EP3168527B1 - Light module for a vehicle headlamp and motor vehicle headlamp with such a light module - Google Patents

Light module for a vehicle headlamp and motor vehicle headlamp with such a light module Download PDF

Info

Publication number
EP3168527B1
EP3168527B1 EP16198063.6A EP16198063A EP3168527B1 EP 3168527 B1 EP3168527 B1 EP 3168527B1 EP 16198063 A EP16198063 A EP 16198063A EP 3168527 B1 EP3168527 B1 EP 3168527B1
Authority
EP
European Patent Office
Prior art keywords
light
conversion device
led
distribution
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16198063.6A
Other languages
German (de)
French (fr)
Other versions
EP3168527A1 (en
Inventor
Matthias Brendle
Ernst-Olaf Rosenhahn
Jörg Moisel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3168527A1 publication Critical patent/EP3168527A1/en
Application granted granted Critical
Publication of EP3168527B1 publication Critical patent/EP3168527B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/18Combination of light sources of different types or shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/17Arrangement or contour of the emitted light for regions other than high beam or low beam
    • F21W2102/18Arrangement or contour of the emitted light for regions other than high beam or low beam for overhead signs

Definitions

  • the present invention relates to a light module for a vehicle headlight.
  • the light module comprises at least one LED light source for emitting an LED light beam and at least one laser light source for emitting a laser light beam.
  • the light module comprises a conversion device which is arranged with respect to the light sources such that the LED light beam with an LED light distribution and the laser light beam with a laser light distribution strike the conversion device, and which is designed such that the light bundles striking the conversion device cause the emission of a secondary light beam from the conversion device.
  • the invention also relates to a motor vehicle headlight having a housing with a through a transparent cover has closed light exit opening. In the housing at least one light module for generating a Abstrahllichtverander is arranged, which passes through the cover on a roadway in front of a motor vehicle equipped with the headlight.
  • the radiated light distributions must have certain, usually prescribed by law properties. These properties relate both to a form of light distribution (extension in the horizontal and / or vertical direction) and a light intensity distribution (brightness distribution) within the light distribution.
  • white light is usually desired.
  • laser light sources such as semiconductor laser diodes
  • high radiation performance can be achieved.
  • laser light sources emit mostly almost monochromatic, coherent and highly collimated laser light, which can not be used directly in this form as radiated light of the illumination device.
  • Laser light sources are therefore used in automotive lighting with a conversion device or a wavelength converter. At least part of the light generated and emitted by the light sources is converted directly into light of another color when it hits the wavelength converter.
  • hybrid systems which, in addition to a laser light source, also have at least one conventional light source, for example in the form of an LED or an LED array.
  • the resulting emission light distribution of a hybrid system comprises a basic light distribution that is generated by the LED light source.
  • the laser light source generates a spot-like laser light distribution, which can have a higher illuminance than the basic light distribution and serves to illuminate one or more concentrated areas of the emission light distribution in order there to locally increase the light intensity.
  • the spotlight distribution is often no brighter than the base light. In the superimposition of spot and background light, however, results in the higher illuminance in the spot-like range of light distribution.
  • Such a hybrid system is, for example, from the EP 2 487 407 A2 known. In this case, the conversion device is arranged directly on the LED chip and completely covers the light-emitting surface of the LED light source.
  • the laser light source and the LED light source can illuminate a common wavelength converter.
  • the wavelength converter eg, a fluorescent phosphor body
  • electrons in the wavelength converter are raised to a higher energy level with photon absorption.
  • the electrons can not maintain this level and therefore fall back to their original ground state almost immediately. In doing so, they release the absorbed energy and the emission of fluorescence light occurs.
  • photons ie light rays
  • a certain wavelength of a certain color
  • the light sources can be converted into light of another color as soon as it hits the wavelength converter.
  • blue LED or laser light is at least partially converted into yellow light by a conversion device with phosphorus. Overlaying the unconverted blue light and the converted yellow light gives the desired white light.
  • the described hybrid system has the disadvantage that the heat development of the LED chip acts directly on the conversion device. This leads to a decrease in the conversion efficiency and adversely affects the life and color stability of the LED (including the LED chip and the converter). Furthermore, the light of the laser light source and the light of the LED are mixed only after the impact with the fluorescent element, that is, after the wavelength conversion. If the light sources are not exactly matched in color, this leads to an inhomogeneous color impression of the emitted light of the light module. In addition, such a lighting device, in which the laser light and the LED light are projected by means of a lens on the road, are perceived by other road users as disturbing and in particular dazzle the oncoming traffic.
  • the present invention seeks to design a light module with at least one LED light source, at least one laser light source and a conversion device to the effect and further that the above-mentioned disadvantages and limitations of the known light module are overcome.
  • the conversion device is formed separately from the at least one LED light source and spatially separated from this, and that the light module in a beam path of the secondary light beam at least one deflection with a plurality includes independently controllable and movable deflecting elements for selectively reflecting at least a portion of the secondary light beam and for generating a Abstrahllichtver Irish the light module.
  • the conversion device is therefore not arranged directly on a light exit surface of the LED chip, but outside of the LED housing and that spatially separated and separately from the at least one LED light source.
  • the LED chip and the conversion device thus form two separate units and can be used separately from one another in the light module and be arranged completely independently of one another in the light module. It is also advantageous that a thermal separation of the two heat sources is realized by the spatial separation of the LED light source and the conversion device, so that a local overheating of the light module or the lighting device, in which the light module is installed, can be prevented. An impairment of the conversion properties of the conversion device can be prevented.
  • the light module also comprises at least one deflection device with a plurality of independently controllable and movable deflecting elements for selectively reflecting at least part of the radiation emitted by the conversion device Secondary light beam.
  • the reflected part of the secondary light beam generates an emission light distribution of the light module, preferably on a roadway in front of a vehicle equipped with the illumination device according to the invention.
  • the control of the deflecting elements and thus the variation of the emission light distribution can be effected as a function of operating parameters of the motor vehicle (eg vehicle speed, load, steering angle, lateral acceleration, etc.).
  • operating parameters of the motor vehicle eg vehicle speed, load, steering angle, lateral acceleration, etc.
  • environmental parameters of the vehicle eg outside temperature, precipitation, driving in a city center, on a country road or a motorway, detected other road users in the surroundings of the vehicle, etc.
  • the Abstrahllichtver bachelor can be switched, for example, between the high beam and low beam.
  • the light intensity in the emission light distribution can be purposefully reduced, preferably set to zero (so-called partial remote light function). A dazzling of other road users can thus be effectively reduced. Accordingly, it would also be conceivable that in the area in which an object has been detected in front of the vehicle, the light intensity in the Beam light distribution is selectively increased to highlight the object for the driver of the vehicle (so-called marker light).
  • the deflection elements for realizing a dynamic curve light function of the Abstrahllichtver bachelor (horizontal pivoting) or a light width adjustment (vertical pivoting) are driven to the alignment of the Abstrahllichtbündels or the resulting Abstrahllichtver notorious horizontally and / or vertically or the light intensity distribution within the To vary the light distribution.
  • a fixed light distribution is generated on the deflection device. This light distribution is projected onto the road and can be switched on and off pixel by pixel or dimmed (eg by rapid switching on and off with a changed ratio of switch-on and switch-off times).
  • the deflecting elements for the LED light bundle and the laser light bundle differently, so that at a largely constant position of the part of the emission light distribution generated by the LED light bundle, the concentrated spot area of the emission light distribution produced by the laser light bundle with greater illuminance relative thereto is moved.
  • the spot area can be moved to increase the range upwards and / or for better illumination of side areas of the light distribution, eg. At the roadside, to the side.
  • LED light beam In connection with the present invention is often referred to by a so-called. LED light beam and a so-called. Laser light bundle.
  • the LED light bundle can be any Wavelengths or colors from the color spectrum of LEDs and the laser light beam can have any wavelengths or colors from the color spectrum of lasers.
  • the LED light beam can also be used for generating a different part of the emission light distribution than for generating a basic light distribution.
  • the laser light beam can be used to produce another part of the emission light distribution than to produce a spotlight distribution. It is quite possible that one recognizes no difference between a laser light beam and a LED light beam based on the emitted light.
  • the LED light distribution illuminates a surface on a first side of the conversion device as homogeneously as possible.
  • the LED light distribution preferably illuminates the entire surface on the first side of the conversion device as homogeneously as possible.
  • the conversion device emits incident light of the LED light distribution also over a large area. This light can be used particularly advantageously for generating a large area in the secondary light beam. In this way, after the deflection of the secondary light bundle by the deflection device, for example, a large-area basic light distribution can be generated as the emission light distribution.
  • a first optical element for generating a homogeneous surface illumination of the entire surface of the first side of the conversion device is arranged in a beam path of the LED light beam between the at least one LED light source and the conversion device.
  • the optical element deflects the light emitted by the LED light source Light rays on the surface, preferably on the entire surface, the first side of the conversion device.
  • the LED light beam emitted by the LED light source can illuminate the surface of the first side of the conversion device in a particularly homogeneous manner. This can ultimately lead to a particularly homogeneous large-area basic light distribution.
  • the first optical element can in particular be designed as a reflector, for example as a parabolic or elliptical reflector. It is also possible that the optical element is formed as a lens.
  • the optical element is a concave mirror or a converging lens.
  • the laser light distribution illuminates a luminous spot on a surface of a first side of the conversion device.
  • a light spot is in particular a limited or concentrated area in its extent.
  • the conversion device emits incident light of the laser light distribution also concentrated.
  • This light can be used particularly advantageously for generating a small, particularly brightly illuminated spot area in the secondary light bundle.
  • a concentrated spot can be generated as the emission light distribution.
  • the emission light distribution can also be formed from a superimposition of the basic light distribution generated by the LED light bundle and the spot generated by the laser light bundle.
  • a second optical element for generating the illuminated spot of the laser light distribution on the surface of the conversion device.
  • a particularly concentrated laser light beam for generating the spot can be widened and / or the laser light beam can be specifically directed into a specific area on the surface of the first side of the conversion device.
  • the optical element can in particular be designed such that it breaks, scatters, reflects or bundles an incident light beam.
  • the second optical element may also be formed as a reflector or as an optical lens.
  • the first side of the conversion device illuminated as completely as possible by the LED light bundle can produce a particularly large-area homogeneous light intensity distribution in the emission light distribution of the light module. This can be used to generate a base or base light.
  • the concentrated area illuminated by the laser light bundle on the first side of the conversion device can produce a concentrated spot area with high light intensity distribution in the emission light distribution of the light module.
  • the light intensity in the spot area generated by the laser light beam is preferably greater than the light intensity in the base light generated by the LED light beam.
  • the LED light beam emitted from the LED light source and the laser light beam emitted from the laser light source strike the same side of the conversion direction.
  • the laser light distribution and the LED light distribution can be at least partially on the same areas of the surface of the first side of the conversion device, so that the laser light beam and the LED light beam partially mix before they hit the conversion device. This leads, in particular in the transition regions between the regions of the secondary light beam generated by the laser light bundle and the regions of the secondary light beam generated by the LED light bundle and thus also in the emission light distribution of the light module, to a particularly homogeneous overall impression with regard to brightness and / or color.
  • the at least one LED light source emits light of a first wavelength, so that the light, for example, appears blue. This light hits the first side of the conversion device and is partially converted to light of a second wavelength, for example yellow light. The unconverted light of the first wavelength is superimposed on the converted light of the second wavelength, resulting in the sum of light of a desired color, for example white light.
  • the LED light source may also emit differently colored (not blue) light of the first wavelength, which is then partially converted by the conversion device with another wavelength-converting material (non-phosphorus) into light of a second wavelength. An overlay of the unconverted light of the first wavelength and the converted light of the second wavelength gives the light of the desired color.
  • one of the first side (front side) opposite second side (back) of the conversion device and / or between the first and second sides of the conversion device arranged side surfaces of the conversion device light reflecting surfaces.
  • Light of the LED light beam and / or the laser light beam which is not directly converted into light for the secondary light beam when hitting the surface of the first side of the conversion device, but would leave the conversion device via the rear side and / or the side surfaces as stray light, is turned on the light reflecting surface of the opposite second side and / or reflected on the light reflecting side surfaces, preferably in the direction of the first side of the conversion device.
  • light can also be used to generate the emission light distribution, which light is not converted directly into light of the secondary light bundle when it strikes the surface of the first side of the conversion device.
  • materials for the light-reflecting surfaces in particular metals (Al, Ag) or white-reflecting materials (TiO 2 , BaSO 4 ) are proposed. Of course, other materials can be used.
  • a third optical element is arranged in the beam path of the secondary light beam emitted by the conversion device and designed to direct at least a part of the secondary light beam onto the deflection device.
  • the third optical element makes it possible, in particular, to scatter or bundle the light beams of the secondary light beam in a targeted manner, or to direct them into specific areas on the deflection device.
  • the third optical element is arranged in the light module such that the secondary light beam is directed to the deflection device, in particular even if the deflection device is not in a beam path of the outgoing from the conversion device secondary light beam is located.
  • the deflection device can be arranged largely independently of the conversion device in the light module, and there are further degrees of freedom with regard to the arrangement of these devices in the light module.
  • the third optical element is, for example, a condenser comprising one or more converging lenses or a reflector.
  • the conversion device comprises a material with wavelength-converting properties, in particular phosphorus or another fluorescent material. If the LED light beam and / or the laser light beam of a first wavelength (a first color) hits the conversion device, the conversion device is excited to phosphorescence or fluorescence and emits light of another second wavelength (of a second color).
  • the conversion device is preferably matched to the spectra of the LED light beam and the laser light beam, so that the light of these light beams is converted as efficiently as possible and used to generate the Abstrahllichtver notorious.
  • the deflection device comprises a digital micromirror array (Digital Mirror Device, DMD), which comprises a multiplicity of individual elements arrayed next to and / or above one another in the form of micromirrors from which the light generated by a light source is reflected.
  • DMD Digital Mirror Device
  • the micromirrors of a DMD complement each other to form a substantially closed reflection surface.
  • Each micromirror can be individually adjusted in its orientation at least about an axis of rotation, preferably freely in three-dimensional space, ie about two axes of rotation.
  • Suitable actuators for adjusting the micromirrors are, for example, electrostatic actuators or piezoactuators. It would also be conceivable to make the individual micromirrors magnetizable at least in regions, so that a micromirror or a group of several micromirrors can be adjusted by applying a magnetic field.
  • the micromirrors of a DMD generally each have two stable end positions, between which the micromirror can be switched over within a second to a few thousand times, for example up to 5,000 times.
  • the individual adjustability of the individual micromirrors makes it possible for a light beam incident on one of the micromirrors to be reflected either via the projection optics onto the roadway into the emission light distribution or in another direction in which the light beam makes no contribution to the light bundle incident on the roadway or to the emission light distribution.
  • a digital micromirror array therefore, parts of the secondary light bundle can be deflected in a targeted manner and thus the light intensity distribution within the emission light distribution can be influenced virtually as desired.
  • the incident on the micromirror array Secondary light beam is composed of light from the LED light distribution and light from the laser light distribution.
  • the secondary light beam strikes the reflection surface of the micromirror array with a specific secondary light distribution.
  • the LED light distribution preferably generates a larger illuminated area than the spot-shaped area which is illuminated by the laser light distribution.
  • Such a secondary light distribution which has a high luminous flux and a center with a particularly high luminance, is particularly well suited for illuminating digital micromirror arrays.
  • a realized by a micromirror array reflector surface is very expensive and must therefore be kept as small as possible.
  • a compact and strong light source with a high luminous flux and a selectively high luminance is therefore advantageous, in particular because luminance and luminous flux directly limit the power of the digital micromirror array.
  • a small-sized DMD is also advantageous when it comes to the realization of a compact as possible light module and thus a compact lighting device.
  • the light module has projection optics in order to optically image the emission light distribution of the light module generated by the deflection device on a roadway in front of a vehicle in which the light module according to the invention is installed.
  • the projection optics in particular comprises a reflector or a projection lens.
  • the laser light beam in the emission light distribution generates a concentrated region having a higher illuminance than another region exclusively generated by the LED light beam Abstrahllichtver notorious.
  • the LED light distribution generates a basic light distribution in the emission light distribution, which illuminates a large area in front of the vehicle, which extends in particular from one side on a roadway edge to another side on an opposite roadway edge.
  • the laser light distribution in the emission light distribution generates, in particular, a luminous-light distribution that illuminates a concentrated area with a higher illuminance than the basic-light distribution.
  • the basic light distribution and the luminous light distribution can together form the emission light distribution. This applies both to a low beam distribution and a high beam distribution as well as for any other light distribution.
  • the light-emitting light distribution can be arranged in the center of the emission light distribution, on one or two opposite sides or at any other point of the emission light distribution. Where exactly the luminous spot lies in the emission light distribution depends on the orientation of the corresponding micromirrors upon which falls the part of the secondary light distribution produced by the laser light beam.
  • FIGS. 1a to 1d show known from the prior art light modules 1 with an LED light source 2 and a laser light source 3. Such light modules 1 are also referred to as a hybrid system.
  • a conversion device 4 is arranged in the form of a fluorescent element.
  • the LED 2 illuminates a backside of the fluorescent element 4 and the laser light source 3 illuminates a front side thereof.
  • the fluorescence element 4 radiates excitation to fluorescence by the laser light emitted by the laser light source 3 and the light emitted by the LED light source 2 LED light visible light.
  • a secondary light beam 6 emitted by the fluorescence element 4 as an emission light distribution 7 (cf. Fig.
  • a low-beam light distribution 7 on a roadway in front of a motor vehicle equipped with the light module 1 is an optical element 5, for example a projection lens (cf. Fig. 1a . 1b, 1d ) or a reflector (cf. Fig. 1c ) intended.
  • an optical element 5 for example a projection lens (cf. Fig. 1a . 1b, 1d ) or a reflector (cf. Fig. 1c ) intended.
  • FIG. 2 also shows a light module 1, which is designed as a hybrid system with a laser light source 3 and an LED light source 2.
  • the conversion device 4 is directly on the LED chip or in the housing of the LED 2 arranged.
  • the LED 2 illuminated viewed in the light exit direction, the back of the conversion device 4 and the laser light source 3 a front.
  • the secondary light beam 6 emitted by the conversion device 4 is directed by an optical element, for example a reflector 8, onto a deflection device 8a. From the deflection device 8a, the light of the secondary light bundle 6 reaches a projection optical system 5 and is imaged by the latter in a distribution light distribution 7 on a roadway in front of a motor vehicle equipped with the light module 1. All in the FIGS. 1a to 1d and Fig. 2 shown embodiments have in common that the conversion device 4 is disposed within the housing of the LED 2 or directly on the LED chip.
  • FIG. 3a shows a light module according to the invention in a first preferred embodiment.
  • the light module is designated in its entirety by the reference numeral 10 and is for installation in a motor vehicle headlight 70 (see. FIG. 5 ) educated.
  • the headlight 70 includes a housing 72, which is preferably made of plastic. In a light exit direction 74, the housing 72 has a light exit opening 76, which is closed by a transparent cover 78.
  • the cover 78 protects the interior of the housing 72 and the headlight components arranged therein from moisture and dirt.
  • the cover plate 78 may be formed as a so-called clear disc without optically effective profiles (for example, prisms or cylindrical lenses). Alternatively, the disc 78 may be provided at least in regions with optically active profiles (so-called diffusion disc).
  • an inventive light module 10 is arranged in the illustrated embodiment.
  • the light module 10 is fixed or relative to the spotlight housing 72 movably arranged in the housing 72.
  • the light module 10 can be arranged to pivot vertically about a horizontal axis (for a headlamp leveling) and / or horizontally pivotable about a vertical axis (for a dynamic cornering function).
  • these degrees of freedom can also be realized by a targeted adjustment of the individual DMD elements 50, in particular in the case of a light module 10 which has a DMD as a deflection device 48.
  • the light module 10 generates a desired light distribution, for example a low beam, high beam, position light, daytime running light, or fog light distribution.
  • the light module 10 comprises at least one LED light source 12, at least one laser light source 14 and a conversion device 16.
  • a respective light source 12; 14 is shown.
  • the light module 10 each also more than the one shown light source 12; 14 have.
  • the LED light source 12 may include one or more LED chips. Several LED chips are preferably arrayed next to and / or above each other. According to the invention, the LED chip or the LED chips of the LED light source 12 are arranged separately and at a distance from the conversion device 16.
  • the LED light source 12 emits an LED light beam 18 which strikes the conversion device 16.
  • the LED light beam 18 initially strikes a first optically active element 20 and is directed by the latter onto a surface 24 on a first side 26 (front side) of a conversion device 16 (cf. Fig. 3b ).
  • the first optically active element 20 is formed as a concave mirror 22 in the example shown. It could also be designed as a lens, or else a combination of multiple reflectors and / or lenses.
  • the optically active element 20, 22 effects the most homogeneous possible full surface illumination of the entire surface 24 with an LED light distribution 28 generated by the LED light bundle 18.
  • the laser light source 14 emits a (highly concentrated) laser light beam 30 (so-called laser beam) which strikes the conversion device 16.
  • the laser light beam 30 strikes a second optically active element 32 (FIG. Fig. 3a ) and is also directed by this on the surface 24 on the first side 26 of the conversion device 16.
  • the second optically active element 32 is designed here as a reflector 34. Of course, it may also be designed as a lens, or comprise a combination of a plurality of reflectors and / or lenses.
  • the optically active element 32, 34 effects a punctiform, spot-like illumination of a concentrated area of the surface 24 with a laser light distribution 36 (FIG. 2) generated by the laser light bundle 30 (FIG. Fig. 3b ). It may be necessary to slightly widen the laser beam 30.
  • the laser light distribution 36 preferably illuminates the surface 24 with a light spot 38. The light intensity in the concentrated area of the light spot 38 is greater than in the remaining area of the surface 24 of the conversion device 16.
  • the LED light source 12 emits light of a particular color or wavelength.
  • the light emitted by the LED light source 12 is UV (ultraviolet) radiation (in a wavelength range of about 240nm to 450nm, especially 350nm to 450nm) or blue light (in a wavelength range of about 450nm to 500nm)
  • the Laser light source 14 emits light of a similar wavelength.
  • the conversion device 16 is provided with a fluorescent phosphor. These are, for example, phosphorus or any other fluorescent material.
  • the conversion device 16 is tuned to the spectrum of the light generated and emitted by the light sources 12, 14, 18, 30, preferably to a wavelength range between 400 nm and 550 nm. This means that the conversion device 16 has a particularly high efficiency for light of this wavelength.
  • the light beams 18, 30 emitted by the light sources 12, 14 can be partially (or largely) converted into light of another wavelength as soon as they strike the surface 24 of the conversion device 16.
  • the light of the light sources 12, 14 can be converted to yellow light in a wavelength range between 560nm and 620nm. Together with the unconverted, thus still visible blue light 18, 30, which is scattered without wavelength conversion at the surface 24 of the conversion device 16, resulting from an additive color mixing, a white or whitish light having secondary light beam 40.
  • a UV laser or a UV LED as a light source is converted into blue and yellow light or in blue, red and green light, so that again results in an additive color mixing white light of the secondary bundle 40.
  • a second side 42 (rear side) of the conversion device 16 opposite the first side is provided with a light-reflecting surface 44.
  • disposed side surfaces 46 of the conversion device 16 also have light reflecting surfaces 44. The light rays passing through the surface 24 of the first side 26 of the conversion device 16 are reflected at the light reflecting surfaces 44 and emerge again from the conversion device 16 at the surface 24 of the first side 26.
  • the reflected light beams with or without conversion to a different wavelength for generating the Abstrahllichtver gutter 7 contribute to the light module 10 so that it has a higher efficiency.
  • the conversion device 16 is spatially separated and arranged separately from the light sources 12, 14 in the light module 10.
  • the conversion device 16 can be arbitrarily arranged within the light module 10, for example on any components or optical elements.
  • the present invention would also work with light of other wavelengths and matched fluorescent materials for the conversion device 16.
  • the secondary light beam 40 emitted by the conversion device 16 strikes a third optical element 58, which in this example is designed as a converging lens.
  • the third optical element 58 directs the secondary light bundle 40 in the direction of a deflection device 48 (cf. Fig. 4 ).
  • a deflection device 48 cf. Fig. 4
  • the deflection in the Fig. 3a and 3b is not explicitly shown, it is part of the light module 10 shown there according to the first embodiment.
  • the deflection device 48 comprises a plurality of The part of the secondary light bundle 40 reflected by the deflecting elements 50 generates an emission light distribution 7 of the light module 10.
  • the shape of the emission light distribution 7 can also be used to distribute the light intensity be varied in the emission light distribution 7.
  • both the shape and the light intensity distribution in the light beam of the Abstrahllichtver bachelor 7 dynamically changeable.
  • the emission light distribution 7 can be switched, for example, between high beam and low beam or any other light distributions.
  • the light intensity in the emission light distribution 7 can be purposefully reduced, preferably set to zero. In particular, dazzling the oncoming traffic can thus be effectively reduced. It is also conceivable, in the area in which an object was detected in front of the vehicle, to increase the light intensity in a targeted manner in order to draw the driver's attention to the object.
  • the deflection device 48 is designed as a digital micromirror array 54 (Digital Mirror Device, DMD).
  • the digital micromirror array 54 consists of a multiplicity of micromirrors 56 arrayed next to and / or above one another, from which the light of the secondary light bundle 40 is reflected.
  • Each micromirror 56 can be individually adjusted in its orientation at least about an axis of rotation, preferably freely in three-dimensional space, ie about two axes of rotation.
  • the micromirrors 56 generally each have two stable ones End positions between which the micromirrors can change up to several thousand times within one second.
  • the micromirrors 56 Due to the individual adjustability of the micromirrors 56, it is possible to specifically deflect certain parts of the secondary light bundle 40 and thus to influence the light intensity distribution within the light bundle of the emission light distribution 7 virtually as desired. Thus, it is possible not only to switch between low beam and high beam, but also individual areas of the secondary light beam 40 can be specifically influenced, for example, to reduce the light intensity in these areas targeted or increase, so that the light intensity distribution in the resulting Abstrahllichtver gutter 7 of the light module 10 in arbitrary areas 7a, 7b can be varied almost arbitrarily.
  • the at least one LED light source 12 and the at least one laser light source 14 illuminate a common conversion device 16, from which a secondary light beam 40 is emitted onto a deflection device 48.
  • the secondary light bundle 40 is thus composed of light 18 of the LED light distribution 28 and of light 30 of the laser light distribution 36 and strikes the deflecting elements 50 of the deflecting device 48 with a specific secondary light distribution 40.
  • the LED light distribution 28 preferably generates a larger one in the secondary light distribution 40 Illuminated area 7a as the spot-shaped area 7b, which is illuminated by the laser light distribution 36.
  • Such a secondary light distribution 40 which has a high luminous flux and a center with a particularly high luminance, is particularly suitable for illuminating digital micromirror arrays 54.
  • a reflector surface realized by a micromirror array 54 is very large expensive and therefore must be kept as small as possible.
  • a compact and strong light source, such as the laser light source 14, with a high luminous flux and a selectively high luminance is therefore ideal, since luminance and luminous flux directly limit the performance of the digital micromirror array 54.
  • the third optical element 58 of the light module 10 is formed in this example as a concave mirror 60.
  • the concave mirror 60 directs the secondary light bundle 40 onto the deflection device 48.
  • the emission light bundle 52 is projected by means of projection optics 62, which in this example is a projection lens 64, as emission light distribution 7 on a roadway a vehicle that is equipped with the light module 10 according to the invention.
  • the projection optics 62 is designed as a condenser 64 which comprises one or two converging lenses.

Description

Die vorliegende Erfindung betrifft ein Lichtmodul für einen Fahrzeugscheinwerfer. Das Lichtmodul umfasst mindestens eine LED-Lichtquelle zum Ausstrahlen eines LED-Lichtbündels und mindestens eine Laserlichtquelle zum Ausstrahlen eines Laserlichtbündels. Weiter umfasst das Lichtmodul eine Konversionseinrichtung welche bezüglich der Lichtquellen derart angeordnet ist, dass das LED-Lichtbündel mit einer LED-Lichtverteilung und das Laserlichtbündel mit einer Laser-Lichtverteilung auf die Konversionseinrichtung treffen, und welche derart ausgebildet ist, dass die auf die Konversionseinrichtung treffenden Lichtbündel das Abstrahlen eines Sekundärlichtbündels von der Konversionseinrichtung bewirken.
Die Erfindung betrifft auch einen Kraftfahrzeugscheinwerfer, der ein Gehäuse mit einer durch eine transparente Abdeckscheibe verschlossenen Lichtaustrittsöffnung aufweist. In dem Gehäuse ist mindestens ein Lichtmodul zur Erzeugung einer Abstrahllichtverteilung angeordnet, welche durch die Abdeckscheibe auf eine Fahrbahn vor ein mit dem Scheinwerfer ausgestattetes Kraftfahrzeug gelangt.
The present invention relates to a light module for a vehicle headlight. The light module comprises at least one LED light source for emitting an LED light beam and at least one laser light source for emitting a laser light beam. Furthermore, the light module comprises a conversion device which is arranged with respect to the light sources such that the LED light beam with an LED light distribution and the laser light beam with a laser light distribution strike the conversion device, and which is designed such that the light bundles striking the conversion device cause the emission of a secondary light beam from the conversion device.
The invention also relates to a motor vehicle headlight having a housing with a through a transparent cover has closed light exit opening. In the housing at least one light module for generating a Abstrahllichtverteilung is arranged, which passes through the cover on a roadway in front of a motor vehicle equipped with the headlight.

Im Bereich der Kfz-Beleuchtung, insbesondere bei Kfz-Scheinwerfern, ist die Verwendung von leistungsstarken Lichtquellen mit möglichst hoher Leuchtdichte erwünscht. Dadurch lassen sich mit kleinem Bauraum lichtstarke Beleuchtungseinrichtungen realisieren. Die abgestrahlten Lichtverteilungen müssen bestimmte, in der Regel gesetzlich vorgegebene Eigenschaften aufweisen. Diese Eigenschaften betreffen sowohl eine Form der Lichtverteilung (Erstreckung in horizontaler und/oder vertikaler Richtung) als auch eine Lichtstärkeverteilung (Helligkeitsverteilung) innerhalb der Lichtverteilung. Für die Frontlichter eines Kraftfahrzeuges (z.B. Abblendlicht, Fernlicht, Positionslicht, Tagfahrlicht, Nebellicht, etc.) ist in der Regel weißes Licht erwünscht.In the field of automotive lighting, especially in motor vehicle headlamps, the use of high-performance light sources with the highest possible luminance is desired. As a result, high-intensity lighting devices can be realized with a small space. The radiated light distributions must have certain, usually prescribed by law properties. These properties relate both to a form of light distribution (extension in the horizontal and / or vertical direction) and a light intensity distribution (brightness distribution) within the light distribution. For the headlights of a motor vehicle (e.g., low beam, high beam, position light, daytime running light, fog light, etc.), white light is usually desired.

Mit Laserlichtquellen, beispielsweise Halbleiter-Laserdioden, lassen sich hohe Strahlungsleistungen erzielen. Allerdings strahlen Laserlichtquellen meist nahezu monochromatisches, kohärentes und stark kollimiertes Laserlicht aus, das in dieser Form nicht unmittelbar als abgestrahltes Licht der Beleuchtungseinrichtung verwendet werden kann. Laserlichtquellen werden in der Kfz-Beleuchtung daher mit einer Konversionseinrichtung bzw. einem Wellenlängenkonverter eingesetzt. Dabei wird zumindest ein Teil des von den Lichtquellen erzeugten und ausgesandten Lichts unmittelbar beim Auftreffen auf den Wellenlängenkonverter in Licht einer anderen Farbe umgewandelt.With laser light sources, such as semiconductor laser diodes, high radiation performance can be achieved. However, laser light sources emit mostly almost monochromatic, coherent and highly collimated laser light, which can not be used directly in this form as radiated light of the illumination device. Laser light sources are therefore used in automotive lighting with a conversion device or a wavelength converter. At least part of the light generated and emitted by the light sources is converted directly into light of another color when it hits the wavelength converter.

Um den geringen Lichtstrom, den die Laserdioden zur Verfügung stellen, auszugleichen, ist es aus dem Stand der Technik bekannt, Hybridsysteme einzusetzen, die neben einer Laserlichtquelle auch mindestens eine konventionelle Lichtquelle, bspw. in Form einer LED oder eines LED-Arrays, aufweisen. Die resultierende Abstrahllichtverteilung eines Hybridsystems umfasst eine Grundlichtverteilung, die mit der LED-Lichtquelle erzeugt wird. Die Laserlichtquelle erzeugt eine spotartige Laserlichtverteilung, die eine höhere Beleuchtungsstärke aufweisen kann als die Grundlichtverteilung und dazu dient, einen oder mehrere konzentrierte Bereiche der Abstrahllichtverteilung zu beleuchten, um dort lokal die Lichtstärke zu erhöhen. Die Spot-Lichtverteilung ist für sich häufig nicht heller als das Grundlicht. In der Überlagerung von Spot und Grundlicht ergibt sich jedoch die höhere Beleuchtungsstärke in dem spotartigen Bereich der Lichtverteilung. Ein solches Hybridsystem ist bspw. aus der EP 2 487 407 A2 bekannt. Dabei ist die Konversionseinrichtung direkt auf dem LED-Chip angeordnet und überdeckt die lichtemittierende Oberfläche der LED-Lichtquelle vollständig.In order to compensate for the low luminous flux provided by the laser diodes, it is known from the prior art to use hybrid systems which, in addition to a laser light source, also have at least one conventional light source, for example in the form of an LED or an LED array. The resulting emission light distribution of a hybrid system comprises a basic light distribution that is generated by the LED light source. The laser light source generates a spot-like laser light distribution, which can have a higher illuminance than the basic light distribution and serves to illuminate one or more concentrated areas of the emission light distribution in order there to locally increase the light intensity. The spotlight distribution is often no brighter than the base light. In the superimposition of spot and background light, however, results in the higher illuminance in the spot-like range of light distribution. Such a hybrid system is, for example, from the EP 2 487 407 A2 known. In this case, the conversion device is arranged directly on the LED chip and completely covers the light-emitting surface of the LED light source.

Die Laserlichtquelle und die LED-Lichtquelle können einen gemeinsamen Wellenlängenkonverter beleuchten. Wenn das emittierte Licht auf den Wellenlängenkonverter, z.B. einen Körper aus einem fluoreszierenden Leuchtstoff trifft, werden Elektronen in dem Wellenlängenkonverter unter Photonenabsorption in ein höheres Energieniveau angehoben. Die Elektronen können sich jedoch nicht auf diesem Niveau halten und fallen deshalb praktisch augenblicklich in ihren ursprünglichen Grundzustand zurück. Dabei setzen sie die aufgenommene Energie wieder frei und es kommt zur Emission des Fluoreszenzlichts. D.h. es werden Photonen (also Lichtstrahlen) einer bestimmten Wellenlänge (einer bestimmten Farbe) abgegeben. Auf diese Weise ist es möglich, dass zumindest ein Teil des von den Lichtquellen erzeugten und ausgesandten Lichts unmittelbar beim Auftreffen auf den Wellenlängenkonverter in Licht einer anderen Farbe umgewandelt wird. So wird bspw. blaues LED- oder Laserlicht von einer Konversionseinrichtung mit Phosphor zumindest teilweise in gelbes Licht umgewandelt. Eine Überlagerung des nicht konvertierten blauen Lichts und des konvertierten gelben Lichts ergibt das gewünschte weiße Licht.The laser light source and the LED light source can illuminate a common wavelength converter. When the emitted light hits the wavelength converter, eg, a fluorescent phosphor body, electrons in the wavelength converter are raised to a higher energy level with photon absorption. However, the electrons can not maintain this level and therefore fall back to their original ground state almost immediately. In doing so, they release the absorbed energy and the emission of fluorescence light occurs. This means that photons (ie light rays) of a certain wavelength (of a certain color) are emitted. That's the way it is it is possible for at least part of the light generated and emitted by the light sources to be converted into light of another color as soon as it hits the wavelength converter. Thus, for example, blue LED or laser light is at least partially converted into yellow light by a conversion device with phosphorus. Overlaying the unconverted blue light and the converted yellow light gives the desired white light.

Das beschriebene Hybridsystem hat jedoch den Nachteil, dass die Wärmeentwicklung des LED-Chips direkt auf die Konversionseinrichtung wirkt. Dies führt zu einer Abnahme der Konversionseffizienz und beeinflusst die Lebensdauer und Farbstabilität der LED (umfassend den LED-Chip und den Konverter) negativ. Ferner wird das Licht der Laserlichtquelle und das Licht der LED erst nach dem Auftreffen auf das Fluoreszenzelement, also nach der Wellenlängenkonversion, vermischt. Sind die Lichtquellen farblich nicht genau aufeinander abgestimmt, führt dies zu einem inhomogenen Farbeindruck das abgestrahlten Lichts des Lichtmoduls. Außerdem kann eine derartige Beleuchtungseinrichtung, bei der das Laserlicht und das LED-Licht mittels einer Linse auf die Fahrbahn projiziert werden, von anderen Verkehrsteilnehmern als störend wahrgenommen werden und insbesondere den Gegenverkehr blenden.However, the described hybrid system has the disadvantage that the heat development of the LED chip acts directly on the conversion device. This leads to a decrease in the conversion efficiency and adversely affects the life and color stability of the LED (including the LED chip and the converter). Furthermore, the light of the laser light source and the light of the LED are mixed only after the impact with the fluorescent element, that is, after the wavelength conversion. If the light sources are not exactly matched in color, this leads to an inhomogeneous color impression of the emitted light of the light module. In addition, such a lighting device, in which the laser light and the LED light are projected by means of a lens on the road, are perceived by other road users as disturbing and in particular dazzle the oncoming traffic.

Ausgehend von dem beschriebenen Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Lichtmodul mit mindestens einer LED-Lichtquelle, mindestens einer Laserlichtquelle und einer Konversionseinrichtung dahingehend auszugestalten und weiterzubilden, dass die oben genannten Nachteile und Einschränkungen des bekannten Lichtmoduls überwunden werden.Based on the described prior art, the present invention seeks to design a light module with at least one LED light source, at least one laser light source and a conversion device to the effect and further that the above-mentioned disadvantages and limitations of the known light module are overcome.

Zur Lösung dieser Aufgabe wird ausgehend von dem Lichtmodul der eingangs genannten Art vorgeschlagen, dass die Konversionseinrichtung separat von der mindestens einen LED-Lichtquelle ausgebildet und räumlich getrennt von dieser angeordnet ist, und dass das Lichtmodul in einem Strahlengang des Sekundärlichtbündels mindestens eine Umlenkeinrichtung mit einer Vielzahl von unabhängig voneinander ansteuerbaren und bewegbaren Umlenkelementen zum gezielten Reflektieren zumindest eines Teils des Sekundärlichtbündels und zur Erzeugung einer Abstrahllichtverteilung des Lichtmoduls umfasst.To solve this problem is proposed starting from the light module of the type mentioned that the conversion device is formed separately from the at least one LED light source and spatially separated from this, and that the light module in a beam path of the secondary light beam at least one deflection with a plurality includes independently controllable and movable deflecting elements for selectively reflecting at least a portion of the secondary light beam and for generating a Abstrahllichtverteilung the light module.

Anders als bei den bekannten Beleuchtungseinrichtungen ist die Konversionseinrichtung also nicht unmittelbar auf einer Lichtaustrittsfläche des LED-Chips angeordnet, sondern außerhalb des LED-Gehäuses und zwar räumlich getrennt und separat von der mindestens einen LED-Lichtquelle. Der LED-Chip und die Konversionseinrichtung bilden also zwei separate Einheiten und können getrennt voneinander in das Lichtmodul eingesetzt und völlig unabhängig voneinander in dem Lichtmodul angeordnet werden. Dabei ist auch vorteilhaft, dass durch die räumliche Trennung der LED-Lichtquelle und der Konversionseinrichtung eine thermische Trennung der beiden Wärmequellen realisiert wird, so dass eine lokale Überhitzung des Lichtmoduls bzw. der Beleuchtungseinrichtung, in die das Lichtmodul eingebaut ist, verhindert werden kann. Einer Beeinträchtigung der Konversionseigenschaften der Konversionseinrichtung kann dadurch vorgebeugt werden.Unlike the known lighting devices, the conversion device is therefore not arranged directly on a light exit surface of the LED chip, but outside of the LED housing and that spatially separated and separately from the at least one LED light source. The LED chip and the conversion device thus form two separate units and can be used separately from one another in the light module and be arranged completely independently of one another in the light module. It is also advantageous that a thermal separation of the two heat sources is realized by the spatial separation of the LED light source and the conversion device, so that a local overheating of the light module or the lighting device, in which the light module is installed, can be prevented. An impairment of the conversion properties of the conversion device can be prevented.

Das Lichtmodul umfasst außerdem mindestens eine Umlenkeinrichtung mit einer Vielzahl von unabhängig voneinander ansteuerbaren und bewegbaren Umlenkelementen zum gezielten Reflektieren zumindest eines Teils des von der Konversionseinrichtung abgestrahlten Sekundärlichtbündels. Der reflektierte Teil des Sekundärlichtbündels erzeugt eine Abstrahllichtverteilung des Lichtmoduls, vorzugsweise auf einer Fahrbahn vor einem mit der erfindungsgemäßen Beleuchtungseinrichtung ausgestatteten Fahrzeug. Durch gezieltes Bewegen von einzelnen oder einer Gruppe von ausgewählten Umlenkelementen kann die Form der Abstrahllichtverteilung des Lichtmoduls aber auch die Lichtstärkeverteilung innerhalb der Abstrahllichtverteilung variiert werden. Die Abstrahllichtverteilung ist somit sowohl hinsichtlich ihrer Form (Ausdehnung oder Erstreckung) als auch hinsichtlich ihrer Helligkeitsverteilung dynamisch veränderbar. Die Ansteuerung der Umlenkelemente und damit die Variation der Abstrahllichtverteilung kann in Abhängigkeit von Betriebsparametern des Kraftfahrzeugs (z.B. FahrzeugGeschwindigkeit, Beladung, Lenkwinkel, Querbeschleunigung, etc.) erfolgen. Bei der Ansteuerung der Umlenkelemente können auch Umgebungsparameter des Fahrzeugs (z.B. Außentemperatur, Niederschlag, Fahrt in einem Stadtzentrum, auf einer Landstraße oder einer Autobahn, detektierte andere Verkehrsteilnehmer im Umfeld des Fahrzeugs, etc.) berücksichtigt werden.The light module also comprises at least one deflection device with a plurality of independently controllable and movable deflecting elements for selectively reflecting at least part of the radiation emitted by the conversion device Secondary light beam. The reflected part of the secondary light beam generates an emission light distribution of the light module, preferably on a roadway in front of a vehicle equipped with the illumination device according to the invention. By selectively moving one or a group of selected deflection elements, the shape of the emission light distribution of the light module but also the distribution of light intensity within the emission light distribution can be varied. The emission light distribution is thus dynamically changeable both in terms of its shape (extent or extent) and in terms of its brightness distribution. The control of the deflecting elements and thus the variation of the emission light distribution can be effected as a function of operating parameters of the motor vehicle (eg vehicle speed, load, steering angle, lateral acceleration, etc.). When activating the deflecting elements, environmental parameters of the vehicle (eg outside temperature, precipitation, driving in a city center, on a country road or a motorway, detected other road users in the surroundings of the vehicle, etc.) can also be taken into account.

Durch ein gezieltes Ansteuern der Umlenkelemente kann die Abstrahllichtverteilung bspw. zwischen Fernlicht und Abblendlicht umgeschaltet werden. Außerdem kann z.B. in dem Bereich, in dem sich ein entgegenkommendes oder vorausfahrendes Fahrzeug oder ein anderer Verkehrsteilnehmer befindet, die Lichtstärke in der Abstrahllichtverteilung gezielt verringert, vorzugsweise auf null gesetzt werden (sog. Teilfernlichtfunktion). Ein Blenden der anderen Verkehrsteilnehmer kann somit wirksam verringert werden. Dementsprechend wäre es auch denkbar, dass in dem Bereich, in dem vor dem Fahrzeug ein Objekt detektiert worden ist, die Lichtstärke in der Abstrahllichtverteilung gezielt erhöht wird, um das Objekt für den Fahrer des Fahrzeugs hervorzugeheben (sog. Markierungslicht). Ferner ist es denkbar, dass die Umlenkelemente zur Realisierung einer dynamischen Kurvenlichtfunktion der Abstrahllichtverteilung (horizontales Verschwenken) oder einer Leuchtweiteregulierung (vertikales Verschwenken) angesteuert werden, um die Ausrichtung des Abstrahllichtbündels bzw. der resultierenden Abstrahllichtverteilung horizontal und/oder vertikal bzw. die Lichtstärkeverteilung innerhalb der Abstrahllichtverteilung zu variieren. Mithilfe des Hybridsystems bzw. der Hybridlichtquelle wird eine feste Lichtverteilung auf der Umlenkeinrichtung erzeugt. Diese Lichtverteilung wird auf die Fahrbahn projiziert und lässt sich pixelweise ein- und ausschalten bzw. dimmen (z.B. durch schnelles Ein- und Ausschalten mit verändertem Verhältnis von Einschalt- zu Ausschaltzeiten). Schließlich wäre es sogar denkbar, die Umlenkelemente für das LED-Lichtbündel und das Laserlichtbündel unterschiedlich anzusteuern, so dass bei einer weitgehend konstanten Position des durch das LED-Lichtbündel erzeugten Teils der Abstrahllichtverteilung der durch das Laserlichtbündel erzeugte konzentrierte Spotbereich der Abstrahllichtverteilung mit größerer Beleuchtungsstärke relativ dazu bewegt wird. Der Spotbereich kann zur Vergrößerung der Reichweite nach oben und/oder zur besseren Ausleuchtung von Seitenbereichen der Lichtverteilung, bspw. am Fahrbahnrand, zur Seite hin bewegt werden.By selectively controlling the deflection, the Abstrahllichtverteilung can be switched, for example, between the high beam and low beam. In addition, for example, in the area in which there is an oncoming or preceding vehicle or another road user, the light intensity in the emission light distribution can be purposefully reduced, preferably set to zero (so-called partial remote light function). A dazzling of other road users can thus be effectively reduced. Accordingly, it would also be conceivable that in the area in which an object has been detected in front of the vehicle, the light intensity in the Beam light distribution is selectively increased to highlight the object for the driver of the vehicle (so-called marker light). Furthermore, it is conceivable that the deflection elements for realizing a dynamic curve light function of the Abstrahllichtverteilung (horizontal pivoting) or a light width adjustment (vertical pivoting) are driven to the alignment of the Abstrahllichtbündels or the resulting Abstrahllichtverteilung horizontally and / or vertically or the light intensity distribution within the To vary the light distribution. With the aid of the hybrid system or the hybrid light source, a fixed light distribution is generated on the deflection device. This light distribution is projected onto the road and can be switched on and off pixel by pixel or dimmed (eg by rapid switching on and off with a changed ratio of switch-on and switch-off times). Finally, it would even be conceivable to control the deflecting elements for the LED light bundle and the laser light bundle differently, so that at a largely constant position of the part of the emission light distribution generated by the LED light bundle, the concentrated spot area of the emission light distribution produced by the laser light bundle with greater illuminance relative thereto is moved. The spot area can be moved to increase the range upwards and / or for better illumination of side areas of the light distribution, eg. At the roadside, to the side.

Im Zusammenhang mit der vorliegenden Erfindung ist häufig von einem sog. LED-Lichtbündel und einem sog. Laserlichtbündel die Rede. Dies bezeichnet nur, von welcher Lichtquelle das jeweilige Lichtbündel ausgestrahlt wird. Selbstverständlich kann das LED-Lichtbündel beliebige Wellenlängen bzw. Farben aus dem Farbspektrum von LEDs und kann das Laserlichtbündel beliebige Wellenlängen bzw. Farben aus dem Farbspektrum von Lasern aufweisen. Ferner kann das LED-Lichtbündel auch zur Erzeugung eines anderen Teils der Abstrahllichtverteilung als zur Erzeugung einer Grundlichtverteilung genutzt werden. Ebenso kann das Laserlichtbündel zur Erzeugung eines anderen Teils der Abstrahllichtverteilung als zur Erzeugung einer Spotlichtverteilung genutzt werden. Es ist durchaus möglich, dass man anhand des ausgesandten Lichts keinen Unterschied zwischen einem Laserlichtbündel und einem LED-Lichtbündel erkennt.In connection with the present invention is often referred to by a so-called. LED light beam and a so-called. Laser light bundle. This designates only from which light source the respective light beam is emitted. Of course, the LED light bundle can be any Wavelengths or colors from the color spectrum of LEDs and the laser light beam can have any wavelengths or colors from the color spectrum of lasers. Furthermore, the LED light beam can also be used for generating a different part of the emission light distribution than for generating a basic light distribution. Likewise, the laser light beam can be used to produce another part of the emission light distribution than to produce a spotlight distribution. It is quite possible that one recognizes no difference between a laser light beam and a LED light beam based on the emitted light.

Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung leuchtet die LED-Lichtverteilung eine Oberfläche auf einer ersten Seite der Konversionseinrichtung möglichst homogen aus. Vorzugsweise leuchtet die LED-Lichtverteilung die gesamte Oberfläche auf der ersten Seite der Konversionseinrichtung möglichst homogen aus. Somit strahlt die Konversionseinrichtung auftreffendes Licht der LED-Lichtverteilung ebenfalls großflächig ab. Dieses Licht kann besonders vorteilhaft zur Erzeugung eines großflächigen Bereichs in dem Sekundärlichtbündel genutzt werden. Auf diese Weise kann dann nach dem Umlenken des Sekundärlichtbündels durch die Umlenkeinrichtung als Abstrahllichtverteilung bspw. eine großflächige Grundlichtverteilung erzeugt werden.According to an advantageous development of the present invention, the LED light distribution illuminates a surface on a first side of the conversion device as homogeneously as possible. The LED light distribution preferably illuminates the entire surface on the first side of the conversion device as homogeneously as possible. Thus, the conversion device emits incident light of the LED light distribution also over a large area. This light can be used particularly advantageously for generating a large area in the secondary light beam. In this way, after the deflection of the secondary light bundle by the deflection device, for example, a large-area basic light distribution can be generated as the emission light distribution.

Vorteilhafterweise ist in einem Strahlengang des LED-Lichtbündels zwischen der mindestens einen LED-Lichtquelle und der Konversionseinrichtung ein erstes optisches Element zur Erzeugung einer homogenen flächigen Ausleuchtung der gesamten Oberfläche der ersten Seite der Konversionseinrichtung angeordnet. Das optische Element lenkt die von der LED-Lichtquelle ausgesandten Lichtstrahlen auf die Oberfläche, vorzugsweise auf die gesamte Oberfläche, der ersten Seite der Konversionseinrichtung. Mittels des optisch wirksamen Elements kann das von der LED-Lichtquelle ausgestrahlte LED-Lichtbündel die Oberfläche der ersten Seite der Konversionseinrichtung besonders homogen ausleuchten. Das kann dann letzten Endes zu einer besonders homogenen großflächigen Grundlichtverteilung führen. Das erste optische Element kann insbesondere als Reflektor, z.B. als ein parabolischer oder elliptischer Reflektor, ausgebildet sein. Ebenso ist es möglich, dass das optische Element als eine Linse ausgebildet ist. Vorzugweise ist das optische Element ein Hohlspiegel oder eine Sammellinse.Advantageously, a first optical element for generating a homogeneous surface illumination of the entire surface of the first side of the conversion device is arranged in a beam path of the LED light beam between the at least one LED light source and the conversion device. The optical element deflects the light emitted by the LED light source Light rays on the surface, preferably on the entire surface, the first side of the conversion device. By means of the optically active element, the LED light beam emitted by the LED light source can illuminate the surface of the first side of the conversion device in a particularly homogeneous manner. This can ultimately lead to a particularly homogeneous large-area basic light distribution. The first optical element can in particular be designed as a reflector, for example as a parabolic or elliptical reflector. It is also possible that the optical element is formed as a lens. Preferably, the optical element is a concave mirror or a converging lens.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung beleuchtet die Laserlichtverteilung einen Leuchtspot auf einer Oberfläche einer ersten Seite der Konversionseinrichtung. Ein Leuchtspot ist insbesondere ein in seiner Erstreckung begrenzter oder konzentrierter Bereich. Vorzugsweise wird mit der Laserlichtverteilung nur ein Teilbereich der Oberfläche der ersten Seite der Konversionseinrichtung beleuchtet. Somit strahlt die Konversionseinrichtung auftreffendes Licht der Laserlichtverteilung ebenfalls konzentriert ab. Dieses Licht kann besonders vorteilhaft zur Erzeugung eines kleinen, besonders hell ausgeleuchteten Spotbereichs in dem Sekundärlichtbündel genutzt werden. Auf diese Weise kann dann nach dem Umlenken des Sekundärlichtbündels durch die Umlenkeinrichtung als Abstrahllichtverteilung bspw. ein konzentrierter Spot erzeugt werden. Die Abstrahllichtverteilung kann auch aus einer Überlagerung der durch das LED-Lichtbündel erzeugten Grundlichtverteilung und des durch das Laserlichtbündel erzeugten Spots gebildet sein.According to a preferred embodiment of the present invention, the laser light distribution illuminates a luminous spot on a surface of a first side of the conversion device. A light spot is in particular a limited or concentrated area in its extent. Preferably, only a partial area of the surface of the first side of the conversion device is illuminated with the laser light distribution. Thus, the conversion device emits incident light of the laser light distribution also concentrated. This light can be used particularly advantageously for generating a small, particularly brightly illuminated spot area in the secondary light bundle. In this way, after the deflection of the secondary light beam by the deflection device, for example, a concentrated spot can be generated as the emission light distribution. The emission light distribution can also be formed from a superimposition of the basic light distribution generated by the LED light bundle and the spot generated by the laser light bundle.

Vorteilhafterweise ist in einem Strahlengang des Laserlichtbündels zwischen der mindestens einen Laserlichtquelle und der Konversionseinrichtung ein zweites optisches Element zur Erzeugung des Leuchtspots der Laserlichtverteilung auf der Oberfläche der Konversionseinrichtung angeordnet. Mittels des optischen Elements kann ein besonders konzentriertes Laserlichtbündel zur Erzeugung des Spots aufgeweitet und/oder das Laserlichtbündel gezielt in einen bestimmten Bereich auf der Oberfläche der ersten Seite der Konversionseinrichtung gelenkt werden. Das optische Element kann insbesondere derart ausgebildet sein, dass es ein auftreffendes Lichtbündel bricht, streut, reflektiert oder bündelt. Insofern kann das zweite optische Element ebenfalls als ein Reflektor oder als eine optische Linse ausgebildet sein.Advantageously, in a beam path of the Laser light beam disposed between the at least one laser light source and the conversion device, a second optical element for generating the illuminated spot of the laser light distribution on the surface of the conversion device. By means of the optical element, a particularly concentrated laser light beam for generating the spot can be widened and / or the laser light beam can be specifically directed into a specific area on the surface of the first side of the conversion device. The optical element can in particular be designed such that it breaks, scatters, reflects or bundles an incident light beam. In this respect, the second optical element may also be formed as a reflector or as an optical lens.

Die von dem LED-Lichtbündel möglichst vollflächig ausgeleuchtete erste Seite der Konversionseinrichtung kann eine besonders großflächige homogene Lichtstärkeverteilung in der Abstrahllichtverteilung des Lichtmoduls erzeugen. Diese kann zur Erzeugung eines Grundlichts oder Basislichts genutzt werden. Der von dem Laserlichtbündel konzentriert ausgeleuchtete Bereich auf der ersten Seite der Konversionseinrichtung kann einen konzentrierten Spotbereich mit hoher Lichtstärkeverteilung in der Abstrahllichtverteilung des Lichtmoduls erzeugen. Die Lichtstärke in dem durch das Laserlichtbündel erzeugten Spotbereich ist vorzugsweise größer als die Lichtstärke in dem durch das LED-Lichtbündel erzeugten Grundlicht.The first side of the conversion device illuminated as completely as possible by the LED light bundle can produce a particularly large-area homogeneous light intensity distribution in the emission light distribution of the light module. This can be used to generate a base or base light. The concentrated area illuminated by the laser light bundle on the first side of the conversion device can produce a concentrated spot area with high light intensity distribution in the emission light distribution of the light module. The light intensity in the spot area generated by the laser light beam is preferably greater than the light intensity in the base light generated by the LED light beam.

Vorzugsweise treffen das von der LED-Lichtquelle ausgestrahlte LED-Lichtbündel und das von der Laserlichtquelle ausgestrahlte Laserlichtbündel auf die gleiche Seite der Konversionsrichtung. Die Laserlichtverteilung und die LED-Lichtverteilung können zumindest teilweise auf gleiche Bereiche der Oberfläche der ersten Seite der Konversionseinrichtung auftreffen, so dass sich das Laserlichtbündel und das LED-Lichtbündel teilweise mischen bevor sie auf der Konversionseinrichtung auftreffen. Dies führt insbesondere in den Übergangsbereichen zwischen den durch das Laserlichtbündel erzeugten Bereichen des Sekundärlichtbündels und den durch das LED-Lichtbündel erzeugten Bereichen des Sekundärlichtbündels und damit auch in der Abstrahllichtverteilung des Lichtmoduls zu einem besonders homogenen Gesamteindruck bezüglich der Helligkeit und/oder der Farbe.Preferably, the LED light beam emitted from the LED light source and the laser light beam emitted from the laser light source strike the same side of the conversion direction. The laser light distribution and the LED light distribution can be at least partially on the same areas of the surface of the first side of the conversion device, so that the laser light beam and the LED light beam partially mix before they hit the conversion device. This leads, in particular in the transition regions between the regions of the secondary light beam generated by the laser light bundle and the regions of the secondary light beam generated by the LED light bundle and thus also in the emission light distribution of the light module, to a particularly homogeneous overall impression with regard to brightness and / or color.

Es ist denkbar, dass die mindestens eine LED-Lichtquelle Licht einer ersten Wellenlänge ausstrahlt, so dass das Licht bspw. blau erscheint. Dieses Licht trifft auf die erste Seite der Konversionseinrichtung und wird teilweise in Licht einer zweiten Wellenlänge umgewandelt, bspw. in gelbes Licht. Das nicht konvertierte Licht der ersten Wellenlänge überlagert sich mit dem konvertierten Licht der zweiten Wellenlänge, so dass sich in der Summe Licht einer gewünschten Farbe, bspw. weißes Licht, ergibt. Selbstverständlich kann die LED-Lichtquelle auch anders farbiges (nicht blaues) Licht der ersten Wellenlänge aussenden, das dann von der Konversionseinrichtung mit einem anderen wellenlängenkonvertierenden Material (nicht Phosphor) teilweise in Licht einer zweiten Wellenlänge umgewandelt wird. Eine Überlagerung des nicht konvertierten Lichts der ersten Wellenlänge und das konvertierten Lichts der zweiten Wellenlänge ergibt das Licht der gewünschten Farbe.It is conceivable that the at least one LED light source emits light of a first wavelength, so that the light, for example, appears blue. This light hits the first side of the conversion device and is partially converted to light of a second wavelength, for example yellow light. The unconverted light of the first wavelength is superimposed on the converted light of the second wavelength, resulting in the sum of light of a desired color, for example white light. Of course, the LED light source may also emit differently colored (not blue) light of the first wavelength, which is then partially converted by the conversion device with another wavelength-converting material (non-phosphorus) into light of a second wavelength. An overlay of the unconverted light of the first wavelength and the converted light of the second wavelength gives the light of the desired color.

Gemäß einer vorteilhaften Ausführungsform umfassen eine der ersten Seite (Vorderseite) gegenüberliegende zweite Seite (Rückseite) der Konversionseinrichtung und/oder zwischen den ersten und zweiten Seiten der Konversionseinrichtung angeordnete Seitenflächen der Konversionseinrichtung Licht reflektierende Oberflächen. Licht des LED-Lichtbündels und/oder des Laserlichtbündels, das nicht direkt beim Auftreffen auf der Oberfläche der ersten Seite der Konversionseinrichtung in Licht für das Sekundärlichtbündel umgewandelt wird, sondern die Konversionseinrichtung über die Rückseite und/oder die Seitenflächen als Streulicht verlassen würde, wird an der Licht reflektierenden Oberfläche der gegenüberliegenden zweiten Seite und/oder an den Licht reflektierenden Seitenflächen reflektiert, vorzugsweise in Richtung der ersten Seite der Konversionseinrichtung. Somit kann zur Erzeugung der Abstrahllichtverteilung auch Licht genutzt werden, das beim Auftreffen auf die Oberfläche der ersten Seite der Konversionseinrichtung nicht direkt in Licht des Sekundärlichtbündels umgewandelt wird. Dadurch ergibt sich eine besonders hohe Effizienz des Lichtmoduls. Als Materialien für die lichtreflektierenden Oberflächen werden insbesondere Metalle (Al, Ag) oder weiß-reflektierende Materialien (TiO2, BaSO4) vorgeschlagen. Selbstverständlich können auch andere Materialen zum Einsatz kommen.According to an advantageous embodiment, one of the first side (front side) opposite second side (back) of the conversion device and / or between the first and second sides of the conversion device arranged side surfaces of the conversion device light reflecting surfaces. Light of the LED light beam and / or the laser light beam, which is not directly converted into light for the secondary light beam when hitting the surface of the first side of the conversion device, but would leave the conversion device via the rear side and / or the side surfaces as stray light, is turned on the light reflecting surface of the opposite second side and / or reflected on the light reflecting side surfaces, preferably in the direction of the first side of the conversion device. Thus, light can also be used to generate the emission light distribution, which light is not converted directly into light of the secondary light bundle when it strikes the surface of the first side of the conversion device. This results in a particularly high efficiency of the light module. As materials for the light-reflecting surfaces, in particular metals (Al, Ag) or white-reflecting materials (TiO 2 , BaSO 4 ) are proposed. Of course, other materials can be used.

Gemäß einer weiteren vorteilhaften Ausgestaltung ist in dem Strahlengang des von der Konversionseinrichtung ausgesandten Sekundärlichtbündels ein drittes optisches Element angeordnet und dazu ausgebildet, zumindest einen Teil des Sekundärlichtbündels auf die Umlenkeinrichtung zu lenken. Durch das dritte optische Element ist es insbesondere möglich, die Lichtstrahlen des Sekundärlichtbündels gezielt zu streuen oder zu bündeln, bzw. in bestimmte Bereiche auf der Umlenkeinrichtung zu lenken. Vorzugsweise ist das dritte optische Element derart in dem Lichtmodul angeordnet, dass das Sekundärlichtbündel auf die Umlenkeinrichtung gelenkt wird, insbesondere auch dann wenn die Umlenkeinrichtung nicht in einem Strahlengang des von der Konversionseinrichtung ausgehenden Sekundärlichtbündels liegt. Dadurch kann die Umlenkeinrichtung weitgehend unabhängig von der Konversionseinrichtung im Lichtmodul angeordnet werden, und es ergeben sich weitere Freiheitsgrade hinsichtlich der Anordnung dieser Einrichtungen im Lichtmodul. Das dritte optische Element ist beispielsweise ein Kondensor umfassend eine oder mehrere Sammellinsen oder einen Reflektor.According to a further advantageous refinement, a third optical element is arranged in the beam path of the secondary light beam emitted by the conversion device and designed to direct at least a part of the secondary light beam onto the deflection device. The third optical element makes it possible, in particular, to scatter or bundle the light beams of the secondary light beam in a targeted manner, or to direct them into specific areas on the deflection device. Preferably, the third optical element is arranged in the light module such that the secondary light beam is directed to the deflection device, in particular even if the deflection device is not in a beam path of the outgoing from the conversion device secondary light beam is located. As a result, the deflection device can be arranged largely independently of the conversion device in the light module, and there are further degrees of freedom with regard to the arrangement of these devices in the light module. The third optical element is, for example, a condenser comprising one or more converging lenses or a reflector.

Vorteilhafterweise umfasst die Konversionseinrichtung ein Material mit wellenlängenkonvertierenden Eigenschaften, insbesondere Phosphor oder ein anderes fluoreszierendes Material. Trifft das LED-Lichtbündel und/oder das Laserlichtlichtbündel einer ersten Wellenlänge (einer ersten Farbe) auf die Konversionseinrichtung, wird die Konversionseinrichtung zur Phosphoreszenz oder Fluoreszenz angeregt und strahlt Licht einer anderen zweiten Wellenlänge (einer zweiten Farbe) ab. Die Konversionseinrichtung ist vorzugsweise auf die Spektren des LED-Lichtbündels und des Laserlichtbündels abgestimmt, so dass das Licht dieser Lichtbündel möglichst effizient umgewandelt und zur Erzeugung der Abstrahllichtverteilung genutzt wird.Advantageously, the conversion device comprises a material with wavelength-converting properties, in particular phosphorus or another fluorescent material. If the LED light beam and / or the laser light beam of a first wavelength (a first color) hits the conversion device, the conversion device is excited to phosphorescence or fluorescence and emits light of another second wavelength (of a second color). The conversion device is preferably matched to the spectra of the LED light beam and the laser light beam, so that the light of these light beams is converted as efficiently as possible and used to generate the Abstrahllichtverteilung.

Gemäß einer vorteilhaften Ausführungsform umfasst die Umlenkeinrichtung ein digitales Mikrospiegelarray (Digital Mirror Device, DMD), das eine Vielzahl von arrayartig neben- und/oder übereinander angeordnete Einzelelemente in Form von Mikrospiegeln umfasst, von denen das von einer Lichtquelle erzeugte Licht reflektiert wird. Die Mikrospiegel eines DMD ergänzen sich zu einer im Wesentlichen geschlossenen Reflexionsfläche. Jeder Mikrospiegel lässt sich in seiner Ausrichtung zumindest um eine Drehachse, vorzugsweise frei im dreidimensionalen Raum, also um zwei Drehachsen, einzeln verstellen.According to an advantageous embodiment, the deflection device comprises a digital micromirror array (Digital Mirror Device, DMD), which comprises a multiplicity of individual elements arrayed next to and / or above one another in the form of micromirrors from which the light generated by a light source is reflected. The micromirrors of a DMD complement each other to form a substantially closed reflection surface. Each micromirror can be individually adjusted in its orientation at least about an axis of rotation, preferably freely in three-dimensional space, ie about two axes of rotation.

Geeigneter Aktoren zum Verstellen der Mikrospiegel sind bspw. elektrostatische Aktoren oder Piezoaktoren. Es wäre auch denkbar, die einzelnen Mikrospiegel zumindest bereichsweise magnetisierbar auszubilden, so dass durch Anlegen eines Magnetfeldes ein Mikrospiegel oder eine Gruppe von mehreren Mikrospiegeln verstellt werden kann. Die Mikrospiegel eines DMD besitzen in der Regel jeweils zwei stabile Endlagen, zwischen denen der Mikrospiegel innerhalb einer Sekunde bis zu einigen Tausend Mal, bspw. bis zu 5.000 Mal, umgeschaltet werden kann. Durch die individuelle Verstellbarkeit der einzelnen Mikrospiegel ist es möglich, dass ein auf einen der Mikrospiegel auftreffender Lichtstrahl entweder über die Projektionsoptik auf die Fahrbahn in die Abstrahllichtverteilung oder in eine andere Richtung reflektiert wird, in der der Lichtstrahl keinen Beitrag zu dem auf der Fahrbahn auftreffenden Lichtbündel bzw. zu der Abstrahllichtverteilung liefert. Mit einem digitalen Mikrospiegelarray können also Teile des Sekundärlichtbündels gezielt abgelenkt und somit die Lichtstärkeverteilung innerhalb der Abstrahllichtverteilung nahezu beliebig beeinflusst werden. So ist es möglich nicht nur zwischen Abblendlicht und Fernlicht umzuschalten, sondern es können darüber hinaus einzelne Bereiche aus dem Sekundärlichtbündel gezielt beeinflusst werden, beispielsweise um die Lichtstärke in diesen Bereichen gezielt zu verstärken oder zu verringern bis hin zum völligen Ausblenden, so dass die Lichtstärkeverteilung in der resultierenden Abstrahllichtverteilung des Lichtmoduls nahezu beliebig variiert werden kann. Bei einem raschen hin und her Schalten der Mikrospiegel ergibt sich die resultierende Abstrahllichtverteilung des Lichtmoduls gemittelt über die Zeit.Suitable actuators for adjusting the micromirrors are, for example, electrostatic actuators or piezoactuators. It would also be conceivable to make the individual micromirrors magnetizable at least in regions, so that a micromirror or a group of several micromirrors can be adjusted by applying a magnetic field. The micromirrors of a DMD generally each have two stable end positions, between which the micromirror can be switched over within a second to a few thousand times, for example up to 5,000 times. The individual adjustability of the individual micromirrors makes it possible for a light beam incident on one of the micromirrors to be reflected either via the projection optics onto the roadway into the emission light distribution or in another direction in which the light beam makes no contribution to the light bundle incident on the roadway or to the emission light distribution. With a digital micromirror array, therefore, parts of the secondary light bundle can be deflected in a targeted manner and thus the light intensity distribution within the emission light distribution can be influenced virtually as desired. Thus, it is possible not only to switch between low beam and high beam, but it can also be selectively influenced areas of the secondary light beam, for example, to specifically increase the intensity of light in these areas or reduce to complete fading, so that the light intensity distribution in the resulting Abstrahllichtverteilung the light module can be varied almost arbitrarily. In the case of rapid switching back and forth of the micromirrors, the resulting emission light distribution of the light module results averaged over time.

Das auf das Mikrospiegelarray auftreffende Sekundärlichtbündel setzt sich zusammen aus Licht der LED-Lichtverteilung und aus Licht der Laserlichtverteilung. Das Sekundärlichtbündel trifft mit einer bestimmten Sekundärlichtverteilung auf die Reflexionsfläche des Mikrospiegelarrays. Die LED-Lichtverteilung erzeugt in der Sekundärlichtverteilung vorzugsweise einen größeren ausgeleuchteten Bereich als der spotförmige Bereich, der von der Laserlichtverteilung beleuchtet wird. Eine derartige Sekundärlichtverteilung, die einen hohen Lichtstrom und ein Zentrum mit einer besonders hohen Leuchtdichte aufweist, eignet sich besonders gut zur Beleuchtung von digitalen Mikrospiegelarrays. Eine durch ein Mikrospiegelarray realisierte Reflektorfläche ist sehr teuer und muss deshalb möglichst klein gehalten werden. Eine kompakte und starke Lichtquelle mit einem hohen Lichtstrom und einer punktuell hohen Leuchtdichte ist daher von Vorteil, insbesondere deswegen, da Leuchtdichte und Lichtstrom unmittelbar die Leistung des digitalen Mikrospiegelarrays begrenzen. Ein kleinbauendes DMD ist auch von Vorteil, wenn es um die Realisierung eines möglichst kompakten Lichtmoduls und damit auch einer kompakten Beleuchtungseinrichtung geht.The incident on the micromirror array Secondary light beam is composed of light from the LED light distribution and light from the laser light distribution. The secondary light beam strikes the reflection surface of the micromirror array with a specific secondary light distribution. In the secondary light distribution, the LED light distribution preferably generates a larger illuminated area than the spot-shaped area which is illuminated by the laser light distribution. Such a secondary light distribution, which has a high luminous flux and a center with a particularly high luminance, is particularly well suited for illuminating digital micromirror arrays. A realized by a micromirror array reflector surface is very expensive and must therefore be kept as small as possible. A compact and strong light source with a high luminous flux and a selectively high luminance is therefore advantageous, in particular because luminance and luminous flux directly limit the power of the digital micromirror array. A small-sized DMD is also advantageous when it comes to the realization of a compact as possible light module and thus a compact lighting device.

Gemäß einer bevorzugten Ausgestaltung weist das Lichtmodul eine Projektionsoptik auf, um die von der Umlenkeinrichtung erzeugte Abstrahllichtverteilung des Lichtmoduls auf einer Fahrbahn vor einem Fahrzeug, in dem das erfindungsgemäße Lichtmodul eingebaut ist, optisch abzubilden. Die Projektionsoptik umfasst insbesondere einen Reflektor oder eine Projektionslinse.According to a preferred refinement, the light module has projection optics in order to optically image the emission light distribution of the light module generated by the deflection device on a roadway in front of a vehicle in which the light module according to the invention is installed. The projection optics in particular comprises a reflector or a projection lens.

Vorzugsweise erzeugt das Laserlichtbündel in der Abstrahllichtverteilung einen konzentrierten Bereich mit einer höheren Beleuchtungsstärke als ein ausschließlich von dem LED-Lichtbündel erzeugter anderer Bereich der Abstrahllichtverteilung. Die LED-Lichtverteilung erzeugt in der Abstrahllichtverteilung insbesondere eine Grundlichtverteilung, die vor dem Fahrzeug einen großen Bereich ausleuchtet, der insbesondere von einer Seite an einem Fahrbahnrand bis zu einer anderen Seite an einem gegenüberliegenden Fahrbahnrand reicht. Die Laserlichtverteilung erzeugt in der Abstrahllichtverteilung dagegen insbesondere eine Leuchtspot-Lichtverteilung, die einen konzentrierten Bereich mit einer höheren Beleuchtungsstärke ausleuchtet als die Grundlichtverteilung. Die Grundlichtverteilung und die Leuchtspotlichtverteilung können gemeinsam die Abstrahllichtverteilung bilden. Das gilt sowohl für eine Abblendlichtverteilung und eine Fernlichtverteilung als auch für beliebig andere Lichtverteilungen. Die Leuchtspot-Lichtverteilung kann im Zentrum der Abstrahllichtverteilung, an einer oder zwei gegenüberliegenden Seiten oder an einer beliebig anderen Stelle der Abstrahllichtverteilung angeordnet sein. Wo genau derLeuchtspot in der Abstrahllichtverteilung liegt, hängt von der Ausrichtung der entsprechenden Mikrospiegel ab, auf die der Teil der Sekundärlichtverteilung fällt, der von dem Laserlichtbündel erzeugt wird.Preferably, the laser light beam in the emission light distribution generates a concentrated region having a higher illuminance than another region exclusively generated by the LED light beam Abstrahllichtverteilung. In particular, the LED light distribution generates a basic light distribution in the emission light distribution, which illuminates a large area in front of the vehicle, which extends in particular from one side on a roadway edge to another side on an opposite roadway edge. In contrast, the laser light distribution in the emission light distribution generates, in particular, a luminous-light distribution that illuminates a concentrated area with a higher illuminance than the basic-light distribution. The basic light distribution and the luminous light distribution can together form the emission light distribution. This applies both to a low beam distribution and a high beam distribution as well as for any other light distribution. The light-emitting light distribution can be arranged in the center of the emission light distribution, on one or two opposite sides or at any other point of the emission light distribution. Where exactly the luminous spot lies in the emission light distribution depends on the orientation of the corresponding micromirrors upon which falls the part of the secondary light distribution produced by the laser light beam.

Weitere Merkmale und vorteilhafte Ausgestaltungen der vorliegenden Erfindung können der nachfolgenden Beschreibung unter Bezugnahme auf die Figuren entnommen werden. Es zeigen:

Fig. 1a bis 1d
verschiedene an sich aus dem Stand der Technik bekannte Lichtmodule;
Fig. 2
ein Lichtmodul mit einer Umlenkeinrichtung;
Fig. 3a
ein erfindungsgemäßes Lichtmodul gemäß einer ersten bevorzugten Ausführungsform;
Fig. 3b
einen Ausschnitt aus Fig. 3a;
Fig. 4
ein erfindungsgemäßes Lichtmodul gemäß einer zweiten bevorzugten Ausführungsform;
Fig. 5
einen Kraftfahrzeugscheinwerfer;
Further features and advantageous embodiments of the present invention can be taken from the following description with reference to the figures. Show it:
Fig. 1a to 1d
various light modules known per se from the prior art;
Fig. 2
a light module with a deflection device;
Fig. 3a
an inventive light module according to a first preferred embodiment;
Fig. 3b
a section from Fig. 3a ;
Fig. 4
an inventive light module according to a second preferred embodiment;
Fig. 5
a motor vehicle headlight;

Die Figuren 1a bis 1d zeigen aus dem Stand der Technik bekannte Lichtmodule 1 mit einer LED-Lichtquelle 2 und einer Laserlichtquelle 3. Solche Lichtmodule 1 werden auch als Hybridsystem bezeichnet. Direkt auf der LED 2, innerhalb eines Gehäuses der LED oder unmittelbar auf dem LED-Chip ist eine Konversionseinrichtung 4 in Form eines Fluoreszenzelements angeordnet. Die LED 2 beleuchtet eine Rückseite des Fluoreszenzelements 4 und die Laserlichtquelle 3 eine Vorderseite desselben. Das Fluoreszenzelement 4 strahlt unter Anregung zur Fluoreszenz durch das von der Laserlichtquelle 3 ausgesandte Laserlicht und das von der LED-Lichtquelle 2 ausgesandte LED-Licht sichtbares Licht aus. Zur Abbildung eines von dem Fluoreszenzelement 4 emittierten Sekundärlichtbündels 6 als eine Abstrahllichtverteilung 7 (vgl. Fig. 1a, wo beispielhaft eine Abblendlichtverteilung 7 gezeigt ist) auf einer Fahrbahn vor einem mit dem Lichtmodul 1 ausgestatteten Kraftfahrzeug ist ein optisches Element 5, beispielsweise eine Projektionslinse (vgl. Fig. 1a, 1b, 1d) oder ein Reflektor (vgl. Fig. 1c) vorgesehen.The FIGS. 1a to 1d show known from the prior art light modules 1 with an LED light source 2 and a laser light source 3. Such light modules 1 are also referred to as a hybrid system. Directly on the LED 2, within a housing of the LED or directly on the LED chip, a conversion device 4 is arranged in the form of a fluorescent element. The LED 2 illuminates a backside of the fluorescent element 4 and the laser light source 3 illuminates a front side thereof. The fluorescence element 4 radiates excitation to fluorescence by the laser light emitted by the laser light source 3 and the light emitted by the LED light source 2 LED light visible light. For imaging a secondary light beam 6 emitted by the fluorescence element 4 as an emission light distribution 7 (cf. Fig. 1a where by way of example a low-beam light distribution 7 is shown) on a roadway in front of a motor vehicle equipped with the light module 1 is an optical element 5, for example a projection lens (cf. Fig. 1a . 1b, 1d ) or a reflector (cf. Fig. 1c ) intended.

Figur 2 zeigt ebenfalls ein Lichtmodul 1, das als Hybridsystem mit einer Laser-Lichtquelle 3 und einer LED-Lichtquelle 2 ausgebildet ist. Die Konversionseinrichtung 4 ist unmittelbar auf dem LED-Chip oder im Gehäuse der LED 2 angeordnet. Die LED 2 beleuchtet in Lichtaustrittsrichtung betrachtet die Rückseite der Konversionseinrichtung 4 und die Laserlichtquelle 3 eine Vorderseite. Das von der Konversionseinrichtung 4 abgestrahlte Sekundärlichtbündel 6 wird von einem optischen Element, beispielsweise einem Reflektor 8, auf eine Umlenkeinrichtung 8a gelenkt. Von der Umlenkeinrichtung 8a gelangt das Licht des Sekundärlichtbündel 6 auf eine Projektionsoptik 5 und wird von dieser in einer Abstrahllichtverteilung 7 auf einer Fahrbahn vor einem mit dem Lichtmodul 1 ausgestatteten Kraftfahrzeug abgebildet. Alle in den Figuren 1a bis 1d und Fig. 2 gezeigten Ausführungsformen haben gemeinsam, dass die Konversionseinrichtung 4 innerhalb des Gehäuse der LED 2 oder unmittelbar auf dem LED-Chip angeordnet ist. FIG. 2 also shows a light module 1, which is designed as a hybrid system with a laser light source 3 and an LED light source 2. The conversion device 4 is directly on the LED chip or in the housing of the LED 2 arranged. The LED 2 illuminated viewed in the light exit direction, the back of the conversion device 4 and the laser light source 3 a front. The secondary light beam 6 emitted by the conversion device 4 is directed by an optical element, for example a reflector 8, onto a deflection device 8a. From the deflection device 8a, the light of the secondary light bundle 6 reaches a projection optical system 5 and is imaged by the latter in a distribution light distribution 7 on a roadway in front of a motor vehicle equipped with the light module 1. All in the FIGS. 1a to 1d and Fig. 2 shown embodiments have in common that the conversion device 4 is disposed within the housing of the LED 2 or directly on the LED chip.

Figur 3a zeigt ein erfindungsgemäßes Lichtmodul in einer ersten bevorzugten Ausführungsform. Das Lichtmodul ist in seiner Gesamtheit mit dem Bezugszeichen 10 bezeichnet und ist für den Einbau in einen Kraftfahrzeug-Scheinwerfer 70 (vgl. Figur 5) ausgebildet. Der Scheinwerfer 70 umfasst ein Gehäuse 72, das vorzugsweise aus Kunststoff gefertigt ist. In einer Lichtaustrittsrichtung 74 weist das Gehäuse 72 eine Lichtaustrittsöffnung 76 auf, die durch eine transparente Abdeckscheibe 78 verschlossen ist. Die Abdeckscheibe 78 schützt das Innere des Gehäuses 72 sowie die darin angeordneten Scheinwerferkomponenten vor Feuchtigkeit und Verschmutzung. Die Abdeckscheibe 78 kann als eine sogenannte klare Scheibe ohne optisch wirksame Profile (zum Beispiel Prismen oder Zylinderlinsen) ausgebildet sein. Alternativ kann die Scheibe 78 zumindest bereichsweise mit optisch wirksamen Profilen versehen sein (sog. Streuscheibe). Im Innern des Scheinwerfergehäuses 72 ist in dem dargestellten Ausführungsbeispiel ein erfindungsgemäßes Lichtmodul 10 angeordnet. Das Lichtmodul 10 ist fest oder relativ zum Scheinwerfergehäuse 72 bewegbar im Gehäuse 72 angeordnet. Insbesondere kann das Lichtmodul 10 um eine horizontale Achse vertikal verschwenkbar (für eine Leuchtweitereglung) und/oder um eine vertikale Achse horizontal verschwenkbar (für eine dynamische Kurvenlichtfunktion) angeordnet sein. Diese Freiheitsgrade können aber insbesondere bei einem Lichtmodul 10, das ein DMD als Umlenkeinrichtung 48 aufweist, auch durch gezieltes Verstellen der einzelnen DMD-Elemente 50 realisiert werden. Das Lichtmodul 10 erzeugt eine gewünschte Lichtverteilung, beispielsweise eine Abblendlicht-, Fernlicht-, Positionslicht-, Tagfahrlicht-, oder Nebellichtverteilung. FIG. 3a shows a light module according to the invention in a first preferred embodiment. The light module is designated in its entirety by the reference numeral 10 and is for installation in a motor vehicle headlight 70 (see. FIG. 5 ) educated. The headlight 70 includes a housing 72, which is preferably made of plastic. In a light exit direction 74, the housing 72 has a light exit opening 76, which is closed by a transparent cover 78. The cover 78 protects the interior of the housing 72 and the headlight components arranged therein from moisture and dirt. The cover plate 78 may be formed as a so-called clear disc without optically effective profiles (for example, prisms or cylindrical lenses). Alternatively, the disc 78 may be provided at least in regions with optically active profiles (so-called diffusion disc). In the interior of the headlight housing 72, an inventive light module 10 is arranged in the illustrated embodiment. The light module 10 is fixed or relative to the spotlight housing 72 movably arranged in the housing 72. In particular, the light module 10 can be arranged to pivot vertically about a horizontal axis (for a headlamp leveling) and / or horizontally pivotable about a vertical axis (for a dynamic cornering function). However, these degrees of freedom can also be realized by a targeted adjustment of the individual DMD elements 50, in particular in the case of a light module 10 which has a DMD as a deflection device 48. The light module 10 generates a desired light distribution, for example a low beam, high beam, position light, daytime running light, or fog light distribution.

Das Lichtmodul 10 umfasst mindestens eine LED-Lichtquelle 12, mindestens eine Laserlichtquelle 14 und eine Konversionseinrichtung 16. In dem dargestellten Beispiel ist jeweils eine Lichtquelle 12; 14 dargestellt. Selbstverständlich kann das Lichtmodul 10 jeweils auch mehr als die gezeigte eine Lichtquelle 12; 14 aufweisen. Die LED-Lichtquelle 12 kann eine oder mehrere LED-Chips umfassen. Mehrere LED-Chips sind vorzugsweise arrayartig neben- und/oder übereinander angeordnet. Erfindungsgemäß ist der LED-Chip oder sind die LED-Chips der LED-Lichtquelle 12 separat und in einem Abstand zu der Konversionseinrichtung 16 angeordnet.The light module 10 comprises at least one LED light source 12, at least one laser light source 14 and a conversion device 16. In the illustrated example, a respective light source 12; 14 is shown. Of course, the light module 10 each also more than the one shown light source 12; 14 have. The LED light source 12 may include one or more LED chips. Several LED chips are preferably arrayed next to and / or above each other. According to the invention, the LED chip or the LED chips of the LED light source 12 are arranged separately and at a distance from the conversion device 16.

Die LED-Lichtquelle 12 strahlt ein LED-Lichtbündel 18 aus, das auf die Konversionseinrichtung 16 trifft. In dem gezeigten Beispiel trifft das LED-Lichtbündel 18 zunächst auf ein erstes optisch wirksames Element 20 und wird von diesem auf eine Oberfläche 24 auf einer ersten Seite 26 (Vorderseite) einer Konversionseinrichtung 16 gelenkt (vgl. Fig. 3b). Das erste optisch wirksame Element 20 ist in dem gezeigten Beispiel als ein Hohlspiegel 22 ausgebildet. Es könnte aber auch als eine Linse ausgebildet sein, oder aber eine Kombination mehrerer Reflektoren und/oder Linsen umfassen. Das optisch wirksame Element 20, 22 bewirkt eine möglichst homogene vollflächige Ausleuchtung der gesamten Oberfläche 24 mit einer von dem LED-Lichtbündel 18 erzeugten LED-Lichtverteilung 28.The LED light source 12 emits an LED light beam 18 which strikes the conversion device 16. In the example shown, the LED light beam 18 initially strikes a first optically active element 20 and is directed by the latter onto a surface 24 on a first side 26 (front side) of a conversion device 16 (cf. Fig. 3b ). The first optically active element 20 is formed as a concave mirror 22 in the example shown. It could also be designed as a lens, or else a combination of multiple reflectors and / or lenses. The optically active element 20, 22 effects the most homogeneous possible full surface illumination of the entire surface 24 with an LED light distribution 28 generated by the LED light bundle 18.

Die Laserlichtquelle 14 strahlt ein (stark konzentriertes) Laserlichtbündel 30 (sog. Laserstrahl) aus, das auf die Konversionseinrichtung 16 trifft. In dem gezeigten Beispiel trifft das Laserlichtbündel 30 auf ein zweites optisch wirksames Element 32 (Fig. 3a) und wird von diesem ebenfalls auf die Oberfläche 24 auf der ersten Seite 26 der Konversionseinrichtung 16 gelenkt. Das zweite optisch wirksame Element 32 ist hier als ein Reflektor 34 ausgebildet. Selbstverständlich kann es aber auch als eine Linse ausgebildet sein, oder aber eine Kombination mehrerer Reflektoren und/oder Linsen umfassen. Das optisch wirksame Element 32, 34 bewirkt eine punktförmige, spotartige Beleuchtung eines konzentrierten Bereichs der Oberfläche 24 mit einer von dem Laserlichtbündel 30 erzeugten Laserlichtverteilung 36 (Fig. 3b). Dabei kann es erforderlich sein, den Laserstrahl 30 etwas aufzuweiten. Die Laserlichtverteilung 36 beleuchtet die Oberfläche 24 vorzugsweise mit einem Leuchtspot 38. Die Lichtstärke in dem konzentrierten Bereich des Leuchtspots 38 ist größer als in dem restlichen Bereich der Oberfläche 24 der Konversionseinrichtung 16.The laser light source 14 emits a (highly concentrated) laser light beam 30 (so-called laser beam) which strikes the conversion device 16. In the example shown, the laser light beam 30 strikes a second optically active element 32 (FIG. Fig. 3a ) and is also directed by this on the surface 24 on the first side 26 of the conversion device 16. The second optically active element 32 is designed here as a reflector 34. Of course, it may also be designed as a lens, or comprise a combination of a plurality of reflectors and / or lenses. The optically active element 32, 34 effects a punctiform, spot-like illumination of a concentrated area of the surface 24 with a laser light distribution 36 (FIG. 2) generated by the laser light bundle 30 (FIG. Fig. 3b ). It may be necessary to slightly widen the laser beam 30. The laser light distribution 36 preferably illuminates the surface 24 with a light spot 38. The light intensity in the concentrated area of the light spot 38 is greater than in the remaining area of the surface 24 of the conversion device 16.

Die LED-Lichtquelle 12 strahlt Licht einer bestimmten Farbe bzw. einer bestimmten Wellenlänge aus. Insbesondere wird vorgeschlagen, dass das von der LED-Lichtquelle 12 ausgesandte Licht UV (Ultraviolett)-Strahlung (in einem Wellenlängenbereich von etwa 240nm bis 450nm, insbesondere von 350nm bis 450nm) oder blaues Licht (in einem Wellenlängenbereich von etwa 450nm bis 500nm) ist. Die Laserlichtquelle 14 strahlt Licht einer ähnlichen Wellenlänge aus. Die Konversionseinrichtung 16 ist mit einem fluoreszierenden Leuchtstoff versehen. Dabei handelt es sich beispielsweise um Phosphor oder um ein beliebig anderes fluoreszierendes Material. Vorzugsweise ist die Konversionseinrichtung 16 auf das Spektrum des von den Lichtquellen 12, 14 erzeugten und ausgesandten Lichts 18, 30 abgestimmt, vorzugsweise auf einen Wellenlängenbereich zwischen 400nm und 550nm. Das bedeutet, dass die Konversionseinrichtung 16 für Licht dieser Wellenlänge eine besonders hohe Effizienz aufweist.The LED light source 12 emits light of a particular color or wavelength. In particular, it is proposed that the light emitted by the LED light source 12 is UV (ultraviolet) radiation (in a wavelength range of about 240nm to 450nm, especially 350nm to 450nm) or blue light (in a wavelength range of about 450nm to 500nm) , The Laser light source 14 emits light of a similar wavelength. The conversion device 16 is provided with a fluorescent phosphor. These are, for example, phosphorus or any other fluorescent material. Preferably, the conversion device 16 is tuned to the spectrum of the light generated and emitted by the light sources 12, 14, 18, 30, preferably to a wavelength range between 400 nm and 550 nm. This means that the conversion device 16 has a particularly high efficiency for light of this wavelength.

Die von den Lichtquellen 12, 14 ausgesandten Lichtbündel 18, 30 können unmittelbar beim Auftreffen auf die Oberfläche 24 der Konversionseinrichtung 16 teilweise (bzw. größtenteils) in Licht einer anderen Wellenlänge umgewandelt werden. Beispielsweise kann das Licht der Lichtquellen 12, 14 in gelbes Licht in einem Wellenlängenbereich zwischen 560nm und 620nm umgewandelt werden. Zusammen mit dem nicht umgewandelten, also weiterhin sichtbaren blauen Licht 18, 30, das ohne Wellenlängenkonversion an der Oberfläche 24 der Konversionseinrichtung 16 gestreut wird, ergibt sich durch eine additive Farbmischung ein weißes bzw. weißliches Licht aufweisendes Sekundärlichtbündel 40. Bei einem UV-Laser oder einer UV-LED als Lichtquelle erfolgt eine Konvertierung in blaues und gelbes Licht bzw. in blaues, rotes und grünes Licht, so dass sich durch eine additive Farbmischung auch hier wieder weißes Licht des Sekundärbündels 40 ergibt.The light beams 18, 30 emitted by the light sources 12, 14 can be partially (or largely) converted into light of another wavelength as soon as they strike the surface 24 of the conversion device 16. For example, the light of the light sources 12, 14 can be converted to yellow light in a wavelength range between 560nm and 620nm. Together with the unconverted, thus still visible blue light 18, 30, which is scattered without wavelength conversion at the surface 24 of the conversion device 16, resulting from an additive color mixing, a white or whitish light having secondary light beam 40. In a UV laser or a UV LED as a light source is converted into blue and yellow light or in blue, red and green light, so that again results in an additive color mixing white light of the secondary bundle 40.

In dem vorliegenden Beispiel ist eine der ersten Seite gegenüberliegende zweite Seite 42 (Rückseite) der Konversionseinrichtung 16 mit einer lichtreflektierenden Oberfläche 44 versehen. Außerdem können zwischen den ersten und zweiten Seiten 26, 42 angeordnete Seitenflächen 46 der Konversionseinrichtung 16 ebenfalls lichtreflektierende Oberflächen 44 aufweisen. Die durch die Oberfläche 24 der ersten Seite 26 der Konversionseinrichtung 16 hindurchtretenden Lichtstrahlen werden an den lichtreflektierenden Oberflächen 44 reflektiert und treten an der Oberfläche 24 der ersten Seite 26 wieder aus der Konversionseinrichtung 16 aus. Dabei können die reflektierten Lichtstrahlen mit oder ohne Konversion in eine andere Wellenlänge zur Erzeugung der Abstrahllichtverteilung 7 (vgl. Fig. 4) des Lichtmoduls 10 beitragen, so dass dieses eine höhere Effizienz aufweist.In the present example, a second side 42 (rear side) of the conversion device 16 opposite the first side is provided with a light-reflecting surface 44. In addition, between the first and second sides 26, 42 disposed side surfaces 46 of the conversion device 16 also have light reflecting surfaces 44. The light rays passing through the surface 24 of the first side 26 of the conversion device 16 are reflected at the light reflecting surfaces 44 and emerge again from the conversion device 16 at the surface 24 of the first side 26. In this case, the reflected light beams with or without conversion to a different wavelength for generating the Abstrahllichtverteilung 7 (see. Fig. 4 ) contribute to the light module 10 so that it has a higher efficiency.

Ein wichtiger Aspekt des erfindungsgemäßen Lichtmoduls 10 besteht darin, dass die Konversionseinrichtung 16 räumlich getrennt und separat von den Lichtquellen 12, 14 in dem Lichtmodul 10 angeordnet ist. Die Konversionseinrichtung 16 kann innerhalb des Lichtmoduls 10 beliebig, beispielsweise an beliebigen Bauteilen oder optischen Elementen angeordnet werden. Selbstverständlich würde die vorliegende Erfindung auch mit Licht anderer Wellenlängen und darauf abgestimmten fluoreszierenden Materialen für die Konversionseinrichtung 16 funktionieren.An important aspect of the light module 10 according to the invention is that the conversion device 16 is spatially separated and arranged separately from the light sources 12, 14 in the light module 10. The conversion device 16 can be arbitrarily arranged within the light module 10, for example on any components or optical elements. Of course, the present invention would also work with light of other wavelengths and matched fluorescent materials for the conversion device 16.

Das von der Konversionseinrichtung 16 ausgestrahlte Sekundärlichtbündel 40 trifft auf ein drittes optisches Element 58, das in diesem Beispiel als eine Sammellinse ausgebildet ist. Das dritte optische Element 58 lenkt das Sekundärlichtbündel 40 in Richtung einer Umlenkeinrichtung 48 (vgl. Fig. 4). Obwohl die Umlenkeinrichtung in den Fig. 3a und 3b nicht ausdrücklich gezeigt ist, ist sie Bestandteil des dort gezeigten Lichtmoduls 10 gemäß der ersten Ausführungsform.The secondary light beam 40 emitted by the conversion device 16 strikes a third optical element 58, which in this example is designed as a converging lens. The third optical element 58 directs the secondary light bundle 40 in the direction of a deflection device 48 (cf. Fig. 4 ). Although the deflection in the Fig. 3a and 3b is not explicitly shown, it is part of the light module 10 shown there according to the first embodiment.

Die Umlenkeinrichtung 48 umfasst eine Vielzahl von unabhängig voneinander ansteuerbaren und bewegbaren Umlenkelementen 50 zum Reflektieren zumindest eines Teils des Sekundärlichtbündels 40. Der von den Umlenkelementen 50 reflektierte Teil des Sekundärlichtbündels 40 erzeugt eine Abstrahllichtverteilung 7 des Lichtmoduls 10. Durch gezieltes Bewegen ausgewählter Umlenkelemente 50 kann die Form der Abstrahllichtverteilung 7 aber auch die Lichtstärkeverteilung in der Abstrahllichtverteilung 7 variiert werden. Somit ist sowohl die Form als auch die Lichtstärkeverteilung im Lichtbündel der Abstrahllichtverteilung 7 dynamisch veränderbar. Durch ein gezieltes Ansteuern der Umlenkelemente 50 kann die Abstrahllichtverteilung 7 beispielsweise zwischen Fernlicht und Abblendlicht oder beliebig anderen Lichtverteilungen umgeschaltet werden. Außerdem kann z.B. in dem Bereich in dem sich ein entgegenkommendes oder vorausfahrendes Fahrzeug befindet, die Lichtstärke in der Abstrahllichtverteilung 7 gezielt verringert, vorzugsweise auf null gesetzt werden. Insbesondere ein Blenden des Gegenverkehrs kann somit wirksam verringert werden. Ferner ist es denkbar, in dem Bereich in dem ein Objekt vor dem Fahrzeug detektiert wurde, die Lichtstärke gezielt zu erhöhen, um die Aufmerksamkeit des Fahrers auf das Objekt zu lenken.The deflection device 48 comprises a plurality of The part of the secondary light bundle 40 reflected by the deflecting elements 50 generates an emission light distribution 7 of the light module 10. By selectively moving selected deflection elements 50, the shape of the emission light distribution 7 can also be used to distribute the light intensity be varied in the emission light distribution 7. Thus, both the shape and the light intensity distribution in the light beam of the Abstrahllichtverteilung 7 dynamically changeable. By selectively controlling the deflecting elements 50, the emission light distribution 7 can be switched, for example, between high beam and low beam or any other light distributions. In addition, for example, in the area in which there is an oncoming or preceding vehicle, the light intensity in the emission light distribution 7 can be purposefully reduced, preferably set to zero. In particular, dazzling the oncoming traffic can thus be effectively reduced. It is also conceivable, in the area in which an object was detected in front of the vehicle, to increase the light intensity in a targeted manner in order to draw the driver's attention to the object.

In Figur 4 ist die Umlenkeinrichtung 48 als ein digitales Mikrospiegelarray 54 (Digital Mirror Device, DMD) ausgebildet. Das digitale Mikrospiegelarray 54 besteht aus einer Vielzahl von arrayartig neben- und/oder übereinander angeordneten Mikrospiegeln 56, von denen das Licht des Sekundärlichtbündels 40 reflektiert wird. Jeder Mikrospiegel 56 lässt sich in seiner Ausrichtung zumindest um eine Drehachse, vorzugsweise frei im dreidimensionalen Raum, also um zwei Drehachsen, einzeln verstellen. Die Mikrospiegel 56 besitzen in der Regel jeweils zwei stabile Endlagen, zwischen denen die Mikrospiegel innerhalb einer Sekunde bis zu mehreren Tausend Mal wechseln können. Durch die individuelle Verstellbarkeit der Mikrospiegel 56 ist es möglich, bestimmte Teile des Sekundärlichtbündels 40 gezielt abzulenken und somit die Lichtstärkeverteilung innerhalb des Lichtbündels der Abstrahllichtverteilung 7 nahezu beliebig zu beeinflussen. So ist es möglich, nicht nur zwischen Abblendlicht und Fernlicht umzuschalten, sondern es können darüber hinaus einzelne Bereiche aus dem Sekundärlichtbündel 40 gezielt beeinflusst werden, beispielsweise um die Lichtstärke in diesen Bereichen gezielt zu verringern oder zu erhöhen, so dass die Lichtstärkeverteilung in der resultierenden Abstrahllichtverteilung 7 des Lichtmoduls 10 in beliebigen Bereichen 7a, 7b nahezu beliebig variiert werden kann.In FIG. 4 the deflection device 48 is designed as a digital micromirror array 54 (Digital Mirror Device, DMD). The digital micromirror array 54 consists of a multiplicity of micromirrors 56 arrayed next to and / or above one another, from which the light of the secondary light bundle 40 is reflected. Each micromirror 56 can be individually adjusted in its orientation at least about an axis of rotation, preferably freely in three-dimensional space, ie about two axes of rotation. The micromirrors 56 generally each have two stable ones End positions between which the micromirrors can change up to several thousand times within one second. Due to the individual adjustability of the micromirrors 56, it is possible to specifically deflect certain parts of the secondary light bundle 40 and thus to influence the light intensity distribution within the light bundle of the emission light distribution 7 virtually as desired. Thus, it is possible not only to switch between low beam and high beam, but also individual areas of the secondary light beam 40 can be specifically influenced, for example, to reduce the light intensity in these areas targeted or increase, so that the light intensity distribution in the resulting Abstrahllichtverteilung 7 of the light module 10 in arbitrary areas 7a, 7b can be varied almost arbitrarily.

Ein wichtiger Aspekt der vorliegenden Erfindung besteht darin, dass die mindestens eine LED-Lichtquelle 12 und die mindestens eine Laserlichtquelle 14 eine gemeinsame Konversionseinrichtung 16 beleuchten, von der ein Sekundärlichtbündel 40 auf eine Umlenkeinrichtung 48 abgestrahlt wird. Das Sekundärlichtbündel 40 setzt sich somit zusammen aus Licht 18 der LED-Lichtverteilung 28 und aus Licht 30 der Laserlichtverteilung 36 und trifft mit einer bestimmten Sekundärlichtverteilung 40 auf die Umlenkelemente 50 der Umlenkeinrichtung 48. Die LED-Lichtverteilung 28 erzeugt in der Sekundärlichtverteilung 40 vorzugsweise einen größeren ausgeleuchteten Bereich 7a als der spotförmige Bereich 7b, der von der Laserlichtverteilung 36 beleuchtet wird. Eine derartige Sekundärlichtverteilung 40, die einen hohen Lichtstrom und ein Zentrum mit einer besonders hohen Leuchtdichte aufweist, eignet sich besonders gut zur Beleuchtung von digitalen Mikrospiegelarrays 54. Eine durch ein Mikrospiegelarray 54 realisierte Reflektorfläche ist sehr teuer und muss deswegen möglichst klein gehalten werden. Eine kompakte und starke Lichtquelle, wie bspw. die Laserlichtquelle 14, mit einem hohen Lichtstrom und einer punktuell hohen Leuchtdichte ist daher ideal, da Leuchtdichte und Lichtstrom unmittelbar die Leistung des digitalen Mikrospiegelarrays 54 begrenzen.An important aspect of the present invention is that the at least one LED light source 12 and the at least one laser light source 14 illuminate a common conversion device 16, from which a secondary light beam 40 is emitted onto a deflection device 48. The secondary light bundle 40 is thus composed of light 18 of the LED light distribution 28 and of light 30 of the laser light distribution 36 and strikes the deflecting elements 50 of the deflecting device 48 with a specific secondary light distribution 40. The LED light distribution 28 preferably generates a larger one in the secondary light distribution 40 Illuminated area 7a as the spot-shaped area 7b, which is illuminated by the laser light distribution 36. Such a secondary light distribution 40, which has a high luminous flux and a center with a particularly high luminance, is particularly suitable for illuminating digital micromirror arrays 54. A reflector surface realized by a micromirror array 54 is very large expensive and therefore must be kept as small as possible. A compact and strong light source, such as the laser light source 14, with a high luminous flux and a selectively high luminance is therefore ideal, since luminance and luminous flux directly limit the performance of the digital micromirror array 54.

Das dritte optische Element 58 des Lichtmoduls 10 ist in diesem Beispiel als ein Hohlspiegel 60 ausgebildet. Der Hohlspiegel 60 lenkt das Sekundärlichtbündel 40 auf die Umlenkeinrichtung 48. Ausgehend von der Umlenkeinrichtung 48 in Form des digitalen Mikrospiegelarrays 54 wird das Abstrahllichtbündel 52 mittels einer Projektionsoptik 62, die in diesem Beispiel als eine Projektionslinse 64 ausgebildet ist, als Abstrahllichtverteilung 7 auf einer Fahrbahn vor einem Fahrzeug abgebildet, das mit dem erfindungsgemäßen Lichtmodul 10 ausgestattet ist. Insbesondere ist die Projektionsoptik 62 als ein Kondensor 64 ausgebildet, der eine oder zwei Sammellinsen umfasst.The third optical element 58 of the light module 10 is formed in this example as a concave mirror 60. The concave mirror 60 directs the secondary light bundle 40 onto the deflection device 48. Starting from the deflection device 48 in the form of the digital micromirror array 54, the emission light bundle 52 is projected by means of projection optics 62, which in this example is a projection lens 64, as emission light distribution 7 on a roadway a vehicle that is equipped with the light module 10 according to the invention. In particular, the projection optics 62 is designed as a condenser 64 which comprises one or two converging lenses.

Claims (12)

  1. A light module (10) for a vehicle headlamp, including:
    - at least one LED light source (12) for emitting an LED beam of light (18);
    - at least one laser light source (14) for emitting a laser beam of light (30);
    - a conversion device (16), which is located relative to the light sources (12, 14) such that the LED beam of light (18), with an LED light distribution (28), and the laser beam of light (30), with a laser light distribution (36), strike the conversion device (16), and which is embodied such that the beam of lights (18, 30) striking the conversion device (16) cause the projection of a secondary beam of light (40) by the conversion device (16),
    characterized in that the conversion device (16) is embodied separately from the at least one LED light source (12) and is located spatially separately from it; and that the light module (10), in a beam path of the secondary beam of light (40), includes at least one deflector device (48) with a plurality of deflector elements (50) that are triggerable independently of one another and are movable, for the purposeful reflection of at least a portion of the secondary beam of light (40) and for generating a projected light distribution (7) of the light module (10).
  2. The light module (10) of claim 1, characterized in that the LED light distribution (28) illuminates a surface (24) on a first side (26) of the conversion device (16) as homogeneously as possible.
  3. The light module (10) of claim 2, characterized in that a first optical element (20) for generating a homogeneous planar illumination of the entire surface (24) of the first side (26) of the conversion device (16) is located in a beam path of the LED beam of light (18) between the at least one LED light source (12) and the conversion device (16).
  4. The light module (10) of one of claims 1 through 3, characterized in that the laser light distribution (36) illuminates a light spot (38) on a surface (24) of the first side (26) of the conversion device (16).
  5. The light module (10) of claim 4, characterized in that a second optical element (32) for generating the light spot (38) of the laser light distribution (36) is located on the surface (24) of the conversion device (16), in a beam path of the laser beam of light (30) between the at least one laser light source (14) and the conversion device (16) .
  6. The light module (10) of one of claims 2 through 5, characterized in that a second side (42), opposite the first side (26), of the conversion device (16) and/or side faces (46) of the conversion device (16) that are located between the first and second sides (26, 42), include light-reflecting surfaces (44).
  7. The light module (10) of one of claims 1 through 6, characterized in that a third optical element (58) is located in the beam path of the secondary beam of light (40) and embodied for steering at least a portion of the secondary beam of light (40) onto the deflector device (48) .
  8. The light module (10) of one of claims 1 through 7, characterized in that the conversion device (16) includes a material having wavelength-converting properties, in particular phosphorous or some other fluorescent material.
  9. The light module (10) of one of claims 1 through 8, characterized in that the deflector device (48) includes a digital micromirror array (54), hereinafter called digital mirror device or DMD, having a plurality of micromirrors (56) located in arraylike fashion next to and/or one above the other, which are triggerable individually or in groups.
  10. The light module (10) of one of claims 1 through 9, characterized in that the light module (10) has a projection lens (62), in order to optically project a projection beam of light (52), generated by the deflector device (48), as a projected light distribution (7) of the light module (10) on a road surface ahead of a vehicle in which the light module (10) is installed.
  11. The light module (10) of one of claims 1 through 10, characterized in that the laser beam of light (30) in the projected light distribution (7) generates a concentrated region (7b) with a higher illuminating intensity than another region (7a) of the projected light distribution (7) generated exclusively by the LED beam of light (18).
  12. A motor vehicle headlamp (70) including a housing (72) having a light exit opening (76), closed by a transparent cover plate (78), and at least one light module (10), located in the housing (72), for generating a projected light distribution (7) which, through the cover plate (78), reaches a road surface ahead of a motor vehicle equipped with the headlamp (70), characterized in that the light module (10) is embodied in accordance with one of claims 1 through 11.
EP16198063.6A 2015-11-11 2016-11-10 Light module for a vehicle headlamp and motor vehicle headlamp with such a light module Active EP3168527B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015222188.1A DE102015222188B3 (en) 2015-11-11 2015-11-11 Light module for a vehicle headlight and motor vehicle headlight with such a light module

Publications (2)

Publication Number Publication Date
EP3168527A1 EP3168527A1 (en) 2017-05-17
EP3168527B1 true EP3168527B1 (en) 2018-05-02

Family

ID=57209079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16198063.6A Active EP3168527B1 (en) 2015-11-11 2016-11-10 Light module for a vehicle headlamp and motor vehicle headlamp with such a light module

Country Status (2)

Country Link
EP (1) EP3168527B1 (en)
DE (1) DE102015222188B3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020257091A1 (en) * 2019-06-17 2020-12-24 Optonomous Technologies, Inc. Hybrid led/laser light source for smart headlight applications

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201606A1 (en) 2016-02-03 2017-08-03 Osram Gmbh LIGHTING DEVICE FOR THE EMISSION OF LIGHTING LIGHT
DE102016116714A1 (en) 2016-09-07 2018-03-08 HELLA GmbH & Co. KGaA Headlight, in particular headlight of a motor vehicle
JP2018092761A (en) 2016-12-01 2018-06-14 スタンレー電気株式会社 Vehicular lighting fixture
FR3061538B1 (en) * 2017-01-02 2019-05-24 Valeo Vision LIGHTING DEVICE FOR A VEHICLE COMBINING TWO LIGHT SOURCES
DE102017111327A1 (en) 2017-05-24 2018-11-29 HELLA GmbH & Co. KGaA Communication device for a vehicle, in particular for an autonomous or semi-autonomous vehicle
DE102017210526A1 (en) * 2017-06-22 2018-12-27 Osram Gmbh Lighting unit for emitting illumination light
CN108468955A (en) * 2018-03-30 2018-08-31 嘉兴米石科技有限公司 A kind of lighting unit using mixing light source
EP3824348A4 (en) * 2018-07-18 2022-04-20 Optonomous Technologies, Inc. Illumination system with high intensity projection mechanism and method of operation thereof
WO2020024595A1 (en) * 2018-08-01 2020-02-06 深圳市绎立锐光科技开发有限公司 Light source device and headlight system
FR3086033B1 (en) * 2018-09-19 2021-05-28 Valeo Vision LIGHT MODULE FOR MOTOR VEHICLES
DE102019108233A1 (en) * 2019-03-29 2020-10-01 Automotive Lighting Reutlingen Gmbh Light module for a motor vehicle headlight with n partial light modules arranged in a row next to one another
CN115638382B (en) * 2022-04-02 2023-12-08 华为技术有限公司 Optical machine module, car lamp module and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169050A (en) * 2011-02-10 2012-09-06 Stanley Electric Co Ltd Lamp for vehicle
DE102012211915A1 (en) * 2012-07-09 2014-01-09 Osram Gmbh LIGHTING DEVICE
JP6132684B2 (en) * 2013-07-10 2017-05-24 株式会社小糸製作所 Vehicle lighting
JP6271216B2 (en) * 2013-10-29 2018-01-31 シャープ株式会社 Light emitting unit and lighting device
US9658447B2 (en) * 2013-12-09 2017-05-23 Texas Instruments Incorporated Multiple illumination sources for DMD lighting apparatus and methods
JP6328501B2 (en) * 2014-06-27 2018-05-23 シャープ株式会社 Lighting device, vehicle headlamp, and vehicle headlamp control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020257091A1 (en) * 2019-06-17 2020-12-24 Optonomous Technologies, Inc. Hybrid led/laser light source for smart headlight applications

Also Published As

Publication number Publication date
DE102015222188B3 (en) 2016-11-17
EP3168527A1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
EP3168527B1 (en) Light module for a vehicle headlamp and motor vehicle headlamp with such a light module
EP2357398B1 (en) Light module for a lighting device of a motor vehicle
EP2507545B2 (en) Light unit for vehicle
EP2063170B1 (en) Illumination device for a vehicle
DE102007017756B4 (en) lighting device
WO2011154470A1 (en) Attachment optical unit composed of transparent material for concentrating light, lens array comprising at least one such attachment optical unit and light module comprising such a lens array
DE102011078653B4 (en) Attachment optics for the bundling of emitted light of at least one semiconductor light source
DE102013226650A1 (en) Generating a Lichtabstrahlmusters by illuminating a phosphor surface
DE202011103703U1 (en) Light module of a motor vehicle for generating a sports distribution of a high beam light distribution and motor vehicle headlights with such a module
WO2016062520A1 (en) Light module of an illumination device and illumination device comprising such a light module
DE102012224345A1 (en) Vehicle lighting device
AT517408A1 (en) Headlights for vehicles, in particular for single-track motor vehicles
EP2789901A2 (en) Light module of a motor vehicle lighting device
WO2013164276A1 (en) Vehicle lighting device
WO2017097504A1 (en) Light generation with light emitting diode and laser
DE102009022848B4 (en) Headlamp assembly and headlamp system for a motor vehicle
AT518094B1 (en) Headlights for vehicles
DE102014213368A1 (en) Light module for lighting device
DE102013226645A1 (en) Generating a Lichtabstrahlmusters by illuminating a phosphor surface
DE102016216616A1 (en) Lighting system and vehicle headlight with a lighting system
DE102017101001A1 (en) ARRANGEMENT, HEADLIGHTS AND GROUP OF HEADLIGHTS
DE102013016424B4 (en) Lighting device for an automotive exterior lighting
DE102016116714A1 (en) Headlight, in particular headlight of a motor vehicle
DE102016212069B4 (en) LIGHTING DEVICE WITH A LIGHT SOURCE FOR EMISSION OF LIGHTING LIGHT
EP2434205A2 (en) Modular infrared lamp for an infrared vision device of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20170905BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20171012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20171110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016000968

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016000968

Country of ref document: DE

RIC2 Information provided on ipc code assigned after grant

Ipc: F21S 8/10 20060101AFI20170905BHEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161110

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000968

Country of ref document: DE

Owner name: MERCEDES-BENZ GROUP AG, DE

Free format text: FORMER OWNER: AUTOMOTIVE LIGHTING REUTLINGEN GMBH, 72762 REUTLINGEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016000968

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000968

Country of ref document: DE

Owner name: MARELLI AUTOMOTIVE LIGHTING REUTLINGEN (GERMAN, DE

Free format text: FORMER OWNER: AUTOMOTIVE LIGHTING REUTLINGEN GMBH, 72762 REUTLINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000968

Country of ref document: DE

Owner name: DAIMLER AG, DE

Free format text: FORMER OWNER: AUTOMOTIVE LIGHTING REUTLINGEN GMBH, 72762 REUTLINGEN, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20211022

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000968

Country of ref document: DE

Owner name: MERCEDES-BENZ GROUP AG, DE

Free format text: FORMER OWNERS: DAIMLER AG, STUTTGART, DE; MARELLI AUTOMOTIVE LIGHTING REUTLINGEN (GERMANY) GMBH, 72762 REUTLINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016000968

Country of ref document: DE

Owner name: MARELLI AUTOMOTIVE LIGHTING REUTLINGEN (GERMAN, DE

Free format text: FORMER OWNERS: DAIMLER AG, STUTTGART, DE; MARELLI AUTOMOTIVE LIGHTING REUTLINGEN (GERMANY) GMBH, 72762 REUTLINGEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 995650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 8

Ref country code: DE

Payment date: 20231019

Year of fee payment: 8