EP3155250B1 - Mehtod and apparatus for controlling an exhaust gas sensor - Google Patents

Mehtod and apparatus for controlling an exhaust gas sensor Download PDF

Info

Publication number
EP3155250B1
EP3155250B1 EP15722498.1A EP15722498A EP3155250B1 EP 3155250 B1 EP3155250 B1 EP 3155250B1 EP 15722498 A EP15722498 A EP 15722498A EP 3155250 B1 EP3155250 B1 EP 3155250B1
Authority
EP
European Patent Office
Prior art keywords
probe
exhaust gas
voltage
lambda
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15722498.1A
Other languages
German (de)
French (fr)
Other versions
EP3155250A1 (en
Inventor
Michael Fey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3155250A1 publication Critical patent/EP3155250A1/en
Application granted granted Critical
Publication of EP3155250B1 publication Critical patent/EP3155250B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1489Replacing of the control value by a constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to a method for operating an exhaust gas probe in the exhaust gas duct of an internal combustion engine, wherein the exhaust gas probe has at least one heating element for reaching a nominal temperature of a measuring cell in the exhaust gas probe.
  • the invention also relates to a computer program which is set up to carry out each step of the method and a machine-readable storage medium on which the computer program is stored.
  • the invention further relates to a device for carrying out the method.
  • 3-way catalytic converters are usually used as exhaust gas purification systems, which only convert sufficient exhaust gases if the air-fuel ratio ⁇ is regulated with high precision.
  • the air-fuel ratio ⁇ is measured using an exhaust gas probe located upstream of the exhaust gas purification system.
  • the oxygen storage capacity of such an exhaust gas purification system is used to absorb oxygen in lean phases and release it again in rich phases. This ensures that oxidizable harmful gas components of the exhaust gas can be converted.
  • An exhaust gas probe connected downstream of the exhaust gas purification system is used to monitor the oxygen storage capacity of the exhaust gas purification system.
  • the oxygen storage capacity must be monitored as part of on-board diagnostics (OBD) as it represents a measure of the conversion ability of the exhaust gas purification system.
  • OBD on-board diagnostics
  • the exhaust gas purification system is first installed in a Lean phase filled with oxygen and then emptied in a rich phase with a lambda value known in the exhaust gas, taking into account the amount of exhaust gas passing through, or the exhaust gas purification system is first emptied of oxygen in a rich phase and then filled in a lean phase with a lambda value known in the exhaust gas, taking into account the amount of exhaust gas passing through.
  • the lean phase is ended when the exhaust gas probe connected downstream of the exhaust gas purification system detects the oxygen that can no longer be stored by the exhaust gas purification system.
  • a rich phase is ended when the exhaust gas probe detects the passage of rich exhaust gas.
  • the oxygen storage capacity of the exhaust gas purification system corresponds to the amount of reducing agent supplied for emptying during the rich phase or the amount of oxygen supplied for filling during the lean phase.
  • the exact quantities are calculated from the signal from the upstream exhaust gas sensor and the exhaust gas mass flow determined from other sensor signals.
  • lambda sensors are used to detect the oxygen concentration in the exhaust gas and to regulate the lambda of the engine.
  • a lambda sensor is based on a galvanic oxygen concentration cell with a solid electrolyte.
  • the solid electrolyte typically becomes conductive for oxygen ions at an activation temperature of approximately 350°C.
  • the nominal temperature of the probe is usually significantly higher, typically between 650°C and 850°C.
  • the temperature at which the oxygen sensor becomes operational and meets the requirements in an engine control system is between the activation temperature and the nominal temperature of the sensor.
  • a broadband lambda sensor according to the state of the art and its structure is, for example, in DE 10 2008 042 268 A1 described.
  • the probe signal can be used for control and diagnostic purposes.
  • the lambda control can only be activated when the probe is ready for operation. Since active lambda control leads to a reduction in pollutant emissions, the lambda sensor must be ready for operation as quickly as possible after starting the engine.
  • the lambda sensor has an electrical heating element that is controlled by a control unit.
  • a sensor element made of zirconium dioxide with an integrated platinum heating element is common.
  • the operating principle of a two-point lambda sensor is based on comparing the oxygen partial pressures at an exhaust gas electrode and a reference electrode. A probe voltage that is dependent on the oxygen partial pressure in the exhaust gas is established.
  • the engine control unit usually has a voltage source that is connected in parallel to the two-point lambda sensor.
  • This voltage source generates a constant counter voltage and has a low internal resistance compared to a cold probe. Since the probe itself also represents a voltage source, it is a parallel connection of two voltage sources. The output voltage of this parallel connection can be measured and is a superposition of the probe voltage and the counter voltage, whereby the voltage of the voltage source with the low internal resistance predominates.
  • the nominal value of the counter voltage is used in numerous places in the ECU software.
  • a temperature-independent probe signal is calculated using the counter voltage. Diagnostics also use counter voltage. For example, to detect an interruption in the probe signal circuit, the measured probe voltage is compared with the nominal value of the counter voltage.
  • the counter tension is subject to tolerance. Their actual value may differ from the nominal value. The reason for this is tolerances in the components that are used in the control unit to generate the counter voltage. Due to these deviations of the actual counter voltage from its nominal value, derived variables, for example the temperature-independent probe signal, are falsified. In addition, the tolerances of the counter voltage must be taken into account in all comparisons, for example to avoid incorrect diagnoses.
  • an output voltage corresponds to a counter voltage means in particular that the possible range of values of the output voltage overlaps with the possible range of values of the counter voltage.
  • similar or completely identical value ranges are and therefore similar or identical Tensions can be determined.
  • the actual counter voltage is measured at a defined operating point in which there is no influence from the connected probe.
  • the measured counter voltage is stored in the control unit and used in the control unit software instead of the nominal value.
  • the signal quality of quantities that are calculated using the measured counter voltage is better than when using the nominal value of the counter voltage.
  • the accuracy of the calculated probe signal is further improved, particularly in low-temperature operation of the probe, where the influence of the counter voltage is particularly large. This improves the quality of the lambda control as well as fuel consumption and emissions are reduced. The robustness of the diagnoses is also increased.
  • One idea of the invention is that regulation of the heating output is not necessary in every case.
  • the method according to the invention also works with pure pre-control of the heating output.
  • An unheated probe can also advantageously be used in the method according to the invention.
  • a possibility for operating an exhaust gas probe is provided in which the actual countervoltage can be determined and possible tolerances are correctly taken into account.
  • the signal quality of derived variables and the selectivity of diagnoses of the probe signal are improved.
  • the operating point is selected at a predetermined operating condition, the predetermined operating condition comprising at least one state of unconnected exhaust gas probe and cold exhaust gas probe.
  • the term “cold exhaust gas probe” is used below in particular for the operation of an exhaust gas probe at temperatures of less than 100 ° C.
  • the probe voltage at the output of the electrical circuit of the measuring cell is determined by an analog-digital converter (ADC).
  • ADC analog-digital converter
  • the output voltage of a parallel connection of two voltage sources, the voltage source, which generates a counter voltage and can be integrated in a control unit, and the voltage source of the measuring cell of the exhaust gas probe, is measured.
  • the signals from the exhaust gas probe can be converted into corresponding digital signals for further processing.
  • the actual countervoltage is used to determine lambda and/or to regulate the exhaust gas probe. This allows for more precise lambda control be made possible. Switch-on conditions for the lambda control can therefore be designed to be less restrictive. The lambda control can therefore be activated more frequently, which helps reduce fuel consumption and pollutant emissions.
  • the actual counter voltage is used in the calculation of a temperature-independent probe signal.
  • the probe signal can be a probe voltage.
  • the measured and stored counter voltage is used in the calculation to improve the accuracy of the temperature-independent probe signal.
  • voltage thresholds that are used in diagnoses to compare the probe voltage with the counter voltage can be adapted to the measured counter voltage in order to improve the selectivity of these diagnoses.
  • a broadband lambda sensor, a two-point lambda sensor, another exhaust gas sensor or a gas sensor is used as the exhaust gas sensor.
  • the exhaust gas probes mentioned it is particularly important that they are heated very quickly to their optimal operating temperature for optimal function.
  • each of the lambda sensors installed in the exhaust duct of the internal combustion engine is operated with the method presented and its variants.
  • the method can also be applied to other exhaust gas sensors, for example NO x sensors or gas sensors with a temperature-dependent output signal.
  • gas sensors can also be installed elsewhere, for example in the supply air duct.
  • TSP thermal shock protection
  • the method according to the invention can be used to achieve a significant reduction in the cold emissions of an internal combustion engine.
  • Fig. 1 shows schematically, using an example of a gasoline engine, the technical environment in which the method according to the invention can be used according to a first preferred embodiment of the invention for signal processing of an exhaust gas probe 1, 5.
  • Air is supplied to an internal combustion engine 3 via an air supply 6 and its mass is determined with an air mass meter 7.
  • the air mass meter 7 can be designed as a hot film air mass meter.
  • the exhaust gas from the internal combustion engine 3 is discharged via an exhaust gas duct 2, with an exhaust gas purification system 9 being provided behind the internal combustion engine 3 in the direction of flow of the exhaust gas.
  • the exhaust gas purification system 9 usually includes at least one catalytic converter.
  • an engine control 4 which, on the one hand, supplies fuel to the internal combustion engine 3 via a fuel metering 8 and, on the other hand, the signals from the air mass meter 7 and the exhaust gas probe 5 arranged in the exhaust gas duct 2 as well as a further exhaust gas probe arranged in the exhaust gas discharge line 2 1 are supplied.
  • the exhaust gas probe 5 determines an actual lambda value of a fuel-air mixture supplied to the internal combustion engine 3. It can be designed as a broadband lambda probe or a continuous lambda probe.
  • the exhaust gas probe 1 determines the exhaust gas composition after the exhaust gas purification system 9.
  • the exhaust gas probe 1 can be designed as a jump probe or as a two-point lambda probe.
  • the exhaust gas probe 5 has as its main component a measuring cell with an integrated heating element, which depends on the oxygen content in the exhaust gas duct 2 provides a dependent output signal, which serves as an input signal for a lambda control.
  • the measuring cell can be designed as a Nernst cell.
  • the lambda control is usually part of the engine control 4. Accordingly, instead of the exhaust gas probe 5 or in addition to it, the exhaust gas probe 1 with its heating element and its measuring cell can be connected to the engine control 4.
  • a voltage source in the control unit or in the engine control 4, which is connected in parallel to the exhaust gas probe 1.
  • This voltage source generates a constant counter-voltage and has a low internal resistance compared to a cold exhaust gas probe 1. Since the exhaust gas probe 1 itself also represents a voltage source, it is a parallel connection of two voltage sources.
  • the output voltage of this parallel circuit is measured using an ADC and is a superposition of the Nernst voltage of the exhaust gas probe 1 and the counter voltage, whereby the voltage of the voltage source with the smaller internal resistance predominates.
  • the probe When the probe is cold, it has a high internal resistance, so that the counter voltage dominates. With a hot probe, however, the internal resistance is very small, so that the Nernst voltage of the probe dominates.
  • the voltage source in the control unit generates a constant counter voltage.
  • This counter voltage is, for example, 1.6 V in the case of a two-point lambda probe with a pumped oxygen reference and 0.45 V in the case of a probe without a pumped oxygen reference.
  • the counter voltage is typically generated from a fixed voltage available in the control unit, for example 5 V or 3.3 V, via a voltage divider. Both the fixed voltage and the resistances of the voltage divider are usually subject to tolerances. In the first preferred embodiment of the invention, the actual counter voltage is in the range, for example, between 1.3 V and 1.9 V.
  • Fig. 2 schematically illustrates the process steps of the method according to the invention according to the first preferred embodiment of the invention.
  • a first step 11 an operating point of the exhaust gas probe 1 is selected, at which an output voltage of a parallel connection consisting of a probe voltage of the exhaust gas probe 1 and a countervoltage of a voltage source integrated in a control unit 4 is the countervoltage of the voltage source integrated in the control unit 4 corresponds.
  • the continuous operating points are observed, if necessary, until an operating point fulfills the aforementioned condition.
  • the output voltage of the parallel connection is then read out at the operating point selected in the first step.
  • the output voltage read out in the second step 12 is used as the actual countervoltage before the method is terminated 14.
  • the measurement of the counter tension is carried out after vehicle assembly at the end of the line before the first engine start. Either the probe is connected or the probe remains unconnected. Such a measurement can be very easily integrated into the process at the end of the belt, as it only requires a short time for a voltage measurement, usually less than a second.
  • a measurement of the countervoltage is also repeated later in the life of the vehicle when appropriate switch-on conditions ensure that the probe is cold, for example after the internal combustion engine has been switched off for a sufficiently long time. Long-term drift in the counter voltage is detected and taken into account through regular repeated measurements.
  • the measured value of the counter voltage is permanently stored in the control device and used instead of the nominal value in the control device software.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Abgassonde im Abgaskanal einer Brennkraftmaschine, wobei die Abgassonde wenigstens ein Heizelement zum Erreichen einer Nominaltemperatur einer Messzelle in der Abgassonde aufweist. Außerdem betrifft die Erfindung ein Computerprogramm, welches eingerichtet ist, jeden Schritt des Verfahrens durchzuführen und ein maschinenlesbares Speichermedium, auf welchem das Computerprogramm gespeichert ist. Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for operating an exhaust gas probe in the exhaust gas duct of an internal combustion engine, wherein the exhaust gas probe has at least one heating element for reaching a nominal temperature of a measuring cell in the exhaust gas probe. The invention also relates to a computer program which is set up to carry out each step of the method and a machine-readable storage medium on which the computer program is stored. The invention further relates to a device for carrying out the method.

Stand der TechnikState of the art

Zur Reduktion der Emissionen in PKW mit Ottomotoren werden üblicherweise 3-Wege-Katalysatoren als Abgasreinigungsanlagen verwendet, die nur dann ausreichend Abgase konvertieren, wenn das Luft-Kraftstoffverhältnis λ mit hoher Präzision eingeregelt wird. Zu diesem Zweck wird das Luft-Kraftstoffverhältnis λ mittels einer der Abgasreinigungsanlage vorgelagerten Abgassonde gemessen. Das Speichervermögen einer derartigen Abgasreinigungsanlage für Sauerstoff wird dazu ausgenutzt, in Magerphasen Sauerstoff aufzunehmen und in Fettphasen wieder abzugeben. Hierdurch wird erreicht, dass oxidierbare Schadgaskomponenten des Abgases konvertiert werden können. Eine der Abgasreinigungsanlage nachgeschaltete Abgassonde dient dabei der Überwachung der Sauerstoff-Speicherfähigkeit der Abgasreinigungsanlage. Die Sauerstoff-Speicherfähigkeit muss im Rahmen der On-Bord-Diagnose (OBD) überwacht werden, da sie ein Maß für die Konvertierungsfähigkeit der Abgasreinigungsanlage darstellt. Zur Bestimmung der Sauerstoff-Speicherfähigkeit wird entweder die Abgasreinigungsanlage zunächst in einer Magerphase mit Sauerstoff belegt und anschließend in einer Fettphase mit einem im Abgas bekannten Lambdawert unter Berücksichtigung der durchtretenden Abgasmenge entleert oder die Abgasreinigungsanlage zunächst in einer Fettphase von Sauerstoff entleert und anschließend in einer Magerphase mit einem im Abgas bekannten Lambdawert unter Berücksichtigung der durchtretenden Abgasmenge aufgefüllt. Die Magerphase wird beendet, wenn die der Abgasreinigungsanlage nachgeschaltete Abgassonde den Sauerstoff detektiert, der nicht mehr von der Abgasreinigungsanlage gespeichert werden kann. Ebenso wird eine Fettphase beendet, wenn die Abgassonde den Durchtritt von fettem Abgas detektiert. Die Sauerstoff-Speicherfähigkeit der Abgasreinigungsanlage entspricht der während der Fettphase zur Entleerung zugeführten Menge an Reduktionsmittel bzw. der während der Magerphase zur Auffüllung zugeführten Menge an Sauerstoff. Die genauen Mengen werden aus dem Signal der vorgelagerten Abgassonde und dem aus anderen Sensorsignalen ermittelten Abgasmassenstrom berechnet.To reduce emissions in cars with gasoline engines, 3-way catalytic converters are usually used as exhaust gas purification systems, which only convert sufficient exhaust gases if the air-fuel ratio λ is regulated with high precision. For this purpose, the air-fuel ratio λ is measured using an exhaust gas probe located upstream of the exhaust gas purification system. The oxygen storage capacity of such an exhaust gas purification system is used to absorb oxygen in lean phases and release it again in rich phases. This ensures that oxidizable harmful gas components of the exhaust gas can be converted. An exhaust gas probe connected downstream of the exhaust gas purification system is used to monitor the oxygen storage capacity of the exhaust gas purification system. The oxygen storage capacity must be monitored as part of on-board diagnostics (OBD) as it represents a measure of the conversion ability of the exhaust gas purification system. To determine the oxygen storage capacity, either the exhaust gas purification system is first installed in a Lean phase filled with oxygen and then emptied in a rich phase with a lambda value known in the exhaust gas, taking into account the amount of exhaust gas passing through, or the exhaust gas purification system is first emptied of oxygen in a rich phase and then filled in a lean phase with a lambda value known in the exhaust gas, taking into account the amount of exhaust gas passing through. The lean phase is ended when the exhaust gas probe connected downstream of the exhaust gas purification system detects the oxygen that can no longer be stored by the exhaust gas purification system. Likewise, a rich phase is ended when the exhaust gas probe detects the passage of rich exhaust gas. The oxygen storage capacity of the exhaust gas purification system corresponds to the amount of reducing agent supplied for emptying during the rich phase or the amount of oxygen supplied for filling during the lean phase. The exact quantities are calculated from the signal from the upstream exhaust gas sensor and the exhaust gas mass flow determined from other sensor signals.

In heutigen Motorsteuerungssystemen werden Lambdasonden zur Erfassung der Sauerstoffkonzentration im Abgas und zur Lambdaregelung des Motors verwendet. Man unterscheidet hierbei zwischen einer stetigen Sonde oder auch Breitband-Lambdasonde und einer Zweipunkt-Lambdasonde oder Sprungsonde. Eine Lambdasonde beruht auf einer galvanischen Sauerstoffkonzentrationszelle mit einem Festkörperelektrolyt. Der Festkörperelektrolyt wird typischerweise bei einer Aktivierungstemperatur von ca. 350°C für Sauerstoff-Ionen leitend. Die Nominaltemperatur der Sonde liegt in der Regel deutlich höher, typischerweise zwischen 650°C und 850°C. Die Temperatur, bei der die Lambdasonde betriebsbereit wird und die Anforderungen in einem Motorsteuerungssystem erfüllt, liegt zwischen der Aktivierungstemperatur und der Nominaltemperatur der Sonde. Eine Breitband-Lambdasonde nach dem Stand der Technik und deren Aufbau ist beispielsweise in der DE 10 2008 042 268 A1 beschrieben.In today's engine control systems, lambda sensors are used to detect the oxygen concentration in the exhaust gas and to regulate the lambda of the engine. A distinction is made between a continuous probe or broadband lambda probe and a two-point lambda probe or jump probe. A lambda sensor is based on a galvanic oxygen concentration cell with a solid electrolyte. The solid electrolyte typically becomes conductive for oxygen ions at an activation temperature of approximately 350°C. The nominal temperature of the probe is usually significantly higher, typically between 650°C and 850°C. The temperature at which the oxygen sensor becomes operational and meets the requirements in an engine control system is between the activation temperature and the nominal temperature of the sensor. A broadband lambda sensor according to the state of the art and its structure is, for example, in DE 10 2008 042 268 A1 described.

Sobald die Sonde betriebsbereit ist, kann das Sondensignal für Regel- und Diagnosezwecke verwendet werden. Insbesondere kann erst mit einer betriebsbereiten Sonde die Lambdaregelung aktiviert werden. Da eine aktive Lambdaregelung zur Verringerung der Schadstoff-Emission führt, muss die Betriebsbereitschaft der Lambdasonde schnellstmöglich nach dem Motorstart erreicht werden.Once the probe is ready for operation, the probe signal can be used for control and diagnostic purposes. In particular, the lambda control can only be activated when the probe is ready for operation. Since active lambda control leads to a reduction in pollutant emissions, the lambda sensor must be ready for operation as quickly as possible after starting the engine.

Aus diesem Grund wird die Sonde in der Regel aktiv elektrisch beheizt. Die Lambdasonde besitzt zu diesem Zweck ein elektrisches Heizelement, das von einem Steuergerät angesteuert wird. Üblich ist ein Sensorelement aus Zirkondioxid mit einem integrierten Platin-Heizelement.For this reason, the probe is usually actively heated electrically. For this purpose, the lambda sensor has an electrical heating element that is controlled by a control unit. A sensor element made of zirconium dioxide with an integrated platinum heating element is common.

Das Funktionsprinzip einer Zweipunkt-Lambdasonde basiert auf dem Vergleich der Sauerstoffpartialdrücke an einer Abgaselektrode und an einer Referenzelektrode. Es stellt sich eine vom Sauerstoffpartialdruck im Abgas abhängige Sondenspannung ein.The operating principle of a two-point lambda sensor is based on comparing the oxygen partial pressures at an exhaust gas electrode and a reference electrode. A probe voltage that is dependent on the oxygen partial pressure in the exhaust gas is established.

Im Motorsteuergerät befindet sich in der Regel eine Spannungsquelle, die parallel zur Zweipunkt-Lambdasonde geschaltet ist. Diese Spannungsquelle erzeugt eine konstante Gegenspannung und weist einen im Vergleich zu einer kalten Sonde geringen Innenwiderstand auf. Da die Sonde selbst ebenfalls eine Spannungsquelle darstellt, handelt es sich um eine Parallelschaltung zweier Spannungsquellen. Die Ausgangsspannung dieser Parallelschaltung kann gemessen werden und ist eine Überlagerung der Sondenspannung und der Gegenspannung, wobei die Spannung der Spannungsquelle mit dem geringen Innenwiderstand überwiegt.The engine control unit usually has a voltage source that is connected in parallel to the two-point lambda sensor. This voltage source generates a constant counter voltage and has a low internal resistance compared to a cold probe. Since the probe itself also represents a voltage source, it is a parallel connection of two voltage sources. The output voltage of this parallel connection can be measured and is a superposition of the probe voltage and the counter voltage, whereby the voltage of the voltage source with the low internal resistance predominates.

Der Nominalwert der Gegenspannung wird in der Steuergerätesoftware an zahlreichen Stellen verwendet. In üblichen Systemen wird mithilfe der Gegenspannung beispielsweise ein temperaturunabhängiges Sondensignal berechnet. Auch Diagnosen verwenden die Gegenspannung. Beispielsweise wird zur Erkennung einer Unterbrechung im Sondensignalkreis die gemessene Sondenspannung mit dem Nominalwert der Gegenspannung verglichen.The nominal value of the counter voltage is used in numerous places in the ECU software. In common systems, for example, a temperature-independent probe signal is calculated using the counter voltage. Diagnostics also use counter voltage. For example, to detect an interruption in the probe signal circuit, the measured probe voltage is compared with the nominal value of the counter voltage.

In der Praxis ist die Gegenspannung toleranzbehaftet. Ihr tatsächlicher Wert kann vom Nominalwert abweichen. Grund dafür sind Toleranzen der Bauteile, die im Steuergerät zur Erzeugung der Gegenspannung verwendet werden. Durch diese Abweichungen der tatsächlichen Gegenspannung von ihrem Nominalwert, werden abgeleitete Größen z.B. das temperaturunabhängige Sondensignal verfälscht. Darüber hinaus müssen die Toleranzen der Gegenspannung bei allen Vergleichen berücksichtigt werden, um beispielsweise Fehldiagnosen zu vermeiden.In practice, the counter tension is subject to tolerance. Their actual value may differ from the nominal value. The reason for this is tolerances in the components that are used in the control unit to generate the counter voltage. Due to these deviations of the actual counter voltage from its nominal value, derived variables, for example the temperature-independent probe signal, are falsified. In addition, the tolerances of the counter voltage must be taken into account in all comparisons, for example to avoid incorrect diagnoses.

Ein weiteres Verfahren zur Verbesserung der der Genauigkeit der Lambdabestimmung wird in der DE 10 2011 077353 A1 beschrieben.Another method for improving the accuracy of the lambda determination is described in the DE 10 2011 077353 A1 described.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung umfasst ein Verfahren zur Lambda-Bestimmung mit einer Zweipunkt-Lambdasonde (1) im Abgaskanal (2) einer Brennkraftmaschine (3), wobei die Zweipunkt Lambdasonde (1) wenigstens ein Heizelement zum Erreichen einer Nominaltemperatur einer Messzelle in der Abgassonde (1) aufweist, wobei sich bei der Lambda-Bestimmung an der Zweipunkt-Lambdasonde eine vom Sauerstoffpartialdruck im Abgas abhängige Sondenspannung einstellt, wobei eine Spannungsquelle, die sich in einem Steuergerät befindet und die einen Innenwiderstand aufweist, der kleiner ist als der Innenwiderstand der Zweipunkt-Lambdasonde bei 100°C, parallel zur Zweipunkt-Lambdasonde geschaltet wird, wobei aus der Parallelschaltung der Spannungsquelle mit der Zweipunkt-Lambdasonde eine Ausgangsspannung resultiert, umfassend die Schritte:

  1. a) Auswählen (11) eines Betriebspunktes der Abgassonde (1), bei dem die Temperatur der Abgassonde/Zweipunkt-Lambdasonde unter 100°C beträgt
  2. b) Auslesen (12) der Ausgangsspannung der Parallelschaltung bei dem in Schritt a) ausgewählten Betriebspunkt und Speicherung als tatsächliche Gegenspannung im Steuergerät
  3. c) Verwenden (13) der tatsächlichen Gegenspannung zur Lambda Bestimmung mit der Zweipunkt-Lambdasonde (1).
The invention comprises a method for determining lambda using a two-point lambda probe (1) in the exhaust duct (2) of an internal combustion engine (3), wherein the two-point lambda probe (1) has at least one heating element for reaching a nominal temperature of a measuring cell in the exhaust gas probe (1). has, wherein during the lambda determination on the two-point lambda probe, a probe voltage that is dependent on the oxygen partial pressure in the exhaust gas is established, with a voltage source which is located in a control unit and which has an internal resistance that is smaller than the internal resistance of the two-point lambda probe 100 ° C, is connected in parallel to the two-point lambda sensor, an output voltage resulting from the parallel connection of the voltage source with the two-point lambda sensor, comprising the steps:
  1. a) Selecting (11) an operating point of the exhaust gas probe (1) at which the temperature of the exhaust gas probe/two-point lambda probe is below 100°C
  2. b) Reading out (12) the output voltage of the parallel connection at the operating point selected in step a) and storing it as the actual counter voltage in the control unit
  3. c) Using (13) the actual counter voltage to determine lambda with the two-point lambda sensor (1).

Der Ausdruck "eine Ausgangsspannung entspricht einer Gegenspannung" bedeutet im Folgenden insbesondere, dass der mögliche Wertebereich der Ausgangspannung sich mit dem möglichen Wertebereich der Gegenspannung überschneidet. Insbesondere sind in diesem Zusammenhang ähnliche oder komplett identische Wertebereiche und damit ähnliche oder identische Spannungen ermittelbar.The expression “an output voltage corresponds to a counter voltage” means in particular that the possible range of values of the output voltage overlaps with the possible range of values of the counter voltage. In particular, in this context, similar or completely identical value ranges are and therefore similar or identical Tensions can be determined.

Somit wird die tatsächliche Gegenspannung in einem definierten Betriebspunkt gemessen, in dem kein Einfluss durch die angeschlossene Sonde besteht. Die gemessene Gegenspannung wird im Steuergerät gespeichert und statt des Nominalwerts in der Steuergerätesoftware verwendet. Vorteilhafterweise ist die Signalqualität von Größen, die mithilfe der gemessenen Gegenspannung berechnet werden, besser als bei Verwendung des Nominalwerts der Gegenspannung. Insbesondere im Niedertemperaturbetrieb der Sonde, wo der Einfluss der Gegenspannung besonders groß ist, wird die Genauigkeit des berechneten Sondensignals weiter verbessert. Damit wird die Qualität der Lambdaregelung verbessert und der Kraftstoffverbrauch und die Emissionen werden reduziert. Auch die Robustheit der Diagnosen wird erhöht. Bei Diagnosen, die einen Vergleich der Sondenspannung mit der Gegenspannung beinhalten, wird eine höhere Trennschärfe erreicht, wenn die gemessene Gegenspannung statt ihres Nominalwerts verwendet wird, weil die Toleranzen der elektrischen Beschaltung nicht oder zumindest nicht in demselben Umfang berücksichtigt werden müssen.This means that the actual counter voltage is measured at a defined operating point in which there is no influence from the connected probe. The measured counter voltage is stored in the control unit and used in the control unit software instead of the nominal value. Advantageously, the signal quality of quantities that are calculated using the measured counter voltage is better than when using the nominal value of the counter voltage. The accuracy of the calculated probe signal is further improved, particularly in low-temperature operation of the probe, where the influence of the counter voltage is particularly large. This improves the quality of the lambda control as well as fuel consumption and emissions are reduced. The robustness of the diagnoses is also increased. For diagnoses that involve a comparison of the probe voltage with the countervoltage, a higher selectivity is achieved if the measured countervoltage is used instead of its nominal value because the tolerances of the electrical circuitry do not have to be taken into account, or at least not to the same extent.

Eine Idee der Erfindung besteht darin, dass eine Regelung der Heizleistung nicht in jedem Fall notwendig ist. Das erfindungsgemäße Verfahren funktioniert prinzipiell auch mit einer reinen Vorsteuerung der Heizleistung. Vorteilhafterweise kann auch eine unbeheizte Sonde im erfindungsgemäßen Verfahren verwendet werden. Erfindungsgemäß wird eine Möglichkeit zum Betreiben einer Abgassonde bereitgestellt, bei der die tatsächliche Gegenspannung ermittelbar wird und dabei mögliche Toleranzen korrekt berücksichtigt werden. Zugleich werden die Signalqualität von abgeleiteten Größen und auch die Trennschärfe von Diagnosen des Sondensignals verbessert.One idea of the invention is that regulation of the heating output is not necessary in every case. In principle, the method according to the invention also works with pure pre-control of the heating output. An unheated probe can also advantageously be used in the method according to the invention. According to the invention, a possibility for operating an exhaust gas probe is provided in which the actual countervoltage can be determined and possible tolerances are correctly taken into account. At the same time, the signal quality of derived variables and the selectivity of diagnoses of the probe signal are improved.

Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung wird der Betriebspunkt bei einer vorbestimmten Betriebsbedingung ausgewählt, wobei die vorbestimmte Betriebsbedingung wenigstens einen Zustand aus nichtangeschlossener Abgassonde und kalter Abgassonde umfasst. Der Ausdruck "kalte Abgassonde" wird im Folgenden insbesondere für den Betrieb einer Abgassonde bei Temperaturen von weniger als 100°C verwendet.According to a preferred embodiment of the invention, the operating point is selected at a predetermined operating condition, the predetermined operating condition comprising at least one state of unconnected exhaust gas probe and cold exhaust gas probe. The term “cold exhaust gas probe” is used below in particular for the operation of an exhaust gas probe at temperatures of less than 100 ° C.

Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung wird die Sondenspannung am Ausgang der elektrischen Beschaltung der Messzelle durch einen Analog-Digital-Konverter (ADC) bestimmt. Dabei wird die Ausgangsspannung einer Parallelschaltung von zwei Spannungsquellen, der Spannungsquelle, welche eine Gegenspannung erzeugt und in einer Steuereinheit integrierbar ist, und der Spannungsquelle der Messzelle der Abgassonde, gemessen. Mithilfe des ADCs können die Signale der Abgassonde zur Weiterverarbeitung in entsprechende digitale Signale umgewandelt werden.According to a preferred embodiment of the invention, the probe voltage at the output of the electrical circuit of the measuring cell is determined by an analog-digital converter (ADC). The output voltage of a parallel connection of two voltage sources, the voltage source, which generates a counter voltage and can be integrated in a control unit, and the voltage source of the measuring cell of the exhaust gas probe, is measured. Using the ADC, the signals from the exhaust gas probe can be converted into corresponding digital signals for further processing.

Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung wird die tatsächliche Gegenspannung zur Lambda-Bestimmung und/oder zur Lambda-Regelung der Abgassonde verwendet. Damit kann eine genauere Lambda-Regelung ermöglicht werden. Einschaltbedingungen der Lambda-Regelung können damit weniger restriktiv ausgelegt werden. Die Lambda-Regelung kann daher häufiger aktiviert werden, was den Kraftstoffverbrauch und die Schadstoff-Emission reduzieren hilft.According to a preferred embodiment of the invention, the actual countervoltage is used to determine lambda and/or to regulate the exhaust gas probe. This allows for more precise lambda control be made possible. Switch-on conditions for the lambda control can therefore be designed to be less restrictive. The lambda control can therefore be activated more frequently, which helps reduce fuel consumption and pollutant emissions.

Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung wird die tatsächliche Gegenspannung bei der Berechnung eines temperaturunabhängigen Sondensignals verwendet. Dabei kann es sich bei dem Sondensignal um eine Sondenspannung handeln. Die gemessene und abgespeicherte Gegenspannung wird bei der Berechnung verwendet, um die Genauigkeit des temperaturunabhängigen Sondensignals zu verbessern. Vorteilhafterweise können Spannungsschwellen, die in Diagnosen für einen Vergleich der Sondenspannung mit der Gegenspannung verwendet werden, an die gemessene Gegenspannung angepasst werden, um die Trennschärfe dieser Diagnosen zu verbessern.According to a preferred embodiment of the invention, the actual counter voltage is used in the calculation of a temperature-independent probe signal. The probe signal can be a probe voltage. The measured and stored counter voltage is used in the calculation to improve the accuracy of the temperature-independent probe signal. Advantageously, voltage thresholds that are used in diagnoses to compare the probe voltage with the counter voltage can be adapted to the measured counter voltage in order to improve the selectivity of these diagnoses.

Gemäß einem bevorzugten Ausführungsbeispiel der Erfindung wird als Abgassonde eine Breitband-Lambdasonde, eine Zweipunkt-Lambdasonde, eine andere Abgassonde oder ein Gassensor verwendet. Bei den genannten Abgassonden ist besonders wichtig, dass diese für eine optimale Funktion sehr schnell auf ihre optimale Betriebstemperatur hochgeheizt werden. Dabei kann vorgesehen sein, dass jede der im Abgaskanal der Brennkraftmaschine verbauten Lambdasonden mit dem vorgestellten Verfahren und seinen Varianten betrieben wird. Grundsätzlich lässt sich das Verfahren auch auf andere Abgassonden, beispielsweise auf NOx-Sensoren oder auf Gassensoren mit temperaturabhängigem Ausgangssignal, anwenden. Derartige Gassensoren können auch an anderer Stelle, beispielsweise im Zuluftkanal, verbaut sein. Insbesondere bei Abgassonden mit einer TSP-Schutzschicht (Thermal Shock Protection) kann mit dem erfindungsgemäßen Verfahren eine erhebliche Reduzierung der Kaltemission eines Verbrennungsmotors erzielt werden.According to a preferred embodiment of the invention, a broadband lambda sensor, a two-point lambda sensor, another exhaust gas sensor or a gas sensor is used as the exhaust gas sensor. With the exhaust gas probes mentioned, it is particularly important that they are heated very quickly to their optimal operating temperature for optimal function. It can be provided that each of the lambda sensors installed in the exhaust duct of the internal combustion engine is operated with the method presented and its variants. In principle, the method can also be applied to other exhaust gas sensors, for example NO x sensors or gas sensors with a temperature-dependent output signal. Such gas sensors can also be installed elsewhere, for example in the supply air duct. Particularly in the case of exhaust gas sensors with a TSP (thermal shock protection) protective layer, the method according to the invention can be used to achieve a significant reduction in the cold emissions of an internal combustion engine.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend wird die Erfindung anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnungen weiter im Detail erläutert.

Fig. 1
zeigt in schematischer Darstellung das technische Umfeld, in dem das erfindungsgemäße Verfahren gemäß einem ersten bevorzugten Ausführungsbeispiel der Erfindung angewendet wird; und
Fig. 2
illustriert schematisch die Verfahrensschritte des erfindungsgemäßen Verfahrens gemäß dem ersten bevorzugten Ausführungsbeispiel der Erfindung.
The invention is explained in further detail below using preferred exemplary embodiments with reference to the drawings.
Fig. 1
shows a schematic representation of the technical environment in which the method according to the invention is used according to a first preferred embodiment of the invention; and
Fig. 2
schematically illustrates the process steps of the method according to the invention according to the first preferred embodiment of the invention.

Ausführungsbeispiele der ErfindungEmbodiments of the invention

Fig. 1 zeigt schematisch an einem Beispiel eines Otto-Motors das technische Umfeld, in dem das erfindungsgemäße Verfahren gemäß einem ersten bevorzugten Ausführungsbeispiel der Erfindung zur Signalaufbereitung einer Abgassonde 1, 5 eingesetzt werden kann. Einer Brennkraftmaschine 3 wird Luft über eine Luftzuführung 6 zugeführt und deren Masse mit einem Luftmassenmesser 7 bestimmt. Der Luftmassenmesser 7 kann als Heißfilm-Luftmassenmesser ausgeführt sein. Das Abgas der Brennkraftmaschine 3 wird über einen Abgaskanal 2 abgeführt, wobei in Strömungsrichtung des Abgases hinter der Brennkraftmaschine 3 eine Abgasreinigungsanlage 9 vorgesehen ist. Die Abgasreinigungsanlage 9 umfasst üblicherweise mindestens einen Katalysator. Fig. 1 shows schematically, using an example of a gasoline engine, the technical environment in which the method according to the invention can be used according to a first preferred embodiment of the invention for signal processing of an exhaust gas probe 1, 5. Air is supplied to an internal combustion engine 3 via an air supply 6 and its mass is determined with an air mass meter 7. The air mass meter 7 can be designed as a hot film air mass meter. The exhaust gas from the internal combustion engine 3 is discharged via an exhaust gas duct 2, with an exhaust gas purification system 9 being provided behind the internal combustion engine 3 in the direction of flow of the exhaust gas. The exhaust gas purification system 9 usually includes at least one catalytic converter.

Zur Steuerung der Brennkraftmaschine 3 ist eine Motorsteuerung 4 vorgesehen, die zum einen der Brennkraftmaschine 3 über eine Kraftstoffdosierung 8 Kraftstoff zuführt und der zum anderen die Signale des Luftmassenmessers 7 und der in dem Abgaskanal 2 angeordneten Abgassonde 5 sowie einer weiteren in der Abgasableitung 2 angeordneten Abgassonde 1 zugeführt werden. Die Abgassonde 5 bestimmt im ersten bevorzugten Ausführungsbeispiel einen Lambda-Istwert eines der Brennkraftmaschine 3 zugeführten Kraftstoff-Luft-Gemischs. Sie kann als Breitband-Lambdasonde oder stetige Lambda-Sonde ausgeführt sein. Die Abgassonde 1 bestimmt die Abgaszusammensetzung nach der Abgasreinigungsanlage 9. Die Abgassonde 1 kann als Sprungsonde oder als Zweipunkt-Lambdasonde ausgebildet sein.To control the internal combustion engine 3, an engine control 4 is provided, which, on the one hand, supplies fuel to the internal combustion engine 3 via a fuel metering 8 and, on the other hand, the signals from the air mass meter 7 and the exhaust gas probe 5 arranged in the exhaust gas duct 2 as well as a further exhaust gas probe arranged in the exhaust gas discharge line 2 1 are supplied. In the first preferred exemplary embodiment, the exhaust gas probe 5 determines an actual lambda value of a fuel-air mixture supplied to the internal combustion engine 3. It can be designed as a broadband lambda probe or a continuous lambda probe. The exhaust gas probe 1 determines the exhaust gas composition after the exhaust gas purification system 9. The exhaust gas probe 1 can be designed as a jump probe or as a two-point lambda probe.

Die Abgassonde 5 weist als Hauptkomponente eine Messzelle mit einem integrierten Heizelement auf, die ein vom Sauerstoffgehalt im Abgaskanal 2 abhängiges Ausgangssignal liefert, welches als Eingangssignal einer Lambdaregelung dient. Die Messzelle kann dabei als Nernst-Zelle ausgeführt sein. Die Lambdaregelung ist üblicherweise Bestandteil der Motorsteuerung 4. Entsprechend kann anstelle der Abgassonde 5 oder zusätzlich zu dieser die Abgassonde 1 mit ihrem Heizelement sowie ihrer Messzelle an die Motorsteuerung 4 angeschlossen sein.The exhaust gas probe 5 has as its main component a measuring cell with an integrated heating element, which depends on the oxygen content in the exhaust gas duct 2 provides a dependent output signal, which serves as an input signal for a lambda control. The measuring cell can be designed as a Nernst cell. The lambda control is usually part of the engine control 4. Accordingly, instead of the exhaust gas probe 5 or in addition to it, the exhaust gas probe 1 with its heating element and its measuring cell can be connected to the engine control 4.

Im Folgenden wird das erfindungsgemäße Verfahren am Beispiel der als Zweipunkt-Lambdasonde ausgeführten Abgassonde 1 erläutert. Dieses lässt sich sinngemäß auch auf andere Abgassonden mit temperaturabhängigem Ausgangssignal anwenden.The method according to the invention is explained below using the example of the exhaust gas probe 1 designed as a two-point lambda sensor. This can also be applied to other exhaust gas sensors with a temperature-dependent output signal.

Üblicherweise befindet sich im Steuergerät bzw. in der Motorsteuerung 4 eine Spannungsquelle, die parallel zur Abgassonde 1 geschaltet ist. Diese Spannungsquelle erzeugt eine konstante Gegenspannung und weist einen im Vergleich zu einer kalten Abgassonde 1 geringen Innenwiderstand auf. Da die Abgassonde 1 selbst ebenfalls eine Spannungsquelle darstellt, handelt es sich um eine Parallelschaltung zweier Spannungsquellen. Die Ausgangsspannung dieser Parallelschaltung wird mithilfe eines ADC gemessen und ist eine Überlagerung der Nernst-Spannung der Abgassonde 1 und der Gegenspannung, wobei die Spannung der Spannungsquelle mit dem kleineren Innenwiderstand überwiegt. Bei kalter Sonde besitzt diese einen hohen Innenwiderstand, sodass die Gegenspannung dominiert. Bei einer heißen Sonde ist der Innenwiderstand dagegen sehr klein, sodass die Nernst-Spannung der Sonde dominiert.There is usually a voltage source in the control unit or in the engine control 4, which is connected in parallel to the exhaust gas probe 1. This voltage source generates a constant counter-voltage and has a low internal resistance compared to a cold exhaust gas probe 1. Since the exhaust gas probe 1 itself also represents a voltage source, it is a parallel connection of two voltage sources. The output voltage of this parallel circuit is measured using an ADC and is a superposition of the Nernst voltage of the exhaust gas probe 1 and the counter voltage, whereby the voltage of the voltage source with the smaller internal resistance predominates. When the probe is cold, it has a high internal resistance, so that the counter voltage dominates. With a hot probe, however, the internal resistance is very small, so that the Nernst voltage of the probe dominates.

Die im Steuergerät befindliche Spannungsquelle erzeugt eine konstante Gegenspannung. Diese Gegenspannung beträgt beispielsweise 1.6 V im Fall einer Zweipunkt-Lambdasonde mit gepumpter Sauerstoffreferenz und 0.45 V im Fall einer Sonde ohne gepumpte Sauerstoffreferenz. Die Gegenspannung wird typischerweise aus einer im Steuergerät verfügbaren Festspannung, beispielsweise 5 V oder 3.3 V, über einen Spannungsteiler erzeugt. Sowohl die Festspannung als auch die Widerstände des Spannungsteilers sind in der Regel toleranzbehaftet. In dem ersten bevorzugten Ausführungsbeispiel der Erfindung liegt die tatsächliche Gegenspannung im Bereich beispielsweise zwischen 1.3 V und 1.9 V.The voltage source in the control unit generates a constant counter voltage. This counter voltage is, for example, 1.6 V in the case of a two-point lambda probe with a pumped oxygen reference and 0.45 V in the case of a probe without a pumped oxygen reference. The counter voltage is typically generated from a fixed voltage available in the control unit, for example 5 V or 3.3 V, via a voltage divider. Both the fixed voltage and the resistances of the voltage divider are usually subject to tolerances. In the first preferred embodiment of the invention, the actual counter voltage is in the range, for example, between 1.3 V and 1.9 V.

Fig. 2 illustriert schematisch die Verfahrensschritte des erfindungsgemäßen Verfahrens gemäß dem ersten bevorzugten Ausführungsbeispiel der Erfindung. Nach dem Start 10 des Verfahrens wird in einem ersten Schritt 11 ein Betriebspunkt der Abgassonde 1 ausgewählt, bei dem eine Ausgangspannung einer Parallelschaltung aus einer Sondenspannung der Abgassonde 1 und einer Gegenspannung einer in einer Steuereinheit 4 integrierten Spannungsquelle der Gegenspannung der in der Steuereinheit 4 integrierten Spannungsquelle entspricht. Hierzu werden die durchlaufenden Betriebspunkte gegebenenfalls solange beobachtet bis ein Betriebspunkt die vorgenannte Bedingung erfüllt. In einem zweiten Schritt 12 wird dann die Ausgangsspannung der Parallelschaltung bei dem in dem ersten Schritt ausgewählten Betriebspunkt ausgelesen. In einem dritten Schritt 13 wird die in dem zweiten Schritt 12 ausgelesene Ausgangsspannung als tatsächliche Gegenspannung verwendet bevor eine Beendigung 14 des Verfahrens erfolgt. Fig. 2 schematically illustrates the process steps of the method according to the invention according to the first preferred embodiment of the invention. After the start 10 of the method, in a first step 11 an operating point of the exhaust gas probe 1 is selected, at which an output voltage of a parallel connection consisting of a probe voltage of the exhaust gas probe 1 and a countervoltage of a voltage source integrated in a control unit 4 is the countervoltage of the voltage source integrated in the control unit 4 corresponds. For this purpose, the continuous operating points are observed, if necessary, until an operating point fulfills the aforementioned condition. In a second step 12, the output voltage of the parallel connection is then read out at the operating point selected in the first step. In a third step 13, the output voltage read out in the second step 12 is used as the actual countervoltage before the method is terminated 14.

Gemäß anderen bevorzugten Ausführungsbeispielen der Erfindung wird die Messung der Gegenspannung nach der Fahrzeugmontage am Bandende vor dem ersten Motorstart durchgeführt. Dabei wird entweder die Sonde angeschlossen oder die Sonde bleibt nicht angeschlossen. Eine solche Messung ist sehr einfach in den Ablauf am Bandende integrierbar, da sie lediglich die kurze Zeit für eine Spannungsmessung, üblicherweise kleiner als eine Sekunde, benötigt. Gemäß anderen bevorzugten Ausführungsbeispielen der Erfindung wird eine Messung der Gegenspannung auch später im Fahrzeugleben wiederholt, wenn durch entsprechende Einschaltbedingungen sichergestellt ist, dass die Sonde kalt ist, beispielsweise nach ausreichend langer Abstellzeit des Verbrennungsmotors. Durch regelmäßige Wiederholungsmessungen wird eine Langzeitdrift der Gegenspannung erkannt und berücksichtigt. Vorteilhafterweise wird dabei der gemessene Wert der Gegenspannung im Steuergerät dauerhaft gespeichert und statt des Nominalwerts in der Steuergerätesoftware verwendet.According to other preferred embodiments of the invention, the measurement of the counter tension is carried out after vehicle assembly at the end of the line before the first engine start. Either the probe is connected or the probe remains unconnected. Such a measurement can be very easily integrated into the process at the end of the belt, as it only requires a short time for a voltage measurement, usually less than a second. According to other preferred embodiments of the invention, a measurement of the countervoltage is also repeated later in the life of the vehicle when appropriate switch-on conditions ensure that the probe is cold, for example after the internal combustion engine has been switched off for a sufficiently long time. Long-term drift in the counter voltage is detected and taken into account through regular repeated measurements. Advantageously, the measured value of the counter voltage is permanently stored in the control device and used instead of the nominal value in the control device software.

Claims (3)

  1. Method for lambda determination with a two-point lambda probe (1) in the exhaust gas duct (2) of an internal combustion engine (3), wherein the two-point lambda probe (1) has at least one heating element for reaching a nominal temperature of a measurement cell in the exhaust gas probe (1), wherein a probe voltage that is dependent on the oxygen partial pressure in the exhaust gas is established at the two-point lambda probe during the lambda determination, wherein a voltage source that is located in a control device and that has an internal resistance that is lower than the internal resistance of the two-point lambda probe at 100°C is connected in parallel with the two-point lambda probe, wherein an output voltage results from the parallel connection of the voltage source with the two-point lambda probe, comprising the steps of:
    a) selecting (11) an operating point of the exhaust gas probe (1) at which the temperature of the exhaust gas probe/two-point lambda probe is below 100°C,
    b) reading (12) the output voltage of the parallel connection at the operating point selected in step a) and storing same as actual back-EMF in the control device,
    c) using (13) the actual back-EMF for the lambda determination with the two-point lambda probe (1).
  2. Method according to Claim 1, wherein the probe voltage at the output of the electrical circuit of the measurement cell is determined by an analogue-to-digital converter.
  3. Method according to either of the preceding claims, wherein the actual back-EMF is used in the calculation of a temperature-independent probe signal.
EP15722498.1A 2014-06-10 2015-05-05 Mehtod and apparatus for controlling an exhaust gas sensor Active EP3155250B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210981.7A DE102014210981A1 (en) 2014-06-10 2014-06-10 Method and device for operating an exhaust gas probe
PCT/EP2015/059842 WO2015188984A1 (en) 2014-06-10 2015-05-05 Method and device for operating an exhaust gas probe

Publications (2)

Publication Number Publication Date
EP3155250A1 EP3155250A1 (en) 2017-04-19
EP3155250B1 true EP3155250B1 (en) 2023-09-13

Family

ID=53177468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15722498.1A Active EP3155250B1 (en) 2014-06-10 2015-05-05 Mehtod and apparatus for controlling an exhaust gas sensor

Country Status (4)

Country Link
EP (1) EP3155250B1 (en)
CN (1) CN106460696B (en)
DE (1) DE102014210981A1 (en)
WO (1) WO2015188984A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538431A (en) * 1976-07-12 1978-01-25 Hitachi Ltd Air-to-fuel ratio control means for engine
DE19838466A1 (en) * 1998-08-25 2000-03-02 Bosch Gmbh Robert Control system for a diffusion type oxygen measurement cell, e.g. used in exhaust gas streams to control fuel mixture supplied to IC engine
KR100345141B1 (en) * 2000-05-12 2002-07-24 현대자동차주식회사 Method for reducing emission of vehicle
DE10029831C1 (en) * 2000-06-16 2002-02-28 Siemens Ag Method and device for operating a linear lambda probe
DE10147390A1 (en) * 2001-09-26 2003-04-30 Bosch Gmbh Robert Broadband lambda probe with improved starting behavior
JP4033072B2 (en) * 2003-04-23 2008-01-16 トヨタ自動車株式会社 Control device for gas concentration sensor
JP3855979B2 (en) * 2003-08-04 2006-12-13 トヨタ自動車株式会社 Control device for exhaust gas sensor of internal combustion engine
JP2006300829A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Abnormality detection device of oxygen sensor
JP4483715B2 (en) * 2005-06-10 2010-06-16 トヨタ自動車株式会社 Exhaust gas sensor failure detection device
JP2007247413A (en) * 2006-03-13 2007-09-27 Toyota Motor Corp Control device of internal combustion engine
JP2008063951A (en) * 2006-09-05 2008-03-21 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
DE102007009157A1 (en) * 2007-02-26 2008-08-28 Robert Bosch Gmbh Method for operation of broadband lambda probe for determining oxygen concentration in exhaust gas of internal-combustion engines, involves forming pump cell with two electrodes acting as pump electrodes
DE102008013515A1 (en) * 2008-03-07 2009-09-10 Volkswagen Ag Method for operating a lambda probe during the warm-up phase
DE102008042268A1 (en) 2008-09-22 2010-04-01 Robert Bosch Gmbh Method for operating a heated exhaust gas probe
DE102011077353B4 (en) * 2011-06-10 2013-06-27 Continental Automotive Gmbh Compensation of a current-voltage characteristic of a single-cell lambda probe based on a measured DC resistance
DE102012221549A1 (en) * 2012-11-26 2014-05-28 Robert Bosch Gmbh Method for determining gaseous mixture composition in exhaust gas passage of internal combustion engine i.e. Otto engine, involves correcting output signal of exhaust-gas sensor with quantity dependant on composition of gaseous mixture

Also Published As

Publication number Publication date
CN106460696B (en) 2020-08-11
CN106460696A (en) 2017-02-22
DE102014210981A1 (en) 2015-12-17
EP3155250A1 (en) 2017-04-19
WO2015188984A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
DE102017218327B4 (en) Method for operating an internal combustion engine with three-way catalytic converter and lambda control
EP2791493B1 (en) Method and apparatus for monitoring exhaust gas sensor dynamics
EP1084331B1 (en) Method and device to monitor the functioning of a catalyst in an internal combustion engine
DE102016211595A1 (en) Method and device for controlling and / or monitoring the function of a secondary air supply in an emission control system
EP2612137B1 (en) Method and apparatus for determining at least one characteristic of a gas
DE102009046232A1 (en) Method for diagnosing a NOx sensor
EP1944481B1 (en) Device for estimating the loading state of a NOx storage catalytic converter
DE102012212596A1 (en) Method for operating exhaust gas probe in exhaust passage of internal combustion engine of passenger car, involves generating temperature independent output signal of exhaust gas probe, and calculating Nernst voltage of measuring cell
DE102015224935B4 (en) Method, apparatus and system for operating a nitrogen oxide sensor
EP3152432B1 (en) Method for correcting a voltage-lambda characteristic plot
DE102015215521B4 (en) Method and apparatus for diagnosing oxygen sensor disconnection
DE102018119139B4 (en) Exhaust gas purification system of an internal combustion engine
DE102012212580A1 (en) Method for operating e.g. broadband-lambda sensor used in exhaust duct of Otto engine of passenger car, involves correcting Nernst-voltage as output signal of exhaust gas sensor according to measure of sensor aging
EP3155250B1 (en) Mehtod and apparatus for controlling an exhaust gas sensor
DE102019122173A9 (en) Gas sensor diagnostic device
EP2652297B1 (en) Method for detecting the operational readiness of a jump lambda sensor
DE102019207251A1 (en) Method for monitoring a gas sensor
DE102012200032B4 (en) Method and device for dynamic diagnosis of sensors
DE10023072B4 (en) Method and device for determining a NOx concentration of an exhaust gas stream of an internal combustion engine
DE102013200573A1 (en) Method for active diagnosis of components of emission control system in internal combustion engine of vehicle, involves determining oxygen storage capability in engine during pre-conditioning, and adjusting aging state/storage of catalyst
DE102015201400A1 (en) Method for determining limits of a determination of an offset at least in a range of a voltage-lambda characteristic of a first lambda probe arranged in an exhaust passage of an internal combustion engine with respect to a reference voltage-lambda characteristic
DE102011081894A1 (en) Method and device for dynamic diagnosis of an exhaust gas probe
DE102013216595A1 (en) Method and device for correcting a characteristic curve of a lambda probe
DE102006041479B4 (en) Method for determining the oxygen storage capacity of an exhaust gas cleaning system
DE102014202035A1 (en) Method and device for monitoring a nitrogen oxide storage catalyst

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200922

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016594

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502015016594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113