferably be done by a pressing device, which provides movable punch, which generate a force by a method in the radial direction.
  • the working step which is represented by the block 33, corresponds to the plastic deformation of the housing 11 as a result of the force component applied to the housing 11 in the block 32.
  • the force component After reaching a certain predetermined deformation of the housing 1 1 and / or the coil 1 and / or the accumulator 10, the force component is finally removed from the housing 1 1, so that no further plastic deformation takes place. This step is shown in block 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmeübertrager (20) zur Kühlung eines Fluids, mit einem Akkumulator (10), einem Gehäuse (1 1) und einem zu einer Wendel (1) geformten Rohr (2), wobei zwischen dem Akkumulator (10) und dem Gehäuse (1 1 ) ein Spalt ausgebildet ist, in welchem das zu einer Wendel (1) geformte Rohr (2) angeordnet ist, wobei zwischen dem Gehäuse (1 1 ) und der Wendel (1 ) eine kraftschlüssige Verbindung gebildet ist, wobei die kraftschlüssige Verbindung durch eine plastische Verformung des Gehäuses (1 1 ) erzeugt ist. Außerdem betrifft die Erfindung ein Verfahren zur Herstellung eines Wärmeübertragers.

Description

Wärmeübertrager und Verfahren zur Herstellung des Wärmeübertragers
Beschreibung Technisches Gebiet
Die Erfindung betrifft einen Wärmeübertrager zur Kühlung eines Fluids, mit einem Akkumulator, einem Gehäuse und einem zu einer Wendel geformten Rohr, wobei zwischen dem Akkumulator und dem Gehäuse ein Spalt ausgebildet ist, in welchem das zu einer Wendel geformte Rohr angeordnet ist. Außerdem betrifft die Erfindung ein Verfahren zur Hersteilung eines Wärmeübertragers.
Stand der Technik Aufgrund gesetzlicher Vorgaben ist das Kältemittel R-134a zukünftig für die Nutzung in Klimaanlagen nicht mehr zulässig. Als alternatives Kältemittel wird unter anderem R-744 (C02) verwendet. Das Kältemittel R-744 ist im Vergleich zu R-134a wesentlich umweltfreundlicher und ermöglicht weiterhin bei einem vergleichbaren Bauvolumen der Klimaanlage eine höhere Kälteleistung. Außerdem wird eine höhere Effizienz (COP = Coefftcient of Performance) hinsichtlich der Kälteleistung im Vergleich zur Verdichterleistung erreicht.
Für die Verwendung von R-744 wird in Klimaanlagen zusätzlich ein sogenannter innerer Wärmeübertrager verwendet, wobei das Kältemittel in diesem inneren Wärme- Übertrager weiter abgekühlt wird, indem ein Wärmeübertrag zwischen dem Kältemit- tel auf der Niederdruckseite des Kältemittelkreislaufs und dem wärmeren Kältemittel auf der Hochdruckseite des Kältemittelkreislaufs stattfindet.
Im Stand der Technik sind unterschiedliche Vorrichtungen bekannt, welcher einen zusätzlichen inneren Wärmeübertrager aufweisen.
Die EP 2 136 160 A2 zeigt einen Wärmeübertrager sowie ein Verfahren zur Herstellung des Wärmeübertragers. Der Wärmeübertrager weist einen Sammler auf, der in einem Gehäuse angeordnet ist. Zwischen dem Gehäuse und dem Sammler ist eine Rohrwendel angeordnet. Zur Erzeugung eines Kontaktes zwischen der Rohrwendel, dem Sammler und dem Gehäuse wird ein Innenhochdruckverfahren verwendet, wodurch die Rohrwendel aufgeweitet wird und mit dem Sammler und dem Gehäuse in Anlage kommt.
Aus der DE 198 30 757 A1 ist eine Klimaanlage bekannt, welche einen inneren Wärmeübertrager aufweist. Der innere Wärmeübertrager ist mit dem Kondensator kombiniert. In einem Ausführungsbeispiel weist der innere Wärmeübertrager eine Rohrwendel auf, welche zwischen einem Sammler und einem Gehäuse angeordnet ist. Nachteilig an den Vorrichtungen im Stand der Technik ist insbesondere, dass das Rohr, welches das Kältemittel auf der Hochdruckseite führt entweder nur von dem Kältemittel auf der Niederdruckseite umströmt wird oder die Erzeugung eines definierten Gegenstroms zwischen dem Kältemittel der Hochdruckseite und der Niederdruckseite durch aufwändige Fertigungsverfahren erreicht wird. Insbesondere in Vor- richtungen, welche ein Strömen des Kältemittels auf der Hochdruckseite und der Niederdruckseite im Gegenstrom vorsehen, kann das Entstehen von Leckagen zu einer drastischen Reduzierung der Effizienz des Wärmeübertragers führen. Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung einen Wärmeübertrager zu schaffen, welcher auf einfache Weise herstellbar ist und eine effiziente Abkühlung eines Fluids erlaubt. Weiterhin ist es die Aufgabe der Erfindung ein Verfahren zu schaffen, welches eine einfache, kostengünstige und prozesssichere Herstellung eines Wärmeübertragers ermöglicht.
Die Aufgabe hinsichtlich des Wärmeübertragers wird durch einen Wärmeübertrager mit den Merkmalen von Anspruch 1 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft einen Wärmeübertrager zur Kühlung eines Fluids, mit einem Akkumulator, einem Gehäuse und einem zu einer Wendel geformten Rohr, wobei zwischen dem Akkumulator und dem Gehäuse ein Spalt ausgebildet ist, in welchem das zu einer Wendel geformte Rohr angeordnet ist, wobei zwischen dem Gehäuse und der Wendel eine kraftschlüssige Verbindung gebildet ist, wobei die kraftschlüssige Verbindung durch eine plastische Verformung des Gehäuses erzeugt ist.
Eine kraftschlüssige Verbindung zwischen dem Gehäuse und der Wendel ist beson- ders vorteilhaft, um zu verhindern, dass die Wendel unkontrolliert entlang ihrer Windungen umströmt wird. Durch Spalte zwischen der Wendel und dem Gehäuse können Leckageströmungen entstehen, welche die Effizienz des Wärmeübertragers negativ beeinflussen. Besonders vorteilhaft ist das Erzeugen eines Kraftschlusses durch ein plastisches Verformen des Gehäuses. Insbesondere ist eine Stauchung des Gehäuses vorteilhaft, durch welche der Durchmesser des Gehäuses verringert wird, wodurch eine Anlage der Wendel am Gehäuse erzeugt wird.
Es ist insbesondere vorteilhaft, wenn zwischen dem Gehäuse und der Wendel und dem Akkumulator eine kraftschlüssige Verbindung erzeugt ist, wobei die kraftschlüs- sige Verbindung durch eine plastische Verformung des Gehäuses und der Wendel erzeugt ist. In einer vorteilhaften Ausgestaltung wird sowohl das Gehäuse als auch die Wendel plastisch verformt, wodurch ein Kraftschluss sowohl zwischen dem Akkumulator und der Wendel als auch zwischen dem Gehäuse und der Wendel erzeugt wird. Dies ist besonders vorteilhaft, um einen möglichst fluiddichten Strömungskanal zu erzeugen, entlang welchem ein Fiuidstrom an der Wendel entlang strömen kann. Das Gehäuse wird hierbei gestaucht, bis es an der Wendel anliegt. Die Kraftkomponente wirkt dann weiter auf das Gehäuse ein, damit das Gehäuse weiter gestaucht wird, bis auch die Wendel eine Stauchung erfährt. Die Wendel wird dabei vorteilhafterweise solange durch eine Stauchung plastisch verformt, bis sie infolge einer Durchmesserverkleine- rung in einen Kraftschluss mit dem Akkumulator kommt.
Auch ist es vorteilhaft, wenn die plastische Verformung durch eine radial nach innen wirkende Kraftkomponente auf das Gehäuse erzeugt ist. Mit einer radialen Richtung ist stets eine Richtung gemeint, welche als Normale auf der Mittelachse des Wärmeübertragers steht. Mit einer axialen Richtung ist eine Richtung entlang der Mittelachse des Wärmeübertrages gemeint.
Durch eine radial nach innen wirkende Kraftkomponente kann eine vorteilhafte Stau- chung des Gehäuses und/oder der Wendel und/oder des Akkumulators erreicht werden. Da die einzelnen Elemente konzentrisch zueinander angeordnet sind, kann durch das Aufbringen einer radial nach innen gerichteten Kraft eine plastische Verformung an einzelnen Elementen oder an allen drei Elementen gleichzeitig erzeugt werden.
Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass der Akkumulator, die Wendel und das Gehäuse zylinderförmig ausgebildet sind. Eine zylinderförmige Ausgestaltung des Akkumulators, der Wendel und des Gehäuses ist vorteilhaft, um eine gleichmäßige und entlang der Umfangsrichtung umlaufende Stauchung der einzelnen Elemente zu erreichen. In alternativen Ausführungsformen können jedoch auch ovale Querschnitte oder eckige Querschnitte der Elemente vorgesehen sein, Die Aufbringung der Kraftkomponente ist dabei vorzugsweise an die jeweiligen Querschnitte der Elemente ange- passt, um einen in Umfangsrichtung vollständig umlaufenden Kraftschluss zu erzeugen. Durch eine nicht angepasste Aufbringung der Kraftkomponente kann es bei- spielsweise zu Wellungen und Ausbeulungen der Elemente kommen, wodurch eine fluiddichte Ausbildung eines Strömungskanals zwischen der Wendel und dem Akkumulator beziehungsweise dem Gehäuse verhindert wird.
Auch ist es zu bevorzugen, wenn zwischen dem Akkumulator und dem Gehäuse durch die Wendel ein schraubenförmiger Strömungskanal gebildet ist, durch welchen ein Fluid in Umfangsrichtung mit einer durch die Windungen der Wendel vorgebbaren Steigung strömbar ist.
Der schraubenförmige Strömungskanal wird vorteilhafterweise durch die zwischen den einzelnen Windungen ausgebildeten Freiräume gebildet. Durch die in die Wendel eingeformte Steigung erhalten auch die Freiräume eine Steigung, welche gleichzeitig auch die Steigung des entstehenden Strömungskanals darstellt. In radialer Richtung wird der Strömungskanal durch die Anlage der Gehäuseinnenwandung an der radial nach außen gerichteten Seite der Wendel und durch die Anlage der Au- ßenwandung des Akkumulators an der radial nach innen gerichteten Seite der Wendel abgeschlossen. Durch die Ausbildung eines solchen Strömungskanals kann ein Fluid gerichtet im Gegenstrom zu dem Fluid in der Wendel strömen, ohne das Leckageströmungen an der Wendel vorbei entstehen. Dadurch wird die Effizienz des Wärmeübertragers durch einen verbesserten Wärmeübergang deutlich erhöht. Durch elastische Rückfederungen können minimale Spalte zwischen der Wendel und dem Gehäuse entstehen, diese Spalte führen durch ihre geringe Spaltbreite zu einem sehr hohen Druckverlust im Spalt und somit zu einem hohen Wärmeübergang. Diese Spalte sind somit nicht als nachteilig anzusehen. Darüber hinaus ist es vorteilhaft, wenn die einzelnen Windungen der Wendel in axialer Richtung zueinander beabstandet ausgebildet sind. Durch die Beabstandung der Windungen zueinander in axialer Richtung entstehen die Freiräume zwischen den Windungen, welche den Strömungskanal ausbilden. Die Größe der Freiräume wird dabei hauptsächlich durch die gewählte Steigung der einzelnen Windungen bestimmt. In einer vorteilhaften Ausgestaltung können die einzel- nen Windungen auch voneinander abweichende Steigungen aufweisen, wodurch entlang der axialen Richtung der Wendel unterschiedlich große Freiräume entstehen.
Weiterhin ist es vorteilhaft, wenn das Rohr, aus welchem die Wendel geformt ist, einen runden Querschnitt oder einen ovalen Querschnitt oder einen eckigen Quer- schnitt aufweist. Ein ovales Rohr kann insbesondere dann vorteilhaft sein, wenn sich die Breitseiten des Rohrs in einer radialen Richtung erstrecken, während sich die Schmalseiten in axialer Richtung erstrecken. Durch eine Stauchung des Rohrs in radialer Richtung kann somit ein Rohr mit annähernd kreisrundem Querschnitt erzeugt werden. Die Verformung vom ovalen Rohr zum runden Rohr kann eine Kaltver- festig ung des Materials verursachen, wodurch die Festigkeit des Rohres erhöht wird. Trotzdem bleibt durch die erzeugte runde Form ein optimaler Strömungsquerschnitt erhalten.
Auch ist es zweckmäßig, wenn das Rohr eine Innenberippung und/oder eine Außen- berippung aufweist. Berippungen sind vorteilhaft, um eine gezielte Beeinflussung der durch den Wärmeübertrager strömenden Fluide zu erreichen. Insbesondere ist die Erzeugung einer turbulenten Strömung vorteilhaft, um den Wärmeübertrag zu erhöhen. Die Aufgabe hinsichtlich des Verfahrens wird durch ein Verfahren mit den Merkmalen von Anspruch 9 gelöst.
Ein Ausführungsbeispiel der Erfindung betrifft ein Verfahren zur Herstellung eines Wärmeübertragers, mit einem Akkumulator, mit einem Gehäuse und mit einem zu einer Wendel geformten Rohr, wobei das Verfahren die nachfolgenden Schritte um- fasst: · Einführen des Akkumulators in die Wendel,
Aufstecken eines rohrförmigen Gehäuses auf die Wendel,
Aufbringen einer radial nach innen gerichteten Kraft, auf das Gehäuse,
• plastisches Verformen des Gehäuses und/oder der Wendel und/oder des Akkumulators in einer radial nach innen gerichteten Richtung, ■ Entfernen der Kraftkomponente vom Gehäuse,
Ein Verfahren, welches eine plastische Verformung des Gehäuses vorsieht, um' einen Kraftschluss zwischen der Wendel und der Innenfläche des Gehäuses zu erzeugen, ist besonders vorteilhaft, da es einfach anzuwenden ist und auf eine Vielzahl unterschiedlich dimensionierter Wärmeübertrager einfach angepasst werden kann. Insbesondere unterschiedliche Außendurchmesser der Wärmeübertrager können durch eine entsprechende Anpassung der Vorrichtung, in welche der Wärmeübertrager zur Verformung aufgenommen ist, berücksichtigt werden, Der Akkumulator ist bevorzugt im Zentrum der Wärmeübertragers angeordnet. Die Wendel wird auf den Akkumulator aufgesteckt, so dass der Akkumulator im innerhalb der Wendel ausgebildeten Innenraum angeordnet ist. Das Gehäuse wird über die Wendel gesteckt, so dass die Wendel und der Akkumulator in dem Gehäuse angeordnet sind. Der Akkumulator, die Wendel und das Gehäuse weisen bevorzugt glei- che Querschnitte auf, welche sich lediglich durch die jeweiligen Innendurchmesser und Außendurchmesser unterscheiden.
Durch eine Kraftkomponente, welche in radialer Richtung nach innen wirkt und auf das Gehäuse aufgebracht wird, wird eine Verformung, insbesondere eine Stauchung, des Gehäuses erzeugt.
Die Kraftkomponente wird bevorzugt dann vom Gehäuse entfernt, wenn eine bestimmte vorgegebene Verformung erreicht ist oder andere vorgegebene Kontrollwerte erreicht wurden. Als Kontrollwert kommen beispielsweise eine gemessene Kraft oder ein zurückgelegter Arbeitsweg in Betracht. Die einzelnen Arbeitsschritte des Verfahrens führen zu einer Anordnung von einem Akkumulator innerhalb einer Wendel, wobei die Wendel selbst innerhalb des Gehäuses angeordnet ist. Durch die Krafteinwirkung auf das Gehäuse wird ein Kraftschluss zwischen zumindest dem Gehäuse und der Wendel erzeugt. Nach dem Erreichen eines vordefinierten Kraftschlusses wird die Kraft schließlich vom Gehäuse entfernt, wodurch der Wärmeübertrager mit den kraftschlüssig verbundenen Elementen entsteht.
Darüber hinaus ist es vorteilhaft, wenn vor dem Aufbringen der radial nach innen gerichteten Kraftkomponente die Wendel mit der radial nach innen gerichteten Seite an der radialen Außenfläche des Akkumulators anliegt und/oder die Wendel mit der radial nach außen gerichteten Seite an der radialen Innenfläche des Gehäuses anliegt.
Je nach Dimensionierung der einzelnen Elemente, kann die Wendel an dem Akkumulator anliegen und/oder an dem Gehäuse anliegen. Dies ist insbesondere vorteil- haft, um die Montage zu erleichtern. Insbesondere, wenn die Wendel nur an einem der beiden anderen Elemente anliegt, ist die Montage besonders einfach. Sofern der Akkumulator und das Gehäuse an der Wendel anliegen, können zwischen der Wendel und dem Akkumulator und/oder dem Gehäuse unterschiedliche Passungen vorgesehen werden, wodurch eine Montage mit höherem oder geringerem Kraftaufwand möglich wird.
Weiterhin ist es zweckmäßig, wenn vor dem Aufbringen der radial nach innen gerichteten Kraftkomponente ein Spalt zwischen dem Gehäuse und der Wendel ausgebildet ist, um eine Montage zu ermöglichen.
Ein Spalt zwischen der Wendel und dem Gehäuse ist besonders vorteilhaft, wenn der Akkumulator und die Wendel bereits als Baueinheit vormontiert sind und zwischen der Wendel und dem Akkumulator eine Passung mit geringen Toleranzen ausgebildet ist. Die Baueinheit lässt sich dann einfach im Gehäuse montieren. Au- ßerdem ist ein Spalt vorteilhaft, um während der plastischen Verformung zuerst nur eine Verformung des Gehäuses zu erreichen, bevor das Gehäuse in Anlage mit der Wendel kommt. Dadurch kann das Gehäuse gezielt über den elastischen Verformungsbereich hinaus in den plastischen Verformungsbereich überführt werden, ohne bereits eine Auswirkung auf die Wendel oder den Akkumulator zu erreichen,
Auch ist es vorteilhaft, wenn durch das Aufbringen der radial nach innen gerichteten Kraftkomponente eine Kaltverformung des Gehäuses und/oder der Wendel und/oder des Akkumulators erzeugt wird.
Eine Kaltverformung ist besonders vorteilhaft, um eine erhöhte Stabilität des Wärmeübertragers zu erreichen. Durch eine Kaltverformung wird die Gitterstruktur der Mate- rialien der einzelnen Elemente verändert, wodurch eine Festigung der einzelnen Elemente und damit des gesamten Wärmeübertragers erreicht wird.
Auch ist es zu bevorzugen, wenn die Kraftkomponente durch eine Pressvorrichtung auf der radialen Außenfläche des Gehäuses erzeugt wird.
Eine Pressvorrichtung kann beispielsweise durch einen oder mehrere Stempel gebildet sein, welche radial nach innen gefahren werden können, um so eine Kraftkomponente auf das Gehäuse aufbringen zu können. Die dem Wärmeübertrager zugewandten Flächen der Stempel können auf einfache Weise an den Querschnitt des Gehäuses des Wärmeübertragers angepasst werden, wodurch auch unterschiedliche Wärmeübertrager auf einfache Weise gefertigt werden können. Die Pressvorrichtung kann in axialer Richtung über die gesamte Länge des Gehäuses auf das Gehäuse einwirken oder nur entlang eines Teilbereichs. Ein weiteres bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass das Aufbringen der Kraftkomponente weggesteuert ist und die Dauer der Kraftaufbringung und/oder die Nennkraft abhängig von der durch die Kraftkomponente erzeugten Verformung des Gehäuses ist oder dadurch, dass das Aufbringen der Kraftkomponente kraftgesteuert ist und die Dauer der Kraftaufbringung und/oder die Nennkraft abhängig von einer gemessenen oder vordefinierten Kraft ist. Dies ist besonders vorteilhaft, um eine genau definierte Verformung zu erzeugen. Eine weggesteuerte Vorrichtung erfasst bevorzugt den Arbeitsweg der Pressvorrichtung beziehungsweise die Verformungsstrecke des Gehäuses. Aus dieser kann auf die bereits erfolgte Verformung geschlossen werden, wodurch eine sehr genaue Verformung erreicht werden kann. Bei einer kraftgesteuerten Pressvorrichtung wird ins- besondere an den Stempeln eine Kraft gemessen, welche als Reaktion auf die aufgebrachte Kraftkomponente entsteht, Diese verändert sich abhängig davon, ob nur das Gehäuse verformt wird oder auch die Wendel und/oder der Akkumulator, Auf diese Weise kann die Verformung auch ohne direkten Einblick in das Innere des Gehäuses zielgerichtet durchgeführt werden.
Mit der Nennkraft ist die Kraftkomponente und insbesondere deren Betrag gemeint, welche auf das Gehäuse zum Zwecke der Verformung aufgebracht wird.
Weiterhin ist es zweckmäßig, wenn die Verformung des Gehäuses und/oder der Wendel und/oder des Akkumulators einen elastischen Anteil aufweist, wobei sich nach dem Einwirken der radial nach innen gerichteten Kraftkomponente ikros palte zwischen dem Gehäuse und der Wendel und/oder zwischen der Wendel und dem Akkumulator ausbilden. Durch das Entstehen von Mikrospaiten wird die zum Wärmeübertrag aktive Oberfläche des Akkumulators, des Rohres und des Gehäuses erhöht. Dies geschieht durch eine vorgelagerte Verformung der einzelnen Elemente und eine anschließende Weitung der Elemente im elastischen Bereich der Gesamtverformung. Die verformten Bereiche weisen danach insbesondere eine größere Oberfläche auf. Die Mikrospalte sind bevorzugt derart gering, dass die Nachteile infolge der Mikrospalte geringer sind als die durch die Oberflächenvergrößerung erzielten Vorteile.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben. Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert, In den Zeichnungen zeigen: Fig, 1 eine perspektivische Ansicht eines zu einer Wendel geformten
Rohres,
Fig. 2 eine alternative Ansicht des zu einer Wendel geformten Rohres, wobei die zwischen den Windungen ausgebildeten Freiräume dar- gestellt sind,
Fig. 3 eine Detailansicht des oberen Endbereichs der Wendel, wobei einer der Rohrendbereiche dargestellt ist, durch weichen die Wendel durchströmbar ist,
Fig, 4 eine Aufsicht auf die Wendel, wobei der zylindrische Innenraum, welcher im Inneren der Wendel ausgebildet ist, gezeigt ist,
Fig. 5 eine Schnittansicht durch einen Wärmeübertrager, wobei ein Zu- stand vor dem letzten Bearbeitungsschritt gezeigt ist und zwischen der Wendel und dem Gehäuse ein Spalt ausgebildet ist,
Fig, 6 eine Schnittansicht durch den Wärmeübertrager gemäß Figur 5, wobei das Gehäuse plastisch verformt ist und in Anlage mit der Wendel ist,
Fig. 7 eine Schnittansicht durch einen alternativ ausgestalteten Wärmeübertrager, wobei ein Zustand vor dem letzten Bearbeitungsschritt gezeigt ist und zwischen der Wendel und dem Akkumulator und der Wendel und dem Gehäuse jeweils ein Spalt ausgebildet ist, Fig. 8 eine Schnittansicht durch einen Wärmeübertrager gemäß Figur 7, wobei durch eine plastische Verformung des Gehäuses und der
Wendel die Wendel mit dem Akkumulator und mit dem Gehäuse in Anlage ist, und
Fig. 9 ein Blockdiagramm, welches den Ablauf des Verfahrens zur Herstellung des Wärmeübertragers zeigt.
Bevorzugte Ausführung der Erfindung
Die Figur 1 zeigt eine perspektivische Ansicht einer Wendel 1. Die Wendel 1 ist durch ein Rohr 2 erzeugt, welches zu einer Wendel 1 aufgewickelt wurde. Die Wendel 1 weist eine Mehrzahl von Windungen 3 auf, welche in axialer Richtung der Wendel 1 zueinander beabstandet ausgebildet sind und jeweils einen Freiraum 4 zwischen den zueinander benachbarten Windungen 3 ausbilden. Die axiale Richtung verläuft entlang der Mittelachse, welche sich von oben nach unten durch den innerhalb der Windungen 3 der Wendel 1 ausgebildeten Innenraum 7 erstreckt. Die radiale Richtung verläuft von dieser Mittelachse hin zu den Windungen 3. Das Rohr 2 weist zwei Rohendbereiche 5, 6 auf, welche oben und unten am Ende der Wendel 1 angeordnet sind und als Fluidanschlüsse für die Durchströmung des Rohres 2 dienen.
Die Figur 2 zeigt eine weitere Ansicht der Wendel 1 , wie sie bereits in Figur 1 gezeigt wurde. In Figur 2 sind insbesondere die Freiräume 4 zu erkennen, welche zwischen zwei zueinander benachbarten Windungen 3 ausgebildet sind. Die Windungen 3 weisen jeweils einen identischen Außendurchmesser sowie einen identischen Innendurchmesser auf. Dadurch wird in dem Ausführungsbeispiel der Figuren 1 und 2, welche eine zylindrisch ausgebildete Wendel 1 zeigen, ein zylindrischer Innenraum 7 ausgebildet und eine zylindrische Mantelfläche am Außendurchmesser der Windungen 3. Die Figur 3 zeigt eine Detailansicht des oberen Endbereichs der Wendel 1 . In der Figur 3 ist der obere Rohrendbereich 5 zu erkennen, welcher durch eine Biegung von ungefähr 90° aus der oberen Windung 3 nach oben hin ausgeformt ist. In alternativen Ausführungsformen kann der Rohrendbereich 5 auch in anderen Winkeln zum Rest der Wendel 1 stehen oder zusätzliche Anschlusselemente aufweisen. Des Weiteren ist in Figur 3 der zylindrische Innenraum 7 im Inneren der Wendel 1 dargestellt und weiterhin die Freiräume 4 zwischen den zueinander benachbarten Windungen 3.
Die Figur 4 zeigt eine Aufsicht auf die Wendel 1 entlang der Mittelachse, welche zentral im zylindrischen Innenraum 7 ausgebildet ist. In Figur 4 ist insbesondere zu erkennen, dass alle Windungen 3 in einer Flucht miteinander liegen und identische Innen- sowie Außendurchmesser aufweisen, wodurch eine zylindrische Innenmantelfläche und eine zylindrische Außenmantelfläche an der Wendel 1 ausgebildet werden.
Die Figur 5 zeigt eine Schnittansicht durch einen Wärmeübertrager 20. Innerhalb des Wärmeübertragers 20 ist die Wendel 1 angeordnet, welche entsprechend der Ausführungsbeispiele der Figuren 1 bis 4 ausgeführt ist. Im zylindrischen Innenraum 7 der Wendel 1 ist ein ebenfalls zylindrischer Körper 10 angeordnet, welcher einen Ak- kumulator ausbildet. Dieser Akkumulator 10 dient insbesondere der Bevorratung und/oder Filterung und/oder Trocknung eines Kältemittels, welches durch den Wärmeübertrager 20 strömen kann.
Der Akkumulator 10 weist an seinem oberen Endbereich einen Stutzen auf, welcher mit einem Fluidanschluss 16 in Fluidkommunikation steht. Dieser Fluidanschluss 16 ist in dem Gehäuse 1 1 ausgebildet, welches sowohl die Wendel 1 als auch den Akkumulator 10 in sich aufnimmt.
Der Akkumulator 10 weist eine radial nach außen gerichtete Fläche 14 auf, an wel- eher im Ausführungsbeispiel der Figur 5 die radial nach innen gerichtete Seite 13 der Wendel 1 anliegt. Die Fläche 14 kann eine beliebige Kontur besitzen, d.h. beispiels- weise zylindrisch sein, wie dargestellt, oder als ein ein- oder mehrgängiges Gewinde ausgebildet sein. Die Wendel 1 ist dementsprechend derart dimensioniert, dass der Akkumulator 10 passgenau in den zylindrischen Innenraum 7 aufnehmbar ist. Zwischen dem Akkumulator 10 und der Wendel 1 kann bevorzugt eine Presspassung, eine Spielpassung oder eine Übergangspassung vorgesehen sein. Dementspre- chend kann die Wendel 1 mit oder ohne Kraftaufwand über den Akkumulator 10 geschoben werden. Zwischen der radial nach innen gerichteten Seite 13 und der radial nach außen gerichteten Fläche 14 entstehen an den einzelnen Windungen 3 jeweils Kontaktstellen 15. Der obere Rohrendbereich 5 der Wendel 1 steht mit einem weiteren Fluidanschluss 25, welcher ebenfalls im Gehäuse 1 1 ausgebildet ist, in Fluid- kommunikation, wodurch die Wendel 1 mit einem Fluid durchströmt werden kann.
Das Gehäuse 1 1 ist ebenfalls zylindrisch ausgebildet und weist eine radial nach innen gerichtete Fläche 21 auf. Der Innendurchmesser des Gehäuses 11 ist größer als der Außendurchmesser der Wendel 1. Dadurch entsteht zwischen der Wendel 1 und dem Gehäuse 1 1 ein Spalt 12.
Die zylindrische Wandung des Gehäuses 11 ist im Bereich der Wendel in axialer Richtung geradlinig ausgebildet und weist keine Vertiefungen oder Einformungen auf.
Die Figur 5 zeigt einen Montagezustand des Wärmeübertragers 20 vor der endgültigen Bearbeitung, welche eine Fixierung der Wendel 1 zwischen dem Akkumulator 10 und dem Gehäuse 1 1 vorsieht. Insbesondere der zwischen dem Akkumulator 10 und dem Gehäuse 11 oder halb des Akkumulators 10 ausgebildete Hohlraum 17 kann ebenfalls von einem Fluid durchströmt werden.
Im Ausführungsbeispiel der Figur 5 würde die Wendel 1 jedoch lediglich umströmt werden, da sich zwischen der Wendel 1 und dem Gehäuse 1 1 der Spalt 12 befindet. Zur Erzeugung eines definierten Strömungskanals, welcher insbesondere durch die Freiräume 4 zwischen den Windungen 3 gebildet ist, muss eine Anlage zwischen der nach innen gerichteten Fläche 21 des Gehäuses 1 1 und der radial nach außen ge- richteten Seite 22 der Wendel 1 erzeugt werden. Dies soll insbesondere eine Leckageströmung an den Windungen 3 vorbei reduzieren beziehungsweise gänzlich ausschließen. Ein durch den Hohlraum 17 strömendes Fluid kann dann nur noch in einer schraubenartigen Kanalstruktur, welche durch die Freiräume 4 gebildet ist, zwischen den Windungen 3 strömen, wodurch eine verbesserte Wärmeübertragung zwischen dem in der Wendel 1 strömenden Fluid und dem durch den Hohlraum 17 strömenden Fluid erzeugt werden kann.
Die Figur 6 zeigt den Wärmeübertrager 20 der Figur 5, wobei durch eine Verformung des Gehäuses 11 in einer radial nach innen gerichteten Richtung eine Anlage zwi- sehen der radial nach innen gerichteten Fläche 21 des Gehäuses 11 und der radial nach außen gerichteten Seite 22 der Wendel 1 erzeugt ist. Dies ist insbesondere durch den Teilbereich 18 des Gehäuses 1 1 zu erkennen, weicher durch das Einwirken einer radial nach innen gerichteten Kraftkomponente aus der Ebene der ursprünglichen Wandung 19 ausgelenkt ist. Im Ausführungsbeispiel der Figur 6 liegt sowohl die radial nach außen gerichtete Fläche des Akkumulators 10 an der Wendel 1 an als auch die radial nach innen gerichtete Fläche des Gehäuses 1 1. Der Strömungskanal ist somit insbesondere durch die Freiräume 4 zwischen den Windungen 3 definiert. Eine Verformung des Gehäuses 11 , wie sie in Figur 6 gezeigt ist, kann beispielsweise durch einen zylindrisch um das Gehäuse 1 1 angeordneten Pressstempel erzeugt werden, welcher eine radial nach innen gerichtete Kraft auf die Außenfläche des Gehäuses 1 1 erzeugt. Hierzu kann der Wärmeübertrager 20 im Zustand der Figur 5 beispielsweise in eine Presseinrichtung eingelegt werden und anschließend eine Kraftkomponente auf das Gehäuse 1 1 ausgeübt werden.
Die Figur 7 zeigt eine alternative Ausführungsform des Wärmeübertragers 20. Im Unterschied zur Figur 5 ist in der Figur 7 eine Ausführung gezeigt, die einen teilmontierten Zustand des Wärmeübertragers 20 darstellt. Im teilmontierten Zustand ist so- wohl zwischen der nach innen gerichteten Seite 13 der Wendel 1 und der radial nach außen gerichteten Fläche 14 des Akkumulators 10 als auch zwischen der radial nach außen gerichteten Seite 22 der Wendel 1 und der radial nach innen gerichteten Fläche 21 des Gehäuses 11 jeweils ein Spalt 12 beziehungsweise 24 ausgebildet.
Ein Aufbau des Wärmeübertragers 20, wie er in Figur 7 gezeigt ist, wird insbesondere dadurch erreicht, dass der Innendurchmesser der Wendel 1 größer ist als der Au- ßendurchmesser des Akkumulators 10, während der Innendurchmesser des Gehäuses 11 größer ist als der Außendurchmesser der Wendel 1. Eine Beabstandung, wie sie in Figur 7 gezeigt ist, ist insbesondere vorteilhaft, um eine einfachere Montage des Wärmeübertragers 20 zu erreichen. Die Figur 8 zeigt den Wärmeübertrager, wie er bereit in Figur 7 gezeigt wurde, wobei das Gehäuse 11 durch eine Kraftkomponente, welche radial nach innen gerichtet auf die Außenfläche des Gehäuses 1 1 eingewirkt hat, eine Verformung im Gehäusebereich 18 entstanden ist. Die Verformung im Bereich 18 des Gehäuses 11 ist im Vergleich zur Verformung der Figur 6 stärker, so dass neben einer Anlage des Gehäu- ses an der Wendel 1 auch eine Anlage der Wendel 1 am Akkumulator 10 erzeugt wurde. Hierzu wird nicht nur das Gehäuse 1 1 verformt, sondern auch die Wendel 1 in radial nach innen gerichteter Richtung gestaucht.
Der Akkumulator 10 kann durch das Einwirken der radial nach innen gerichteten Kraftkomponente ebenfalls eine Stauchung erfahren.
Durch die Verformung des Gehäuses 1 1 und/oder der Wendel 1 und/oder des Akkumulators 10 entsteht eine Kaltverfestigung in den jeweiligen Elementen, welche besonders vorteilhaft zur Erzeugung einer höheren Stabilität des Wärmeübertragers 20 ist.
Durch den jeweils vorhandenen elastischen Anteil der Verformung der einzelnen Elemente 1 , 10 und 1 1 kann es zur Ausbildung von Mikrospalten zwischen der Wendel 1 und dem Akkumulator 10 oder dem Gehäuse 1 1 kommen. Diese Mikrospalte sind allerdings so klein, dass die entstehenden Leckageströme äußerst gering sind. Die Effizienz des Wärmeübertragers 20 wird dadurch nur geringfügig beeinflusst. Darüber hinaus sind die ikrospalte, die aufgrund der Verformung der einzelnen Elemente entstehen, vorteilhaft, da sie zu einer Oberflächenvergrößerung der einzelnen Elemente führen, wodurch ein verbesserter Wärmeübertrag erzeugbar ist. Die erhöhte Effizienz infolge des verbesserten Wärmeübertrags ist dabei gegenüber der Effizienzreduzierung infolge der Mikrospalte zu bevorzugen.
In den Ausführungsbeispielen der Figuren 1 bis 8 ist insbesondere ein Rohr 2 mit einem kreisrunden Querschnitt dargestellt. In vorteilhaften Weiterbildungen können auch Rohre mit ovalem, elliptischem oder eckigem Querschnitt verwendet werden. Auch die jeweils gezeigte Ausformung von zylindrischen Querschnitten der Wendel 1 , des Akkumulators 10 und des Gehäuses 1 1 sind lediglich beispielhaft. Auch hier können abweichende Querschnitte verwendet werden, ohne von dem Grundgedanken der Erfindung abzuweichen. In einer weiteren vorteilhaften Ausgestaltung kann das Rohr auch Innenrippen beziehungsweise Außenrippen aufweisen, durch welche die Strömung in den einzelnen Strömungskanälen beeinflusst werden kann. Insbe- sondere die Freiräume 4 zwischen den Windungen 3 können mit turbulenzerzeugenden Rippenelementen ausgeführt sein.
Die Figur 9 zeigt ein Blockdiagramm, welches die Schritte des Verfahrens in einer Abfolge darstellt. Im Arbeitsschritt, welcher durch den Block 30 dargestellt ist, wird der Akkumulator 10 in die Wendel eingeführt. Wie in den vorausgegangenen Figuren bereits gezeigt wurde, bildet die Wendel 1 einen Innenraum 7 aus, welcher im Zentrum der Wendel 1 angeordnet ist. In diesen Innenraum wird der Akkumulator 10 eingesteckt. Alternativ kann auch die Wendel 1 über den Akkumulator 10 geschoben werden.
Der Block 31 stellt den Arbeitsschritt dar, in welchem das Gehäuse 1 1 auf die Wendel 1 aufgesteckt wird. Das Gehäuse 11 ist bevorzugt rohrförmige ausgebildet, wobei der Querschnitt des Gehäuses 1 1 an den Querschnitt der Wendel 1 und/oder des Akkumulators 10 angepasst ist. Im durch den Block 32 dargestellten Arbeitsschritt wird eine Kraftkomporiente auf die radiale Außenfläche des Gehäuses 1 1 aufgebracht. Dies kann bevorzugt durch eine Pressvorrichtung geschehen, welche bewegliche Stempel vorsieht, die durch ein Verfahren in radialer Richtung eine Kraft erzeugen. Der Arbeitsschritt, welcher durch den Block 33 dargestellt ist, entspricht dem plastischen Verformen des Gehäuses 11 infolge der im Block 32 auf das Gehäuse 1 1 aufgebrachten Kraftkomponente.
Nach dem Erreichen einer bestimmten vorgegebenen Verformung des Gehäuses 1 1 und/oder der Wendel 1 und/oder des Akkumulators 10 wird die Kraftkomponente schließlich von dem Gehäuse 1 1 entfernt, so dass keine weitere plastische Verformung mehr stattfindet. Dieser Arbeitsschritt ist im Block 34 dargestellt.
Die einzelnen Merkmale der gezeigten Ausführungsbeispiele können untereinander kombiniert werden. Sie bilden insbesondere hinsichtlich der Materialwahl, der Geometrie und der Anordnung der einzelnen Elemente zueinander keine beschränkende Wirkung.

Claims

Patentansprüche
1 . Wärmeübertrager (.20) zur Kühlung eines Fluids, mit einem Akkumulator (10), einem Gehäuse (11) und einem zu einer Wendel (1) geformten Rohr (2), wobei zwischen dem Akkumulator (10) und dem Gehäuse (1 1 ) ein Spalt ausge- bildet ist, in welchem das zu einer Wendel (1) geformte Rohr (2) angeordnet ist, dadurch gekennzeichnet, dass zwischen dem Gehäuse (1 1) und der Wendel (1 ) eine kraftschlüssige Verbindung ausgebildet ist, wobei die kraftschlüssige Verbindung durch eine plastische Verformung des Gehäuses (1 1) erzeugt ist.
2. Wärmeübertrager (20) nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen dem Gehäuse (1 1 ) und der Wendel (1) und dem Akkumulator (10) eine kraftschlüssige Verbindung erzeugt ist, wobei die kraftschlüssige Verbindung durch eine plastische Verformung des Gehäuses (1 1 ) und der Wendel (1) erzeugt ist.
3. Wärmeübertrager (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die plastische Verformung durch eine radial nach innen wirkende Kraftkomponente auf das Gehäuse (1 1 ) erzeugt ist.
4. Wärmeübertrager (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Akkumulator (10), die Wendel (1 ) und das Gehäuse (1 1 ) zylinderförmig ausgebildet sind.
5. Wärmeübertrager (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Akkumulator (10) und dem Gehäuse (11) durch die Wendel (1) ein schraubenförmiger Strömungskanal gebildet ist, durch welchen ein Fluid in Umfangsrichtung mit einer durch die Windungen (3) der Wendel (1 ) vorgebbaren Steigung strömbar ist.
6. Wärmeübertrager (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Windungen (3) der Wendel (1 ) in axialer Richtung zueinander beabstandet ausgebildet sind.
7. Wärmeübertrager (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Rohr (2), aus welchem die Wendel (1 ) geformt ist, einen runden Querschnitt oder einen ovalen Querschnitt oder einen eckigen Querschnitt aufweist.
8. Wärmeübertrager (20) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Rohr (2) eine Innenberippung und/oder eine Au- ßenberippung aufweist.
9. Verfahren zur Herstellung eines Wärmeübertragers (20) nach zumindest einem der vorhergehenden Ansprüche, mit einem Akkumulator (10), einem Gehäuse (11) und einem zu einer Wendel (1) geformten Rohr (2), dadurch gekennzeichnet, dass das Verfahren die nachfolgenden Schritte umfasst:
Einführen des Akkumulators (10) in die Wendel (1),
Aufstecken eines rohrförmigen Gehäuses (1 1) auf die Wendel (1 ),
Aufbringen einer radial nach innen gerichteten Kraft auf das Gehäuse (1 1 ),
plastisches Verformen des Gehäuses (1 1 ) und/oder der Wendel (1) und/oder des Akkumulators (10) in einer radial nach innen gerichteten Richtung,
Entfernen der Kraftkomponente vom Gehäuse (1 1 ).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass vor dem Aufbringen der radial nach innen gerichteten Kraftkomponente die Wendel (1) mit der radial nach innen gerichteten Seite (13) an der radialen Außenfläche (14) des Akkumulators (10) anliegt und/oder die Wendel (1 ) mit der radial nach außen gerichteten Seite (22) an der radialen Innenfläche (21 ) des Gehäuses (1 1 ) anliegt.
1 1. Verfahren nach einem der vorhergehenden Ansprüche 9 oder 10, dadurch gekennzeichnet, dass vor dem Aufbringen der radial nach innen gerichteten
Kraftkomponente ein Spalt (12) zwischen dem Gehäuse (1 1 ) und der Wendel (1) ausgebildet ist.
12. Verfahren nach einem der vorhergehenden Ansprüche 9 bis 1 1 , dadurch gekennzeichnet, dass durch das Aufbringen der radial nach innen gerichteten
Kraftkomponente eine Kaltverformung des Gehäuses (1 1 ) und/oder der Wendel (1) und/oder des Akkumulators (10) erzeugt wird.
13. Verfahren nach einem der vorhergehenden Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Kraftkomponente durch eine Pressvorrichtung auf der radialen Außenfläche des Gehäuses (11) erzeugt wird.
14. Verfahren nach einem der vorhergehenden Ansprüche 9 bis 13, dadurch gekennzeichnet, dass das Aufbringen der Kraftkomponente weggesteuert ist und die Dauer der Kraftaufbringung und/oder die Nennkraft abhängig von der durch die Kraftkomponente erzeugten Verformung des Gehäuses (1 1 ) ist oder dadurch, dass das Aufbringen der Kraftkomponente kraftgesteuert ist und die Dauer der Kraftaufbringung und/oder die Nennkraft abhängig von einer gemessenen oder vordefinierten Kraft ist.
15. Verfahren nach einem der vorhergehenden Ansprüche 9 bis 14, dadurch gekennzeichnet, dass die Verformung des Gehäuses (11) und/oder der Wendel (1 ) und/oder des Akkumulators (10) einen elastischen Anteil aufweist, wobei sich nach dem Einwirken der radial nach innen gerichteten Kraftkomponente Mikrospalte zwischen dem Gehäuse (1 1 ) und der Wendel (1) und/oder zwischen der Wendel (1 ) und dem Akkumulator (10) ausbilden.
EP15742244.5A 2014-07-29 2015-07-24 Wärmeübertrager und verfahren zur herstellung des wärmeübertragers Active EP3175195B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014110718.7A DE102014110718A1 (de) 2014-07-29 2014-07-29 Wärmeübertrager und Verfahren zur Herstellung des Wärmeübertragers
PCT/EP2015/067057 WO2016016143A1 (de) 2014-07-29 2015-07-24 Wärmeübertrager und verfahren zur herstellung des wärmeübertragers

Publications (2)

Publication Number Publication Date
EP3175195A1 true EP3175195A1 (de) 2017-06-07
EP3175195B1 EP3175195B1 (de) 2020-02-12

Family

ID=53758210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15742244.5A Active EP3175195B1 (de) 2014-07-29 2015-07-24 Wärmeübertrager und verfahren zur herstellung des wärmeübertragers

Country Status (3)

Country Link
EP (1) EP3175195B1 (de)
DE (1) DE102014110718A1 (de)
WO (1) WO2016016143A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051037B1 (fr) * 2016-05-04 2018-11-09 Valeo Systemes Thermiques Echangeur thermique compact
JP2021014971A (ja) * 2019-07-16 2021-02-12 ダイキン工業株式会社 貯留タンクユニット
DE102021108545A1 (de) * 2021-04-06 2022-10-06 Vaillant Gmbh Wärmeübertrager

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061184A (en) * 1976-10-28 1977-12-06 Ebco Manufacturing Company Heat exchanger for a refrigerated water cooler
US4379390A (en) * 1977-02-28 1983-04-12 Bottum Edward W Ice-making evaporator
FR2547896B1 (fr) * 1983-06-24 1985-11-29 Air Liquide Procede de fabrication d'une virole pour recipient de stockage de fluide cryogenique et virole ainsi obtenue
DE19830757A1 (de) 1998-07-09 2000-01-13 Behr Gmbh & Co Klimaanlage
DE102008028853A1 (de) 2008-06-19 2009-12-24 Behr Gmbh & Co. Kg Integrierte, einen Sammler und einen inneren Wärmeübertrager umfassende Baueinheit sowie ein Verfahren zur Herstellung der Baueinheit
NL2004147C2 (en) * 2010-01-26 2011-07-27 Daalderop Bv Heat exchanger.

Also Published As

Publication number Publication date
WO2016016143A1 (de) 2016-02-04
EP3175195B1 (de) 2020-02-12
DE102014110718A1 (de) 2016-02-04

Similar Documents

Publication Publication Date Title
DE10329312B4 (de) Verfahren zur Herstellung einer Rohrverbindungsstruktur
DE602004002122T2 (de) Doppelrohr und Verfahren zu dessen Herstellung
DE102008028853A1 (de) Integrierte, einen Sammler und einen inneren Wärmeübertrager umfassende Baueinheit sowie ein Verfahren zur Herstellung der Baueinheit
DE2209325A1 (de) Waermeaustauschrohr mit innenrippen und verfahren zu seiner herstellung
DE102006038463A1 (de) Wärmetauschereinheit und Verfahren zu ihrer Herstellung
DE112007000019B4 (de) Wärmeaustauscher
DE102015104180B4 (de) Vorrichtung für einen Wärmeübertrager zum Sammeln und Verteilen eines Wärmeträgerfluids
EP2771636B1 (de) Wärmeübertrager
EP3175195B1 (de) Wärmeübertrager und verfahren zur herstellung des wärmeübertragers
EP2984420B1 (de) Kältegerät mit einem verdampfer
DE102017218973A1 (de) Gegenstrom-Wärmeübertrager
EP2937658B1 (de) Innerer wärmeübertrager
EP2832464B1 (de) Lamellenelement und Verfahren zur Herstellung eines Lamellenelements
EP1710529A1 (de) Wärmeübertrager, insbesondere Kondensator für Klimaanlage
EP3247510A1 (de) Verfahren zur umformung eines rohrkörpers, mäanderförmiger rohrkörper und verwendung desselben
DE102008060098A1 (de) Kältemittelrohrleitungseinheit und Verfahren zur Herstellung von Rohrleitung dafür
DE102010001543A1 (de) Wärmeübertrager
DE2803413C2 (de) Wärmetauscherelement, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung dieses Verfahrens
EP1887304B1 (de) Wärmeübertrager, insbesondere für Kraftfahrzeuge
EP1526351B1 (de) Verfahren zur vereinfachten Herstellung einer Vorrichtung zum Austausch von Wärme sowie danach hergestellte Vorrichtung
DE2758134C2 (de) Verfahren zur Herstellung von Wärmetauscherrohre!) mit inneren und äußeren Längsrippen
WO2012059231A1 (de) Wärmetauscher
DE102010003063A1 (de) Wärmetauscherelement
WO2007014561A1 (de) Wärmeübertrager für fahrzeuge und verfahren zu seiner herstellung
DE102014113112A1 (de) Herstellungsverfahren für einen inneren Doppelrohr-Wärmeübertrager

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOERSTER, UWE

Inventor name: KOENIG, ANDREAS

Inventor name: GEIGER, WOLFGANG

Inventor name: KRUMBACH, KARL-GERD

Inventor name: MAYOR TONDA, DAVID

Inventor name: KAESTLE, CHRISTOPH

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 1/06 20060101AFI20190327BHEP

Ipc: F28D 1/047 20060101ALI20190327BHEP

Ipc: F28D 7/00 20060101ALI20190327BHEP

Ipc: F25B 43/00 20060101ALI20190327BHEP

Ipc: F28D 7/02 20060101ALI20190327BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011711

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011711

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200724

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1232679

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 9