EP3161402B1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP3161402B1
EP3161402B1 EP15727672.6A EP15727672A EP3161402B1 EP 3161402 B1 EP3161402 B1 EP 3161402B1 EP 15727672 A EP15727672 A EP 15727672A EP 3161402 B1 EP3161402 B1 EP 3161402B1
Authority
EP
European Patent Office
Prior art keywords
coolant
flow path
tubes
housing
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15727672.6A
Other languages
German (de)
French (fr)
Other versions
EP3161402A1 (en
Inventor
Ulrich Maucher
David MERCADER
Jens Holdenried
Arthur Strehlau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3161402A1 publication Critical patent/EP3161402A1/en
Application granted granted Critical
Publication of EP3161402B1 publication Critical patent/EP3161402B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/10Safety or protection arrangements; Arrangements for preventing malfunction for preventing overheating, e.g. heat shields

Definitions

  • the invention relates to a heat exchanger for an exhaust system of a motor vehicle, with a housing and with a plurality of tubes through which an exhaust gas can flow and around which a coolant can flow, the tubes being arranged within the housing and the housing having a coolant inlet and a coolant outlet
  • the exhaust gas and the coolant can flow in countercurrent to one another through the heat exchanger, the internal volume of the housing being divided into a first flow path and a second flow path, and the tubes being arranged within the second flow path, the first flow path being a bypass to the second Forms flow path.
  • Heat exchangers are used in motor vehicles to cool exhaust gas coming from the internal combustion engine. For this purpose, a heat transfer is generated between the exhaust gas flowing in an exhaust gas line and a coolant in order to transfer heat from the exhaust gas to the coolant.
  • the cooled exhaust gas can be returned to the internal combustion engine as part of a so-called exhaust gas recirculation.
  • By adding chilled Exhaust gas to the fresh air, which is fed into the combustion chamber for combustion, can reduce the pollutant emissions of the internal combustion engine.
  • a design known in the prior art is a tube bundle heat exchanger.
  • the exhaust gas is guided in this through a plurality of tubes which are arranged within a housing and around which a coolant flows.
  • the devices which are known from the prior art can be flowed through in such a way that the exhaust gas and the coolant flow essentially in the same direction (direct current) or in such a way that the exhaust gas and the coolant flow in opposite directions (counterflow).
  • a heat exchanger for an exhaust gas line is known, which can be used both for a flow in cocurrent and for a flow in counterflow.
  • a disadvantage of the devices in the prior art is in particular that overheating can occur on the inflow side of the exhaust gas into the heat exchanger, which leads to boiling of the coolant within the heat exchanger. Boiling the coolant can cause damage to the coolant circuit and strong boiling lowers the overall thermodynamic efficiency.
  • a heat exchanger which provides two fluid inlets for the coolant and one fluid outlet for the coolant.
  • the coolant distribution on the inflow side of the exhaust gas can be improved by the additional fluid inlet, as a result of which the boiling of the coolant can be counteracted.
  • a disadvantage of this heat exchanger is that additional fluid connections have to be provided, as a result of which the structure of the heat exchanger becomes more complex and a larger installation space is required.
  • An embodiment of the invention relates to a heat exchanger for an exhaust system of a motor vehicle with a housing and with a plurality of tubes through which an exhaust gas can flow and around which a coolant can flow, the tubes being arranged within the housing and the housing having a coolant inlet and a Has coolant outlet, the exhaust gas and the coolant being able to flow in countercurrent to one another through the heat exchanger, the internal volume of the housing being divided into a first flow path and a second flow path and the tubes being arranged within the second flow path, the first flow path being a bypass for forms the second flow path, the cross-sectional area of the first flow path between 15% and 65%, preferably between 30% and 50%, of the total cross-sectional area of the housing through which the coolant flows, the total of the coolant du Flowed cross-sectional area of the housing is formed by the cross-sectional area of the first flow path and the cross-sectional area of the second flow path minus the cross-sectional area occupied by the tubes.
  • a bypass for the coolant is particularly advantageous in order to be able to direct the coolant within the housing to the side on which the exhaust gas enters the pipes.
  • the exhaust gas has the highest temperature level on the inflow side of the exhaust gas, as a result of which the coolant is strongly heated in this area.
  • the boiling point of the coolant so-called film boiling, can occur in this area, which can damage the coolant circuit and the overall cooling capacity is reduced.
  • the bypass advantageously leads coolant directly from the coolant inlet to the inflow side of the exhaust gas without first absorbing a significant amount of heat.
  • the coolant and the exhaust gas preferably flow in countercurrent to one another, thereby maximizing the possible heat transfer between the exhaust gas and the coolant. Accordingly, the coolant flowing through the second flow path already flows into heat transfer with the exhaust gas by flowing around the tubes before it arrives at the inflow side of the exhaust gas. The heat absorption capacity is therefore less than with the coolant, which flows through the bypass or the first flow path directly to the inflow side of the exhaust gas.
  • bypass and first flow path are used synonymously.
  • the first cross-sectional area is the cross-sectional area of the bypass (A B ) or of the first flow path, while the second cross-sectional area is given by the total cross-sectional area (A T ) through which the coolant flows, within which the cross-sectional area of the first flow path and that of the second flow path count minus the cross-sectional area occupied by the pipes.
  • the ratio of the cross-sectional area A B to the cross-sectional area A T is preferably between 15% and 65%, particularly preferably between 30% and 50%. It has been found that different heat exchangers which have a ratio of the cross-sectional areas in this area have a particularly low coolant requirement in order to achieve a predetermined cooling capacity. Furthermore, the pressure loss of the coolant within the housing is particularly low in such a size range of the cross-sectional areas.
  • a heat exchanger with the features of claim 1 is therefore particularly suitable in order to generate a maximum cooling capacity with minimal pressure loss. Heat exchangers with these features thus have a particularly favorable cooling characteristic.
  • the tubes have a rectangular cross section, the width of the cross section in each case between 13 mm and 17 mm and the height between 4 mm and 5 mm.
  • a rectangular cross section of the tubes is particularly advantageous in connection with a likewise rectangular housing cross section.
  • the tubes can be easily spaced from one another and from the housing, so that suitable gaps are created between the tubes and the housing in order to ensure a sufficient flow of the coolant.
  • the tubes particularly preferably have a rectangular cross section, which has a width between 13 mm and 17 mm and a height between 4 mm and 5 mm. Pipes of this dimension are advantageous because they have a very good ratio of the cross-section that can be flowed through to the outer surface, which is particularly advantageous for applications in an exhaust system of a motor vehicle in order to achieve maximum cooling performance.
  • the exhaust gas temperatures of several hundred degrees Celsius that are usually to be expected, the usually prevailing coolant temperature and the exhaust gas temperature to be reached after cooling are decisive variables for the design of the heat exchanger.
  • the tubes are arranged at a distance from one another such that the central axes of the tubes are spaced apart from one another in width by 14.5 mm to 18.5 mm and are spaced apart from one another in height by 5.5 mm.
  • An arrangement with a division in the width of 14.5 mm to 18.5 mm and with a division in the height of 5.5 mm to 6.5 mm is particularly advantageous in order to ensure adequate gaps between given tube sizes, as described above to reach the neighboring tubes.
  • the gap size must be large enough to avoid congestion or the generation of excessive pressure loss.
  • the first flow path is thermally insulated from the second flow path and / or the housing and / or the pipes and / or the coolant flowing around the pipes.
  • Thermal insulation is particularly advantageous since it leads to the coolant flowing through the bypass or the first flow path being thermally decoupled from the coolant in the second flow path and in particular from the exhaust gas in the pipes. Therefore, the coolant after flowing out of the bypass into the second flow path in the region of the exhaust gas inflow side has a particularly large heat absorption capacity, as a result of which a particularly large cooling effect can be generated and the boiling of the coolant can be effectively prevented.
  • coolant inlet and the inflow side of the exhaust gas are arranged at opposite end regions of the housing in the main direction of extension of the pipes.
  • the arrangement of the coolant inlet and the inflow side of the exhaust gas at opposite end regions allows the heat exchanger to flow through in countercurrent. This is particularly advantageous in order to be able to achieve the greatest possible heat transfer within the heat exchanger.
  • the tubes have turbulence-generating means on their inner surface and / or on their outer surface.
  • Turbulence-generating means such as winglets or ribs, are particularly advantageous in order to produce a swirling of the exhaust gas and / or the coolant.
  • a greater heat transfer can be achieved in turbulent flows than in laminar flows.
  • congestion of the coolant and the resulting high temperature areas can be reduced or avoided entirely.
  • Another preferred exemplary embodiment is characterized in that the inflow direction and / or the outflow direction of the coolant each form a normal to the main flow direction of the tubes.
  • Such an arrangement of the coolant inlet and the coolant outlet is particularly preferred in order to obtain the most compact possible design. Furthermore, it is advantageous since, in particular, an advantageous distribution of the coolant over the entire cross section of the housing can be achieved by an inflow direction of the coolant, which is oriented as a normal to the main flow direction of the tubes.
  • the direction of expansion of the coolant here is a direct extension of the inflow direction, as a result of which the coolant does not have to undergo any or only insignificant deflections in order to be completely distributed over the cross section of the housing.
  • the first flow path is formed on one of the inner surfaces of the housing and is separated from the second flow path by a wall.
  • An arrangement of the first flow path or the bypass on one of the inner surfaces of the housing is advantageous in order to carry out the bypass spatially separate from the pipes running through the housing. This serves to simplify the flow guidance and further reduces the heat transfer from the pipes or the exhaust gas flowing therein to the coolant in the bypass.
  • the wall has one or more openings, each of which forms a coolant transfer between the first flow path and the second flow path.
  • the coolant can preferably pass from the second flow path into the first flow path or from the first flow path into the second flow path through openings in the wall delimiting the bypass. In this way, the coolant can be easily exchanged between the two flow paths.
  • the openings are preferably arranged in the region of the coolant inlet and the coolant outlet.
  • the channel has a shorter extension along the main direction of extension of the tubes than the interior of the housing, the open end regions of the channel opening freely into the interior volume of the housing.
  • a shorter extension of the channel compared to the interior of the housing can ensure that the open end regions of the channel do not abut the walls delimiting the interior volume of the housing, which could make it difficult to transfer fluid from the second flow path into the bypass.
  • the channel can also have openings which allow fluid to pass between the flow paths.
  • the coolant can flow from the coolant inlet through the first flow path into the second flow path and / or if the coolant can flow from the first flow path through the second flow path to the coolant outlet.
  • the coolant can either flow directly from the coolant inlet into the second flow path and from there through the opening into the bypass or directly from the coolant inlet into the bypass and through the opening into the second flow path.
  • the coolant outlet is preferably arranged on the side of the housing opposite the bypass in order to ensure that the coolant in each case flows out of the bypass through the opening into the second flow path before it flows out of the coolant outlet. In this way, the additional cooling of the exhaust gas inflow side, which is arranged on the end region of the heat exchanger which also has the coolant outlet, is ensured.
  • the tubes are received at the end in tube plates which limit the area of the housing through which the coolant can flow in a direction along the main direction of flow of the tubes.
  • Tube plates are advantageous in order to form a receptacle for the tubes and also to limit the area in the housing through which the coolant flows. Diffusers or other elements can be connected to the tube sheets, which are preferably connected to the housing in a fluid-tight manner, which in particular promote the supply and discharge of the exhaust gas into the tubes and out of the tubes.
  • FIG. 1 to 4 each show two views of a heat exchanger.
  • a view is shown in the left part of the figures, in which the tubes are aligned as surface normal to the plane of the drawing. The viewer's gaze is directed along the main direction of extension of the pipes.
  • a longitudinal section through the heat exchanger is shown in the right part of the figures.
  • the Figure 1 shows a heat exchanger 1, which has a housing 2.
  • a plurality of tubes 3 run through the housing 2.
  • the tubes 3 project beyond the housing 2 on the left and right and are preferably received at the end by tube plates which close off the housing 2 to the left and right.
  • Exhaust gas can flow through the tubes 3.
  • Reference number 4 denotes the inflow side from which exhaust gas can flow into the pipes.
  • the outflow side is identified by the reference number 7.
  • additional diffusers can be arranged on the inflow side and the outflow side, which supports the inflow of the exhaust gas into the tubes and the outflow of the exhaust gas out of the tubes.
  • the housing 2 has a coolant inlet 5 on the wall on the right. This can be formed, for example, by an opening in the housing wall or by a connection piece.
  • a coolant can flow into the housing 2 through the coolant inlet 5.
  • a coolant outlet 6 is arranged, through which the coolant can flow out of the housing 2.
  • the coolant inlet 5 flows through the housing 2 from the right side to the left side to the coolant outlet 6 with coolant.
  • the coolant flows around the tubes 3 while the exhaust gas flows through them.
  • the flow path for the coolant inside the housing 2 is identified by reference number 8.
  • the tubes 3 are arranged one above the other in three rows of three, wherein there are gaps between the tubes 3 and the inner walls of the housing 2, through which the coolant can flow.
  • the number and arrangement of the pipes is exemplary and can be varied as desired in alternative designs.
  • FIG. 2 shows a heat exchanger 1, as already in Figure 1 was shown.
  • the coolant inlet 9 is not arranged on the upper outer wall of the housing 2 but, like the coolant outlet 6, also on the lower outer wall. This is also in the left part of the Figure 2 to recognize.
  • FIG. 3 shows a view of a heat exchanger 20. Similar to the heat exchanger 1 of FIG Figure 1 a coolant inlet 5 is arranged on the right end region on the upper outer wall of the housing 2 and a coolant outlet 6 is arranged on the lower outer wall on the left end region.
  • the housing 2 has a first flow path 22 on the inside and a second flow path 21.
  • the tubes 3 are arranged in the second flow path 21.
  • the first flow path 22 can, as in FIGS Figures 3 and 4 shown, be formed by a channel 23 which is arranged above the tubes 3 within the housing 2 and creates a spatial separation of the first flow path 22 from the second flow path 21.
  • the first flow path can also be separated from the second flow path, for example, by a wall that runs between two opposite inner surfaces of the housing.
  • a free space 24 is formed between the channel 23 and the housing 2 at the right end region of the housing 2 and a free space 25 is formed at the left end region. Coolants can flow between the first flow path 22 and the second flow path 21 through these free spaces 24, 25, which are formed by spacing the channel end from the housing inner wall.
  • the channel which delimits the first flow path, can also extend over the entire length of the housing.
  • the channel then advantageously has openings in one of its walls, which allow the fluid to flow over between the flow paths. Furthermore, fluid communication of the channel with the coolant inlet and the coolant outlet can also be generated through openings in the walls.
  • Figure 3 shows that the coolant flows along the coolant inlet 5 into the housing 2 and there flows vertically down into the second flow path 21 and also flows into the first flow path 22.
  • the coolant in the second flow path 21 flows around the pipes 3, whereby a heat transfer between the exhaust gas flowing in the pipes 3 and the coolant is generated.
  • the coolant in the first flow path 22, on the other hand, flows essentially thermally decoupled to the left within the first flow path 22, which functions as a bypass, and exits the channel 23 at the end there.
  • the coolant from the first flow path 22 and the second flow path 21 finally flows downward in a direction transverse to the main flow direction of the tubes 3 and out of the housing 2 through the coolant outlet 6.
  • the coolant in the first flow path 22 is thus passed directly to the inflow side 4 of the pipes 3 and absorbs the heat of the exhaust gas there. Since the coolant flowing through the first flow path 22 has a higher heat absorption capacity than the coolant which has already flowed along the tubes 3 through the second flow path 21, particularly good cooling can be achieved on the inflow side 4 of the exhaust gas.
  • the rectangular cross section of the channel 23, which forms the bypass for the coolant, can be seen.
  • the channel 23 is arranged above the tubes 3 at a distance from the tubes 3 in the housing 2. Furthermore, the division of the housing 2 into the first flow path 22 and the second flow path 21 can be seen.
  • the cross-sectional area of the channel 23 or the first flow path 22 is denoted by A B.
  • the entire inner cross-sectional area of the housing 2, through which the coolant flows, is referred to as AT .
  • the cross-sectional area AT is formed by the cross-sectional area of the first flow path 22 and the second flow path 21 minus the cross-sectional area of the tube 3.
  • the ratio of A B to A T is preferably between 15% and 65%. It is particularly preferably between 30% and 50%. The advantages of such a relationship are shown in the following Figure 5 explained in more detail.
  • FIG 4 shows an alternative embodiment of the heat exchanger 20, wherein the coolant inlet 9 and the coolant outlet 6 are arranged on the lower outer wall of the housing 2.
  • the heat exchanger 20 the Figure 4 is analogous to the Figure 2 executed, wherein a channel 23 is also arranged as a bypass for the coolant in the interior of the housing 2.
  • the different arrangement of the coolant inlet 9 also influences the flow through the flow paths 22, 21.
  • the coolant flows through the coolant inlet 9 from below into the second flow path 21 and there on the one hand to the left and on the other hand further upwards and through the free space 24 into the first flow path 22.
  • the coolant flows in the region of the inflow side 4 through the Free space 25 to the tubes 3, whereby a strong cooling of the tubes 3 can be generated.
  • the coolant finally flows out of the housing 2 via the coolant outlet 6.
  • the tubes 3 and the channel 23 have a rectangular cross section. This is particularly advantageous in conjunction with the likewise rectangular cross section of the housing 2 in order to achieve a uniform arrangement of the tubes 3 in the interior of the housing 2.
  • the cross-sectional shapes of the tubes, the channel and the housing can also differ.
  • the in the Figures 3 and 4 The embodiment shown is exemplary and has no restrictive character, in particular with regard to the geometry of the individual elements, the choice of material and the arrangement of the elements relative to one another.
  • the Figure 5 shows a diagram 30.
  • the ratio between the cross-sectional areas A B and A T is plotted in percent on the X axis 31.
  • the X axis shows ratios of 0% at the intersection of axes 31, 32 and a maximum of 90%.
  • the Y axis 32 shows the percentage reduction in the coolant requirement to reach a defined exhaust gas temperature.
  • the Y axis 32 shows values of 0% coolant reduction at the intersection of the axes 31, 32 up to a maximum of 35% reduction. In particular, no absolute values are plotted on the Y axis 32, but rather relative values for the individual heat exchangers 33 to 36.
  • Diagram 30 shows measured values for four different heat exchangers 33, 34, 35 and 36 for different ratios from A B to A T.
  • the heat exchangers 33 to 36 are each flowed through in countercurrent.
  • the heat exchangers 33 to 36 can each differ in further geometrical designs. For example, the number of tubes, the cross-section of the tubes, the design of the inner and outer walls of the tubes or the spacing of the tubes from one another can vary.
  • the percentage reduction in the coolant requirement is particularly high.
  • the ratio of 30% is marked with the dashed line with the reference symbol 52 and the ratio of 50% with the dashed line with the reference symbol 53.
  • the marking of the ratios 15%, 30%, 50% and 65% applies with the same reference symbol 50 , 52, 53 and 51 also for the following Figure 6 ,
  • the percentage reduction in the coolant requirement for the individual heat exchangers 33 to 36 follows, with increasing ratio between A B and A T, a dome-shaped curve that curves upwards in diagram 30. With a low ratio of A B to A T below 15%, the coolant reduction is special low and increases towards a ratio between 30% and 50%. The coolant reduction finally decreases again above 50%.
  • Figure 6 shows a diagram 40, wherein the ratio of A to B T A in percent is plotted on the X-axis 41 and the Y-axis 42 of the pressure loss in percent.
  • Diagram 40 also shows measured values for four heat exchangers 33, 34, 35 and 36.
  • the X axis 41 is analogous to the X axis 31 of the Figure 5 a value range of ratios of 0% at the intersection of the axes 41, 42 and a maximum of 90% at the right end of the X-axis 41.
  • the Y-axis 42 shows the pressure loss occurring at the heat exchanger 33 to 36 as a percentage.
  • the Y axis 42 shows values from 0% pressure loss at the intersection of the axes 41, 42 up to a maximum of 120% pressure loss at the upper end region of the Y-axis 42.
  • the Y-axis 42 does not show any absolute values, but relative values of the individual heat exchangers as a percentage 33 to 36 to each other.
  • the pressure loss in a range in which the ratio of A B to AT is between 15% and 65% is lower than above 65% and below 15%.
  • the range in which the ratio of A B to A T is between 30% and 50% has the lowest values for the pressure loss.
  • Heat exchangers which have a ratio of the cross-sectional areas of 15% to 65%, and preferably 30% to 50%, are therefore particularly well suited to achieve a high thermodynamic efficiency with the lowest possible coolant requirement and the lowest possible pressure loss. Heat exchangers of this type are also suitable for generating a high cooling capacity.
  • the ratio of the cross-sectional areas A B to A T determines in particular the dimension of the bypass relative to the entire area through which the coolant flows.
  • a ratio of A B to A T between 30% and 50% is preferably to be achieved in order to achieve the highest possible thermodynamic efficiency with the lowest possible coolant requirement and the lowest possible pressure loss.
  • a low pressure loss is advantageous since the pump power required to deliver the coolant can be lower, which means that the corresponding pump can preferably be dimensioned smaller.

Description

Technisches GebietTechnical field

Die Erfindung betrifft einen Wärmeübertrager für einen Abgasstrang eines Kraftfahrzeugs, mit einem Gehäuse und mit einer Mehrzahl von Rohren, welche von einem Abgas durchströmbar sind und von einem Kühlmittel umströmbar sind, wobei die Rohre innerhalb des Gehäuses angeordnet sind und das Gehäuse einen Kühlmitteleinlass und einen Kühlmittelauslass aufweist, wobei das Abgas und das Kühlmittel im Gegenstrom zueinander durch den Wärmeübertrager strömbar sind, wobei das Innenvolumen des Gehäuses in einen ersten Strömungsweg und einen zweiten Strömungsweg unterteilt ist und die Rohre innerhalb des zweiten Strömungsweges angeordnet sind, wobei der erste Strömungsweg einen Bypass zum zweiten Strömungsweg ausbildet.The invention relates to a heat exchanger for an exhaust system of a motor vehicle, with a housing and with a plurality of tubes through which an exhaust gas can flow and around which a coolant can flow, the tubes being arranged within the housing and the housing having a coolant inlet and a coolant outlet The exhaust gas and the coolant can flow in countercurrent to one another through the heat exchanger, the internal volume of the housing being divided into a first flow path and a second flow path, and the tubes being arranged within the second flow path, the first flow path being a bypass to the second Forms flow path.

Stand der TechnikState of the art

In Kraftfahrzeugen werden Wärmeübertrager eingesetzt, um Abgas, welches vom Verbrennungsmotor kommt, zu kühlen. Hierzu wird zwischen dem in einem Abgasstrang strömenden Abgas und einem Kühlmittel ein Wärmeübertrag erzeugt, um Wärme von dem Abgas auf das Kühlmittel zu übertragen.Heat exchangers are used in motor vehicles to cool exhaust gas coming from the internal combustion engine. For this purpose, a heat transfer is generated between the exhaust gas flowing in an exhaust gas line and a coolant in order to transfer heat from the exhaust gas to the coolant.

Das abgekühlte Abgas kann dem Verbrennungsmotor im Rahmen einer sogenannten Abgasrückführung wieder zugeführt werden. Durch die Beimengung von gekühltem Abgas zur Frischluft, welche zur Verbrennung in den Brennraum geführt wird, kann die Schadstoffemission des Verbrennungsmotors verringert werden.The cooled exhaust gas can be returned to the internal combustion engine as part of a so-called exhaust gas recirculation. By adding chilled Exhaust gas to the fresh air, which is fed into the combustion chamber for combustion, can reduce the pollutant emissions of the internal combustion engine.

Eine im Stand der Technik bekannte Bauform ist ein Rohrbündel-Wärmeübertrager. Das Abgas wird in diesem durch eine Mehrzahl von Rohren geführt, welche innerhalb eines Gehäuses angeordnet sind und mit einem Kühlmittel umströmt werden.A design known in the prior art is a tube bundle heat exchanger. The exhaust gas is guided in this through a plurality of tubes which are arranged within a housing and around which a coolant flows.

Aus der DE 10 2008 038 629 A1 ist ein Wärmeübertrager gemäß dem Obergriff von Anspruch 1 bekannt.From the DE 10 2008 038 629 A1 a heat exchanger according to the preamble of claim 1 is known.

Die Vorrichtungen, welche aus dem Stand der Technik bekannt sind, können derart durchströmt werden, dass das Abgas und das Kühlmittel im Wesentlichen in gleiche Richtungen (Gleichstrom) strömen oder derart, dass das Abgas und das Kühlmittel in entgegengesetzte Richtungen (Gegenstrom) strömen. Aus der DE 10 2006 005 246 A1 ist ein Wärmeübertrager für einen Abgasstrang bekannt, welcher sowohl für eine Durchströmung im Gleichstrom als auch für eine Durchströmung im Gegenstrom verwendet werden kann.The devices which are known from the prior art can be flowed through in such a way that the exhaust gas and the coolant flow essentially in the same direction (direct current) or in such a way that the exhaust gas and the coolant flow in opposite directions (counterflow). From the DE 10 2006 005 246 A1 a heat exchanger for an exhaust gas line is known, which can be used both for a flow in cocurrent and for a flow in counterflow.

Nachteilig an den Vorrichtungen im Stand der Technik ist insbesondere, dass es an der Einströmseite des Abgases in den Wärmeübertrager zu Überhitzungen kommen kann, welche zu einem Sieden des Kühlmittels innerhalb des Wärmeübertragers führen. Ein Sieden des Kühlmittels kann Schäden am Kühlmittelkreislauf verursachen und starkes Sieden senkt insgesamt den thermodynamischen Wirkungsgrad.A disadvantage of the devices in the prior art is in particular that overheating can occur on the inflow side of the exhaust gas into the heat exchanger, which leads to boiling of the coolant within the heat exchanger. Boiling the coolant can cause damage to the coolant circuit and strong boiling lowers the overall thermodynamic efficiency.

Aus der DE 10 2009 034 723 A1 ist ein Wärmeübertrager bekannt, welcher jeweils zwei Fluideinlässe für das Kühlmittel und einen Fluidauslass für das Kühlmittel vorsieht. Durch den zusätzlichen Fluideinlass kann die Kühlmittelverteilung an der Einströmseite des Abgases verbessert werden, wodurch dem Sieden des Kühlmittels entgegengewirkt werden kann.From the DE 10 2009 034 723 A1 a heat exchanger is known which provides two fluid inlets for the coolant and one fluid outlet for the coolant. The coolant distribution on the inflow side of the exhaust gas can be improved by the additional fluid inlet, as a result of which the boiling of the coolant can be counteracted.

Nachteilig an diesem Wärmeübertrager ist, dass zusätzliche Fluidanschlüsse vorgesehen werden müssen, wodurch der Aufbau des Wärmeübertragers komplexer wird und ein größerer Bauraum benötigt wird.A disadvantage of this heat exchanger is that additional fluid connections have to be provided, as a result of which the structure of the heat exchanger becomes more complex and a larger installation space is required.

Darstellung der Erfindung, Aufgabe, Lösung, VorteilePresentation of the invention, task, solution, advantages

Daher ist es die Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager zu schaffen, der das Sieden des Kühlmittels an der Einströmseite des Abgases wirkungsvoll reduziert oder gänzlich vermeidet.It is therefore the object of the present invention to provide a heat exchanger which effectively reduces or completely avoids the boiling of the coolant on the inflow side of the exhaust gas.

Die Aufgabe hinsichtlich des Wärmeübertragers wird durch einen Wärmeübertrager mit den Merkmalen von Anspruch 1 gelöst.The object with regard to the heat exchanger is achieved by a heat exchanger with the features of claim 1.

Ein Ausführungsbeispiel der Erfindung betrifft einen Wärmeübertrager für einen Abgasstrang eines Kraftfahrzeugs mit einem Gehäuse und mit einer Mehrzahl von Rohren, welche von einem Abgas durchströmbar sind und von einem Kühlmittel umströmbar sind, wobei die Rohre innerhalb des Gehäuses angeordnet sind und das Gehäuse einen Kühlmitteleinlass und einen Kühlmittelauslass aufweist, wobei das Abgas und das Kühlmittel im Gegenstrom zueinander durch den Wärmeübertrager strömbar sind, wobei das Innenvolumen des Gehäuses in einen ersten Strömungsweg und einen zweiten Strömungsweg unterteilt ist und die Rohre innerhalb des zweiten Strömungsweges angeordnet sind, wobei der erste Strömungsweg einen Bypass zum zweiten Strömungsweg ausbildet, wobei die Querschnittsfläche des ersten Strömungsweges zwischen 15% und 65%, bevorzugt zwischen 30% und 50%, der insgesamt vom Kühlmittel durchströmten Querschnittsfläche des Gehäuses beträgt, wobei die insgesamt vom Kühlmittel durchströmte Querschnittsfläche des Gehäuses durch die Querschnittsfläche des ersten Strömungsweges und die Querschnittsfläche des zweiten Strömungsweges abzüglich der von den Rohren eingenommenen Querschnittsfläche gebildet ist.An embodiment of the invention relates to a heat exchanger for an exhaust system of a motor vehicle with a housing and with a plurality of tubes through which an exhaust gas can flow and around which a coolant can flow, the tubes being arranged within the housing and the housing having a coolant inlet and a Has coolant outlet, the exhaust gas and the coolant being able to flow in countercurrent to one another through the heat exchanger, the internal volume of the housing being divided into a first flow path and a second flow path and the tubes being arranged within the second flow path, the first flow path being a bypass for forms the second flow path, the cross-sectional area of the first flow path between 15% and 65%, preferably between 30% and 50%, of the total cross-sectional area of the housing through which the coolant flows, the total of the coolant du Flowed cross-sectional area of the housing is formed by the cross-sectional area of the first flow path and the cross-sectional area of the second flow path minus the cross-sectional area occupied by the tubes.

Ein Bypass für das Kühlmittel ist besonders vorteilhaft, um das Kühlmittel innerhalb des Gehäuses gezielt zu der Seite führen zu können, an welcher das Abgas in die Rohre eintritt. An der Einströmseite des Abgases weist das Abgas das höchste Temperaturniveau auf, wodurch das Kühlmittel in diesem Bereich stark erhitzt wird. Im Extremfall kann es zu starkem Sieden, sogenanntem Filmsieden, des Kühlmittels in diesem Bereich kommen, wodurch der Kühlmittelkreislauf beschädigt werden kann und die Kühlleistung insgesamt reduziert wird. Der Bypass führt vorteilhafterweise Kühlmittel direkt vom Kühlmitteleinlass zur Einströmseite des Abgases ohne vorher eine wesentliche Wärmemenge aufzunehmen.A bypass for the coolant is particularly advantageous in order to be able to direct the coolant within the housing to the side on which the exhaust gas enters the pipes. The exhaust gas has the highest temperature level on the inflow side of the exhaust gas, as a result of which the coolant is strongly heated in this area. In extreme cases, the boiling point of the coolant, so-called film boiling, can occur in this area, which can damage the coolant circuit and the overall cooling capacity is reduced. The bypass advantageously leads coolant directly from the coolant inlet to the inflow side of the exhaust gas without first absorbing a significant amount of heat.

Bevorzugt strömen das Kühlmittel und das Abgas im Gegenstrom zueinander, wodurch der mögliche Wärmeübertrag zwischen dem Abgas und dem Kühlmittel maximiert wird. Demnach tritt das Kühlmittel, welches den zweiten Strömungsweg durchströmt, durch das Umströmen der Rohre bereits in einen Wärmeübertrag mit dem Abgas, bevor es an der Einströmseite des Abgases ankommt. Die Wärmeaufnahmekapazität ist daher geringer als bei dem Kühlmittel, welches durch den Bypass beziehungsweise den ersten Strömungsweg direkt zur Einströmseite des Abgases strömt. Im Nachfolgenden werden die Bezeichnungen Bypass und erster Strömungsweg synonym verwendet.The coolant and the exhaust gas preferably flow in countercurrent to one another, thereby maximizing the possible heat transfer between the exhaust gas and the coolant. Accordingly, the coolant flowing through the second flow path already flows into heat transfer with the exhaust gas by flowing around the tubes before it arrives at the inflow side of the exhaust gas. The heat absorption capacity is therefore less than with the coolant, which flows through the bypass or the first flow path directly to the inflow side of the exhaust gas. In the following, the terms bypass and first flow path are used synonymously.

Für das Kühlmittel ergeben sich vorteilhafterweise zwei Querschnittsflächen, deren Verhältnis einen wesentlichen Einfluss auf den entstehenden Druckverlust und auf die zur Erreichung einer bestimmten Kühlleistung erforderliche Kühlmittelmenge hat. Die erste Querschnittsfläche ist die Querschnittsfläche des Bypasses (AB) beziehungsweise des ersten Strömungsweges, während die zweite Querschnittsfläche durch die gesamte vom Kühlmittel durchströmte Querschnittsfläche (AT) innerhalb des Gehäuses gegeben ist, wobei hierzu die Querschnittsfläche des ersten Strömungsweges und die des zweiten Strömungsweges abzüglich der von den Rohren eingenommenen Querschnittsfläche zählen.There are advantageously two cross-sectional areas for the coolant, the ratio of which has a significant influence on the pressure loss which arises and on the quantity of coolant required to achieve a specific cooling capacity. The first cross-sectional area is the cross-sectional area of the bypass (A B ) or of the first flow path, while the second cross-sectional area is given by the total cross-sectional area (A T ) through which the coolant flows, within which the cross-sectional area of the first flow path and that of the second flow path count minus the cross-sectional area occupied by the pipes.

Bevorzugt liegt das Verhältnis der Querschnittsfläche AB zur Querschnittsfläche AT zwischen 15% und 65%, dabei besonders bevorzugt zwischen 30% und 50%. Es hat sich herausgestellt, dass unterschiedliche Wärmeübertrager, welche ein Verhältnis der Querschnittsflächen in diesem Bereich aufweisen, einen besonders niedrigen Kühlmittelbedarf haben, um eine vorgegebene Kühlleistung zu erreichen. Weiterhin ist der Druckverlust des Kühlmittels innerhalb des Gehäuses in einem solchen Größenbereich der Querschnittsflächen besonders niedrig.The ratio of the cross-sectional area A B to the cross-sectional area A T is preferably between 15% and 65%, particularly preferably between 30% and 50%. It has been found that different heat exchangers which have a ratio of the cross-sectional areas in this area have a particularly low coolant requirement in order to achieve a predetermined cooling capacity. Furthermore, the pressure loss of the coolant within the housing is particularly low in such a size range of the cross-sectional areas.

Ein Wärmeübertrager mit den Merkmalen von Anspruch 1 ist daher besonders geeignet, um eine maximale Kühlleistung bei minimalem Druckverlust zu erzeugen. Wärmeübertrager mit diesen Merkmalen weisen somit eine besonders günstige Kühlcharakteristik auf.A heat exchanger with the features of claim 1 is therefore particularly suitable in order to generate a maximum cooling capacity with minimal pressure loss. Heat exchangers with these features thus have a particularly favorable cooling characteristic.

Darüber hinaus ist es vorteilhaft, wenn die Rohre einen rechteckförmigen Querschnitt aufweisen, wobei die Breite des Querschnitts jeweils zwischen 13mm und 17mm beträgt und die Höhe zwischen 4mm und 5mm beträgt.In addition, it is advantageous if the tubes have a rectangular cross section, the width of the cross section in each case between 13 mm and 17 mm and the height between 4 mm and 5 mm.

Ein rechteckiger Querschnitt der Rohre ist besonders vorteilhaft in Verbindung mit einem ebenfalls rechteckigen Gehäusequerschnitt. In einer solchen Anordnung lassen sich die Rohre untereinander und zu dem Gehäuse auf einfache Weise beabstanden, so dass geeignete Spalte zwischen den Rohren und dem Gehäuse entstehen, um eine ausreichende Durchströmung mit dem Kühlmittel zu gewährleisten.A rectangular cross section of the tubes is particularly advantageous in connection with a likewise rectangular housing cross section. In such an arrangement, the tubes can be easily spaced from one another and from the housing, so that suitable gaps are created between the tubes and the housing in order to ensure a sufficient flow of the coolant.

Besonders bevorzugt weisen die Rohre einen rechteckigen Querschnitt auf, welcher eine Breite zwischen 13mm und 17mm und eine Höhe zwischen 4mm und 5mm aufweist. Rohre dieser Dimension sind vorteilhaft, da sie ein sehr gutes Verhältnis von durchströmbaren Querschnitt zur Außenfläche aufweisen, welches insbesondere für Anwendungen in einem Abgasstrang eines Kraftfahrzeugs vorteilhaft ist, um eine maximale Kühlleistung zu erreichen. Hierbei sind insbesondere die gewöhnlich zu erwartenden Abgastemperaturen von mehreren hundert Grad Celsius, die gewöhnlich vorherrschende Kühlmitteltemperatur und die nach der Abkühlung zu erreichende Abgastemperatur entscheidende Größen für die Auslegung des Wärmeübertragers.The tubes particularly preferably have a rectangular cross section, which has a width between 13 mm and 17 mm and a height between 4 mm and 5 mm. Pipes of this dimension are advantageous because they have a very good ratio of the cross-section that can be flowed through to the outer surface, which is particularly advantageous for applications in an exhaust system of a motor vehicle in order to achieve maximum cooling performance. In particular, the exhaust gas temperatures of several hundred degrees Celsius that are usually to be expected, the usually prevailing coolant temperature and the exhaust gas temperature to be reached after cooling are decisive variables for the design of the heat exchanger.

Auch ist es zu bevorzugen, wenn die Rohre derart zueinander beabstandet angeordnet sind, dass die Mittelachsen der Rohre in der Breite um 14,5mm bis 18,5mm zueinander beabstandet sind und in der Höhe um 5,5mm bis 6,5mm zueinander beabstandet sind.It is also preferable if the tubes are arranged at a distance from one another such that the central axes of the tubes are spaced apart from one another in width by 14.5 mm to 18.5 mm and are spaced apart from one another in height by 5.5 mm.

Eine Anordnung mit einer Teilung in der Breite von 14,5mm bis 18,5mm und mit einer Teilung in der Höhe von 5,5mm bis 6,5mm ist besonders vorteilhaft, um bei gegebenen Rohrgrößen, wie sie vorausgehend beschrieben wurden, jeweils ausreichende Spalte zwischen den zueinander benachbarten Rohren zu erreichen. Die Spaltgröße muss dabei ausreichend groß sein, um eine Stauung oder die Erzeugung eines zu hohen Druckverlustes zu vermeiden.An arrangement with a division in the width of 14.5 mm to 18.5 mm and with a division in the height of 5.5 mm to 6.5 mm is particularly advantageous in order to ensure adequate gaps between given tube sizes, as described above to reach the neighboring tubes. The gap size must be large enough to avoid congestion or the generation of excessive pressure loss.

Auch ist es vorteilhaft, wenn der erste Strömungsweg thermisch isoliert gegenüber dem zweiten Strömungsweg und/oder dem Gehäuse und/oder den Rohren und/oder dem die Rohre umströmenden Kühlmittel ist.It is also advantageous if the first flow path is thermally insulated from the second flow path and / or the housing and / or the pipes and / or the coolant flowing around the pipes.

Eine thermische Isolation ist besonders vorteilhaft, da sie dazu führt, dass das Kühlmittel, welches durch den Bypass beziehungsweise den ersten Strömungsweg strömt, thermisch von dem Kühlmittel im zweiten Strömungsweg und insbesondere von dem Abgas in den Rohren entkoppelt ist. Daher weist das Kühlmittel nach dem Ausströmen aus dem Bypass in den zweiten Strömungsweg im Bereich der Abgaseinströmseite eine besonders große Wärmeaufnahmekapazität auf, wodurch eine besonders große Kühlwirkung erzeugt werden kann und das Sieden des Kühlmittels wirksam verhindert werden kann.Thermal insulation is particularly advantageous since it leads to the coolant flowing through the bypass or the first flow path being thermally decoupled from the coolant in the second flow path and in particular from the exhaust gas in the pipes. Therefore, the coolant after flowing out of the bypass into the second flow path in the region of the exhaust gas inflow side has a particularly large heat absorption capacity, as a result of which a particularly large cooling effect can be generated and the boiling of the coolant can be effectively prevented.

Auch ist es zweckmäßig, wenn der Kühlmitteleinlass und die Einströmseite des Abgases in Haupterstreckungsrichtung der Rohre an gegenüberliegenden Endbereichen des Gehäuses angeordnet sind.It is also expedient if the coolant inlet and the inflow side of the exhaust gas are arranged at opposite end regions of the housing in the main direction of extension of the pipes.

Durch die Anordnung des Kühlmitteleinlasses und der Einströmseite des Abgases an sich gegenüberliegenden Endbereichen wird ein Durchströmen des Wärmeübertragers im Gegenstrom erreicht. Dies ist besonders vorteilhaft, um einen möglichst großen Wärmeübertrag innerhalb des Wärmeübertragers realisieren zu können.The arrangement of the coolant inlet and the inflow side of the exhaust gas at opposite end regions allows the heat exchanger to flow through in countercurrent. This is particularly advantageous in order to be able to achieve the greatest possible heat transfer within the heat exchanger.

Darüber hinaus ist es vorteilhaft, wenn die Rohre an ihrer Innenfläche und/oder an ihrer Außenfläche turbulenzerzeugende Mittel aufweisen.In addition, it is advantageous if the tubes have turbulence-generating means on their inner surface and / or on their outer surface.

Turbulenzerzeugende Mittel, wie beispielsweise Winglets oder Rippen, sind besonders vorteilhaft, um eine Verwirbelung des Abgases und/oder des Kühlmittels zu erzeugen. In turbulenten Strömungen kann ein größerer Wärmeübertrag erzielt werden als in laminaren Strömungen. Außerdem können Stauungen des Kühlmittels und die dadurch entstehenden Bereiche hoher Temperatur reduziert werden oder vollständig vermieden werden.Turbulence-generating means, such as winglets or ribs, are particularly advantageous in order to produce a swirling of the exhaust gas and / or the coolant. A greater heat transfer can be achieved in turbulent flows than in laminar flows. In addition, congestion of the coolant and the resulting high temperature areas can be reduced or avoided entirely.

Ein weiteres bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass die Einströmrichtung und/oder die Ausströmrichtung des Kühlmittels jeweils eine Normale zur Hauptdurchströmungsrichtung der Rohre bildet.Another preferred exemplary embodiment is characterized in that the inflow direction and / or the outflow direction of the coolant each form a normal to the main flow direction of the tubes.

Eine solche Anordnung des Kühlmitteleinlasses und des Kühlmittelauslasses ist besonders bevorzugt, um eine möglichst kompakte Bauform zu erhalten. Weiterhin ist es vorteilhaft, da insbesondere durch eine Einströmrichtung des Kühlmittels, welche als Normale zur Hauptdurchströmungsrichtung der Rohre ausgerichtet ist, eine vorteilhafte Verteilung des Kühlmittels über den gesamten Querschnitt des Gehäuses erreicht werden kann. Die Ausbreitungsrichtung des Kühlmittels liegt hier in direkter Verlängerung der Einströmrichtung, wodurch das Kühlmittel keine oder nur unwesentliche Umlenkungen erfahren muss, um sich vollständig über den Querschnitt des Gehäuses zu verteilen.Such an arrangement of the coolant inlet and the coolant outlet is particularly preferred in order to obtain the most compact possible design. Furthermore, it is advantageous since, in particular, an advantageous distribution of the coolant over the entire cross section of the housing can be achieved by an inflow direction of the coolant, which is oriented as a normal to the main flow direction of the tubes. The direction of expansion of the coolant here is a direct extension of the inflow direction, as a result of which the coolant does not have to undergo any or only insignificant deflections in order to be completely distributed over the cross section of the housing.

Weiterhin ist es besonders vorteilhaft, wenn der erste Strömungsweg an einer der Innenflächen des Gehäuses ausgebildet ist und durch eine Wandung von dem zweiten Strömungsweg abgetrennt ist.Furthermore, it is particularly advantageous if the first flow path is formed on one of the inner surfaces of the housing and is separated from the second flow path by a wall.

Eine Anordnung des ersten Strömungsweges beziehungsweise des Bypasses an einer der Innenflächen des Gehäuses ist vorteilhaft, um den Bypass räumlich getrennt von den durch das Gehäuse verlaufenden Rohren auszuführen. Dies dient der einfacheren Strömungsführung und reduziert weiterhin den Wärmeübertrag von den Rohren beziehungsweise dem darin strömenden Abgas auf das Kühlmittel im Bypass.An arrangement of the first flow path or the bypass on one of the inner surfaces of the housing is advantageous in order to carry out the bypass spatially separate from the pipes running through the housing. This serves to simplify the flow guidance and further reduces the heat transfer from the pipes or the exhaust gas flowing therein to the coolant in the bypass.

Auch ist es zu bevorzugen, wenn die Wandung eine oder mehrere Öffnungen aufweist, welche jeweils einen Kühlmittelübertritt zwischen dem ersten Strömungsweg und dem zweiten Strömungsweg bilden.It is also preferable if the wall has one or more openings, each of which forms a coolant transfer between the first flow path and the second flow path.

Bevorzugt ist ein Übertritt des Kühlmittels aus dem zweiten Strömungsweg in den ersten Strömungsweg beziehungsweise von dem ersten Strömungsweg in den zweiten Strömungsweg durch Öffnungen in der den Bypass begrenzenden Wandung möglich. Auf diese Weise kann das Kühlmittel leicht zwischen den beiden Strömungswegen ausgetauscht werden. Bevorzugt sind die Öffnungen im Bereich des Kühlmitteleinlasses und des Kühlmittelauslasses angeordnet.The coolant can preferably pass from the second flow path into the first flow path or from the first flow path into the second flow path through openings in the wall delimiting the bypass. In this way, the coolant can be easily exchanged between the two flow paths. The openings are preferably arranged in the region of the coolant inlet and the coolant outlet.

Auch ist es vorteilhaft, wenn der Kanal eine kürzere Erstreckung entlang der Haupterstreckungsrichtung der Rohre aufweist als das Innere des Gehäuses, wobei die offenen Endbereiche des Kanals frei in das Innenvolumen des Gehäuses münden.It is also advantageous if the channel has a shorter extension along the main direction of extension of the tubes than the interior of the housing, the open end regions of the channel opening freely into the interior volume of the housing.

Durch eine kürzere Erstreckung des Kanals im Vergleich zum Inneren des Gehäuses kann sichergestellt werden, dass die offenen Endbereiche des Kanals nicht an den das Innenvolumen des Gehäuses begrenzenden Wandungen anliegen, wodurch ein Fluidübertritt vom zweiten Strömungsweg in den Bypass erschwert werden könnte. Alternativ zu den frei in das Innenvolumen mündenden Endbereichen kann der Kanal auch Öffnungen aufweisen, welche den Fluidübertritt zwischen den Strömungswegen ermöglichen.A shorter extension of the channel compared to the interior of the housing can ensure that the open end regions of the channel do not abut the walls delimiting the interior volume of the housing, which could make it difficult to transfer fluid from the second flow path into the bypass. As an alternative to the end regions which open out freely into the inner volume, the channel can also have openings which allow fluid to pass between the flow paths.

Darüber hinaus ist es zweckmäßig, wenn das Kühlmittel vom Kühlmitteleinlass durch den ersten Strömungsweg in den zweiten Strömungsweg strömbar ist und/oder, wenn das Kühlmittel aus dem ersten Strömungsweg durch den zweiten Strömungsweg zum Kühlmittelauslass strömbar ist.Furthermore, it is expedient if the coolant can flow from the coolant inlet through the first flow path into the second flow path and / or if the coolant can flow from the first flow path through the second flow path to the coolant outlet.

Je nach Lage des Kühlmitteleinlasses relativ zum Bypass, kann das Kühlmittel entweder vom Kühlmitteleinlass direkt in den zweiten Strömungsweg strömen und von dort durch die Öffnung in den Bypass oder direkt vom Kühlmitteleinlass in den Bypass und durch die Öffnung in den zweiten Strömungsweg. Der Kühlmittelauslass ist bevorzugt auf der dem Bypass gegenüberliegenden Seite des Gehäuses angeordnet, um zu erreichen, dass das Kühlmittel aus dem Bypass in jedem Fall durch die Öffnung in den zweiten Strömungsweg überströmt, bevor es aus dem Kühlmittelauslass ausströmt. Auf diese Weise wird die zusätzliche Kühlung der Abgaseinströmseite, welche an dem Endbereich des Wärmeübertragers angeordnet ist der auch den Kühlmittelauslass aufweist, gewährleistet.Depending on the position of the coolant inlet relative to the bypass, the coolant can either flow directly from the coolant inlet into the second flow path and from there through the opening into the bypass or directly from the coolant inlet into the bypass and through the opening into the second flow path. The coolant outlet is preferably arranged on the side of the housing opposite the bypass in order to ensure that the coolant in each case flows out of the bypass through the opening into the second flow path before it flows out of the coolant outlet. In this way, the additional cooling of the exhaust gas inflow side, which is arranged on the end region of the heat exchanger which also has the coolant outlet, is ensured.

Auch ist es vorteilhaft, wenn die Rohre endseitig in Rohrböden aufgenommen sind, welche den vom Kühlmittel durchströmbaren Bereich des Gehäuses in einer Richtung entlang der Hauptdurchströmungsrichtung der Rohre begrenzen.It is also advantageous if the tubes are received at the end in tube plates which limit the area of the housing through which the coolant can flow in a direction along the main direction of flow of the tubes.

Rohrböden sind vorteilhaft, um eine Aufnahme für die Rohre zu bilden und weiterhin eine Begrenzung des vom Kühlmittel durchströmten Bereichs im Gehäuse zu erreichen. An den Rohrböden, welche bevorzugt fluiddicht mit dem Gehäuse verbunden sind, können Diffusoren oder andere Elemente angebunden werden, welche insbesondere die Zuleitung und Ableitung des Abgases in die Rohre hinein beziehungsweise aus den Rohren heraus begünstigen.Tube plates are advantageous in order to form a receptacle for the tubes and also to limit the area in the housing through which the coolant flows. Diffusers or other elements can be connected to the tube sheets, which are preferably connected to the housing in a fluid-tight manner, which in particular promote the supply and discharge of the exhaust gas into the tubes and out of the tubes.

Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.Advantageous developments of the present invention are described in the subclaims and in the following description of the figures.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:

Fig. 1
zwei Schnittansichten eines Wärmeübertragers, wie er aus dem Stand der Technik bekannt ist,
Fig. 2
zwei Schnittansichten eines alternativ ausgestalteten Wärmeübertragers, wie er aus dem Stand der Technik bekannt ist,
Fig. 3
zwei Schnittansichten eines Wärmeübertragers, wobei im Inneren des Gehäuses ein Bypass zum Hauptströmungsweg des Kühlmittels angeordnet ist,
Fig. 4
zwei Schnittansichten eines Wärmeübertragers gemäß Figur 3, wobei der Kühlmitteleinlass auf der gleichen Seite des Gehäuses angeordnet ist, wie der Kühlmittelauslass,
Fig. 5
ein Diagramm, welches auf der X-Achse das Verhältnis der Querschnittsfläche des Bypasses im Verhältnis zu der gesamten vom Kühlmittel durchströmten Querschnittsfläche des Wärmeübertragers darstellt und auf der Y-Achse die prozentuale Reduktion des Kühlmittelbedarfs, und
Fig. 6
ein Diagramm, welches auf der X-Achse das Verhältnis der Querschnittsfläche des Bypasses im Verhältnis zu der gesamten vom Kühlmittel durchströmten Querschnittsfläche des Wärmeübertragers darstellt, wobei auf der Y-Achse der jeweils entstehende Druckverlust aufgetragen ist.
The invention is explained in detail below using exemplary embodiments with reference to the drawings. The drawings show:
Fig. 1
two sectional views of a heat exchanger, as is known from the prior art,
Fig. 2
two sectional views of an alternatively designed heat exchanger, as is known from the prior art,
Fig. 3
two sectional views of a heat exchanger, a bypass to the main flow path of the coolant being arranged in the interior of the housing,
Fig. 4
two sectional views of a heat exchanger according to Figure 3 , wherein the coolant inlet is arranged on the same side of the housing as the coolant outlet,
Fig. 5
a diagram which shows on the X-axis the ratio of the cross-sectional area of the bypass in relation to the total cross-sectional area of the heat exchanger through which the coolant flows and on the Y-axis the percentage reduction in the coolant requirement, and
Fig. 6
a diagram showing the ratio of the cross-sectional area of the bypass in relation to the total cross-sectional area of the heat exchanger through which the coolant flows, the pressure loss occurring in each case being plotted on the Y axis.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Die nachfolgenden Figuren 1 bis 4 zeigen jeweils zwei Ansichten eines Wärmeübertragers. Im linken Teil der Figuren ist jeweils eine Ansicht dargestellt, bei welcher die Rohre als Flächennormale zur Zeichnungsebene ausgerichtet sind. Der Blick des Betrachters ist entlang der Haupterstreckungsrichtung der Rohre gerichtet. Im rechten Teil der Figuren ist jeweils ein Längsschnitt durch den Wärmeübertrager dargestellt.The following Figures 1 to 4 each show two views of a heat exchanger. A view is shown in the left part of the figures, in which the tubes are aligned as surface normal to the plane of the drawing. The viewer's gaze is directed along the main direction of extension of the pipes. In the right part of the figures, a longitudinal section through the heat exchanger is shown.

Die Figur 1 zeigt einen Wärmeübertrager 1, welcher ein Gehäuse 2 aufweist. Durch das Gehäuse 2 verlaufen mehrere Rohre 3. Die Rohre 3 ragen links und rechts über das Gehäuse 2 hinaus und sind endseitig vorzugsweise von Rohrböden aufgenommen, welche das Gehäuse 2 nach links und rechts abschließen.The Figure 1 shows a heat exchanger 1, which has a housing 2. A plurality of tubes 3 run through the housing 2. The tubes 3 project beyond the housing 2 on the left and right and are preferably received at the end by tube plates which close off the housing 2 to the left and right.

Die Rohre 3 können von einem Abgas durchströmt werden. Mit dem Bezugszeichen 4 ist die Einströmseite gekennzeichnet, von welcher Abgas in die Rohre einströmen kann. Am rechten Endbereich der Rohre 3 ist mit dem Bezugszeichen 7 die Ausströmseite gekennzeichnet. In alternativen Ausgestaltungen können an der Einströmseite und der Ausströmseite zusätzlich Diffusoren angeordnet sein, welche das Einströmen des Abgases in die Rohre hinein und das Ausströmen des Abgases aus den Rohren heraus unterstützt.Exhaust gas can flow through the tubes 3. Reference number 4 denotes the inflow side from which exhaust gas can flow into the pipes. At the right end region of the tubes 3, the outflow side is identified by the reference number 7. In alternative configurations, additional diffusers can be arranged on the inflow side and the outflow side, which supports the inflow of the exhaust gas into the tubes and the outflow of the exhaust gas out of the tubes.

Das Gehäuse 2 weist rechts an der oben liegenden Wandung einen Kühlmitteleinlass 5 auf. Dieser kann beispielsweise durch eine Öffnung in der Gehäusewandung oder durch einen Anschlussstutzen gebildet sein. Durch den Kühlmitteleinlass 5 kann ein Kühlmittel in das Gehäuse 2 einströmen. Am linken Ende an der unteren Gehäusewandung ist ein Kühlmittelauslass 6 angeordnet, durch welchen das Kühlmittel aus dem Gehäuse 2 ausströmen kann. Das Gehäuse 2 wird von der rechten Seite vom Kühlmitteleinlass 5 hin zur linken Seite zum Kühlmittelauslass 6 mit Kühlmittel durchströmt. Die Rohre 3 werden hierbei von dem Kühlmittel umströmt, während sie von dem Abgas durchströmt werden.The housing 2 has a coolant inlet 5 on the wall on the right. This can be formed, for example, by an opening in the housing wall or by a connection piece. A coolant can flow into the housing 2 through the coolant inlet 5. At the left end on the lower housing wall, a coolant outlet 6 is arranged, through which the coolant can flow out of the housing 2. The coolant inlet 5 flows through the housing 2 from the right side to the left side to the coolant outlet 6 with coolant. The coolant flows around the tubes 3 while the exhaust gas flows through them.

Der Strömungsweg für das Kühlmittel im Inneren des Gehäuses 2 ist mit dem Bezugszeichen 8 gekennzeichnet.The flow path for the coolant inside the housing 2 is identified by reference number 8.

Im linken Teil der Figur 1 ist zu erkennen, dass das Kühlmittel von oben durch den Kühlmitteleinlass 5 in das Gehäuse 2 einströmt und nach unten durch den Kühlmittelauslass 6 aus dem Gehäuse 2 ausströmt. Die Hauptdurchströmungsrichtung des Abgases in den Rohren 3 und die Hauptdurchströmungsrichtung des Kühlmittels in dem Strömungsweg 8 innerhalb des Gehäuses sind gegensinnig zueinander im sogenannten Gegenstrom ausgebildet.In the left part of the Figure 1 It can be seen that the coolant flows into the housing 2 from above through the coolant inlet 5 and flows out of the housing 2 through the coolant outlet 6 downwards. The main flow direction of the exhaust gas in the tubes 3 and the main flow direction of the coolant in the flow path 8 within the housing are designed in opposite directions to one another in the so-called counterflow.

Die Rohre 3 sind in drei Dreierreihen übereinander angeordnet, wobei sich jeweils zwischen den Rohren 3 und den Innenwandungen des Gehäuses 2 Spalte ergeben, welche von dem Kühlmittel durchströmt werden können. Die Anzahl und Anordnung der Rohre ist beispielhaft und kann in alternativen Ausführungen beliebig variiert werden.The tubes 3 are arranged one above the other in three rows of three, wherein there are gaps between the tubes 3 and the inner walls of the housing 2, through which the coolant can flow. The number and arrangement of the pipes is exemplary and can be varied as desired in alternative designs.

Die Figur 1 und die nachfolgende Figur 2 stellen Wärmeübertrager dar, wie sie aus dem Stand der Technik bekannt sind.The Figure 1 and the following Figure 2 represent heat exchangers as are known from the prior art.

Figur 2 zeigt einen Wärmeübertrager 1, wie er bereits in Figur 1 gezeigt wurde. Im Unterschied zur Figur 1 ist der Kühlmitteleinlass 9 nicht an der oberen Außenwandung des Gehäuses 2 angeordnet, sondern wie der Kühlmittelauslass 6 auch an der unteren Außenwandung. Dies ist auch im linken Teil der Figur 2 zu erkennen. Figure 2 shows a heat exchanger 1, as already in Figure 1 was shown. In contrast to Figure 1 the coolant inlet 9 is not arranged on the upper outer wall of the housing 2 but, like the coolant outlet 6, also on the lower outer wall. This is also in the left part of the Figure 2 to recognize.

Der übrige Aufbau des Wärmeübertragers 1 der Figur 2 stimmt mit dem Aufbau des Wärmeübertragers 1 der Figur 1 überein. Für identische Elemente sind identische Bezugszeichen verwendet worden.The rest of the structure of the heat exchanger 1 Figure 2 agrees with the structure of the heat exchanger 1 Figure 1 match. Identical reference numerals have been used for identical elements.

Figur 3 zeigt eine Ansicht eines Wärmeübertragers 20. Ähnlich dem Wärmeübertrager 1 der Figur 1 ist am rechten Endbereich an der oberen Außenwandung des Gehäuses 2 ein Kühlmitteleinlass 5 angeordnet und an der unteren Außenwandung am linken Endbereich ein Kühlmittelauslass 6. Das Gehäuse 2 weist im Inneren einen ersten Strömungsweg 22 auf und einen zweiten Strömungsweg 21. Figure 3 shows a view of a heat exchanger 20. Similar to the heat exchanger 1 of FIG Figure 1 a coolant inlet 5 is arranged on the right end region on the upper outer wall of the housing 2 and a coolant outlet 6 is arranged on the lower outer wall on the left end region. The housing 2 has a first flow path 22 on the inside and a second flow path 21.

Im zweiten Strömungsweg 21 sind die Rohre 3 angeordnet. Der erste Strömungsweg 22 kann, wie in den Figuren 3 und 4 dargestellt, durch einen Kanal 23 gebildet sein, welches oberhalb der Rohre 3 innerhalb des Gehäuses 2 angeordnet ist und eine räumliche Trennung des ersten Strömungsweges 22 vom zweiten Strömungsweg 21 erzeugt. Alternativ kann der erste Strömungsweg beispielsweise auch durch eine Wandung, welche zwischen zwei sich gegenüberliegenden Innenflächen des Gehäuses verläuft, vom zweiten Strömungsweg abgetrennt werden.The tubes 3 are arranged in the second flow path 21. The first flow path 22 can, as in FIGS Figures 3 and 4 shown, be formed by a channel 23 which is arranged above the tubes 3 within the housing 2 and creates a spatial separation of the first flow path 22 from the second flow path 21. Alternatively, the first flow path can also be separated from the second flow path, for example, by a wall that runs between two opposite inner surfaces of the housing.

In der Figur 3 ist zwischen dem Kanal 23 und dem Gehäuse 2 am rechten Endbereich des Gehäuses 2 ein Freiraum 24 und am linken Endbereich ein Freiraum 25 ausgebildet. Durch diese Freiräume 24, 25, welche durch eine Beabstandung des Kanalendes zur Gehäuseinnenwandung gebildet sind, kann Kühlmittel zwischen dem ersten Strömungsweg 22 und dem zweiten Strömungsweg 21 strömen.In the Figure 3 a free space 24 is formed between the channel 23 and the housing 2 at the right end region of the housing 2 and a free space 25 is formed at the left end region. Coolants can flow between the first flow path 22 and the second flow path 21 through these free spaces 24, 25, which are formed by spacing the channel end from the housing inner wall.

In einer alternativen Ausführung kann sich der Kanal, welcher den ersten Strömungsweg begrenzt, auch über die gesamte Länge des Gehäuses erstrecken. Dann weist der Kanal vorteilhafterweise Öffnungen in einer seiner Wandungen auf, weiche ein Überströmen des Fluids zwischen den Strömungswegen erlauben. Weiterhin kann durch Öffnungen in den Wandungen auch eine Fluidkommunikation des Kanals mit dem Kühlmitteleinlass und dem Kühlmittelauslass erzeugt werden.In an alternative embodiment, the channel, which delimits the first flow path, can also extend over the entire length of the housing. The channel then advantageously has openings in one of its walls, which allow the fluid to flow over between the flow paths. Furthermore, fluid communication of the channel with the coolant inlet and the coolant outlet can also be generated through openings in the walls.

Figur 3 zeigt, dass das Kühlmittel entlang des Kühlmitteleinlasses 5 in das Gehäuse 2 einströmt und dort vertikal nach unten in den zweiten Strömungsweg 21 strömt und auch in den ersten Strömungsweg 22 strömt. Das Kühlmittel im zweiten Strömungsweg 21 umströmt die Rohre 3, wodurch ein Wärmeübertrag zwischen dem in den Rohren 3 strömenden Abgas und dem Kühlmittel erzeugt wird. Das Kühlmittel im ersten Strömungsweg 22 strömt hingegen im Wesentlichen thermisch entkoppelt innerhalb des als Bypass fungierenden ersten Strömungsweges 22 nach links und tritt dort endseitig aus dem Kanal 23 aus. Das Kühlmittel aus dem ersten Strömungsweg 22 und dem zweiten Strömungsweg 21 strömt schließlich in einer Richtung quer zur Hauptdurchströmungsrichtung der Rohre 3 nach unten und durch den Kühlmittelauslass 6 aus dem Gehäuse 2 aus. Figure 3 shows that the coolant flows along the coolant inlet 5 into the housing 2 and there flows vertically down into the second flow path 21 and also flows into the first flow path 22. The coolant in the second flow path 21 flows around the pipes 3, whereby a heat transfer between the exhaust gas flowing in the pipes 3 and the coolant is generated. The coolant in the first flow path 22, on the other hand, flows essentially thermally decoupled to the left within the first flow path 22, which functions as a bypass, and exits the channel 23 at the end there. The coolant from the first flow path 22 and the second flow path 21 finally flows downward in a direction transverse to the main flow direction of the tubes 3 and out of the housing 2 through the coolant outlet 6.

Das Kühlmittel im ersten Strömungsweg 22 wird somit direkt an die Einströmseite 4 der Rohre 3 geleitet und nimmt dort die Wärme des Abgases auf. Da das durch den ersten Strömungsweg 22 geströmte Kühlmittel eine höhere Wärmeaufnahmekapazität aufweist als das Kühlmittel, welches bereits an den Rohren 3 entlang durch den zweiten Strömungsweg 21 geströmt ist, kann eine besonders gute Abkühlung an der Einströmseite 4 des Abgases erreicht werden.The coolant in the first flow path 22 is thus passed directly to the inflow side 4 of the pipes 3 and absorbs the heat of the exhaust gas there. Since the coolant flowing through the first flow path 22 has a higher heat absorption capacity than the coolant which has already flowed along the tubes 3 through the second flow path 21, particularly good cooling can be achieved on the inflow side 4 of the exhaust gas.

Im linken Teil der Figur 3 ist der rechteckige Querschnitt des Kanals 23, welcher den Bypass für das Kühlmittel bildet, zu erkennen. Der Kanal 23 ist oberhalb der Rohre 3 mit einem Abstand zu den Rohren 3 im Gehäuse 2 angeordnet. Weiterhin ist die Aufteilung des Gehäuses 2 in den ersten Strömungsweg 22 und den zweiten Strömungsweg 21 zu erkennen.In the left part of the Figure 3 the rectangular cross section of the channel 23, which forms the bypass for the coolant, can be seen. The channel 23 is arranged above the tubes 3 at a distance from the tubes 3 in the housing 2. Furthermore, the division of the housing 2 into the first flow path 22 and the second flow path 21 can be seen.

Die Querschnittsfläche des Kanals 23 beziehungsweise des ersten Strömungsweges 22 ist mit AB bezeichnet. Die gesamte innere Querschnittsfläche des Gehäuses 2, welche von dem Kühlmittel durchströmt wird, wird als AT bezeichnet. Die Querschnittsfläche AT ist durch die Querschnittsfläche des ersten Strömungsweges 22 und des zweiten Strömungsweges 21 abzüglich der Querschnittsfläche des Rohres 3 gebildet. Bevorzug ist das Verhältnis von AB zu AT zwischen 15% und 65%. Besonders bevorzugt liegt es dabei zwischen 30% und 50%. Die Vorteile eines solchen Verhältnisses werden in der nachfolgenden Figur 5 näher erläutert.The cross-sectional area of the channel 23 or the first flow path 22 is denoted by A B. The entire inner cross-sectional area of the housing 2, through which the coolant flows, is referred to as AT . The cross-sectional area AT is formed by the cross-sectional area of the first flow path 22 and the second flow path 21 minus the cross-sectional area of the tube 3. The ratio of A B to A T is preferably between 15% and 65%. It is particularly preferably between 30% and 50%. The advantages of such a relationship are shown in the following Figure 5 explained in more detail.

Figur 4 zeigt eine alternative Ausführungsform des Wärmeübertragers 20, wobei der Kühlmitteleinlass 9 und der Kühlmittelauslass 6 an der unteren Außenwandung des Gehäuses 2 angeordnet sind. Der Wärmeübertrager 20 der Figur 4 ist analog der Figur 2 ausgeführt, wobei im Inneren des Gehäuses 2 ebenfalls ein Kanal 23 als Bypass für das Kühlmittel angeordnet ist. Figure 4 shows an alternative embodiment of the heat exchanger 20, wherein the coolant inlet 9 and the coolant outlet 6 are arranged on the lower outer wall of the housing 2. The heat exchanger 20 the Figure 4 is analogous to the Figure 2 executed, wherein a channel 23 is also arranged as a bypass for the coolant in the interior of the housing 2.

Durch die unterschiedliche Anordnung des Kühlmitteleinlasses 9 wird auch die Durchströmung der Strömungswege 22, 21 beeinflusst. In Figur 4 strömt das Kühlmittel durch den Kühlmitteleinlass 9 von unten in den zweiten Strömungsweg 21 und dort einerseits nach links und andererseits weiter nach oben und durch den Freiraum 24 in den erste Strömungsweg 22. Am Ende des Kanals 23 strömt das Kühlmittel im Bereich der Einströmseite 4 durch den Freiraum 25 an die Rohre 3, wodurch eine starke Kühlung der Rohre 3 erzeugt werden kann. Das Kühlmittel strömt schließlich über den Kühlmittelauslass 6 aus dem Gehäuse 2.The different arrangement of the coolant inlet 9 also influences the flow through the flow paths 22, 21. In Figure 4 The coolant flows through the coolant inlet 9 from below into the second flow path 21 and there on the one hand to the left and on the other hand further upwards and through the free space 24 into the first flow path 22. At the end of the channel 23, the coolant flows in the region of the inflow side 4 through the Free space 25 to the tubes 3, whereby a strong cooling of the tubes 3 can be generated. The coolant finally flows out of the housing 2 via the coolant outlet 6.

Im linken Teil der Figur 4 ist die Anordnung des Kühlmitteleinlasses 9 und des Kühlmittelauslasses 6 an der unteren Außenwandung des Gehäuses 2 zu erkennen. Die beiden Querschnittsflächen AB und AT sind wie in der vorausgegangenen Figur 3 ausgebildet.In the left part of the Figure 4 the arrangement of the coolant inlet 9 and the coolant outlet 6 on the lower outer wall of the housing 2 can be seen. The Both cross-sectional areas A B and A T are as in the previous one Figure 3 educated.

In den Figuren 3 und 4 weisen die Rohre 3 und der Kanal 23 einen rechteckförmigen Querschnitt auf. Dies ist besonders im Zusammenspiel mit dem ebenfalls rechteckförmigen Querschnitt des Gehäuses 2 vorteilhaft, um eine gleichmäßige Anordnung der Rohre 3 im Inneren des Gehäuses 2 zu erreichen. In alternativen Ausführungsformen können die Querschnittsformen der Rohre, des Kanals und des Gehäuses auch abweichen. Die in den Figuren 3 und 4 gezeigte Ausgestaltung ist beispielhaft und besitzt insbesondere hinsichtlich der Geometrie der einzelnen Elemente, der Materialwahl und der Anordnung der Elemente relativ zueinander keinen beschränkenden Charakter.In the Figures 3 and 4 the tubes 3 and the channel 23 have a rectangular cross section. This is particularly advantageous in conjunction with the likewise rectangular cross section of the housing 2 in order to achieve a uniform arrangement of the tubes 3 in the interior of the housing 2. In alternative embodiments, the cross-sectional shapes of the tubes, the channel and the housing can also differ. The in the Figures 3 and 4 The embodiment shown is exemplary and has no restrictive character, in particular with regard to the geometry of the individual elements, the choice of material and the arrangement of the elements relative to one another.

Die Figur 5 zeigt ein Diagramm 30. Auf der X-Achse 31 ist das Verhältnis zwischen den Querschnittsflächen AB und AT in Prozent aufgetragen. Die X-Achse zeigt Verhältnisse von 0% im Schnittpunkt der Achsen 31, 32 und maximal 90%. Die Y-Achse 32 zeigt prozentual die Reduktion des Kühlmittelbedarfs zum Erreichen einer definierten Abgastemperatur. Die Y-Achse 32 zeigt Werte von 0% Kühlmittelreduktion am Schnittpunkt der Achsen 31, 32 bis zu maximal 35% Reduktion. Auf der Y-Achse 32 sind insbesondere keine absoluten Werte aufgetragen, sondern jeweils relative Werte für die einzelnen Wärmeübertrager 33 bis 36.The Figure 5 shows a diagram 30. The ratio between the cross-sectional areas A B and A T is plotted in percent on the X axis 31. The X axis shows ratios of 0% at the intersection of axes 31, 32 and a maximum of 90%. The Y axis 32 shows the percentage reduction in the coolant requirement to reach a defined exhaust gas temperature. The Y axis 32 shows values of 0% coolant reduction at the intersection of the axes 31, 32 up to a maximum of 35% reduction. In particular, no absolute values are plotted on the Y axis 32, but rather relative values for the individual heat exchangers 33 to 36.

In dem Diagramm 30 sind Messwerte für vier unterschiedliche Wärmeübertrager 33, 34, 35 und 36 für unterschiedliche Verhältnisse von AB zu AT dargestellt. Die Wärmeübertrager 33 bis 36 sind jeweils im Gegenstrom durchströmt. Weiterhin können sich die Wärmeübertrager 33 bis 36 jeweils durch weitere geometrische Gestaltungen unterscheiden. So können beispielsweise die Rohranzahl, der Querschnitt der Rohre, die Ausgestaltung der Innen- und Außenwände der Rohre oder die Beabstandung der Rohre zueinander variieren.Diagram 30 shows measured values for four different heat exchangers 33, 34, 35 and 36 for different ratios from A B to A T. The heat exchangers 33 to 36 are each flowed through in countercurrent. Furthermore, the heat exchangers 33 to 36 can each differ in further geometrical designs. For example, the number of tubes, the cross-section of the tubes, the design of the inner and outer walls of the tubes or the spacing of the tubes from one another can vary.

Es ist zu erkennen, dass insbesondere bei einem Verhältnis von AB zu AT oberhalb von 15% und unterhalb von 65% die prozentuale Reduktion des Kühlmittelbedarfs erhöht ist im Vergleich zu den Verhältnissen von AB zu AT unterhalb von 15% und oberhalb von 65%. Das Verhältnis von 15% ist durch die gestrichelte Linie mit dem Bezugszeichen 50 markiert. Das Verhältnis von 65% ist mit der gestrichelten Linie mit dem Bezugszeichen 51 markiert.It can be seen that, in particular with a ratio of A B to A T above 15% and below 65%, the percentage reduction in the coolant requirement is increased compared to the ratios of A B to A T below 15% and above 65%. The ratio of 15% is marked by the dashed line with the reference number 50. The ratio of 65% is marked with the dashed line with the reference symbol 51.

Insbesondere bei einem Verhältnis von AB zu AT im Bereich von 30% bis 50% ist die prozentuale Reduktion des Kühlmittelbedarfs besonders hoch. Das Verhältnis von 30% ist mit der gestrichelten Linie mit dem Bezugszeichen 52 markiert und das Verhältnis von 50% mit der gestrichelten Linie mit dem Bezugszeichen 53. Die Markierung der Verhältnisse 15%, 30%, 50% und 65% gilt mit denselben Bezugszeichen 50, 52, 53 und 51 auch für die nachfolgende Figur 6.In particular with a ratio of A B to A T in the range from 30% to 50%, the percentage reduction in the coolant requirement is particularly high. The ratio of 30% is marked with the dashed line with the reference symbol 52 and the ratio of 50% with the dashed line with the reference symbol 53. The marking of the ratios 15%, 30%, 50% and 65% applies with the same reference symbol 50 , 52, 53 and 51 also for the following Figure 6 ,

Daraus folgt, dass bei einem Verhältnis der Querschnittsflächen von AB zu AT im Bereich von 30% bis 50% eine besonders starke Reduktion des Kühlmittelbedarfs für unterschiedliche Wärmeübertrager 33 bis 36 erreicht werden kann. Dies führt zu einem besonders effizienten Betrieb der jeweiligen Wärmeübertrager 33 bis 36 mit einem hohen thermodynamischen Wirkungsgrad.It follows that with a ratio of the cross-sectional areas from A B to A T in the range from 30% to 50%, a particularly strong reduction in the coolant requirement for different heat exchangers 33 to 36 can be achieved. This leads to a particularly efficient operation of the respective heat exchangers 33 to 36 with a high thermodynamic efficiency.

Die prozentuale Reduktion des Kühlmittelbedarfs für die einzelnen Wärmeübertrager 33 bis 36 folgt mit ansteigendem Verhältnis zwischen AB und AT einer kuppelförmigen nach oben gewölbten Kurve im Diagramm 30. Bei einem geringen Verhältnis von AB zu AT unterhalb von 15% ist die Kühlmittelreduktion besonders niedrig und nimmt hin zu einem Verhältnis zwischen 30% und 50% zu. Oberhalb von 50% nimmt die Kühlmittelreduktion schließlich wieder ab.The percentage reduction in the coolant requirement for the individual heat exchangers 33 to 36 follows, with increasing ratio between A B and A T, a dome-shaped curve that curves upwards in diagram 30. With a low ratio of A B to A T below 15%, the coolant reduction is special low and increases towards a ratio between 30% and 50%. The coolant reduction finally decreases again above 50%.

Figur 6 zeigt ein Diagramm 40, wobei auf der X-Achse 41 das Verhältnis von AB zu AT in Prozent aufgetragen ist und auf der Y-Achse 42 der Druckverlust in Prozent. In dem Diagramm 40 sind ebenfalls Messwerte für vier Wärmeübertrager 33, 34, 35 und 36 dargestellt. Die X-Achse 41 bildet analog der X-Achse 31 der Figur 5 einen Wertebereich von Verhältnissen von 0% im Schnittpunkt der Achsen 41, 42 und maximal 90% am rechten Ende der X-Achse 41 ab. Die Y-Achse 42 zeigt prozentual den jeweils am Wärmeübertrager 33 bis 36 entstehenden Druckverlust. Die Y-Achse 42 zeigt Werte von 0% Druckverlust am Schnittpunkt der Achsen 41, 42 bis zu maximal 120% Druckverlust am oberen Endbereich der Y-Achse 42. Die Y-Achse 42 zeigt insbesondere keine absoluten Werte, sondern über die prozentuale Darstellung relative Werte der einzelnen Wärmeübertrager 33 bis 36 zueinander. Figure 6 shows a diagram 40, wherein the ratio of A to B T A in percent is plotted on the X-axis 41 and the Y-axis 42 of the pressure loss in percent. Diagram 40 also shows measured values for four heat exchangers 33, 34, 35 and 36. The X axis 41 is analogous to the X axis 31 of the Figure 5 a value range of ratios of 0% at the intersection of the axes 41, 42 and a maximum of 90% at the right end of the X-axis 41. The Y-axis 42 shows the pressure loss occurring at the heat exchanger 33 to 36 as a percentage. The Y axis 42 shows values from 0% pressure loss at the intersection of the axes 41, 42 up to a maximum of 120% pressure loss at the upper end region of the Y-axis 42. In particular, the Y-axis 42 does not show any absolute values, but relative values of the individual heat exchangers as a percentage 33 to 36 to each other.

Es ist zu erkennen, dass der Druckverlust in einem Bereich, in welchem das Verhältnis von AB zu AT zwischen 15% und 65% liegt, niedriger ist als oberhalb von 65% und unterhalb von 15%. Der Bereich, in welchem das Verhältnis von AB zu AT zwischen 30% und 50% liegt, weist die niedrigsten Werte für den Druckverlust auf.It can be seen that the pressure loss in a range in which the ratio of A B to AT is between 15% and 65% is lower than above 65% and below 15%. The range in which the ratio of A B to A T is between 30% and 50% has the lowest values for the pressure loss.

Wärmeübertrager, welche ein Verhältnis der Querschnittsflächen von 15% bis 65% und dabei bevorzugt von 30% bis 50% aufweisen, sind daher besonders gut geeignet, um mit einem möglichst geringen Kühlmittelbedarf bei einem möglichst geringen Druckverlust einen hohen thermodynamischen Wirkungsgrad zu erzielen. Auch sind Wärmeübertrager dieser Art geeignet, um eine hohe Kühlleistung zu erzeugen.Heat exchangers which have a ratio of the cross-sectional areas of 15% to 65%, and preferably 30% to 50%, are therefore particularly well suited to achieve a high thermodynamic efficiency with the lowest possible coolant requirement and the lowest possible pressure loss. Heat exchangers of this type are also suitable for generating a high cooling capacity.

Über das Verhältnis der Querschnittsflächen AB zu AT wird insbesondere die Dimension des Bypasses relativ zur gesamten vom Kühlmittel durchströmten Fläche bestimmt. Wie die Diagramme 30, 40 der Figuren 5 und 6 zeigen, ist bevorzugt ein Verhältnis von AB zu AT zwischen 30% und 50% zu erreichen, um einen möglichst hohen thermodynamischen Wirkungsgrad bei einem möglichst geringen Kühlmittelbedarf und einem möglichst geringen Druckverlust zu erreichen. Ein geringer Druckverlust ist vorteilhaft, da die zur Förderung des Kühlmittels benötigte Pumpleistung geringer ausfallen kann, wodurch die entsprechende Pumpe vorzugsweise kleiner dimensioniert werden kann.The ratio of the cross-sectional areas A B to A T determines in particular the dimension of the bypass relative to the entire area through which the coolant flows. Like diagrams 30, 40 of Figures 5 and 6 show, a ratio of A B to A T between 30% and 50% is preferably to be achieved in order to achieve the highest possible thermodynamic efficiency with the lowest possible coolant requirement and the lowest possible pressure loss. A low pressure loss is advantageous since the pump power required to deliver the coolant can be lower, which means that the corresponding pump can preferably be dimensioned smaller.

Claims (11)

  1. A heat exchanger (20) for an exhaust gas line of a motor vehicle, with a housing (2) and with a plurality of tubes (3) through which an exhaust gas can flow and around which a coolant can flow, wherein the tubes (3) are arranged within the housing (2) and the housing (2) has a coolant inlet (5, 9) and a coolant outlet (6), wherein the exhaust gas and the coolant can flow through the heat exchanger (20) in counter-current with respect to one another, wherein the internal volume of the housing (2) is separated into a first flow path (22) and a second flow path (21) and the tubes (3) are arranged within the second flow path (21), wherein the first flow path (22) forms a bypass to the second flow path (21), characterised in that the cross-sectional area (AB) of the first flow path (22) is between 15% and 65%, preferably between 30% and 50%, of the total cross-sectional area (AT) of the housing (2) through which the coolant can flow, wherein the total cross-sectional area (AT) of the housing (2) through which the coolant flows is formed by the cross-sectional area (AB) of the first flow path (22) and the cross-sectional area of the second flow path (21) minus the cross-sectional area occupied by the tubes (3).
  2. The heat exchanger (20) according to claim 1, characterised in that the tubes (3) have a rectangular cross-section, wherein the width of the cross-section is between 13 mm and 17 mm, respectively, and the height is between 4 mm and 5 mm.
  3. The heat exchanger (20) according to one of the preceding claims, characterised in that the tubes (3) are arranged spaced apart from each other in such a manner that the central axes of the tubes (3) are spaced apart from each other by 14.5 mm to 18.5 mm in width and are spaced apart from each other by 5.5 mm to 6.5 mm in height.
  4. The heat exchanger (20) according to one of the preceding claims, characterised in that the first flow path (22) is thermally insulated from the second flow path (21) and/or the housing (2) and/or the tubes (3) and or the coolant flowing around the tubes (3) .
  5. The heat exchanger (20) according to one of the preceding claims, characterised in that the coolant inlet (5, 9) and the inflow side (4) of the exhaust gas are arranged in the main extension direction of the tubes (3) in opposite end regions of the housing (2) .
  6. The heat exchanger (20) according to one of the preceding claims, characterised in that the tubes (3) have turbulence-generating means on their inner face and/or on their outer face.
  7. The heat exchanger (20) according to one of the preceding claims, characterised in that the inflow direction and/or the outflow direction of the coolant respectively forms a normal to the main throughflow direction of the tubes (3).
  8. The heat exchanger (20) according to one of the preceding claims, characterised in that the first flow path (22) is formed on one of the inner faces of the housing (2) and is separated from the second flow path (21) by a wall or is separated from the second flow path (21) by a channel (23).
  9. The heat exchanger (20) according to claim 8, characterised in that the wall has one or more openings which respectively form a coolant crossing between the first flow path (22) and the second flow path (21).
  10. The heat exchanger (20) according to claim 8, characterised in that the channel (23) has a shorter extension along the main extension direction of the tubes (3) than the interior of the housing (2), wherein the open end regions of the channel (23) end freely in the internal volume of the housing (2).
  11. The heat exchanger (20) according to one of the preceding claims, characterised in that the coolant can flow from the coolant inlet (5, 9) through the first flow path (22) into the second flow path (21) and/or that the coolant can flow out of the first flow path (22) through the second flow path (21) to the coolant outlet (6).
EP15727672.6A 2014-06-25 2015-06-10 Heat exchanger Active EP3161402B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014212242.2A DE102014212242A1 (en) 2014-06-25 2014-06-25 Heat exchanger
PCT/EP2015/062939 WO2015197362A1 (en) 2014-06-25 2015-06-10 Heat exchanger

Publications (2)

Publication Number Publication Date
EP3161402A1 EP3161402A1 (en) 2017-05-03
EP3161402B1 true EP3161402B1 (en) 2020-01-22

Family

ID=53366040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15727672.6A Active EP3161402B1 (en) 2014-06-25 2015-06-10 Heat exchanger

Country Status (3)

Country Link
EP (1) EP3161402B1 (en)
DE (1) DE102014212242A1 (en)
WO (1) WO2015197362A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2676708B1 (en) * 2017-01-23 2019-05-14 Valeo Termico Sa HEAT EXCHANGER FOR GASES

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971617B1 (en) * 2002-10-02 2010-07-22 히노 지도샤 가부시키가이샤 Egr cooler
DE102006005246A1 (en) 2005-02-03 2006-08-17 Behr Gmbh & Co. Kg Exhaust gas heat exchanger e.g. exhaust gas cooler, for motor vehicle, has valve device, controlling exhaust gas flow, including valve closing unit fixed to valve shaft that is loadable by torsion spring supported on shaft and valve device
DE102008038629B4 (en) 2008-08-12 2019-12-05 Mahle International Gmbh Exhaust gas cooler for a motor vehicle
DE102009034723A1 (en) 2009-07-24 2011-01-27 Behr Gmbh & Co. Kg Heat exchanger and charging system
DE102010054412A1 (en) * 2010-12-14 2012-06-14 Daimler Ag Exhaust gas heat exchanger of an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015197362A1 (en) 2015-12-30
EP3161402A1 (en) 2017-05-03
DE102014212242A1 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
DE102008036222B3 (en) Heat transfer unit for an internal combustion engine
EP3169964B1 (en) Heat exchanger
DE112015004523T5 (en) Heat exchanger with self-retaining bypass seal
EP1996888B1 (en) Heat exchanger for a motor vehicle
EP1994349B1 (en) Heat transfer unit
EP2413080A2 (en) Cooling device for a combustion engine
EP2678627B1 (en) Exhaust gas cooler
DE112013007041B4 (en) Heat exchanger
EP2863157B1 (en) Heat exchanger
DE102010040292A1 (en) Heat exchanger with a flow deflector and method of operation thereof
DE102013220031A1 (en) Heat exchanger
DE102013114612A1 (en) EGR cooler and EGR cooler device using the same
DE102015110974B4 (en) Exhaust gas heat exchanger with several heat exchanger channels
EP0200809A2 (en) Oil filter having a heat exchanger integrated therein
EP3014207B1 (en) Heat exchanger
EP3161402B1 (en) Heat exchanger
EP2201639B1 (en) Battery module
EP3066407B1 (en) Heat exchanger
DE102016113137A1 (en) Gas-fluid counterflow heat exchanger
WO2016116345A1 (en) Stacked-plate heat exchanger
DE102014208259A1 (en) Cooling device for cooling a fluid medium, exhaust gas recirculation system for an internal combustion engine and internal combustion engine
EP3203173B1 (en) Exhaust gas heat exchanger
DE102019220406A1 (en) Heat exchanger and heat exchanger arrangement with several heat exchangers
DE102012111928A1 (en) Heat exchanger for an internal combustion engine
DE102013211221A1 (en) Heat exchanger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190827

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MERCADER, DAVID

Inventor name: MAUCHER, ULRICH

Inventor name: STREHLAU, ARTHUR

Inventor name: HOLDENRIED, JENS

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191206

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1227175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011593

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200522

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011593

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1227175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9