EP3155674A2 - Combinatorial material system for ion exchange membranes, and use of said material system in electrochemical processes - Google Patents

Combinatorial material system for ion exchange membranes, and use of said material system in electrochemical processes

Info

Publication number
EP3155674A2
EP3155674A2 EP15763190.4A EP15763190A EP3155674A2 EP 3155674 A2 EP3155674 A2 EP 3155674A2 EP 15763190 A EP15763190 A EP 15763190A EP 3155674 A2 EP3155674 A2 EP 3155674A2
Authority
EP
European Patent Office
Prior art keywords
membrane
membranes
polymer
groups
pbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP15763190.4A
Other languages
German (de)
French (fr)
Inventor
Jochen Kerres
Carlo Morandi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAERING, THOMAS
Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Original Assignee
Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart filed Critical Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Publication of EP3155674A2 publication Critical patent/EP3155674A2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Multi-use embranen (use as AEM, H 3 P0 4 -doped HT membranes, HT-HyS electrolysis membranes, membranes as separators for redox-flow batteries)
  • a halomethylated polymer with a basic polymer (eg PBI: F 6 PBI or PBIOO) in a dipolar aprotic solvent such as DMSO or DMAc, NM P, etc.
  • a dipolar aprotic solvent such as DMSO or DMAc, NM P, etc.
  • a halomethylated polymer with a PBI (preferably ABPBI, F 6 PBI or PBIOO) in DMAc, cooling to 0-5 ° C., addition of any tertiary amine (eg TEA, DABCO, ABCO), rapid homogenization and knife coating, Evaporation at 60-150 ° C, post-treatment in sulfuric acid (60-90% H 2 S0 4 ), washing the film -> covalently ionically cross-linked acid-base blend membrane
  • Phosphoric acid-doped polybenzimidazole (PBI) for use in fuel cells is the work of Savinell et al. back 1 .
  • the advantage of the PBI / H 3 P0 4 composite membranes is that instead of water, the phosphoric acid takes over the H + line 2 , which makes this type of membrane suitable for use at fuel cell operating temperatures between 100 and 200 ° C.
  • Disadvantage of this type of membrane is the possible bleeding of the phosphoric acid from the composite membrane when the fuel cell temperature drops below 100 ° C, and condensing product water from the membrane flours phosphoric acid 3 . The liberated phosphoric acid can then cause severe corrosion damage in the fuel cell system.
  • H 3 P0 4 -doped PBI membranes Another disadvantage of H 3 P0 4 -doped PBI membranes is the chemical degradation of the PBI in the fuel cell 4 .
  • Some strategies have been implemented in the R & D of this type of membrane to reduce the degradation of PBI in fuel cell operation.
  • One strategy is the preparation of acid-base blend membranes from PBI and acidic polymers, wherein the acidic polymer takes on the role of an ionic crosslinker by proton transfer from the acidic polymer to the PBI-imidazole.
  • Acid-base blend membranes were researched and developed in the inventor's working group 5 and, in part, modified in collaboration with Q. Li's research group at the Danish Technical University (DTU) for medium-temperature membranes in an EU project.
  • DTU Danish Technical University
  • base-acid blend membranes were prepared from different PBIs such as PBIOO and F 6 PBI with phosphonated poly (pentafluorostyrene) 7 and doped with H 3 P0 4 8 .
  • the blend membranes had excellent chemical stabilities: one of the membranes (blend of 50 wt% PBIOO and 50 wt% PWN) showed a mass loss of only 2% even after 144 h in Fenton's reagent, whereas pure PBIOO after the same storage time in Fenton's reagent had a mass loss of 8%.
  • Another way to increase the chemical stability of PBI-type membranes is to prepare covalently cross-linked PBI membranes described by Q. Li et al. and other research groups.
  • the PBI can be crosslinked with a low molecular weight crosslinker such as bisphenol A bisepoxide 9 , divinyl sulfone 10 or a high molecular weight crosslinker such as chloromethylated PSU 11 or bromomethylated polyether ketone 12 .
  • a low molecular weight crosslinker such as bisphenol A bisepoxide 9 , divinyl sulfone 10 or a high molecular weight crosslinker such as chloromethylated PSU 11 or bromomethylated polyether ketone 12 .
  • Further attempts to increase the stability of PBI membranes relate to the preparation of nanoparticle-modified PBI membranes 13 , or the preparation of partially sulfonated PBI, which crosslinks intra- or intermolecularly ionically by proton transfer from the acidic group to the imidazole group 14 15 .
  • a variety of polymers are currently used as backbonead polymers for the production of novel AEMs, including ethylene-tetrafluoroethylene, polyetheretherketones, polyethersulfone, poly (ether sulfone ketone). , Polyethylene, polyphenylene oxide, polystyrene, polyvinyl acetate, poly (vinylbenzyl chloride), polyvinylidene fluoride.
  • Table 1 gives a comprehensive compilation of relevant non-commercial AEMs, which are also juxtaposed with the Tokuyama A201 benchmark membrane.
  • the corresponding IEC value is 1.7 meq-g -1 .
  • the benchmark membrane was characterized in the context of this invention under the same measuring conditions.
  • Covalently and / or ionically crosslinked PBI blend membranes which are prepared with halomethylated and optionally sulfonated and / or phosphonated polymers and tailored in terms of their properties, are described in the context of this invention based on the state of R & D.
  • the blend membranes are additionally crosslinked covalently, for example by adding a low and / or a macromolecular crosslinker.
  • the membranes can be used in electrochemical processes as low-temperature cation exchange membranes, low-temperature anion exchange membranes (temperature range without pressure up to 100 ° C.
  • redox flow batteries for example all-vanadium, iron-chromium, etc.
  • the anion exchange membranes consist of the following components: a) Any polybenzimidazole (PBI) as a matrix polymer, examples of which are as follows: Polyphenzimidazoles as ABPBI, PBI Celazol, p-PBI, F 6 PBI, SO 2 PBI, and PBIOO. Characteristic of the polybenzimidazoles used is the recurring occurrence of the benzimidazole unit in the main chain or side chain of the polymer.
  • PBI polybenzimidazole
  • alkyl halide (monohaloalkane, dihaloalkane, oligohaloalkane, monobenzyl halide, dibenzyl halide, tribenzyl halide, etc.), for example, diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
  • diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
  • diiodoalkane such as diiodo
  • the anion exchange groups of the blend are in molar excess compared to the other functional groups such.
  • a dipolar aprotic solvent NM P, DMAc, DMF, DMSO, NEP, sulfolane, etc.
  • the chemical compound containing tertiary nitrogen may contain one, two or more tertiary nitrogen atoms.
  • the tertiary nitrogen compound may also be an oligomer (eg a polyvinylpyridine). Thereafter, the polymer solution is laced on a substrate, sprayed or poured and the solvent evaporated. Thereafter, the resulting membrane is aftertreated:
  • membranes consist of a molar excess of a polybenzimidazole, where the polybenzimidazole may be differentially crosslinked to limit its mineral acid or water uptake.
  • the membranes may consist of the following components: a) a polybenzimidazole (PBI) as matrix polymer (as example ABPBI, PBI Celazol, p-PBI, F 6 PBI, SO 2 PBI, PBIOO and other polybenzimidazoles)
  • alkyl halide (monohaloalkane, dihaloalkane, oligohaloalkane, monobenzyl halide, dibenzyl halide, tribenzyl halide, etc.), for example, diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
  • diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
  • Covalently cross-linked PBI blend membranes can consist of the components a), b), c), d) and optionally a polymeric sulfinate RSO 2 X, covalently-ionically cross-linked membranes additionally contain cation exchange polymers listed under e).
  • the membranes are doped with phosphoric acid or phosphonic acid.
  • the Phosphor Textre- / Phosphonklare mask by the concentration of the acid, by the bath temperature and by the residence time of the membrane in the mineral acid such.
  • B. phosphoric acid / PhosphonTalkrebad be controlled.
  • a covalently cross-linked PBI is obtained, for example, by: a) mixing the PBI with a halomethylated polymer, the halomethylated polymer reacting with one or both N atoms of the imidazole group of the PBI by alkylation ( Figure 1).
  • a covalently ionically crosslinked membrane is obtained by a) Before the evaporation of the solvent, a phosphonated and / or sulfonated polymer is added to the polymer mixture.
  • the membrane is placed in a solution containing tris (trimethylsilyl) phosphite.
  • part of the aromatic F is replaced by Phosphonklasilylester groups, which can be easily hydrolyzed by boiling with water to free phosphonic acid groups.
  • Nucleophilic replaceable aromatic F bonds can also be replaced by other functional groups, for example by thiol groups, which can be used in a further step after for crosslinking.
  • Acid-excess blend membranes for H 2 fuel cells, DMFC, PEM electrolysis, redox-flow batteries
  • a polybenzimidazole (PBI) as a matrix polymer (as example ABPBI, PBI Celazol, p-PBI, F 6 PBI, SO 2 PBI, PBIOO and other polybenzimidazoles)
  • alkyl halide optionally an alkyl halide (monohaloalkane, dihaloalkane, oligohaloalkane, monobenzyl halide, dibenzyl halide, tribenzyl halide, etc.), for example diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
  • diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
  • the acidic groups are in molar excess, so that these membranes are cation-conductive.
  • the blend membranes are covalently-ionically crosslinked when they the components a), b) c) and optionally d) and e).
  • Membranes are claimed which, depending on the proportion of the respective main blend components, can be used in various electrochemical processes.
  • the tabular overview lists the main membrane types and their respective fields of application.
  • the membranes according to the invention have excellent mechanical and chemical stability and, at the same time, excellent ionic conductivities.
  • Table 1 shows the values of comparative membranes from the prior art.
  • the membranes are laced on glass plates for the sake of simplicity.
  • the membranes may also be applied to other substrates and substrates, e.g. on foils or metal strips to be produced from roll to roll or in suspended dryers.
  • the membranes can also be deposited on substrates without them necessarily having to be removed from them again.
  • An example is graphite felts, nonwovens, fabrics or porous materials, such as films with pores or felts. All listed aftertreatments then take place with the substrate on which the membrane was deposited or was formed after removal of the solvent. In this case, the membrane no longer separates from the carrier material, which is wanted.
  • the solvent is removed. This happens here by evaporation at 140 ° C.
  • the solvent will also evaporate at lower or higher temperatures, e.g. in the temperature range from 30 ° C to 180 ° C.
  • Example 1 HTPEM from PBI, halomethylated polymer (covalently crosslinked) (membrane MJK 1885)
  • Example 2 HTPEM of PBI, Halomethylated Polymer, Tertiary Amine, Sulfonated Polymer (Covalently-Ionically Crosslinked) (MJK-1959)
  • Example 3 AEM from PBI, halomethylated polymer, tertiary amine, sulfonated polymer (covalently ionically crosslinked] (membrane MJK-1932)
  • 0.5 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.5 g of PPOBr as 5% solution in DMAc and 0.107 g of the sulfonated polymer sPPSU and 1.08 ml of the tertiary amine N-methylmorpholine (polymeric blend components see Figure 10).
  • a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. Thereafter, the membrane is characterized as follows:
  • Thickness 105 ⁇
  • Example 4 CEM of Sulfonated Polymer, PBI, Halomethylated Polymer, Tertiary Amine (Covalently-Ionically Crosslinked) (Membrane MJK-1957)
  • 0.12 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.12 g of PARBrl as a 5% solution in DMAc and 2 g of the sulfonated polymer sPPSU and 0.195 g of 1-ethyl-2-methylimidazole (see Polymer Blend Components Figure 12).
  • a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C.
  • reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation covalent cross-linking bridges are formed.
  • Example 5 AEM from sulfonated polymer, PBI, halomethylated polymer, tertiary amine (covalently-ionically crosslinked)
  • a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. Thereafter, the membrane is characterized as follows:
  • Example 6 AEM from sulfonated polymer, F 6 PBI, halomethylated / partially fluorinated polymer, tertiary mono- and diamine (covalently-ionically crosslinked)
  • a membrane is poured from this solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn. Subsequently, the membrane is dissolved under water and aftertreated as follows: 48 hours in a mixture of 50/50 DABCO / EtOH at 80 ° C, then 48 hours in demineralized water at 90 ° C.
  • covalent cross-linking bridges are formed. The diamine further covalently cross-links the membrane.
  • Figure 14 shows the degree of crosslinking as a function of the SAC content in the polymer solution for NMM-DABCO quaternized membranes from PAK18r-60-F 6 PBI.
  • Example 7 AEMs of PBIOO, Halomethylated Polymer, Alkylimidazole (Covalently Crosslinked)
  • a membrane is poured in each case from the polymer solution onto a Petri dish, and the solvent is removed in a circulating air drying oven at 80.degree. Subsequently, the membranes are removed under water and rinsed for 48 hours in deionized water at 90 ° C.
  • covalent cross-linking bridges are formed.
  • Figure 15 shows the comparison of the chloride conductivities (1 M NaCl, RT) of the alkylimidazole quaternized PPO-PBIOO membranes and the commercial Tokuyama membrane A201 (development code A006).
  • Example 8 AEMs of (sulfonated polymer,) F 6 PBI, halomethylated polymer, tertiary mono- and diamine (covalently and / or ionically crosslinked (Figure 17)
  • a membrane is poured from the solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn.
  • the membrane is then removed under water and after-treated as follows: 48 hours in TMEDA (1 d RT, ld 50 ° C), then 48 hours in deionized water at 90 ° C.
  • a membrane is poured from the solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn.
  • the membrane is then dissolved under water and after-treated as follows: 48 hours in TMEDA (1 d RT, id 50 ° C, then 48 hours in demineralized water at 60 ° C.)
  • IEC value mmol / g: k. A. k. A.
  • Example 9 AEMs of sulfonated polymer F 6 PBI, halomethylated polymer, tertiary mono- and diamine (covalently ionically crosslinked) -> 44, 45, 46
  • 0.2025 g of F 6 PBI is added as a 5% solution in DMAc with 0.2025 g of PPOBr as a 5% solution in DMAc and, depending on the membrane, with 0.02025 g of SAC (44-PPO-50-F6PBI-SAC-5 -NMM-DABCO), 0.0405 g SAC (45-PPO-50-F6PBI-SAC-10-NMM-DABCO) or 0.06075 g SAC (46-PPO-50-F6PBI-SAC-15-NMM-DABCO ) as a 5% solution in DMAc and 0.59 ml of the tertiary monoamine N-methylmorpholine mixed (ionic-covalently cross-linked acid-base blends)
  • Example 10 AEMs of sulfonated polymer FePBI, halomethylated polymer, tertiary monoamine [covalently ionic crosslinked] -> 71, 72, 73, 74, 75
  • 0.2025 g of F 6 PBI are dissolved as a 5% solution in DMAc with 0.2025 g of PPOBr as a 5% solution in DMAc and, depending on the membrane, with 0.02025 g of SAC (71-PPO-50-F6PBI-SAC-5).
  • a membrane is poured from the solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn.
  • the membrane is then removed under water and after-treated as follows: 48 hours in 15% NMM in EtOH (1 d RT, 1 d 50 ° C), then 48 hours in demineralized water at 90 ° C.
  • Table 8 lists the compositions of various AEM blends, and Table 9 lists some of their properties.
  • the membranes are due to their excellent properties, conductivity and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cell Separators (AREA)

Abstract

Described is a method for producing covalently and/or ionically cross-linked blend membranes from a halomethylated polymer, a polymer comprising tertiary N-basic groups, preferably polybenzimidazole, and, optionally, a polymer comprising cation exchanger groups such as sulfonic acid groups or phosphonic acid groups. The membranes can be tailor-made in respect of the properties thereof and are suitable, for example, for use as cation exchanger membranes or anion exchanger membranes in low-temperature fuel cells or low-temperature electrolysis or in redox flow batteries, or - when doped with proton conductors such as phosphoric acid or phosphonic acid - for use in medium-temperature fuel cells or medium-temperature electrolysis.

Description

Kombinatorisches Materialsystem für  Combinatorial material system for
Ionenaustauschermembranen und dessen Ion exchange membranes and its
Verwendung in elektrochemischen Prozessen Use in electrochemical processes
Zusammenfassung Summary
Multi-Use- embranen (Verwendung als AEM, H3P04-dotierte HT-Membranen, HT-HyS- Elektrolyse-Membranen, Membranen als Separatoren für Redox-flow Batterien) Multi-use embranen (use as AEM, H 3 P0 4 -doped HT membranes, HT-HyS electrolysis membranes, membranes as separators for redox-flow batteries)
Mischung eines halomethylierten Polymers mit einem basischen Polymer (z. B. PBI: F6PBI oder PBIOO) in einem dipolar-aprotischen Lösungsmittel wie DMSO oder DMAc, NM P, etc. Kovalente Vernetzung durch Erhitzen auf 80-180 °C für 2-24 Stunden (1-oder 2-seitige Imidazolierung) Mixture of a halomethylated polymer with a basic polymer (eg PBI: F 6 PBI or PBIOO) in a dipolar aprotic solvent such as DMSO or DMAc, NM P, etc. Covalent crosslinking by heating to 80-180 ° C for 2- 24 hours (1 or 2 sided imidazolation)
Optional nachträgliche Sulfonierung der Polymerfilme durch Einlagerung in 60-90 %ige H2S04 bei T=25-180 °C für 0,5-24 Stunden (siehe Schwefelsäure-nachbehandelte HyS-Elektrolyse- Membranen) -> es entstehen sowohl ionisch als auch kovalent vernetzte Blendmembranen) Mischung eines partiell phosphonierten Polymers (neutralisiert mit einem Amin) mit einem Polybenzimidazol (PBI) (vorzugsweise PBIOO, ABPBI, F6PBI oder Celazol®/Hozol®), Zugabe eines Bisphenols oder Bisthiophenols (z. B. 4,4'-Diphenol oder TBBT und weitere Zugabe eines Amins bis Bis(thio)phenol komplett neutralisiert (Farbänderung der Lösung), Rakeln der Lösung und Abdampfen Lösungsmittel bei 90-170°C, gefolgt von l-24Stunden Erhitzung bei 100-200°C, zur kovalenten Vernetzung von F durch Thiolat- oder Phenolat- Gruppen(nucleophile Substitution) Optional subsequent sulfonation of the polymer films by incorporation in 60-90% H 2 S0 4 at T = 25-180 ° C for 0.5-24 hours (see sulfuric acid-treated HyS electrolysis membranes) -> arise both ionic and also covalently crosslinked blend membranes) mixture of a partially phosphonated polymer (neutralized with amine) (with a polybenzimidazole PBI) (preferably PBIOO, ABPBI, F 6 PBI or Celazol® / Hozol ®), addition of a bisphenol or Bisthiophenols (z. B. 4 , 4'-diphenol or TBBT and further addition of an amine to bis (thio) phenol completely neutralized (color change of the solution), squeezing the solution and evaporating solvent at 90-170 ° C, followed by l-24h heating at 100-200 ° C, for the covalent crosslinking of F by thiolate or phenolate groups (nucleophilic substitution)
Mischung eines halomethylierten Polymers mit einem PBI (bevorzugt ABPBI, F6PBI oder PBIOO) in DMAc, Abkühlung auf 0-5 °C, Hinzumischung eines beliebigen tertiären Amins (z. B. TEA, DABCO, ABCO), schnelle Homogenisierung und Rakeln, Abdampfen bei 60-150 °C, Nachbehandlung in Schwefelsäure (60-90 %ige H2S04), Waschen des Films -> Kovalent- ionisch vernetzte Säure-Base-Blendmembran Mixture of a halomethylated polymer with a PBI (preferably ABPBI, F 6 PBI or PBIOO) in DMAc, cooling to 0-5 ° C., addition of any tertiary amine (eg TEA, DABCO, ABCO), rapid homogenization and knife coating, Evaporation at 60-150 ° C, post-treatment in sulfuric acid (60-90% H 2 S0 4 ), washing the film -> covalently ionically cross-linked acid-base blend membrane
Mischung eines halomethylierten Polymers mit einem PBI (F6PBI oder PBIOO) in DMAc, Abkühlung auf -20 bis +5 °C, Hinzumischung eines Amins (z. B. TEA, DABCO, ABCO) und eines Diiodalkans, schnelle Homogenisierung und Rakeln, Abdampfen bei 90-130 °C, Nachbehandlung in Schwefelsäure (60-90 %ige H2S04), Waschen des Films -> Kovalent- ionisch vernetzte Säure-Base-Blendmembran Mixture of a halomethylated polymer with a PBI (F 6 PBI or PBIOO) in DMAc, cooling to -20 to + 5 ° C., addition of an amine (eg TEA, DABCO, ABCO) and a diiodoalkane, rapid homogenization and knife coating, Evaporation at 90-130 ° C, post-treatment in sulfuric acid (60-90% H 2 S0 4 ), washing the film -> covalently ionically cross-linked acid-base blend membrane
Mischung eines halomethylierten Polymers mit einem PBI (F6PBI oder PBIOO) in DMAc, Abkühlung auf 0-5 °C, Hinzumischung eines sulfonierten Polymers und eines Monoamins (NMM), schnelle Homogenisierung und Rakeln oder Gießen, Abdampfen bei 80-150 °C, Nachbehandlung in Diamin (TM EDA, DABCO) oder in Monoamin (NMM) bei RT-100 °C, Waschen des Films -> Kovalent-ionisch vernetzte Säure-Base-Blendmembranen. Mixture of a halomethylated polymer with a PBI (F 6 PBI or PBIOO) in DMAc, cooling to 0-5 ° C, addition of a sulfonated polymer and a monoamine (NMM), rapid homogenization and knife coating or pouring, evaporation at 80-150 ° C. , Aftertreatment in diamine (TM EDA, DABCO) or in monoamine (NMM) at RT-100 ° C, washing of the film -> covalently ionically cross-linked acid-base blend membranes.
Mischung eines halomethylierten Polymers mit einem PBI (F6PBI oder PBIOO) in DMAc, Abkühlung auf 0-5 °C, Hinzumischung (eines sulfonierten Polymers und) eines N-alkylierten oder -arylierten (Benz)lmidazols (Melm oder EtMelm), schnelle Homogenisierung und Rakeln oder Gießen, Abdampfen bei 80-150 °C, Waschen des Films Kovalent-ionisch vernetzte Säure-Base-Blends. Mixture of a halomethylated polymer with a PBI (F 6 PBI or PBIOO) in DMAc, cooling to 0-5 ° C, admixture (of a sulfonated polymer and) of an N-alkylated or arylated (benz) imidazole (Melm or EtMelm), fast Homogenization and Squeegee or pour, evaporate at 80-150 ° C, wash the film covalently ionically cross-linked acid-base blends.
Stand der Technik State of the art
Mit Phosphorsäure dotiertes Polybenzimidazol (PBI) zur Verwendung in Brennstoffzellen geht auf die Arbeiten von Savinell et al. zurück1. Vorteil der PBI/H3P04-Kompositmembranen ist, dass bei ihnen die Phosphorsäure anstatt Wasser die H+-Leitung übernimmt2, was die Anwendbarkeit dieses Membrantyps bei Brennstoffzellen-Betriebstemperaturen zwischen 100 und 200 °C möglich macht. Nachteil dieses Membrantyps ist das mögliche Ausbluten der Phosphorsäure aus der Kompositmembran, wenn die Brennstoffzellentemperatur unter 100 °C sinkt, und kondensierendes Produktwasser Phosphorsäuremoleküle aus der Membran schwemmt3. Die freigesetzte Phosphorsäure kann dann im Brennstoffzellensystem starke Korrosionsschäden verursachen. Ein weiterer Nachteil von H3P04-dotierten PBI-Membranen ist der chemische Abbau des PBI in der Brennstoffzelle4. Es wurden in der F&E dieses Membrantyps einige Strategien umgesetzt, um den Abbau des PBI im Brennstoffzellenbetrieb zu verringern. Eine Strategie ist die Herstellung von Säure- Base-Blendmembranen aus PBI und sauren Polymeren, wobei das saure Polymer die Aufgabe eines ionischen Vernetzers durch Protonenübertragung vom sauren Polymer auf das PBI-Imidazol übernimmt. Säure-Base-Blendmembranen wurden in der Arbeitsgruppe der Erfinder erforscht und entwickelt5 und, zum Teil, in Zusammenarbeit mit der Arbeitsgruppe von Q. Li an der Danish Technical University (DTU) für Mitteltemperaturmembranen im Rahmen eines EU-Projekts modifiziert. Es zeigte sich, dass die Basenüberschuss-Säure-Base-Blendmembranen bessere chemische Stabilitäten als reines PBI aufwiesen, was sich auf die ionischen Vernetzungsstellen in den Blendmembranen zurückführen lässt6. In der Arbeitsgruppe wurden Base-Säure-Blendmembranen aus unterschiedlichen PBIs wie PBIOO und F6PBI mit phosphoniertem Poly(pentafluorstyrol)7 hergestellt und mit H3P04 dotiert8. Es zeigte sich, dass die Blendmembranen exzellente chemische Stabilitäten aufwiesen: eine der Membranen (Blendmembran aus 50 Gew.-% PBIOO und 50 Gew.-% PWN) zeigte auch nach 144 h in Fentons Reagenz einen Massenverlust von lediglich 2 %, während reines PBIOO nach derselben Einlagerungszeit in Fentons Reagenz einen Massenverlust von 8 % aufwies. Ein weiterer Weg, um zu einer Erhöhung der chemischen Stabilität von PBI-Typ-Membranen zu gelangen, ist die Herstellung von kovalent vernetzten PBI-Membranen, die von Q. Li et al. und anderen Forschungsgruppen vorangetrieben wurde. Dabei kann das PBI mit einem niedermolekularen Vernetzer wie beispielsweise Bisphenol A-Bisepoxid9, Divinylsulfon10 oder einem hochmolekularen Vernetzer wie chlormethyliertem PSU11 oder brommethyliertem Polyetherketon12 vernetzt werden. Weitere Versuche zur Erhöhung der Stabilität von PBI-Membranen betreffen die Herstellung von mit Nanopartikeln modifizierten PBI-Membranen13, oder die Herstellung von teilweise sulfoniertem PBI, das intra- oder intermolekular ionisch vernetzt durch Protonenübertragung von der sauren Gruppe auf die Imidazolgruppe14 15. Auch von PBI, auf das Phosphonsäuregruppen enthaltende Seitenketten aufgepfropft werden, wobei sich zwischen der basischen PBI-Hauptkette und den sauren Seitenketten ionische Vernetzungsstellen bilden, wurde bereits berichtet16 17. Von den PBI-Membranen des Stands der Technik weisen dabei die von uns synthetisierten Blendmembranen aus PBI und Poly(2,3,5,6-Tetrafluorstyrol-4-phosphonsäure) die besten Stabilitäten gegen Radikalabbau auf (bestimmt ex-situ mittels des Fenton-Tests8). In der Literatur finden sich auch Blends aus Polybenzimidazol und dialkyliertem Polybenzimidazol, die als stabile Anionenaustauschermembranen Verwendung finden18 19,20.Eine Vielfalt verschiedener Polymere wird derzeit als Backbonepolymere für die Herstellung neuartiger AEMs eingesetzt: u.a. Ethylen-Tetrafluorethylen, Polyetheretherketone, Polyethersulfon, Poly(ethersulfonketon), Polyethylen, Polyphenylenoxid, Polystyrol, Polyvinylacetat, Poly(vinylbenzylchlorid), Polyvinylidenfluorid. Die Tabelle 1 gibt eine umfassende Kompilation über relevante nichtkommerzielle AEMs wieder, die auch der Benchmarkmembran Tokuyama A201 gegenübergestellt sind. Die 28 μΓΤΐ-dicke kommerzielle Tokuyama-Membran A201 (Entwicklungscorde A006) weist nach Herstellerangaben21 eine Hydroxidleitfähigkeit von ca. 40 mS-cm'1 (23 °C und RF= 90 %). Der entsprechende IEC-Wert beläuft sich auf 1,7 meq-g"1. Die Benchmarkmembran wurde im Rahmen dieser Erfindung unter den gleichen Messbedingungen mit charakterisiert. Phosphoric acid-doped polybenzimidazole (PBI) for use in fuel cells is the work of Savinell et al. back 1 . The advantage of the PBI / H 3 P0 4 composite membranes is that instead of water, the phosphoric acid takes over the H + line 2 , which makes this type of membrane suitable for use at fuel cell operating temperatures between 100 and 200 ° C. Disadvantage of this type of membrane is the possible bleeding of the phosphoric acid from the composite membrane when the fuel cell temperature drops below 100 ° C, and condensing product water from the membrane flours phosphoric acid 3 . The liberated phosphoric acid can then cause severe corrosion damage in the fuel cell system. Another disadvantage of H 3 P0 4 -doped PBI membranes is the chemical degradation of the PBI in the fuel cell 4 . Some strategies have been implemented in the R & D of this type of membrane to reduce the degradation of PBI in fuel cell operation. One strategy is the preparation of acid-base blend membranes from PBI and acidic polymers, wherein the acidic polymer takes on the role of an ionic crosslinker by proton transfer from the acidic polymer to the PBI-imidazole. Acid-base blend membranes were researched and developed in the inventor's working group 5 and, in part, modified in collaboration with Q. Li's research group at the Danish Technical University (DTU) for medium-temperature membranes in an EU project. It was shown that the base excess acid-base blend membranes had better chemical stabilities than pure PBI, which can be attributed to the ionic cross-linking sites in the blend membranes 6 . In the working group, base-acid blend membranes were prepared from different PBIs such as PBIOO and F 6 PBI with phosphonated poly (pentafluorostyrene) 7 and doped with H 3 P0 4 8 . It was found that the blend membranes had excellent chemical stabilities: one of the membranes (blend of 50 wt% PBIOO and 50 wt% PWN) showed a mass loss of only 2% even after 144 h in Fenton's reagent, whereas pure PBIOO after the same storage time in Fenton's reagent had a mass loss of 8%. Another way to increase the chemical stability of PBI-type membranes is to prepare covalently cross-linked PBI membranes described by Q. Li et al. and other research groups. In this case, the PBI can be crosslinked with a low molecular weight crosslinker such as bisphenol A bisepoxide 9 , divinyl sulfone 10 or a high molecular weight crosslinker such as chloromethylated PSU 11 or bromomethylated polyether ketone 12 . Further attempts to increase the stability of PBI membranes relate to the preparation of nanoparticle-modified PBI membranes 13 , or the preparation of partially sulfonated PBI, which crosslinks intra- or intermolecularly ionically by proton transfer from the acidic group to the imidazole group 14 15 . It has also been reported by PBI to which side chains containing phosphonic acid groups are grafted, forming ionic crosslinking sites between the basic PBI main chain and the acidic side chains 16 17 . Of the PBI membranes of the prior art, the blend membranes of PBI and poly (2,3,5,6-tetrafluorostyrene-4-phosphonic acid) synthesized by us have the best stability against radical degradation (determined ex-situ by means of the Fenton reaction). Tests 8 ). In the There are also references to blends of polybenzimidazole and dialkylated polybenzimidazole which are used as stable anion exchange membranes. 18 19,20 . A variety of polymers are currently used as backbonead polymers for the production of novel AEMs, including ethylene-tetrafluoroethylene, polyetheretherketones, polyethersulfone, poly (ether sulfone ketone). , Polyethylene, polyphenylene oxide, polystyrene, polyvinyl acetate, poly (vinylbenzyl chloride), polyvinylidene fluoride. Table 1 gives a comprehensive compilation of relevant non-commercial AEMs, which are also juxtaposed with the Tokuyama A201 benchmark membrane. The 28 μΓΤΐ thick commercial Tokuyama membrane A201 (development kit A006) has, according to the manufacturer 21, a hydroxide conductivity of about 40 mS-cm -1 (23 ° C. and RF = 90%). The corresponding IEC value is 1.7 meq-g -1 . The benchmark membrane was characterized in the context of this invention under the same measuring conditions.
Tabelle 1: Relevante Membranen für den Einsatz in Brennstoffzellen Table 1: Relevant membranes for use in fuel cells
- -
Beschreibung der Erfindung Description of the invention
Im Rahmen dieser Erfindung werden, auf dem Stand der F&E aufbauend, kovalent und/oder ionisch vernetzte PBI-Blendmembranen beschrieben, die mit halomethylierten sowie optional sulfonierten und/oder phosphonierten Polymeren hergestellt und bezüglich ihrer Eigenschaften maßgeschneidert sind. Gegebenenfalls werden die Blendmembranen noch zusätzlich kovalent vernetzt, beispielsweise durch Zugabe eines nieder- und/oder eines makromolekularen Vernetzers. Die Membranen sind, je nach gewählter Zusammensetzung, verwendbar in elektrochemischen Prozessen als Niedertemperatur-Kationenaustauschermembranen, Niedertemperatur-Anionenaustauscher- membranen (Temperaturbereich drucklos bis 100°C oder unter Druck bis 150°C), oder, dotiert mit Protonenleitern wie Phosphorsäure und/oder Phosphonsäuren, verwendbar im Mitteltemperaturbereich bis 220°C. Beispiel für elektrochemische Prozesse, in denen diese Membranen zur Verwendung kommen sollen, sind: a) Niedertemperatur-H2-Brennstoffzellen oder -Elektrolyse (0-100°C drucklos oder 0-130°C unter Druck) Covalently and / or ionically crosslinked PBI blend membranes, which are prepared with halomethylated and optionally sulfonated and / or phosphonated polymers and tailored in terms of their properties, are described in the context of this invention based on the state of R & D. Optionally, the blend membranes are additionally crosslinked covalently, for example by adding a low and / or a macromolecular crosslinker. Depending on the selected composition, the membranes can be used in electrochemical processes as low-temperature cation exchange membranes, low-temperature anion exchange membranes (temperature range without pressure up to 100 ° C. or under pressure up to 150 ° C.), or doped with proton conductors such as phosphoric acid and / or phosphonic acids , usable in the middle temperature range up to 220 ° C. Examples of electrochemical processes in which these membranes are to be used are: a) low-temperature H 2 fuel cells or electrolysis (0-100 ° C without pressure or 0-130 ° C under pressure)
b) Niedertemperatur-Direktbrennstoffzellen mit Brennstoffen aus der chemischen Gruppe der Alkohole wie Methanol, Ethanol, Ethandiol, Glycerin oder Etherbrennstoffen wie Dimethylether oder Diethylether oder verschiedenen Glymen (Glyme, Diglyme, Triglyme...) c) Mitteltemperatur-Brennstoffzellen oder -Elektrolyse (0-220°C)  b) low-temperature direct fuel cells with fuels from the chemical group of alcohols such as methanol, ethanol, ethanediol, glycerol or ether fuels such as dimethyl ether or diethyl ether or various glymes (glyme, diglyme, triglyme ...) c) medium temperature fuel cells or electrolysis (0 -220 ° C)
d) Mitteltemperatur-depolarisierte Elektrolysen (z. B. SGyElektrolyse)  d) Medium temperature depolarized electrolyses (eg SGyelectrolysis)
e) Redox-flow-Batterien (beispielsweise All-Vanadium, Eisen-Chrom, etc.)  e) redox flow batteries (for example all-vanadium, iron-chromium, etc.)
Im Folgenden sollen beispielhafte Membrantypen, die für die jeweiligen elektrochemischen Anwendungen geeignet sind, beschrieben werden. In the following, exemplary membrane types which are suitable for the respective electrochemical applications will be described.
Anionenaustauscher-Blendmembranen für Ph-Brennstoffzellen, DMFC, Redox-flow- Batterien, Alkalische Elektrolyse Anion exchange blend membranes for Ph fuel cells, DMFC, redox flow batteries, alkaline electrolysis
Die Anionenaustauschermembranen bestehen aus folgenden Komponenten: a) Einem beliebigen Polybenzimidazol (PBI) als Matrixpolymer, wobei beispielhaft nachfolgende Polbenzimidazole sind als ABPBI, PBI Celazol, p-PBI, F6PBI, S02PBI, und PBIOO. Kennzeichnend für die verwendeten Polybenzimidazole ist das wiederkehrende Vorkommen der Benzimidazol-Einheit in der Hauptkette oder Seitekette des Polymers. The anion exchange membranes consist of the following components: a) Any polybenzimidazole (PBI) as a matrix polymer, examples of which are as follows: Polyphenzimidazoles as ABPBI, PBI Celazol, p-PBI, F 6 PBI, SO 2 PBI, and PBIOO. Characteristic of the polybenzimidazoles used is the recurring occurrence of the benzimidazole unit in the main chain or side chain of the polymer.
b) Einem halomethylierten Polymer (Hauptkette beliebig, ausgewählt aus der Gruppe der Polystyrole und Polystyrol-Copolymere, Arylhauptketten-Polymere (beispielsweise Polyethersulfone, Polyetherketone, Polysulfone, Polybenzimidazole, Polyimide, Polyphenylenoxide, Polyphenylensulfide, sowie beliebigen Kombinationen als statistische Copolymere, Blockcopolymere, alternierende Copolymere), die die funktionelle Gruppe -CR2Hal mit R=Hal, Alkylrest, Arylrest und Hal=CI, Br, I tragen b) A halomethylated polymer (backbone randomly selected from the group of polystyrenes and polystyrene copolymers, aryl backbone polymers (for example, polyether sulfones, polyether ketones, polysulfones, polybenzimidazoles, polyimides, polyphenylene oxides, polyphenylene sulfides, and any combinations as random copolymers, block copolymers, alternating copolymers ) carrying the functional group -CR 2 Hal with R = Hal, alkyl, aryl and Hal = Cl, Br, I
c) Einem Alkylhalogenid (Monohalogenalkan, Dihalogenalkan, Oligohalogenalkan, Monobenzylhalogenid, Dibenzylhalogenid, Tribenzylhalogenid, etc.), Beispiel Diiodalkan wie Diiodpropan, Diiodbutan, Diiodpentan, Diiodhexan Diiodheptan, Diiodoctan, Diiodnonan, Diioddecan, etc.. d) Optional einem monoalkylierten Polybenzimidazol c) An alkyl halide (monohaloalkane, dihaloalkane, oligohaloalkane, monobenzyl halide, dibenzyl halide, tribenzyl halide, etc.), for example, diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodooctane, diiodononane, diiododecane, etc. d) optionally a monoalkylated polybenzimidazole
e) Einem beliebigen Polymer mit Kationenaustauschergruppen, z. B. S03X, P03X2, COOX, S02X und X=H, Alkalimetall, Erdalkalimetall, Ammonium, Imidazolium, Pyridinium e) Any polymer having cation exchange groups, e.g. B. S0 3 X, P0 3 X 2 , COOX, S0 2 X and X = H, alkali metal, alkaline earth metal, ammonium, imidazolium, pyridinium
Dabei sind die Anionenaustauschergruppen des Blends im molaren Überschuss gegenüber den anderen Funktionsgruppen wie z. B. Kationenaustauschergruppen. Die Anionenaustauscher- Polymerblendmembranen können dabei die Anionenaustauschergruppen erhalten auf folgende Weisen: a) Der Lösung der Mischung der obigen Polymere in einem dipolar-aprotischen Lösungsmittel (NM P, DMAc, DM F, DMSO, NEP, Sulfolan, etc.) wird eine basische Stickstoffverbindung wie z. B. tertiäres Amin NR3 (R=Alkyl, Aryl), Pyridin, (Tetralkyl)Guanidin, Alkyl- oder Arylimidazol hinzugefügt. Dabei kann die chemische Verbindung, die tertiären Stickstoff enthält, ein, 2 oder mehrere tertiäre Stickstoffatome enthalten. Die tertiäre Stickstoffverbindung kann dabei auch ein Oligomer sein (z. B. ein Polyvinylpyridin). Danach wird die Polymerlösung auf einem Substrat geräkelt, gesprüht oder gegossen und das Lösungsmittel abgedampft. Danach wird die entstandene Membran nachbehandelt:The anion exchange groups of the blend are in molar excess compared to the other functional groups such. B. cation exchange groups. The anion exchange polymer blend membranes can thereby obtain the anion exchange groups in the following ways: a) The solution of the mixture of the above polymers in a dipolar aprotic solvent (NM P, DMAc, DMF, DMSO, NEP, sulfolane, etc.) becomes a basic nitrogen compound such as For example, tertiary amine NR 3 (R = alkyl, aryl), pyridine, (tetralkyl) guanidine, alkyl or aryl imidazole added. In this case, the chemical compound containing tertiary nitrogen may contain one, two or more tertiary nitrogen atoms. The tertiary nitrogen compound may also be an oligomer (eg a polyvinylpyridine). Thereafter, the polymer solution is laced on a substrate, sprayed or poured and the solvent evaporated. Thereafter, the resulting membrane is aftertreated:
- Nachbehandlung in Wasser, um Chemikalien- und Lösungsmittelreste zu entfernen- After treatment in water to remove residual chemicals and solvents
- ggf. Nachbehandlung in verdünnter Alkali- oder Erdalkalimetallhydroxidlösung zum Austausch der Hal-Gegenionen gegen OH~-lonen- If necessary, post-treatment in dilute alkali or alkaline earth metal hydroxide solution to replace the Hal counterions against OH ~ ions
- ggf. Alkylierung der restlichen tertiären N-Gruppen (Imidazol, Guanidin) mit einem nicht- cancerogenen Alkylierungsmitteloptionally alkylating the remaining tertiary N groups (imidazole, guanidine) with a non-carcinogenic alkylating agent
- Waschen mit Wasser, um Chemikalien- und Lösungsmittelreste zu entfernen - Wash with water to remove residual chemicals and solvents
b) Die Mischung der obigen Polymere in einem dipolar-aprotischen Lösungsmittel wird geräkelt oder gegossen und das Lösungsmittel entfernt. Danach werden die Stickstoffgruppen der entstandenen Membran quaternisiert durch Einlegen in ein tertiäres Amin, in eine Aminlösung oder in eine Mischung verschiedener tertiärer Amine. Danach erfolgt die Nachbehandlung der Membran in folgender Weise: b) The mixture of the above polymers in a dipolar aprotic solvent is laced or cast and the solvent removed. Thereafter, the nitrogen groups of the resulting membrane are quaternized by immersion in a tertiary amine, in an amine solution or in a mixture of various tertiary amines. Thereafter, the aftertreatment of the membrane is carried out in the following manner:
- Nachbehandlung in Wasser, um Chemikalien- und Lösungsmittelreste zu entfernen- After treatment in water to remove residual chemicals and solvents
- ggf. Nachbehandlung in verdünnter Alkali- oder Erdalkalimetallhydroxidlösung zum Austausch der Hal-Gegenionen gegen OH" -Ionen- If necessary, aftertreatment in dilute alkali or alkaline earth metal hydroxide solution to replace the Hal counterions against OH " ions
- ggf. Alkylierung der restlichen tertiären N-Gruppen (Imidazol, Guanidin) mit einem nichtcancerogenen Alkylierungsmitteloptionally alkylating the remaining tertiary N groups (imidazole, guanidine) with a noncancerogenic alkylating agent
- Waschen mit Wasser, um Chemikalien- und Lösungsmittelreste zu entfernen. - Wash with water to remove residual chemicals and solvents.
Überraschend wurde festgestellt, dass sich mittels der beschriebenen Verfahren homogene, mechanisch und chemisch sehr stabile Anionenaustauschermembranen herstellen lassen, die wesentlich stabiler sind als Anionenaustauschermembranen des Stands der Technik. Basenüberschuss-PBI-Blendmembranen (kovalent oder kovalent-ionisch vernetzt) zur Dotierung mit Phosphorsäure oder Phosphonsäuren oder beliebigen anderen Mineralsäuren zur Anwendung in elektrochemischen Prozessen im Temperaturbereich 100 bis 220°C It has surprisingly been found that homogeneous, mechanically and chemically very stable anion exchange membranes can be produced by means of the processes described, which are substantially more stable than anion exchange membranes of the prior art. Base excess PBI blend membranes (covalently or covalently-ionically crosslinked) for doping with phosphoric acid or phosphonic acids or any other mineral acids for use in electrochemical processes in the temperature range 100 to 220 ° C
Diese Membranen bestehen aus einem molaren Überschuss an einem Polybenzimidazol, wobei das Polybenzimidazol unterschiedlich vernetzt sein kann, um seine Mineralsäure- oder Wasseraufnahme zu begrenzen. Die Membranen können aus folgenden Komponenten bestehen: a) Einem Polybenzimidazol (PBI) als Matrixpolymer (als Beispiel ABPBI, PBI Celazol, p-PBI, F6PBI, S02PBI, PBIOO und sonstigen beliebigen Polybenzimidazolen) These membranes consist of a molar excess of a polybenzimidazole, where the polybenzimidazole may be differentially crosslinked to limit its mineral acid or water uptake. The membranes may consist of the following components: a) a polybenzimidazole (PBI) as matrix polymer (as example ABPBI, PBI Celazol, p-PBI, F 6 PBI, SO 2 PBI, PBIOO and other polybenzimidazoles)
b) Einem halomethylierten Polymer (Hauptkette beliebig, ausgewählt aus der Gruppe der Polystyrole und Polystyrol-Copolymere, Arylhauptketten-Polymere (beispielsweise Polyethersulfone, Polyetherketone, Polysulfone, Polybenzimidazole, Polyimide, Polyphenylenoxide, Polyphenylensulfide, sowie beliebigen Kombinationen als statistische Copolymere, Blockcopolymere, alternierende Copolymere), die die funktionelle Gruppe -CR2Hal mit R=Hal, Alkylrest, Arylrest und Hal=CI, Br, I tragen b) A halomethylated polymer (backbone randomly selected from the group of polystyrenes and polystyrene copolymers, aryl backbone polymers (for example, polyether sulfones, polyether ketones, polysulfones, polybenzimidazoles, polyimides, polyphenylene oxides, polyphenylene sulfides, and any combinations as random copolymers, block copolymers, alternating copolymers ) carrying the functional group -CR 2 Hal with R = Hal, alkyl, aryl and Hal = Cl, Br, I
c) Einem Alkylhalogenid (Monohalogenalkan, Dihalogenalkan, Oligohalogenalkan, Monobenzylhalogenid, Dibenzylhalogenid, Tribenzylhalogenid, etc.), Beispiel Diiodalkan wie Diiodpropan, Diiodbutan, Diiodpentan, Diiodhexan Diiodheptan, Diiodoctan, Diiodnonan, Diioddecan, etc.  c) An alkyl halide (monohaloalkane, dihaloalkane, oligohaloalkane, monobenzyl halide, dibenzyl halide, tribenzyl halide, etc.), for example, diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
d) Optional einem monoalkylierten Polybenzimidazol  d) optionally a monoalkylated polybenzimidazole
e) Einem beliebigen Polymer mit Kationenaustauschergruppen, z. B. S03X, P03X2, COOX, S02X und X=H, Alkalimetall, Erdalkalimetall, Ammonium, Imidazolium, Pyridinium e) Any polymer having cation exchange groups, e.g. B. S0 3 X, P0 3 X 2 , COOX, S0 2 X and X = H, alkali metal, alkaline earth metal, ammonium, imidazolium, pyridinium
Kovalent vernetzte PBI-Blendmembranen können aus den Komponenten a), b), c), d) und gegebenenfalls einem polymeren Sulfinat RS02X bestehen, kovalent-ionisch vernetzte Membranen enthalten zusätzlich noch Kationenaustauscherpolymere, die unter e) aufgeführt sind. Covalently cross-linked PBI blend membranes can consist of the components a), b), c), d) and optionally a polymeric sulfinate RSO 2 X, covalently-ionically cross-linked membranes additionally contain cation exchange polymers listed under e).
Nach der Membranherstellung werden die Membranen mit Phosphorsäure oder Phosphonsäure dotiert. Dabei kann die Phosphorsäure-/Phosphonsäureaufnahme durch die Konzentration der Säure, durch die Badtemperatur und durch die Verweilzeit der Membran im Mineralsäurebad wie z. B. Phosphorsäure/Phosphonsäurebad gesteuert werden. After membrane preparation, the membranes are doped with phosphoric acid or phosphonic acid. The Phosphorsäure- / Phosphonsäureaufnahme by the concentration of the acid, by the bath temperature and by the residence time of the membrane in the mineral acid such. B. phosphoric acid / Phosphonsäurebad be controlled.
Ein kovalent vernetztes PBI erhält man beispielsweise durch: a) Mischung des PBI mit einem halomethylierten Polymer, wobei das halomethylierte Polymer mit einem oder beiden N-Atomen der Imidazolgruppe des PBI durch Alkylierung reagiert (Abbildung 1). A covalently cross-linked PBI is obtained, for example, by: a) mixing the PBI with a halomethylated polymer, the halomethylated polymer reacting with one or both N atoms of the imidazole group of the PBI by alkylation (Figure 1).
b) Mischung des PBI mit einem monoalkylierten PBI, einem tertiären Diamin (z. B. DABCO), einem Diiodalkan (z. B. Diiodbutan) und einem polymeren Sulfinat. Dabei gibt es verschiedene Möglichkeiten für die Bildung eines polymeren Netzwerks aus diesen Komponenten, die in der Abbildung 2, der Abbildung 3 und der Abbildung 4 aufgeführt sind.  b) Blending the PBI with a monoalkylated PBI, a tertiary diamine (eg DABCO), a diiodoalkane (eg diiodobutane) and a polymeric sulfinate. There are several ways of forming a polymeric network of these components, as shown in Figure 2, Figure 3, and Figure 4.
Eine kovalent-ionisch vernetzte Membran erhält man durch a) Der Polymermischung wird vor der Abdampfung des Lösungsmittels noch ein phosphoniertes und/oder sulfoniertes Polymer zugesetzt. A covalently ionically crosslinked membrane is obtained by a) Before the evaporation of the solvent, a phosphonated and / or sulfonated polymer is added to the polymer mixture.
b) Die Polymerkomponenten der Membran werden durch eine Nachbehandlung der Membran in einem Schwefelsäurebad unterschiedlicher Konzentration (30-100% H2S0 , je nach Reaktivität der Polymere im Blend) nachträglich sulfoniert. Durch eine Protonierung der Imidazolgruppen des PBI durch die nachträglich eingeführten Sulfonsäure-Gruppen entstehen ionische Vernetzungsstellen. b) The polymer components of the membrane are subsequently sulfonated by aftertreatment of the membrane in a sulfuric acid bath of different concentration (30-100% H 2 S0, depending on the reactivity of the polymers in the blend). By protonation of the imidazole groups of the PBI by the subsequently introduced sulfonic acid groups, ionic crosslinking sites are formed.
c) Falls die Polymermischung auch hochfluorierte aromatische Polymere enthält deren F-Atome nucleophil durch Phosphonsäuregruppen ersetzt werden können (etwa durch die Phosphonierungsreaktion aus 7), wird die Membran in eine Lösung eingelegt, die Tris(trimethylsilyl)phosphit enthält. Dabei wird ein Teil der aromatischen F durch Phosphonsäuresilylester-Gruppen ersetzt, die leicht durch Kochen mit Wasser zu freien Phosphonsäuregruppen hydrolysiert werden können. Nucleophil ersetzbare aromatische F- Bindungen können auch durch andere Funktionsgruppen ersetzt werden, beispielsweise durch Thiolgruppen, die in einem weiteren Schritt ach für Vernetzung eingesetzt werden können. c) If the polymer mixture also contains highly fluorinated aromatic polymers whose F atoms can be replaced nucleophilically by phosphonic acid groups (for example by the phosphonation reaction of 7 ), the membrane is placed in a solution containing tris (trimethylsilyl) phosphite. In this case, part of the aromatic F is replaced by Phosphonsäuresilylester groups, which can be easily hydrolyzed by boiling with water to free phosphonic acid groups. Nucleophilic replaceable aromatic F bonds can also be replaced by other functional groups, for example by thiol groups, which can be used in a further step after for crosslinking.
Überraschend wurde festgestellt, dass sich mittels der beschriebenen Verfahren homogene, mechanisch und chemisch sehr stabile Mitteltemperatur-Kationenaustauschermembranen herstellen lassen, die stabiler sind als Mitteltemperatur-Kationenaustauschermembranen des Stands der Technik (beispielsweise dotierte reine Polybenzimidazole).  Surprisingly, it has been found that homogeneous, mechanically and chemically very stable medium-temperature cation exchange membranes can be produced by means of the processes described, which are more stable than medium-temperature cation exchange membranes of the prior art (for example doped pure polybenzimidazoles).
Säureüberschuss-Blendmembranen (Kationenaustauschermembranen] für H2- Brennstoffzellen, DMFC, PEM-Elektrolyse, Redox-flow-Batterien Acid-excess blend membranes (cation-exchange membranes) for H 2 fuel cells, DMFC, PEM electrolysis, redox-flow batteries
Diese Membranen bestehen aus folgenden Blendkomponenten: a) Kationenaustauschermembranen mit der Sulfonsäuregruppe S03X oder der Phosphonsäuregruppe P03X2 (X=H, Alkalimetall, Erdalkalimetall, Ammonium, Imidazolium, Pyridinium) These membranes consist of the following blend components: a) cation exchange membranes with the sulfonic acid group S0 3 X or the phosphonic acid group P0 3 X 2 (X = H, alkali metal, alkaline earth metal, ammonium, imidazolium, pyridinium)
b) Einem Polybenzimidazol (PBI) als Matrixpolymer (als Beispiel ABPBI, PBI Celazol, p-PBI, F6PBI, S02PBI, PBIOO und sonstigen beliebigen Polybenzimidazolen) b) a polybenzimidazole (PBI) as a matrix polymer (as example ABPBI, PBI Celazol, p-PBI, F 6 PBI, SO 2 PBI, PBIOO and other polybenzimidazoles)
c) Einem halomethylierten Polymer (Hauptkette beliebig, ausgewählt aus der Gruppe der Polystyrole und Polystyrol-Copolymere, Arylhauptketten-Polymere (beispielsweise Polyethersulfone, Polyetherketone, Polysulfone, Polybenzimidazole, Polyimide, Polyphenylenoxide, Polyphenylensulfide, sowie beliebigen Kombinationen als statistische Copolymere, Blockcopolymere, alternierende Copolymere), die die funktionelle Gruppe -CR2Hal mit R=Hal, Alkylrest, Arylrest und Hal=CI, Br, I tragen c) A halomethylated polymer (backbone randomly selected from the group of polystyrenes and polystyrene copolymers, aryl backbone polymers (for example, polyether sulfones, polyether ketones, polysulfones, polybenzimidazoles, polyimides, polyphenylene oxides, polyphenylene sulfides, and any combinations as random copolymers, block copolymers, alternating copolymers ) carrying the functional group -CR 2 Hal with R = Hal, alkyl, aryl and Hal = Cl, Br, I
d) Optional einem Alkylhalogenid (Monohalogenalkan, Dihalogenalkan, Oligohalogenalkan, Monobenzylhalogenid, Dibenzylhalogenid, Tribenzylhalogenid, etc.), Beispiel Diiodalkan wie Diiodpropan, Diiodbutan, Diiodpentan, Diiodhexan Diiodheptan, Diiodoctan, Diiodnonan, Diioddecan, etc.  d) optionally an alkyl halide (monohaloalkane, dihaloalkane, oligohaloalkane, monobenzyl halide, dibenzyl halide, tribenzyl halide, etc.), for example diiodoalkane such as diiodopropane, diiodobutane, diiodopentane, diiodohexane diiodoheptane, diiodooctane, diiodononane, diiododecane, etc.
e) Optional einem monoalkylierten Polybenzimidazol  e) optionally a monoalkylated polybenzimidazole
Dabei sind in diesen Membranen die sauren Gruppen im molaren Überschuss, so dass diese Membranen Kationen-leitfähig sind. Die Blendmembranen sind kovalent-ionisch vernetzt, wenn sie die Komponenten a), b) c) und optional d) und e) enthalten. Durch Reaktion der Blendkomponenten b) und c) miteinander (und optional noch d) und e)) entstehen quaternäre positiv geladene Stickstoffgruppen, die ionische Vernetzungsstellen mit den Säureanionen bilden: [S03 '] +[NR4] (R=Alkyl, Aryl), die stärkere elektrostatische Wechselwirkungen miteinander ausbilden, als wenn sich lediglich ionische Vernetzungsstellen zwischen den sauren Gruppen und protonierten Benzimidazolium-Gruppen bilden, wie es bei der Mischung zwischen dem sauren Polymer und dem nichtalkylierten PBI der Fall wäre. Es wird erwartet, dass die Vernetzungsstellen [S03 '] +[NR4] (R=Alkyl, Aryl) zusammen mit der kovalenten Vernetzung der Blendkomponenten b) und c) (und optional noch d) und e)) insbesondere bei der Verwendung dieser Membranen in Redox-flow-Batterien (RFB) die Permeabilität der Membranen für Metallkationen verringern, was die Effizienzverluste der RFB- Anwendung minimiert. In these membranes, the acidic groups are in molar excess, so that these membranes are cation-conductive. The blend membranes are covalently-ionically crosslinked when they the components a), b) c) and optionally d) and e). Reaction of the blend components b) and c) with each other (and optionally also d) and e)) results in quaternary positively charged nitrogen groups which form ionic crosslinking sites with the acid anions: [S0 3 ' ] + [NR 4 ] (R = alkyl, aryl ), which form stronger electrostatic interactions with one another than when only ionic crosslinks form between the acidic groups and protonated benzimidazolium groups, as would be the case for the mixture between the acidic polymer and the non-alkylated PBI. It is expected that the crosslinking sites [S0 3 ' ] + [NR 4 ] (R = alkyl, aryl) together with the covalent crosslinking of the blend components b) and c) (and optionally still d) and e)), in particular in use These membranes in redox-flow batteries (RFB) reduce the permeability of the membranes for metal cations, which minimizes the efficiency losses of the RFB application.
Überraschend wurde festgestellt, dass sich mittels der beschriebenen Verfahren homogene, mechanisch und chemisch sehr stabile Niedertemperatur-Kationenaustauschermembranen herstellen lassen, die stabiler sind als Niedertemperatur-Kationenaustauschermembranen des Stands der Technik (beispielsweise Säure-Base-Blendmembranen von Kationenaustauscherpolymeren mit schwachen polymeren Basen). Insbesondere ist überraschend, dass die Membranen der Erfindung stabiler sind als herkömmliche aromatische saure Polymere, insbesondere auch bei der Anwendung in Redox-Flow-Batterien, bei denen die Membranen stark oxidierenden Bedingungen ausgesetzt sind. Surprisingly, it has been found that homogeneous, mechanically and chemically very stable low-temperature cation exchange membranes can be produced by the described processes which are more stable than low-temperature cation exchange membranes of the prior art (for example acid-base blend membranes of cation exchange polymers with weak polymeric bases). In particular, it is surprising that the membranes of the invention are more stable than conventional aromatic acidic polymers, especially when used in redox flow batteries in which the membranes are exposed to highly oxidizing conditions.
Zusammenfassung der Komponenten der 3 Membrantypen Summary of the components of the 3 membrane types
Es werden Membranen beansprucht, die je nach Anteil der jeweiligen Haupt-Blendkomponenten in verschiedenen elektrochemischen Prozessen eingesetzt werden können. In der tabellarischen Übersicht sind die Haupt-Membrantypen und ihre jeweiligen Anwendungsfelder aufgeführt. Membranes are claimed which, depending on the proportion of the respective main blend components, can be used in various electrochemical processes. The tabular overview lists the main membrane types and their respective fields of application.
Tabelle 2: Zusammenfassung der Komponenten der 3 Membrantypen  Table 2: Summary of the components of the 3 types of membranes
+ molarer Überschuss  + molar excess
optional  optional
molarer Unterschuss  molar deficit
Kationenleiter  cation Head
Anionenleiter  Anionenleiter
Protonenleiter via (Poly)Phosphor- und/oder Phosphonsäure Überraschend wurde festgestellt, dass die Membranen, je nach dem Anteil der verschiedenen Blendkomponenten, die in der Tabelle 2 aufgeführt sind, entweder als Kationenaustauscher-, Anionenaustauscher- oder Mitteltemperaturmembranen eingesetzt werden können. Insbesondere ist überraschend, dass sich auch mehrschichtige Membranen (aus abwechselnden Kationenaustauscher- und Anionenaustauscherschichten) herstellen lassen, die insbesondere bei der Anwendung in Redox-Flow-Batterien hervorragende Eigenschaften wie extrem hohe chemische Stabilitäten und sehr niedrige Kationenpermeabilitäten aufweisen. Proton conductor via (poly) phosphoric and / or phosphonic acid Surprisingly, it was found that the membranes, depending on the proportion of the different blend components listed in Table 2, can be used either as cation exchange, anion exchange or middle temperature membranes. In particular, it is surprising that it is also possible to produce multilayer membranes (from alternating cation exchanger and anion exchanger layers), which have outstanding properties, such as extremely high chemical stabilities and very low cation permeabilities, in particular when used in redox flow batteries.
Die erfindungsgemäßen Membranen verfügen über eine hervorragende mechanische und chemische Stabilität und bei gleichzeitig ausgeszeichneten lonenleitfähigkeiten. Zum Vergleich wurden in Tabelle 1 die Werte von Vergleichsmembranen aus dem Stand der Technik aufgeführt. The membranes according to the invention have excellent mechanical and chemical stability and, at the same time, excellent ionic conductivities. For comparison, Table 1 shows the values of comparative membranes from the prior art.
In den nachfolgenden Beispielen werden die Membranen der Einfachheit halber auf Glasplatten geräkelt. Alternativ können die Membranen, wie im Stand der Technik üblich, auch auf anderen Trägermaterialien und Substraten aufgebracht werden, z.B. auf Folien oder Metallbändern um von Rolle zu Rolle oder in Schwebetrocknern gefertigt zu werden. In the following examples, the membranes are laced on glass plates for the sake of simplicity. Alternatively, as is conventional in the art, the membranes may also be applied to other substrates and substrates, e.g. on foils or metal strips to be produced from roll to roll or in suspended dryers.
Die Membranen können auch auf Substraten abgeschieden werden ohne dass sie zwingend wieder von diesen abgelöst werden müssen. Ein Beispiel sind Grafitfilze, Vliese, Gewebe oder poröse Materialien, wie Folien mit Poren oder Filze. Alle aufgeführten Nachbehandlungen erfolgen dann mit dem Substrat auf dem die Membran abgeschieden wurde bzw. nach Entfernung des Lösungsmittels entstanden ist. Die Membran löst sich in diesem Fall dann nicht mehr von dem Trägermaterial ab, was gewollt ist. The membranes can also be deposited on substrates without them necessarily having to be removed from them again. An example is graphite felts, nonwovens, fabrics or porous materials, such as films with pores or felts. All listed aftertreatments then take place with the substrate on which the membrane was deposited or was formed after removal of the solvent. In this case, the membrane no longer separates from the carrier material, which is wanted.
In den nachfolgenden Beispielen werden jeweils konkrete Bedingungen zur Durchführung angegeben. Es ist dem Fachmann selbstverständlich, dass diese nicht ausschließlich sind. So muss z.B. das Lösungsmittel entfernt werden. Dies geschieht hier durch Abdampfen bei 140°C. Natürlich dampft das Lösungsmittel auch bei geringeren oder höheren Temperaturen ab, z.B. in dem Temperaturbereich von 30°C bis 180°C. In the following examples specific conditions for implementation are given. It is obvious to the person skilled in the art that these are not exclusive. So, for example, the solvent is removed. This happens here by evaporation at 140 ° C. Of course, the solvent will also evaporate at lower or higher temperatures, e.g. in the temperature range from 30 ° C to 180 ° C.
Das Gleiche gilt für die Nachbehandlungsbedingungen in Wasser, Säure und Lauge, wobei die Angabe der Temperatur und die Angabe der Konzentration der Säure oder Lauge den im Labor zuverlässigen Wert angibt. Die Angaben sind aber nicht Einschränkend.  The same applies to the aftertreatment conditions in water, acid and lye, where the indication of the temperature and the indication of the concentration of the acid or lye gives the laboratory reliable value. The information is not restrictive.
AewemdMmgsbeispiele AewemdMmgsbeispiele
Beispiel 1: HTPEM aus PBI, halomethyliertem Polymer (kovalent vernetzt) (Membran MJK 1885) Example 1: HTPEM from PBI, halomethylated polymer (covalently crosslinked) (membrane MJK 1885)
0,75 g des Polybenzimidazols F5PBI werden als 4 %ige Lösung in Ν,Ν-Dimethylacetamid (DMAc) mit 0,321 g brommethyliertem Polyphenylenoxid (PPOBr, Bromierungsgrad 1,7 CH2Br pro PPO- Wiederholungseinheit) (Blendkomponenten siehe Abbildung 5) als 10%ige Lösung in DMAc gemischt. Nach Homogenisierung wird aus dieser Lösung eine Membran auf einer Glasplatte geräkelt, und das Lösungsmittel wird im Umlufttrockenschrank bei 140°C abgezogen. Danach wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden 10% HCl bei 90°C, dann 48 Stunden VE- Wasser bei 60°C. 0.75 g of the polybenzimidazole F 5 PBI are dissolved as a 4% solution in Ν, Ν-dimethylacetamide (DMAc) with 0.321 g of bromomethylated polyphenylene oxide (PPOBr, degree of bromination 1.7 CH 2 Br per PPO). Repeat unit) (blend components see Figure 5) mixed as a 10% solution in DMAc. After homogenization, a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C.
Danach wird die Membran wie folgt charakterisiert: Thereafter, the membrane is characterized as follows:
- Thermogravimetrie (TGA) in 65% 02, TGA-Kurve siehe Abbildung 6 - Thermogravimetry (TGA) in 65% 0 2 , TGA curve see Figure 6
- Extraktion mit DMAc bei 90°C (4 Tage) Extraktionsrückstand (unlösliche Anteile 88,9%) Fentons Test: nach 96 Stunden in Fentons Reagenz Massenverlust von 7,5%  Extraction with DMAc at 90 ° C. (4 days) Extraction residue (insoluble fraction 88.9%) Fentons test: after 96 hours in Fenton's reagent mass loss of 7.5%
- Dotierung mit 85% H3P04 (259% Dotierungsgrad), Leitfähigkeitskurve siehe Abbildung 7  - Doping with 85% H3P04 (259% doping level), conductivity curve see Figure 7
Beispiel 2: HTPEM aus PBI, halomethyliertem Polymer, tertiärem Amin, sulfoniertem Polymer (kovalent-ionisch vernetzt) (MJK-1959) Example 2: HTPEM of PBI, Halomethylated Polymer, Tertiary Amine, Sulfonated Polymer (Covalently-Ionically Crosslinked) (MJK-1959)
1,4 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,3 g PARBrl als 5 %ige Lösung in DMAc und 0,3 g des sulfonierten Polymers sPPSU sowie 0,488 g l-Ethyl-2-Methylimidazol gemischt (Polymere Blendkomponenten siehe Abbildung 8). 1.4 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.3 g of PARBrl as a 5% solution in DMAc and 0.3 g of the sulfonated polymer sPPSU and 0.488 g of 1-ethyl-2-methylimidazole (polymers Blend components see Figure 8).
Nach Homogenisierung wird aus dieser Lösung eine Membran auf einer Glasplatte geräkelt, und das Lösungsmittel wird im Umlufttrockenschrank bei 140 °C abgezogen. Danach wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden 10 % HCl bei 90°C, dann 48 Stunden VE- Wasser bei 60 °C. Abbildung 9 zeigt den Blend des PBI mit dem mit quaternisierten Polymer. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. After homogenization, a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C. Figure 9 shows the blend of the PBI with the quaternized polymer. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed.
Danach wird die Membran wie folgt charakterisiert: Thereafter, the membrane is characterized as follows:
Thermogravimetrie (TGA) in 65% 02 Thermogravimetry (TGA) in 65% 0 2
Extraktion mit DMAc bei 90°C (4 Tage) -> Extraktionsrückstand (unlösliche Anteile %) Fentons Test: nach 96 Stunden in Fentons Reagenz Massenverlust von %  Extraction with DMAc at 90 ° C (4 days) -> Extraction residue (insolubles%) Fentons test: after 96 hours in Fenton's reagent% mass loss
Dotierung mit 85% H3P04 (259% Dotierungsgrad), Leitfähigkeitskurve Abbildung 7 Doping with 85% H 3 P0 4 (259% doping level), conductivity curve Figure 7
Beispiel 3: AEM aus PBI, halomethyliertem Polymer, tertiärem Amin, sulfoniertem Polymer (kovalent-ionisch vernetzt] (Membran MJK-1932) Example 3: AEM from PBI, halomethylated polymer, tertiary amine, sulfonated polymer (covalently ionically crosslinked] (membrane MJK-1932)
0,5 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,5 g PPOBr als 5 %ige Lösung in DMAc und 0,107 g des sulfonierten Polymers sPPSU sowie 1,08 ml des tertiären Amins N-Methylmorpholin gemischt (Polymere Blendkomponenten siehe Abbildung 10). 0.5 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.5 g of PPOBr as 5% solution in DMAc and 0.107 g of the sulfonated polymer sPPSU and 1.08 ml of the tertiary amine N-methylmorpholine (polymeric blend components see Figure 10).
Nach Homogenisierung wird aus dieser Lösung eine Membran auf einer Glasplatte geräkelt, und das Lösungsmittel wird im Umlufttrockenschrank bei 140°C abgezogen. Danach wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden 10% HCl bei 90°C, dann 48 Stunden VE- Wasser bei 60°C. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. Danach wird die Membran wie folgt charakterisiert: After homogenization, a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. Thereafter, the membrane is characterized as follows:
Thermogravimetrie (TGA) in 65% 02 (Abbildung 11) Thermogravimetry (TGA) in 65% 0 2 (Figure 11)
Extraktion mit DMAc bei 90°C (4 Tage) -> Extraktionsrückstand (unlösliche Anteile 93,9 %) Extraction with DMAc at 90 ° C (4 days) -> extraction residue (insolubles 93.9%)
- Dicke: 105 μιτι Thickness: 105 μιτι
- Chloridleitfähigkeit (RT, 1 M NaCI): 4,88 mS/cm  - Chloride conductivity (RT, 1 M NaCl): 4.88 mS / cm
- IEC: 2,8 mmol/g  - IEC: 2.8 mmol / g
- Chemische Stabilität (90 °C, 1 M KOH)  - Chemical stability (90 ° C, 1 M KOH)
IEC (nach 5 d): 84,6 des Originalwertes  IEC (after 5 days): 84.6 of the original value
- IEC (nach 10 d): 74,3 des Originalwertes  - IEC (after 10 days): 74.3 of the original value
Leitfähigkeit: (nach 5 d): 56,1 % des Originalwertes  Conductivity: (after 5 d): 56.1% of the original value
Beispiel 4: CEM aus sulfoniertem Polymer, PBI, halomethyliertem Polymer, tertiärem Amin (kovalent-ionisch vernetzt) (Membran MJK-1957) Example 4: CEM of Sulfonated Polymer, PBI, Halomethylated Polymer, Tertiary Amine (Covalently-Ionically Crosslinked) (Membrane MJK-1957)
0,12 g F6PBI werden als 5%ige Lösung in DMAc mit 0,12 g PARBrl als 5%ige Lösung in DMAc und 2 g des sulfonierten Polymers sPPSU sowie 0,195 g l-Ethyl-2-Methylimidazol gemischt (Polymere Blendkomponenten siehe Abbildung 12). 0.12 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.12 g of PARBrl as a 5% solution in DMAc and 2 g of the sulfonated polymer sPPSU and 0.195 g of 1-ethyl-2-methylimidazole (see Polymer Blend Components Figure 12).
Nach Homogenisierung wird aus dieser Lösung eine Membran auf einer Glasplatte geräkelt, und das Lösungsmittel wird im Umlufttrockenschrank bei 140°C abgezogen. Danach wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden 10% HCl bei 90°C, dann 48 Stunden VE- Wasser bei 60°C. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. After homogenization, a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed.
Danach wird die Membran wie folgt charakterisiert:  Thereafter, the membrane is characterized as follows:
Thermogravimetrie (TGA) in 65% 02 Thermogravimetry (TGA) in 65% 0 2
Extraktion mit DMAc bei 90°C (4 Tage) -> Extraktionsrückstand (unlösliche Anteile in %) Fentons Test: nach 96 Stunden in Fentons Reagenz Massenverlust in %  Extraction with DMAc at 90 ° C (4 days) -> Extraction residue (insolubles in%) Fentons test: after 96 hours in Fenton's reagent mass loss in%
Impedanz (Widerstand)  Impedance (resistance)
Wasseraufnahme bei 90°C  Water absorption at 90 ° C
Beispiel 5: AEM aus sulfoniertem Polymer, PBI, halomethyliertem Polymer, tertiärem Amin (kovalent-ionisch vernetzt) Example 5: AEM from sulfonated polymer, PBI, halomethylated polymer, tertiary amine (covalently-ionically crosslinked)
0,8 g F6PBI werden als 5%ige Lösung in DMAc mit 1,2 g PARBrl als 5%ige Lösung in DMAc und 0,12 g des sulfonierten Polymers sPPSU sowie 1,95 g l-Ethyl-2-Methylimidazol gemischt (Polymere Blendkomponenten siehe Abbildung 13). 0.8 g of F 6 PBI are mixed as a 5% solution in DMAc with 1.2 g of PARBrl as a 5% solution in DMAc and 0.12 g of the sulfonated polymer sPPSU and 1.95 g of 1-ethyl-2-methylimidazole (For polymeric blend components, see Figure 13).
Nach Homogenisierung wird aus dieser Lösung eine Membran auf einer Glasplatte geräkelt, und das Lösungsmittel wird im Umlufttrockenschrank bei 140°C abgezogen. Danach wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden 10% HCl bei 90°C, dann 48 Stunden VE- Wasser bei 60°C. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. Danach wird die Membran wie folgt charakterisiert: After homogenization, a membrane is straightened from this solution on a glass plate, and the solvent is removed in a convection oven at 140 ° C. Thereafter, the membrane is dissolved under water and post-treated as follows: 48 hours 10% HCl at 90 ° C, then 48 hours DI water at 60 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. Thereafter, the membrane is characterized as follows:
Thermogravimetrie (TGA) in 65% 02 Thermogravimetry (TGA) in 65% 0 2
Extraktion mit DMAc bei 90°C (4 Tage) -> Extraktionsrückstand (unlösliche Ante  Extraction with DMAc at 90 ° C (4 days) -> Extraction residue (insoluble ante
Fentons Test: nach 96 Stunden in Fentons Reagenz Massenverlust in %  Fenton's test: after 96 hours in Fenton's reagent mass loss in%
Impedanz (Widerstand)  Impedance (resistance)
Wasseraufnahme bei 90°C  Water absorption at 90 ° C
Beispiel 6: AEM aus sulfoniertem Polymer, F6PBI, halomethyliertem/teilfluoriertem Polymer, tertiärem Mono- und Diamin (kovalent-ionisch vernetzt) Example 6: AEM from sulfonated polymer, F 6 PBI, halomethylated / partially fluorinated polymer, tertiary mono- and diamine (covalently-ionically crosslinked)
0,162 g F5PBI werden als 5 %ige Lösung in DMAc mit 0,243 g PAK 18r als 5 %ige Lösung in DMAc und 0,081 g des sulfonierten Polymers sPPSU sowie 0,45 ml des tertiären Monoamins N-Methylmorpholin gemischt (Polymere Säure-Base-Blends) 0.162 g of F 5 PBI are mixed as a 5% solution in DMAc with 0.243 g of PAK 18r as a 5% solution in DMAc and 0.081 g of the sulfonated polymer sPPSU and 0.45 ml of the tertiary monoamine N-methylmorpholine (acid-base polymer). blends)
Nach Homogenisierung wird aus dieser Lösung eine Membran auf eine Petrischale gegossen, und das Lösungsmittel im Umlufttrockenschrank bei 80 °C abgezogen. Anschließend wird die Membran unter Wasser abgelöst und folgendermaßen nachbehandelt: 48 Stunden in ein Gemisch aus 50/50 DABCO/EtOH bei 80 °C, dann 48 Stunden in VE-Wasser bei 90 °C. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. Durch das Diamin wird die Membran weiter kovalent vernetzt. After homogenization, a membrane is poured from this solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn. Subsequently, the membrane is dissolved under water and aftertreated as follows: 48 hours in a mixture of 50/50 DABCO / EtOH at 80 ° C, then 48 hours in demineralized water at 90 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. The diamine further covalently cross-links the membrane.
Tabelle 3: Charakterisierungsparameter der Membran 54-PAK18r-60-F6PBI-SAC-lS-NMM-DABCO  Table 3: Characterization parameters of the membrane 54-PAK18r-60-F6PBI-SAC-IS-NMM-DABCO
Membran 54-PAK18r-60-F6PBI-SAC-15- NMM-DABCO Membrane 54-PAK18r-60-F 6 PBI-SAC-15-NMM-DABCO
lEC-Wert, mmol/g: 2,0  lEC value, mmol / g: 2.0
Dicke, μπι: 60  Thickness μπι: 60
Cr-σ (1 M, NaCI), mS/cm: 10,1  Cr-σ (1 M, NaCl), mS / cm: 10.1
Alkalische Stabilität, % des  Alkaline stability,% of
Originalwertes: 92,8  Original value: 92.8
(Cr-σ nach 5 d in I M KOH 90 °C)  (Cr-σ after 5 d in I M KOH 90 ° C)
Extraktion mit DMAc, Gew.-%  Extraction with DMAc, wt.%
96,3  96.3
(unlös. Anteile, nach 4 d bei 80 °C)  (insoluble fractions, after 4 d at 80 ° C)
Wasseraufnahme (30 °C), Gew.-% 66,9  Water absorption (30 ° C), wt .-% 66.9
Abbildung 14 zeigt den Vernetzungsgrad in Abhängigkeit der SAC-Anteil in der Polymerlösung für mit NMM-DABCO quaternisierten Membranen aus PAK18r-60-F6PBI. Figure 14 shows the degree of crosslinking as a function of the SAC content in the polymer solution for NMM-DABCO quaternized membranes from PAK18r-60-F 6 PBI.
Beispiel 7: AEMs aus PBIOO, halomethyliertem Polymer, Alkylimidazol (kovalent vernetzt) Example 7: AEMs of PBIOO, Halomethylated Polymer, Alkylimidazole (Covalently Crosslinked)
63- PPO-40-PBIOO-Melm: 0,15 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,10 g PPOBr als 5 %ige Lösung in DMAc sowie 0,26 ml der Imidazolverbindung 1-Methylimidazol gemischt (Polymerblends) 63- PPO-40-PBIOO-Melm: 0.15 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.10 g of PPOBr as a 5% solution in DMAc and 0.26 ml of the imidazole compound 1-methylimidazole ( polymer blends)
64- PPO-50-PBIOO-Melm: 0,125 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,125 g PPOBr als 5 %ige Lösung in DMAc sowie 0,33 ml der Imidazolverbindung 1-Methylimidazol gemischt (Polymerblends) 67-PPO-50-PBIOO-EtMelm: 0,125 g F5PBI werden als 5 %ige Lösung in DMAc mit 0,125 g PPOBr als 5 %ige Lösung in DMAc sowie 0,47 ml der Imidazolverbindung l-Ethyl-2-Methylimidazol gemischt (Polymerblends) 64- PPO-50-PBIOO-Melm: 0.125 g of F 6 PBI are mixed as a 5% solution in DMAc with 0.125 g of PPOBr as a 5% solution in DMAc and 0.33 ml of the imidazole compound 1-methylimidazole (polymer blends) 67-PPO-50-PBIOO-EtMelm: 0.125 g of F 5 PBI are mixed as a 5% solution in DMAc with 0.125 g of PPOBr as a 5% solution in DMAc and 0.47 ml of the imidazole compound 1-ethyl-2-methylimidazole. polymer blends)
Nach Homogenisierung wird jeweils aus der Polymerlösung eine Membran auf eine Petrischale gegossen, und das Lösungsmittel im Umlufttrockenschrank bei 80 °C abgezogen. Anschließend werden die Membranen unter Wasser abgelöst und für 48 Stunden in VE-Wasser bei 90 °C nachgespült. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. After homogenization, a membrane is poured in each case from the polymer solution onto a Petri dish, and the solvent is removed in a circulating air drying oven at 80.degree. Subsequently, the membranes are removed under water and rinsed for 48 hours in deionized water at 90 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed.
Die Membranen werden wie folgt charakterisiert: The membranes are characterized as follows:
Tabelle 4: Charakterisierungsparameter der mit Alkylimidazol quaternisierten PPO-PBIOO-Membranen  Table 4: Characterization parameters of alkylimidazole quaternized PPO-PBIOO membranes
Membran 63-PPO-40- 64-PPO-50- 67-PPO-50- Membrane 63-PPO-40-64-PPO-50-67-PPO-50-
PBIOO-Melm PBIOO-Melm PBIOO-EtMelm PBIOO-Melm PBIOO-Melm PBIOO-Etmel
IEC-Wert, mmol/g: 4,5 4,1 3,5  IEC value, mmol / g: 4.5 4.1 3.5
Dicke, \im: 35 33 45  Thick, \ im: 35 33 45
Cr-σ (1 M, NaCI), mS/cm: 6,4 16,9 15,1  Cr-σ (1 M, NaCl), mS / cm: 6.4 16.9 15.1
Alkalische Stabilität, % des  Alkaline stability,% of
Originalwertes: 45,3 50,4 26,8  Original value: 45.3 50.4 26.8
(Cr-σ nach 5 d in 1 M KOH 90 °C)  (Cr-σ after 5 d in 1 M KOH 90 ° C)
Cr-σ (90 % RF, 30°C ), mS/cm: k. A. 4,8 4,5  Cr-σ (90% RH, 30 ° C), mS / cm: k. A. 4,8 4,5
Extraktion mit DMAc, Gew.-%  Extraction with DMAc, wt.%
86,1 94,1 96,7  86.1 94.1 96.7
(unlös. Anteile, nach 4 d bei 80 °C)  (insoluble fractions, after 4 d at 80 ° C)
Wasseraufnahme (30 °C), Gew.-% 46,4 60,4 56,9  Water absorption (30 ° C), wt.% 46.4 60.4 56.9
Abbildung 15 zeigt die Gegenüberstellung der Chlorid-Leitfähigkeiten (1 M NaCI, RT) der mit Alkylimidazol quaternisierten PPO-PBIOO-Membranen und der kommerziellen Tokuyama-Membran A201 (Entwicklungscode A006).Thermogravimetrie (TGA) in 65 % 02 (Abbildung 16) Figure 15 shows the comparison of the chloride conductivities (1 M NaCl, RT) of the alkylimidazole quaternized PPO-PBIOO membranes and the commercial Tokuyama membrane A201 (development code A006). Thermogravimetry (TGA) in 65% 0 2 (Figure 16)
Beispiel 8: AEMs aus (sulfoniertem Polymer,) F6PBI, halomethyliertem Polymer, tertiärem Mono- und Diamin (kovalent und/oder ionisch vernetzt (Abbildung 17) Example 8: AEMs of (sulfonated polymer,) F 6 PBI, halomethylated polymer, tertiary mono- and diamine (covalently and / or ionically crosslinked (Figure 17)
37-PPO-50-F6PBI-NMM-TMEDA: 0,2025 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,2025 g PPOBr als 5 %ige Lösung in DMAc sowie 0,44 ml des tertiären Monoamins N-Methylmorpholin gemischt (kovalent vernetzte Polymerblends) 37-PPO-50-F6PBI-NMM-TMEDA: 0.2025 g of F 6 PBI are dissolved as a 5% solution in DMAc with 0.2025 g of PPOBr as a 5% solution in DMAc and 0.44 ml of the tertiary monoamine N- Methylmorpholine mixed (covalently crosslinked polymer blends)
Nach Homogenisierung wird aus der Lösung eine Membran auf eine Petrischale gegossen, und das Lösungsmittel im Umlufttrockenschrank bei 80 °C abgezogen. Anschließend wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden in TMEDA (1 d RT, ld 50 °C), anschließend 48 Stunden in VE-Wasser bei 90 °C. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. Durch das Diamin wird die Membran weiter kovalent vernetzt. After homogenization, a membrane is poured from the solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn. The membrane is then removed under water and after-treated as follows: 48 hours in TMEDA (1 d RT, ld 50 ° C), then 48 hours in deionized water at 90 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. The diamine further covalently cross-links the membrane.
40-PPO-50-F6PBI-SAC-5-NMM-TMEDA: 0,2025 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,2025 g PPOBr als 5 %ige Lösung in DMAc und 0,02025 g des sulfonierten Polymers als 5 %ige Lösung in DMAc sowie 0,59 ml des tertiären Monoamins N-Methylmorpholin gemischt (kovalent vernetzte Polymerblends) 40-PPO-50-F6PBI-SAC-5-NMM-TMEDA: 0.2025 g of F 6 PBI is added as a 5% solution in DMAc with 0.2025 g of PPOBr as a 5% solution in DMAc and 0.02025 g of the sulfonated polymer as a 5% solution in DMAc and 0.59 ml of the tertiary monoamine N-methylmorpholine mixed (covalently crosslinked polymer blends)
Nach Homogenisierung wird aus der Lösung eine Membran auf eine Petrischale gegossen, und das Lösungsmittel im Umlufttrockenschrank bei 80 °C abgezogen. Anschließend wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden in TMEDA (1 d RT, ld 50 °C, dann 48 Stunden in VE-Wasser bei 60°C. Durch Reaktion eines kleinen Teils der CH2Br-Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. After homogenization, a membrane is poured from the solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn. The membrane is then dissolved under water and after-treated as follows: 48 hours in TMEDA (1 d RT, id 50 ° C, then 48 hours in demineralized water at 60 ° C.) By reaction of a small portion of CH 2 Br groups with The imidazole NH under alkylation gives rise to covalent cross-linking bridges.
Tabelle 5: Charakterisierungsparameter von Membranen aus PPO-F6PBI, die (37) nur kovalent und kovalent- ionisch (40) vernetzt sind  Table 5: Characterization parameters of PPO-F6PBI membranes, which are (37) covalently and covalently (40) cross-linked
Membran 37-PPO-50-F6PBI- 40-PPO-50-F6PBI-SAC-5- Membrane 37-PPO-50-F6PBI-40-PPO-50-F6PBI-SAC-5
NMM-TMEDA NMM-TMEDA NMM-TMEDA NMM-TMEDA
IEC-Wert, mmol/g: k. A. k. A.  IEC value, mmol / g: k. A. k. A.
Dicke, μην. 45 40  Thickness, μην. 45 40
Cr-σ (1 M, NaCI), mS/cm: 12 5,3  Cr-σ (1 M, NaCl), mS / cm: 12 5.3
Alkalische Stabilität, % des  Alkaline stability,% of
Originalwertes: 41,6 82,3  Original value: 41.6 82.3
(Cr-σ nach 5 d in I M KOH 90 °C)  (Cr-σ after 5 d in I M KOH 90 ° C)
Extraktion mit DMAc, Gew.-%  Extraction with DMAc, wt.%
k.A. k.A.  K. A. K. A.
(unlös. Anteile, nach 4 d bei 80 °C)  (insoluble fractions, after 4 d at 80 ° C)
Wasseraufnahme (30 °C), Gew.-% 46,1 47,2  Water absorption (30 ° C), wt.% 46.1 47.2
Thermogravimetrie (TGA) in 65 % 02 (Abbildung 18) Thermogravimetry (TGA) in 65% 0 2 (Figure 18)
Beispiel 9: AEMs aus sulfoniertem Polymer F6PBI, halomethyliertem Polymer, tertiärem Mono- und Diamin (kovalent- ionisch vernetzt) -> 44, 45, 46 Example 9: AEMs of sulfonated polymer F 6 PBI, halomethylated polymer, tertiary mono- and diamine (covalently ionically crosslinked) -> 44, 45, 46
0,2025 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,2025 g PPOBr als 5 %ige Lösung in DMAc und je nach Membran mit 0,02025 g SAC (44-PPO-50-F6PBI-SAC-5-NMM-DABCO), 0,0405 g SAC (45-PPO- 50-F6PBI-SAC-10-NMM-DABCO) oder 0,06075 g SAC (46-PPO-50-F6PBI-SAC-15-NMM-DABCO) als 5 %ige Lösung in DMAc sowie 0,59 ml des tertiären Monoamins N-Methylmorpholin gemischt (ionisch-kovalent vernetzte Säure-Base-Blends) 0.2025 g of F 6 PBI is added as a 5% solution in DMAc with 0.2025 g of PPOBr as a 5% solution in DMAc and, depending on the membrane, with 0.02025 g of SAC (44-PPO-50-F6PBI-SAC-5 -NMM-DABCO), 0.0405 g SAC (45-PPO-50-F6PBI-SAC-10-NMM-DABCO) or 0.06075 g SAC (46-PPO-50-F6PBI-SAC-15-NMM-DABCO ) as a 5% solution in DMAc and 0.59 ml of the tertiary monoamine N-methylmorpholine mixed (ionic-covalently cross-linked acid-base blends)
Tabelle 6: Charakterisierungsparameter der Säure-Base-Blends aus PPO-F6PBI, die mit NMM/DABCO quaternisiert und vernetzt wurden  Table 6: Characterization parameters of the PPO-F6PBI acid-base blends quaternized and cross-linked with NMM / DABCO
44-PPO-50- 45-PPO-50- 46-PPO-50- 44-PPO-50-45-PPO-50-46-PPO-50-
Membran membrane
F6PBI-SAC-5- F6PBI-SAC-10- F6PBI-SAC-15- F6PBI-SAC-5-F6PBI-SAC-10 F6PBI-SAC-15
NMM-DABCO NMM-DABCO NMM-DABCO NMM-DABCO NMM-DABCO NMM-DABCO
IEC-Wert, mmol/g: 2,5 2,5 2,6  IEC value, mmol / g: 2.5 2.5 2.6
Dicke, [im: 85 55 50  Thickness, [in: 85 55 50
cr-σ (1 M, NaCI), mS/cm: 61,4 54,7 21,9 cr-σ (1 M, NaCl), mS / cm: 61.4 54.7 21.9
Alkalische Stabilität, % des  Alkaline stability,% of
Originalwertes: 78,4 38,6 k. A.  Original value: 78.4 38.6 k. A.
(Cr-σ nach 5 d in I M KOH 90 °C)  (Cr-σ after 5 d in I M KOH 90 ° C)
cr-a (90 % RF, 30°C), mS/cm: k. A. k. A k. A. cr-a (90% RH, 30 ° C), mS / cm: k. A. k. A k. A.
Extraktion mit DMAc, Gew.-% 79,8 88,3 88,1 (unlös. Anteile, nach 4 d bei 80 °C) Extraction with DMAc, wt.% 79.8 88.3 88.1 (insoluble fractions, after 4 d at 80 ° C)
Wasseraufnahme (30 °C), Gew.-% 159,3 133,9 107,5  Water absorption (30 ° C), wt .-% 159.3 133.9 107.5
Thermogravimetrie (TGA) in 65 % 02 (Abbildung 19) Thermogravimetry (TGA) in 65% 0 2 (Figure 19)
Beispiel 10: AEMs aus sulfoniertem Polymer FePBI, halomethyliertem Polymer, tertiärem Monoamin [kovalent-ionisch vernetzt) -> 71, 72, 73, 74, 75 Example 10: AEMs of sulfonated polymer FePBI, halomethylated polymer, tertiary monoamine [covalently ionic crosslinked] -> 71, 72, 73, 74, 75
0,2025 g F6PBI werden als 5 %ige Lösung in DMAc mit 0,2025 g PPOBr als 5 ige Lösung in DMAc und je nach Membran mit 0,02025 g SAC (71-PPO-50-F6PBI-SAC-5-NMM), 0,0405 g SAC (72-PPO-50- F6PBI-SAC-10-NMM), 0,06075 g SAC (73-PPO-50-F6PBI-SAC-15-NMM), 0,081 g SAC (74-PPO-50- F6PBI-SAC-20-NMM) oder 0,0 g SAC (75-PPO-50-F6PBI-NMM ) sowie 0,59 ml des tertiären Monoamins N-Methylmorpholin gemischt (ionisch-kovalent vernetzte Säure-Base-Blends) 0.2025 g of F 6 PBI are dissolved as a 5% solution in DMAc with 0.2025 g of PPOBr as a 5% solution in DMAc and, depending on the membrane, with 0.02025 g of SAC (71-PPO-50-F6PBI-SAC-5). NMM), 0.0405 g SAC (72-PPO-50-F6PBI-SAC-10-NMM), 0.06075 g SAC (73-PPO-50-F6PBI-SAC-15-NMM), 0.081 g SAC (74 -PPO-50-F6PBI-SAC-20-NMM) or 0.0 g of SAC (75-PPO-50-F6PBI-NMM) and 0.59 ml of the tertiary monoamine N-methylmorpholine (ionic covalently crosslinked acid-base blends)
Nach Homogenisierung wird aus der Lösung eine Membran auf eine Petrischale gegossen, und das Lösungsmittel im Umlufttrockenschrank bei 80 °C abgezogen. Anschließend wird die Membran unter Wasser abgelöst und wie folgt nachbehandelt: 48 Stunden in 15 % NMM in EtOH (1 d RT, 1 d 50 °C), anschließend 48 Stunden in VE-Wasser bei 90 °C. Durch Reaktion eines kleinen Teils der CH2Br- Gruppen mit dem Imidazol-N-H unter Alkylierung entstehen kovalente Vernetzungsbrücken. Auch das zum Morpholin gehörende Sauerstoffatom trägt zu weiteren kettenübergreifenden Wasserstoffbrücken innerhalb der Membran bei. After homogenization, a membrane is poured from the solution onto a Petri dish, and the solvent in a convection oven at 80 ° C withdrawn. The membrane is then removed under water and after-treated as follows: 48 hours in 15% NMM in EtOH (1 d RT, 1 d 50 ° C), then 48 hours in demineralized water at 90 ° C. By reaction of a small part of the CH 2 Br groups with the imidazole NH under alkylation, covalent cross-linking bridges are formed. Also, the oxygen atom belonging to the morpholine contributes to further cross-chain hydrogen bonding within the membrane.
Tabelle 7: Charakterisierungsparameter der Säure-Base-Blends aus PPO-F6PBI, quaternisiert mit NMM Table 7: Characterization parameters of the acid-base blends of PPO-F6PBI quaternized with NMM
Membran 71-PPO-50- 72-PPO-SO- 73-ΡΡΟ-50- 74-ΡΡΟ-50- Membrane 71-PPO-50-72-PPO-SO-73-ΡΡΟ-50-74-ΡΡΟ-50-
75-ΡΡΟ-50- F6PBI-SAC- F6PBI-SAC- F6PBI-SAC- F6PBI-SAC- F6PBI-NMM75 ΡΡΟ 50 F6PBI SAC F6PBI SAC F6PBI SAC F6PBI SAC F6PBI NMM
5-NM 10-NM 15-NM 20-NMM 5-NM 10-NM 15-NM 20-NMM
lEC-Wert, mmol/g: k. A. k. A. k. A. k. A. k. A. lEC value, mmol / g: k. A. k. A. k. A. k. A. k. A.
Dicke, \im: 50 47 37 40 70  Thickness, in: 50 47 37 40 70
Cr-a (1 M, NaCI), mS/cm: 16,9 11,5 2,5 1,8 18,9  Cr-a (1M, NaCl), mS / cm: 16.9 11.5 2.5 1.8 18.9
Alkalische Stabilität, % des  Alkaline stability,% of
Originalwertes: 50,5 56,9 86,9 99,0 k. A.  Original value: 50.5 56.9 86.9 99.0 k. A.
(Cr-σ nach 5 d in I M KOH 90 °C)  (Cr-σ after 5 d in I M KOH 90 ° C)
cr-σ (90 % RF, 30°C ), mS/cm: 5,2 k. A. k. A. k. A. 6,5 cr-σ (90% RH, 30 ° C), mS / cm: 5.2 k. A. k. A. k. A. 6.5
Extraktion mit DMAc, Gew.-%  Extraction with DMAc, wt.%
100 100 99,1 93,5 k. A.  100 100 99.1 93.5 k. A.
(unlös. Anteile, nach 4 d bei 80 °C)  (insoluble fractions, after 4 d at 80 ° C)
Wasseraufnahme (30 °C), Gew.-% 54,0 58,7 39,4 39,0 k. A.  Water absorption (30 ° C), wt.% 54.0 58.7 39.4 39.0 k. A.
Thermogravimetrie (TGA) in 65 % 02(Abbildung 20) Beispiel 11: AEMs aus verschiedenen Blendkomponenten Thermogravimetry (TGA) in 65% 0 2 (Figure 20) Example 11: AEMs from Different Blend Components
In der Tabelle 8 sind die Zusammensetzungen verschiedener AEM-Blends aufgeführt, und in der Tabelle 9 einige ihrer Eigenschaften.Table 8 lists the compositions of various AEM blends, and Table 9 lists some of their properties.
-Blendmembrantypen  -Blendmembrantypen
(unbekannt)  (unknown)
Strukturformel (Wiederholungseinheit) von PPOBr und F6PBI siehe Abbildung 5 Structural formula (repeating unit) of PPOBr and F 6 PBI see Figure 5
Strukturformel (Wiederholungseinheit) von PARBrl und sPPSU siehe Abbildung 8 Strukturformel (Wiederholungseinheit) von PBIOO und PVBCI siehe Abbildung 21 abelle 9: Einige Charakterisierungsergebnisse dieser AEM-Blends Structural formula (repeating unit) of PARBrl and sPPSU see Figure 8 Structural formula (repeating unit) of PBIOO and PVBCI see Figure 21 Table 9: Some characterization results of these AEM blends
Beginn der Zersetzung des Polymers (ermittelt durch TGA-FTIR-Kopplung) Start of decomposition of the polymer (determined by TGA-FTIR coupling)
Es ist aus der Tabelle 9 klar ersichtlich, dass alle untersuchten AEM-Blendmembranen bessere chemische Stabilitäten sowohl nach der KOH-Einlagerung als auch im TGA-Experiment als die kommerzielle Benchmark-Membran Tokuyama A201 aufweisen. It is clearly evident from Table 9 that all tested AEM blend membranes have better chemical stabilities both after KOH incorporation and in the TGA experiment than the Tokuyama A201 commercial benchmark membrane.
Die Membranen sind aufgrund ihrer hervorragenden Eigenschaften, Leitfähigkeit und  The membranes are due to their excellent properties, conductivity and
Lanzeitstabilität in alkalischen Medien, besonders geeignet für Sensoren, besonders ionenselektive Sensoren und ionenselektive Anwendungen, und für alkalische Brennstoffzellen. Literatur Long-term stability in alkaline media, particularly suitable for sensors, particularly ion-selective sensors and ion-selective applications, and for alkaline fuel cells. literature
1 Wainright, J. S.; Wang, J. T.; Savinell, R. F.; Litt, M. J. Electrochem. Soc. 142, L121-L123 (1995) 1 Wainright, JS; Wang, JT; Savinell, RF; Litt, MJ Electrochem. Soc. 142, L121-L123 (1995)
2 Kreuer, K. D.; Paddison, S.; Spohr, E.; Schuster, M. Chem. Rev. 104, 4637-4678 (2004) 2 Kreuer, KD; Paddison, S .; Spohr, E .; Schuster, M. Chem. Rev. 104, 4637-4678 (2004)
3 Yu, S.; Xiao, L; Benicewicz, B. C. Fuel Cells 8, 165-174 (2008) 3 Yu, S .; Xiao, L; Benicewicz, BC Fuel Cells 8, 165-174 (2008)
Liao, J.; Li, Q.; Rudbeck, H. C; Jensen, J. O.; Chromik, A.; Bjerrum, N. J.; Kerres, J.; Xing, W. Fuel Cells 11, 745- 755 (2011)  Liao, J .; Li, Q .; Rudbeck, H. C .; Jensen, J.O .; Chromik, A .; Bjerrum, N.J .; Kerres, J .; Xing, W. Fuel Cells 11, 745-755 (2011)
5 Kerres, J.; Ullrich, A.; Meier, F.; Häring, T. Solid State lonics 125, 243-249 (1999) 5 Kerres, J .; Ullrich, A .; Meier, F .; Haring, T. Solid State Ionics 125, 243-249 (1999)
6 Kerres, J.; Schönberger, F.; Chromik, A.; Häring, T.; Li, Q.;Jensen, J. O.; Pan, C; Noye, P.; Bjerrum N. J. Fuel Cells 8, 175-187 (2008) 6 Kerres, J .; Schönberger, F .; Chromik, A .; Haring, T .; Li, Q.; Jensen, JO; Pan, C; Noye, P .; Bjerrum NJ Fuel Cells 8, 175-187 (2008)
7 Atanasov, V.; Kerres, J. Macromolecules 44, 6416-6423 (2011) 7 Atanasov, V .; Kerres, J. Macromolecules 44, 6416-6423 (2011)
8 Highly phosphonated polypentafluorostyrene: characterization and blends with polybenzimidazole. Atanasov, V.; Gudat, D.; Ruffmann, B.; Kerres, J. Eur. Poly, J., 2013, 49, 3977-3985 8 Highly phosphonated polypentafluorostyrene: characterization and blends with polybenzimidazole. Atanasov, V .; Gudat, D .; Ruffmann, B .; Kerres, J. Eur. Poly. J., 2013, 49, 3977-3985
9 Wang, S.; Zhang, G.; Han, M.; Li, H.; Zhang, Y.; Ni, J.; Ma, W.; Li, M.; Wang, J.; Liu, Z.; Zhang, L; Na, H. Int. J. 9 Wang, S .; Zhang, G .; Han, M .; Li, H .; Zhang, Y .; Ni, J .; Ma, W .; Li, M .; Wang, J .; Liu, Z .; Zhang, L; Na, H. Int. J.
Hydrogen En. 36, 8412-8421 (2011) Hydrogen En. 36, 8412-8421 (2011)
10 Aili, D.; Li, Q.; Christensen, E.; Jensen, J. O.; Bjerrum, N. J. Polym. Int. 60, 1201-1207 (2011) 10 Aili, D .; Li, Q .; Christensen, E .; Jensen, JO; Bjerrum, NJ Polym. Int. 60, 1201-1207 (2011)
11 Yang, J.; Li, Q.; Cleemann, L. N.; Jensen, J. O.; Pan, C; Bjerrum, N. J., He, R. Adv. En. Mater. 3, 622-630 (2013) 11 Yang, J .; Li, Q .; Cleemann, LN; Jensen, JO; Pan, C; Bjerrum, NJ, He, R. Adv. En. Mater. 3, 622-630 (2013)
12 Wang, S.; Zhao, C; Ma, W.; Zhang, N.; Liu, Z.; Zhang, G.; Na, H. J. Power Sources 243, 102-109 (2013) 12 Wang, S .; Zhao, C; Ma, W .; Zhang, N .; Liu, Z .; Zhang, G .; Well, HJ Power Sources 243, 102-109 (2013)
13 Plackett, D.; Siu, A.; Li, Q.; Pa, C; Jensen, J. O.; Nielsen, S. F.; Permyakova, A. A.; Bjerrum N. J. J. Memb. Sei. 383, 78-87 (2011) 13 Plackett, D .; Siu, A .; Li, Q .; Pa, C; Jensen, JO; Nielsen, SF; Permyakova, AA; Bjerrum NJJ Memb. Be. 383, 78-87 (2011)
14 Jones, D. J.; Roziere, J. J. Memb. Sei. 185, 41-58 (2001) 14 Jones, DJ; Roziere, JJ Memb. Be. 185, 41-58 (2001)
15 Peron, J.; Ruiz, E.; Jones, D.; Roziere, J. J. Memb. Sei. 314, 247-256 (2008) 15 Peron, J .; Ruiz, E .; Jones, D .; Roziere, JJ Memb. Be. 314, 247-256 (2008)
16 Sukumar, P. R.; Wu, W.; Markova, D.; Ünsal, Ö.; Klapper, M.; Müllen, K. Macromol. Chem,. Phys. 208, 2258- 2267 (2007) 16 Sukumar, PR; Wu, W .; Markova, D .; Ünsal, Austria; Klapper, M .; Müllen, K. Macromol. Chem ,. Phys. 208, 2258-2267 (2007)
17 Sinigersky, V.; Budurova, D.; Penchev, H.; Ublekov, F.; Radev, I. J. Appl. Polym. Sei. 129, 1223-1231 (2013) 17 Sinigersky, V .; Budurova, D .; Penchev, H .; Ublekov, F .; Radev, IJ Appl. Polym. Be. 129, 1223-1231 (2013)
18 Kerres, J.; Ullrich, A.; Häring, T. Engineering ionomeric blends and engineering ionomeric blend membranes, US 6,723,757B1, Apr. 20, 2004 18 Kerres, J .; Ullrich, A .; Haring, T. Engineering ionomeric blends and engineering ionomeric blend membranes, US 6,723,757B1, Apr. 20, 2004
19 Wright, A.; Thomas, O.; Holdcroft, S. Anion-conducting polymer, WO2013149328 (PCT/CA2013/000323) Priority date 04 April 2012 19 Wright, A .; Thomas, O .; Holdcroft, S. Anion-conducting polymer, WO2013149328 (PCT / CA2013 / 000323) Priority date 04 April 2012
20Thomas, O. D.; Soo, K. J. W. Y.; Peckham, T. J.; Kulkami, M. P.; Holdcroft, S. J. Am. Chem. Soc. 134 (2012) 10753-10756 20 Thomas, OD; Soo, KJWY; Peckham, TJ; Kulkami, MP; Holdcroft, SJ Am. Chem. Soc. 134 (2012) 10753-10756
21 Yanagi, H.; Fukuta, K. ECS Trans. 2008 16(2), S. 257-262 (2008) 21 Yanagi, H .; Fukuta, K. ECS Trans. 2008 16 (2), pp. 257-262 (2008)
22 Yang, C.-C. Materials Science and Engineering: B 131 (1-3), S. 256-262 (2006) 22 Yang, C.-C. Materials Science and Engineering: B 131 (1-3), p. 256-262 (2006)
23 Schutzrecht: European Patent 1 612 874 AI. El Moussaoui, Rachid; Martin, Roland. Patentanmelder: SOLVAY (Societe Anonyme) 1050 Brüssel (2006) 23 Industrial Property: European Patent 1 612 874 AI. El Moussaoui, Rachid; Martin, Roland. Applicant: SOLVAY (Societe Anonyme) 1050 Brussels (2006)
24 Varcoe, J.R. Physical Chemistry Chemical Physics 9, S. 1479-1486 (2007) 24 Varcoe, JR Physical Chemistry Chemical Physics 9, pp. 1479-1486 (2007)
25 Wu, L; Xu, T. J Membr Sei; 322:286-92 (2008) 25 Wu, L; Xu, T. J Membr Sei; 322: 286-92 (2008)
6 Hibbs, M.R.; Fujimoto, C.H.; Cornelius, C.J. Macromolecules 42, S. 8316-8321 (2009) 6 Hibbs, M.R .; Fujimoto, C.H .; Cornelius, C.J. Macromolecules 42, S. 8316-8321 (2009)
27 Robertson, Nicholas J.; Kostalik IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruna, Hector D.; Coates, Geoffrey W. (2010): Tunable high Performance cross-linked alkaline anion exchange membranes for fuel cell applications. In: Journal of the American Chemical Society 132, S. 3400-3404. DOI: 10.1021/ja908638d88 Kostalik, H.A.; Clark, T.J.; Robertson, N.J.; Mutolo, P.F.; Longo, J.M.;. Abruna, H.c.D; Coates, G.W. 27 Robertson, Nicholas J .; Kostalik IV, Henry A .; Clark, Timothy J .; Mutolo, Paul F .; Abruna, Hector D .; Coates, Geoffrey W. (2010): Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. In: Journal of the American Chemical Society 132, pp. 3400-3404. DOI: 10.1021 / ja908638d8 8 Kostalik, HA; Clark, TJ; Robertson, NJ; Mutolo, PF; Longo, JM ;. Abruna, HcD; Coates, GW
Macromolecules 43, S. 7147-7150 (2010) Macromolecules 43, pp. 7147-7150 (2010)
9 Wang, J.; Li, S.; Zhang, S. Macromolecules 43, S. 3890-3896 (2010).9 Wang, J .; Li, S .; Zhang, S. Macromolecules 43, pp. 3890-3896 (2010).
0Tanaka, M.; Masaki K.; Miyatake, K.; Watanabe, M. Macromolecules 43, S. 2657-2659 (2010).0Tanaka, M .; Masaki K .; Miyatake, K .; Watanabe, M. Macromolecules 43, pp. 2657-2659 (2010).
1 Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; 1 Tanaka, M .; Fukasawa, K .; Nishino, E .; Yamaguchi, S .; Yamada, K .; Tanaka, H .; Bae, B .; Miyatake, K .;
Watanabe, M. J. Am. Chem. Soc. 133, S. 10646-10654 (2011) Watanabe, M.J. Am. Chem. Soc. 133, pp. 10646-10654 (2011)
2 Zhao, Z.; Wang, J.; Li, S-; Zhang, S. Journal of Power Sources 196 (10), S. 4445-4450 (2011)2 Zhao, Z .; Wang, J .; Li, S-; Zhang, S. Journal of Power Sources 196 (10), pp. 4445-4450 (2011)
3 Faraj, M.; Elia, E.; Boccia, M.; Filpi, A.; Pucci, A.; Ciardelli, F. Journal of Polymer Science Part A: Polymer Chemistry, 49, S. 3437-3447 (2011)3 Faraj, M .; Elijah, E .; Boccia, M .; Filpi, A .; Pucci, A .; Ciardelli, F. Journal of Polymer Science Part A: Polymer Chemistry, 49, pp. 3437-3447 (2011)
4 Ran, J.; Wu, L; Varcoe, J. R.; Ong, A. L; Poynton, S. D.; Xu, T. Journal of Membrane Science 415-416, S. 242- 249 (2012) Lin, X.; Wu, L; Liu, Y.; Ong, A. L; Poynton, S. D.; Varcoe, J. R.; Xu, T. Journal of Power Sources 217, S. 373-380 (2012) 4 Ran, J .; Wu, L; Varcoe, JR; Ong, A.L .; Poynton, SD; Xu, T. Journal of Membrane Science 415-416, pp. 242-249 (2012) Lin, X .; Wu, L; Liu, Y .; Ong, A.L .; Poynton, SD; Varcoe, JR; Xu, T. Journal of Power Sources 217, pp. 373-380 (2012)
Wang, J.; He, G.; Wu, X.; Yan, X.; Zhang, Y.; Wang, Y.; Du, L. Journal of Membrane Science 459, S. 86-95 (2014) Wang, J .; He, G .; Wu, X .; Yan, X .; Zhang, Y .; Wang, Y .; Du, L. Journal of Membrane Science 459, pp. 86-95 (2014)
Yan, X.; Gu, S.; He, G.; Wu, X.; Zheng, W.; Ruan, X. Journal of Membrane Science, In Press, Accepted Manuscript, online verfügbar am 9. Mai 2014. Yan, X .; Gu, S .; He, G .; Wu, X .; Zheng, W .; Ruan, X. Journal of Membrane Science, In Press, Accepted Manuscript, available online May 9, 2014.

Claims

Patentansprüche claims
1. Membran dadurch gekennzeichnet, dass sie in beliebigen Mischungsverhältnissen aus den polymeren Membrankomponenten: 1. Membrane characterized in that it in any mixing ratios of the polymeric membrane components:
- beliebiges halomethyliertes Polymer (Polymer mit CH2Hal-Gruppen, mit Hal=F, Cl, Br, I)any halomethylated polymer (polymer with CH 2 Hal groups, with Hal = F, Cl, Br, I)
- beliebiges Polymer mit Kationenaustauschergruppen S03X oder P03X2 (Gegenion beliebig, bevorzugt aber X=H, Metallkation, Ammoniumkation, Imidazoliumkation, Pyridiniumkation, etc.) any polymer with cation exchange groups S0 3 X or P0 3 X 2 (counter ion as desired, but preferably X = H, metal cation, ammonium cation, imidazolium cation, pyridinium cation, etc.)
- beliebiges Polymer mit tertiären N-basischen Gruppen  - Any polymer with tertiary N-basic groups
- und gegebenenfalls einer beliebigen chemischen Verbindung oder einem Gemisch beliebiger chemischer nieder- oder hochmolekularer Verbindungen mit tertiären N-Gruppen besteht.  - And optionally any chemical compound or a mixture of any chemical low or high molecular weight compounds with tertiary N groups.
2. Membran nach Anspruch 1, dadurch gekennzeichnet, dass  2. Membrane according to claim 1, characterized in that
- das oder die halomethylierten Polymere ausgewählt sind aus Arylenhauptkettenpolymeren mit CH2-Hal-Seitengruppen (Hal=CI, Br, I) the halomethylated polymer or polymers are selected from arylene main chain polymers having CH 2 -Hal side groups (Hal = Cl, Br, I)
- das oder die Kationenaustauscherpolymere ausgewählt sind aus sulfonierten Polymeren - The cation exchange or the polymers are selected from sulfonated polymers
- das oder die tertiären N-basischen Polymere ausgewählt sind aus Polyimidazolen, the tertiary or N-basic polymers are selected from polyimidazoles,
Polybenzimidazolen, Polyimiden, Polyoxazolen, Polyoxadiazolen, Polypyridinen oder  Polybenzimidazoles, polyimides, polyoxazoles, polyoxadiazoles, polypyridines or
Arylpolymeren mit tertiären N-basischen Funktionsgruppen  Aryl polymers with tertiary N-basic functional groups
- das oder die tertiären N-basischen Verbindungen ausgewählt sind aus tertiären Aminen (Mono- und Diamine) und/oder N-monoalkylierten und/oder N-monoarylierten Imidazolen, the tertiary N-basic compound or compounds are selected from tertiary amines (mono- and diamines) and / or N-monoalkylated and / or N-monoarylated imidazoles,
N-monoalkylierten oder N-monoarylierten Benzimidazolen, monoalkylierten oder N-monoalkylated or N-monoarylated benzimidazoles, monoalkylated or
monoarylierten Pyrazolen.  monoarylated pyrazoles.
3. Membran nach Anspruch 1, dadurch gekennzeichnet, dass in ihr die  3. Membrane according to claim 1, characterized in that in it the
Kationenaustauschergruppen enthaltende polymere Membrankomponente im molaren Überschuss vorliegt und somit ein Kationenleiter ist (Kationenaustauschermembran KAM) Is present in molar excess cation-exchange-containing polymeric membrane component and thus is a cationic conductor (cation exchange membrane KAM)
4. Membran nach Anspruch 1, dadurch gekennzeichnet, dass in ihr die 4. Membrane according to claim 1, characterized in that in it the
Anionenaustauschergruppen enthaltende polymere Membrankomponente im molaren Überschuss vorliegt und somit ein Anionenleiter ist (Anionenaustauschermembran AAM) Is present in molar excess and thus an anion conductor (anion exchange membrane AAM) containing anion exchange groups polymeric membrane component.
5. Membran nach Anspruch 1, dadurch gekennzeichnet, dass in ihr die N-basische Gruppen 5. Membrane according to claim 1, characterized in that in it the N-basic groups
enthaltende polymere Membrankomponente im molaren Überschuss vorliegt und somit nach Dotierung mit Phosphorsäure, Phosphonsäure, Schwefelsäure oder anderen 2- oder 3-basigen Säuren ein Protonenleiter ist, der im Temperaturbereich >100°C eingesetzt werden kann containing polymeric membrane component is in molar excess and thus after doping with phosphoric acid, phosphonic acid, sulfuric acid or other 2- or 3-basic acids is a proton conductor, which can be used in the temperature range> 100 ° C.
6. Verfahren zur Herstellung von Membranen nach den Ansprüchen 1 bis 5, dadurch 6. A process for the preparation of membranes according to claims 1 to 5, characterized
gekennzeichnet, dass alle polymeren Membrankomponenten in einem gemeinsamen  characterized in that all polymeric membrane components in a common
Lösungsmittel zusammengemischt und homogenisiert werden, aus der entstehenden Lösung eine Membran gesprüht, geräkelt oder gegossen wird, das Lösungsmittel danach bei erhöhten Temperaturen verdampft wird, die Membran danach von der Unterlage abgelöst und schließlich mittels verschiedener Verfahren nachbehandelt wird, um die Membran zu aktivieren.  Solvents are mixed together and homogenized, sprayed from the resulting solution, a membrane is geräkelt or poured, the solvent is then evaporated at elevated temperatures, the membrane is then detached from the pad and finally aftertreated by various methods to activate the membrane.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Lösungsmittel zum Lösen der Polymere dipolar-aprotische Lösungsmittel wie Ν,Ν-Dimethylacetamid, N-Methylpyrrolidinon, Ν,Ν-Dimethylformamid, Dimethylsulfoxid, N-Ethylpyrrolidinon, Diphenylsulfon, Sulfolan verwendet werden. 7. The method according to claim 6, characterized in that as a solvent for dissolving the polymers dipolar aprotic solvents such as Ν, Ν-dimethylacetamide, N-methylpyrrolidinone, Ν, Ν-dimethylformamide, dimethyl sulfoxide, N-ethylpyrrolidinone, diphenyl sulfone, sulfolane can be used.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass folgendes 8. The method according to claim 6, characterized in that the following
Nachbehandlungsverfahren angewandt wird: (a) Lagern in verdünnter Mineralsäure bei T= Raumtemperatur (RT) bis 100°C; (b) Lagern in VE-Wasser bei Raumtemperatur bis 100°C; (cl) gegebenenfalls Lagern in konzentrierter Phosphor- oder Phosphonsäure bei T=RT bis 150"C zur Herstellung dotierter Mitteltemperatur-Protonenleiter (T=100-220°C); oder (c2)  Aftertreatment is applied: (a) storage in dilute mineral acid at T = room temperature (RT) to 100 ° C; (b) Store in deionized water at room temperature to 100 ° C; (c1) if appropriate, storage in concentrated phosphoric or phosphonic acid at T = RT up to 150 ° C. to produce doped middle-temperature proton conductors (T = 100-220 ° C.) or (c2)
gegebenenfalls Lagern in verdünnten Alkalimetallhydroxid-Lösungen, gefolgt von Lagern in VE- Wasser zur Herstellung der OH-Form von Anionenaustauschermembranen (AAM).  optionally storing in dilute alkali metal hydroxide solutions, followed by storage in deionized water to produce the OH form of anion exchange membranes (AAM).
9. Verwendung der Membranen nach den Ansprüchen 1 bis 8 in Membranverfahren, besonders in PEM-Niedertemperatur-Brennstoffzellen, PEM-Mitteltemperaturbrennstoffzellen, PEM- Elektrolyse, S02-depolarisierte Elektrolyse, Redox-Flow-Batterien, Elektrodialyse, 9. Use of the membranes according to claims 1 to 8 in membrane processes, especially in PEM low-temperature fuel cells, PEM medium temperature fuel cells, PEM electrolysis, S0 2 -depolarized electrolysis, redox flow batteries, electrodialysis,
Diffusionsdialyse, Nanofiltration, Ultrafiltration, Umkehrosmose und pressure-retarded osmosis.  Diffusion dialysis, nanofiltration, ultrafiltration, reverse osmosis and pressure-retarded osmosis.
10. Verwendung der Membranen als Bestandteil von Sensoren, Elektroden, Sekundär-Batterien, Brennstoffzellen, alkalische Brennstoffzellen oder Membran-Elektrodeneinheiten.  10. Use of the membranes as part of sensors, electrodes, secondary batteries, fuel cells, alkaline fuel cells or membrane electrode units.
EP15763190.4A 2014-06-12 2015-06-12 Combinatorial material system for ion exchange membranes, and use of said material system in electrochemical processes Pending EP3155674A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014009170.8A DE102014009170A1 (en) 2014-06-12 2014-06-12 Combinatorial material system for ion exchange membranes and its use in electrochemical processes
PCT/DE2015/000294 WO2015188806A2 (en) 2014-06-12 2015-06-12 Combinatorial material system for ion exchange membranes, and use of said material system in electrochemical processes

Publications (1)

Publication Number Publication Date
EP3155674A2 true EP3155674A2 (en) 2017-04-19

Family

ID=54106075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15763190.4A Pending EP3155674A2 (en) 2014-06-12 2015-06-12 Combinatorial material system for ion exchange membranes, and use of said material system in electrochemical processes

Country Status (5)

Country Link
US (1) US20170114196A1 (en)
EP (1) EP3155674A2 (en)
JP (1) JP2017528579A (en)
DE (1) DE102014009170A1 (en)
WO (1) WO2015188806A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016007815A1 (en) 2016-06-22 2017-12-28 Universität Stuttgart Crosslinked highly stable anion exchange blend membranes with polyethylene glycols as the hydrophilic membrane phase
EP3759758B1 (en) * 2018-02-28 2024-11-27 JTEC Energy, Inc. Method of bonding acid-doped membranes
CN108479436B (en) * 2018-04-10 2021-06-08 合肥工业大学 Side chain type homogeneous anion exchange membrane and preparation method thereof
CN108878740B (en) * 2018-07-03 2020-04-07 大连理工大学 A kind of nonionic side chain modified polybenzimidazole membrane and preparation method thereof
CN113366680B (en) * 2018-11-26 2024-06-07 伦斯勒理工学院 Phosphate anion-quaternary ammonium ion pair coordinated polymer membranes
CN109742428B (en) * 2019-01-28 2021-07-23 太原理工大学 A blended anion exchange membrane based on N-spirocyclic quaternary ammonium salt polymer
CN109904500B (en) * 2019-02-25 2020-11-24 四川大学 A kind of side chain type sulfonated polysulfone/polyvinyl alcohol proton exchange membrane and preparation method thereof
CN112952167A (en) * 2019-12-10 2021-06-11 中国科学院大连化学物理研究所 Application of acid-base cross-linked ion-conducting membrane in flow battery
CN111454475B (en) * 2020-03-24 2022-05-31 深圳市燃气集团股份有限公司 Proton exchange membrane material for hydrogen fuel cell and preparation method and application thereof
CN113527684B (en) * 2020-04-21 2023-11-03 武汉理工大学 Oxygen reduction catalytic layer based on grafted polybenzimidazole as proton conductor and preparation method thereof
KR102358626B1 (en) * 2020-06-11 2022-02-07 한국과학기술연구원 Composite ion-exchange membrane, method for preparing the same, and use thereof
CN111682248A (en) * 2020-06-29 2020-09-18 香港科技大学 A PBI membrane activation treatment method with high proton conductivity and ion selectivity
CN113078341A (en) * 2021-03-30 2021-07-06 长春工业大学 Polyether-ether-ketone/cationic metal-organic framework crosslinked film and preparation method thereof
CN113429561B (en) * 2021-05-08 2022-07-05 南昌航空大学 Cross-linking polyether-ether-ketone anion exchange membrane for fuel cell and preparation method thereof
CN113683805B (en) * 2021-08-20 2022-06-21 浙江工业大学 Preparation method of cross-linked imidazole functionalized polyether sulphone anion exchange membrane containing benzimidazole structure
DE102022120196A1 (en) 2022-08-10 2024-02-15 Forschungszentrum Jülich GmbH Side chain functionalized polystyrenes as membrane materials for alkaline water electrolyzers, fuel cells and flow batteries
WO2024245731A1 (en) 2023-05-26 2024-12-05 Forschungszentrum Jülich GmbH Side-chain functionalized polynorbornenes as ionomers and as membrane materials for alkaline electrolysis of water, and fuel cell
CN117209760B (en) * 2023-11-09 2024-03-12 国家电投集团氢能科技发展有限公司 Sulfonated benzimidazole polymer and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731811B (en) * 2012-06-20 2015-01-07 中国科学技术大学 Homogeneous anion exchange membrane and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015188806A3 (en) 2016-02-04
WO2015188806A2 (en) 2015-12-17
JP2017528579A (en) 2017-09-28
DE102014009170A1 (en) 2015-12-17
US20170114196A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP3155674A2 (en) Combinatorial material system for ion exchange membranes, and use of said material system in electrochemical processes
EP1639153B1 (en) Composites and composite membranes
EP1076676B1 (en) Engineering ionomeric blends and engineering ionomeric blend membranes
WO2017220065A1 (en) Cross-linked high stable anion exchange blend membranes with polyethyleneglycols as hydrophilic membrane phase
KR100749156B1 (en) Staged Alkylation of Polymeramines
EP1177247B1 (en) Composites and composite membranes
Chen et al. Internal cross-linked anion exchange membranes with improved dimensional stability for electrodialysis
WO1999054389A1 (en) Acid-base polymer blends and their use in membrane processes
DE10024576A1 (en) Covalently and ionically crosslinked polymer preparation, for use as electrochemical and separating membranes, comprises crosslinking acid-, sulfinate- and amine-functional polymers
WO2007082660A1 (en) Proton-conducting polymer membrane
WO2021099315A1 (en) Cation exchange polymers and anion exchange polymers and corresponding (blend) membranes made of polymers containing highly fluorinated aromatic groups, by way of nucleophilic substitution
KR20160129423A (en) Bipolar Membrane for Water-Splitting Electrodialysis Process
CA3066028A1 (en) Crosslinked highly stable anion-exchange blend membranes with polyethyleneglycols as the hydrophilic membrane phase
KR102643968B1 (en) Membrane-electrode assembly prepared from cation exchange membnrane for producing hydrogen water and method for preparing membrane-electrode assembly
WO2009083509A1 (en) Polymers based on polydiallyl ammonium compounds, anion exchange membranes containing the polymers, and the use thereof in fuel cells
DE10019732A1 (en) Acid base polymer membrane for use as fuel cells membrane for e.g. hydrogen or direct methanol fuel cells, comprises at least one polymeric acid or polymer base with specified proton conductivity
EP1673832B1 (en) Multilayered structures and methods for producing the same
WO2008034399A1 (en) Sulfonated and phosphonated polymer blends
EP4298150B1 (en) Phosphonic non-fluoroinated and partially fluorinated arylpolymers from sulphonated arylpolymers and polymeric perfluorophosphonic acids from polymeric perfluorosulphonic acids, method of manufacture and use in electromembrane applications
DE10295737B4 (en) Covalently cross-linked composite, covalent cross-linked composite membrane, process for their preparation and use of the membranes
WO2003014201A2 (en) Membranes for ion transport

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190621

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITAET STUTTGART INSTITUT FUER CHEMISCHE VERFAHRENSTECHNIK

Owner name: HAERING, THOMAS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITAET STUTTGART INSTITUT FUER CHEMISCHE VERFAHRENSTECHNIK

Owner name: HAERING, THOMAS