EP3153585B1 - Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants - Google Patents

Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants Download PDF

Info

Publication number
EP3153585B1
EP3153585B1 EP16194415.2A EP16194415A EP3153585B1 EP 3153585 B1 EP3153585 B1 EP 3153585B1 EP 16194415 A EP16194415 A EP 16194415A EP 3153585 B1 EP3153585 B1 EP 3153585B1
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
neena
acid molecule
plant
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16194415.2A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3153585A3 (en
EP3153585A2 (en
Inventor
Josef Martin Kuhn
Linda Patricia Loyall
Malte Siebert
Elke Duwenig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science Co GmbH
Original Assignee
BASF Plant Science Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Plant Science Co GmbH filed Critical BASF Plant Science Co GmbH
Priority to EP19183559.4A priority Critical patent/EP3581657B1/en
Publication of EP3153585A2 publication Critical patent/EP3153585A2/en
Publication of EP3153585A3 publication Critical patent/EP3153585A3/en
Application granted granted Critical
Publication of EP3153585B1 publication Critical patent/EP3153585B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8234Seed-specific, e.g. embryo, endosperm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention is in the field of plant molecular biology and provides methods for production of high expressing constitutive promoters and the production of plants with enhanced constitutive expression of nucleic acids wherein nucleic acid expression enhancing nucleic acids (NEENAs) are functionally linked to said promoters and/or introduced into plants.
  • NEENAs nucleic acid expression enhancing nucleic acids
  • transgenes in plants are strongly affected by various external and internal factors resulting in a variable and unpredictable level of transgene expression. Often a high number of transformants have to be produced and analyzed in order to identify lines with desirable expression strength. As transformation and screening of lines with desirable expression strength is costly and labor intensive there is a need for high expression of one ore more transgenes in a plant. This problem is especially pronounced, when several genes have to be coordinately expressed in a transgenic plant in order to achieve a specific effect as a plant has to be identified in which each and every gene is strongly expressed.
  • expression of a transgene can vary significantly, depending on construct design and positional effects of the T-DNA insertion locus in individual transformation events. Strong promoters can partially overcome these challenges. However, availability of suitable promoters showing strong expression with the desired specificity is often limited. In order to ensure availability of sufficient promoters with desired expression specificity, the identification and characterization of additional promoters can help to close this gap. However, natural availability of promoters of the respective specificity and strength and the time consuming characterization of promoter candidates impedes the identification of suitable new promoters.
  • introns have been recognized as genetic elements with a strong potential for improving gene expression. Although the mechanism is largely unknown, it has been shown that some introns positively affect the steady state amount of mature mRNA, possibly by enhanced transcriptional activity, improved mRNA maturation, enhanced nuclear mRNA export and/or improved translation initiation (e.g. Huang and Gorman, 1990; Le Hir et al., 2003; Nott et al., 2004). Since only selected introns were shown to increase expression, splicing as such is likely not accountable for the observed effects.
  • intron mediated enhancement of gene expression and has been shown in various monocotyledonous (e.g. Callis et al., 1987; Vasil et al., 1989; Bruce et al., 1990; Lu et al., 2008) and dicotyledonous plants (e.g. Chung et al., 2006; Kim et al., 2006; Rose et al., 2008).
  • ATG translational start site
  • introns were shown to also affect the tissue specificity in their native nucleotide environment in plants. Reporter gene expression was found to be dependent on the presence of genomic regions containing up to two introns (Sieburth et al., 1997; Wang et al., 2004). 5' UTR introns have also been reported to be of importance for proper functionality of promoter elements, likely due to tissue specific gene control elements residing in the introns (Fu et al.,1995a; Fu et al., 1995b; Vitale et al., 2003; Kim et al., 2006).
  • nucleic acid molecules that enhance the expression of said promoters without affecting their specificity upon functionally linkage to constitutive promoters.
  • These nucleic acid molecules are in the present application described as "nucleic acid expression enhancing nucleic acids" (NEENA).
  • NEENA nucleic acid expression enhancing nucleic acids
  • Introns have the intrinsic feature to be spliced out of the respective pre-mRNA.
  • the nucleic acids presented in the application at hand do not necessarily have to be included in the mRNA or, if present in the mRNA, have not necessarily to be spliced out of the mRNA in order to enhance the expression derived from the promoter the NEENAs are functionally linked to.
  • a first embodiment of the invention comprises a method for production of a high expression constitutive promoter comprising functionally linking to a promoter one or more nucleic acid expression enhancing nucleic acid (NEENA) molecule comprising
  • the one or more NEENA is functionally linked to any constitutive promoter and will enhance expression of the nucleic acid molecule under control of said promoter.
  • Constitutive promoters to be used in any method of the invention may be derived from plants, for example monocotyledonous or dicotyledonous plants, from bacteria and/or viruses or may be synthetic promoters.
  • Constitutive promoters to be used are for example the PcUbi-Promoter from P.
  • AtFNR-promoter from the A.thaliana gene At5g66190 encoding the ferredoxin NADH reductase, the ptxA promoter from Pisum sativum ( WO2005085450 ), the AtTPT-promoter from the A.thaliana gene At5g46110 encoding the triose phosphate translocator, the bidirectional AtOASTL-promoter from the A.thaliana genes At4g14880 and At4g14890 , the PRO0194 promoter from the A.thaliana gene At1g13440 encoding the glyceraldehyde-3-phosphate dehydrogenase, the PRO0162 promoter from the A.thaliana gene At3g52930 encoding the fructose-bisphosphate aldolase, the AHAS-promoter ( WO2008124495 ) or the CaffeoylCoA-MT promoter and the OsCP12 from rice ( WO2006084868 ).
  • the high expression constitutive promoters of the invention functionally linked to a NEENA may be employed in any plant comprising for example moss, fern, gymnosperm or angiosperm, for example monocotyledonous or dicotyledonous plant.
  • said promoter of the invention functionally linked to a NEENA may be employed in monocotyledonous or dicotyledonous plants, preferably crop plant such as corn, soy, canola, cotton, potato, sugar beet, rice, wheat, sorghum, barley, musa, sugarcane, miscanthus and the like.
  • said promoter which is functionally linked to a NEENA may be employed in monocotyledonous crop plants such as corn, rice, wheat, sorghum, musa, miscanthus, sugarcane or barley.
  • the promoter functionally linked to a NEENA may be employed in dicotyledonous crop plants such as soy, canola, cotton, sugar beet or potato.
  • a high expressing constitutive promoter as used in the application means for example a promoter which is functionally linked to a NEENA causing enhanced constitutive expression of the promoter in a plant or part thereof wherein the accumulation of RNA or rate of synthesis of RNA derived from the nucleic acid molecule under the control of the respective promoter functionally linked to a NEENA is higher, preferably significantly higher than the expression caused by the same promoter lacking a NEENA of the invention.
  • the amount of RNA of the respective nucleic acid and/or the rate of RNA synthesis and/or the RNA stability in a plant is increased 50% or more, for example 100% or more, preferably 200% or more, more preferably 5 fold or more, even more preferably 10 fold or more, most preferably 20 fold or more for example 50 fold compared to a control plant of same age grown under the same conditions comprising the same constitutive promoter the latter not being functionally linked to a NEENA of the invention.
  • telomere length When used herein, significantly higher refers to statistical significance the skilled person is aware how to determine, for example by applying statistical tests such as the t-test to the respective data sets.
  • Methods for detecting expression conferred by a promoter are known in the art.
  • the promoter may be functionally linked to a marker gene such as GUS, GFP or luciferase and the activity of the respective protein encoded by the respective marker gene may be determined in the plant or part thereof.
  • a marker gene such as GUS, GFP or luciferase
  • the activity of the respective protein encoded by the respective marker gene may be determined in the plant or part thereof.
  • the method for detecting luciferase is described in detail below.
  • RNA of the nucleic acid molecule controlled by the promoter are for example measuring the steady state level or synthesis rate of RNA of the nucleic acid molecule controlled by the promoter by methods known in the art, for example Northern blot analysis, qPCR, run-on assays or other methods described in the art.
  • a skilled person is aware of various methods for functionally linking two or more nucleic acid molecules. Such methods may encompass restriction/ligation, ligase independent cloning, re-combineering, recombination or synthesis. Other methods may be employed to functionally link two or more nucleic acid molecules.
  • a further embodiment of the present invention is a method for producing a plant or part thereof with, compared to a respective control plant or part thereof, enhanced constitutive expression of one or more nucleic acid molecule comprising the steps of introducing into the plant or part thereof one or more NEENA comprising a nucleic acid molecule as defined above under i) to iv) and functionally linking said one or more NEENA to a promoter, preferably a constitutive promoter and to a nucleic acid molecule being under the control of said promoter, preferably constitutive promoter, wherein the NEENA is heterologous to said nucleic acid molecule.
  • the NEENA may be heterologous to the nucleic acid molecule which is under the control of said promoter to which the NEENA is functionally linked or it may be heterologous to both the promoter and the nucleic acid molecule under the control of said promoter.
  • heterologous with respect to a nucleic acid molecule or DNA refers to a nucleic acid molecule which is operably linked to, or is manipulated to become operably linked to, a second nucleic acid molecule to which it is not operably linked in nature, or to which it is operably linked at a different location in nature.
  • a NEENA of the invention is in its natural environment functionally linked to its native promoter, whereas in the present invention it is linked to another promoter which might be derived from the same organism, a different organism or might be a synthetic promoter such as the SUPER-promoter. It may also mean that the NEENA of the present invention is linked to its native promoter but the nucleic acid molecule under control of said promoter is heterologous to the promoter comprising its native NEENA.
  • the promoter and/or the nucleic acid molecule under the control of said promoter functionally linked to a NEENA of the invention are heterologous to said NEENA as their sequence has been manipulated by for example mutation such as insertions, deletions and the forth so that the natural sequence of the promoter and/or the nucleic acid molecule under control of said promoter is modified and therefore have become heterologous to a NEENA of the invention.
  • the NEENA is heterologous to the nucleic acid to which it is functionally linked when the NEENA is functionally linked to its native promoter wherein the position of the NEENA in relation to said promoter is changed so that the promoter shows higher expression after such manipulation.
  • a plant exhibiting enhanced constitutive expression of a nucleic acid molecule as meant herein means a plant having a higher, preferably statistically significant higher constitutive expression of a nucleic acid molecule compared to a control plant grown under the same conditions without the respective NEENA functionally linked to the respective nucleic acid molecule.
  • Such control plant may be a wild-type plant or a transgenic plant comprising the same promoter controlling the same gene as in the plant of the invention wherein the promoter is not linked to a NEENA of the invention.
  • Producing a plant as used herein comprises methods for stable transformation such as introducing a recombinant DNA construct into a plant or part thereof by means of Agrobacterium mediated transformation, protoplast transformation, particle bombardment or the like and optionally subsequent regeneration of a transgenic plant. It also comprises methods for transient transformation of a plant or part thereof such as viral infection or Agrobacterium infiltration. A skilled person is aware of further methods for stable and/or transient transformation of a plant or part thereof. Approaches such as breeding methods or protoplast fusion might also be employed for production of a plant of the invention and are covered herewith.
  • the method of the invention may be applied to any plant, for example gymnosperm or angiosperm, preferably angiosperm, for example dicotyledonous or monocotyledonous plants, preferably dicotyledonous plants.
  • Preferred monocotyledonous plants are for example corn, wheat, rice, barley, sorghum, musa, sugarcane, miscanthus and brachypodium, especially preferred monocotyledonous plants are corn, wheat and rice.
  • Preferred dicotyledonous plants are for example soy, rape seed, canola, linseed, cotton, potato, sugar beet, tagetes and Arabidopsis, especially preferred dicotyledonous plants are soy, rape seed, canola and potato
  • the methods as defined above are comprising the steps of
  • a further way to perform the methods of the invention may be to
  • said one or more NEENA is functionally linked to a promoter, preferably constitutive promoter close to the transcription start site of said heterologous nucleic acid molecule.
  • Close to the transcription start site as meant herein comprises functionally linking one or more NEENA to a promoter, preferably a constitutive promoter 2500 bp or less, preferentially 2000 bp or less, more preferred 1500 bp or less, even more preferred 1000 bp or less and most preferred 500 bp or less away from the transcription start site of said heterologous nucleic acid molecule.
  • the NEENA may be integrated upstream or downstream in the respective distance from the transcription start site of the respective promoter.
  • the one or more NEENA must not necessarily be included in the transcript of the respective heterologous nucleic acid under control of the preferably constitutive promoter the one or more NEENA is functionally linked to.
  • the one or more NEENA is integrated downstream of the transcription start site of the respective promoter, preferably constitutive promoter.
  • the integration site downstream of the transcription start site may be in the 5' UTR, the 3' UTR, an exon or intron or it may replace an intron or partially or completely the 5' UTR or 3' UTR of the heterologous nucleic acid under the control of the preferably constitutive promoter.
  • the one or more NEENA is integrated in the 5' UTR or an intron or the NEENA is replacing an intron or a part or the complete 5'UTR, most preferentially it is integrated in the 5'UTR of the respective heterologous nucleic acid.
  • a further embodiment of the invention comprises a recombinant expression construct comprising one or more NEENA comprising a nucleic acid molecule as defined above in i) to vi).
  • the recombinant expression construct may further comprise one or more promoter, preferably constitutive promoter to which the one or more NEENA is functionally linked and optionally one or more expressed nucleic acid molecule the latter being heterologous to said one or more NEENA.
  • the NEENA may be heterologous to the nucleic acid molecule which is under the control of said promoter to which the NEENA is functionally linked or it may be heterologous to both the promoter and the nucleic acid molecule under the control of said promoter.
  • the expression construct may comprise one ore more, for example two or more, for example 5 or more, such as 10 or more combinations of promoters, preferably constitutive promoters functionally linked to a NEENA and a nucleic acid molecule to be expressed heterologous to the respective NEENA.
  • the expression construct may also comprise further promoters not comprising a NEENA functionally linked to nucleic acid molecules to be expressed homologous or heterologous to the respective promoter.
  • a recombinant expression vector comprising one or more recombinant expression construct as defined above is another embodiment of the invention.
  • a multitude of expression vectors that may be used in the present invention are known to a skilled person.
  • Methods for introducing such a vector comprising such an expression construct comprising for example a promoter functionally linked to a NEENA and optionally other elements such as a terminator into the genome of a plant and for recovering transgenic plants from a transformed cell are also well known in the art.
  • the entire vector might be integrated into the genome of said plant or part thereof or certain components of the vector might be integrated into the genome, such as, for example a T-DNA.
  • a transgenic plant or part thereof comprising one or more heterologous NEENA as defined above in i) to iv) is also enclosed in this invention.
  • a NEENA is to be understood as being heterologous to the plant if it is synthetic, derived from another organism or the same organism but its natural genomic localization is rendered compared to a control plant, for example a wild type plant.
  • a rendered genomic localization means the NEENA is located on another chromosome or on the same chromosome but 10 kb or more, for example 10 kb, preferably 5 kb or more, for example 5 kb, more preferably 1000 bp or more, for example 1000 bp, even more preferably 500 bp or more, for example 500 bp, especially preferably 100bp or more, for example 100 bp, most preferably 10 bp or more, for example 10 bp dislocated from its natural genomic localization, for example in a wild type plant.
  • a transgenic cell or transgenic plant or part thereof comprising a recombinant expression vector as defined above or a recombinant expression construct as defined above is a further embodiment of the invention.
  • the transgenic cell, transgenic plant or part thereof may be selected from the group consisting of bacteria, fungi, yeasts or plant, insect or mammalian cells or plants.
  • the transgenic cells are bacteria, fungi, yeasts or plant cells.
  • Preferred bacteria are Enterobacteria such as E. coli and bacteria of the genus Agrobacteria, for example Agrobacterium tumefaciens and Agrobacterium rhizogenes.
  • Preferred plants are monocotyledonous or dicotyledonous plants for example monocotyledonous or dicotyledonous crop plants such as corn, soy, canola, cotton, potato, sugar beet, rice, wheat, sorghum, barley, miscanthus, musa, sugarcane and the like.
  • Preferred crop plants are corn, rice, wheat, soy, canola, cotton or potato.
  • Especially preferred dicotyledonous crop plants are soy, canola, cotton or potato.
  • Especially preferred monocotyledonous crop plants are corn, wheat and rice.
  • transgenic cell culture, transgenic seed, parts or propagation material derived from a transgenic cell or plant or part thereof as defined above comprising said heterologous NEENA as defined above in i) to iv) or said recombinant expression construct or said recombinant vector as defined above are other embodiments of the invention.
  • Transgenic parts or propagation material as meant herein comprise all tissues and organs, for example leaf, stem and fruit as well as material that is useful for propagation and/or regeneration of plants such as cuttings, scions, layers, branches or shoots comprising the respective NEENA, recombinant expression construct or recombinant vector.
  • a further embodiment of the invention is the use of the NEENA as defined above in i) to iv) or the recombinant construct or recombinant vector as defined above for enhancing expression in plants or parts thereof.
  • the application at hand provides seed-specific and/or seed-preferential gene expression enhancing nucleic acid molecules comprising one or more promoter, preferably seed- specific and/or seed preferential promoter functionally linked to one ore more NEENA. Additionally use of such gene expression enhancing nucleic acid molecules and expression constructs, expression vectors, transgenic plants or parts thereof and transgenic cells comprising such gene expression enhancing nucleic acid molecules are provided.
  • transgenic cell culture A use of a transgenic cell culture, transgenic seed, parts or propagation material derived from a transgenic cell or plant or part thereof as defined above for the production of foodstuffs, animal feeds, seeds, pharmaceuticals or fine chemicals is also enclosed in this invention.
  • NEENA nucleic acid expression enhancing nucleic acid
  • GFP green fluorescence protein
  • GUS beta-Glucuronidase
  • BAP 6-benzylaminopurine
  • 2,4-D 2,4-dichlorophenoxyacetic acid
  • MS Murashige and Skoog medium
  • MES 2-(N-morpholino-ethanesulfonic acid, IAA indole acetic acid
  • Kan Kanamycin sulfate
  • GA3 Gibberellic acid
  • TimentinTM ticarcillin disodium / clavulanate potassium
  • microl Microliter.
  • Antiparallel refers herein to two nucleotide sequences paired through hydrogen bonds between complementary base residues with phosphodiester bonds running in the 5'-3' direction in one nucleotide sequence and in the 3'-5' direction in the other nucleotide sequence.
  • Antisense refers to a nucleotide sequence that is inverted relative to its normal orientation for transcription or function and so expresses an RNA transcript that is complementary to a target gene mRNA molecule expressed within the host cell (e.g., it can hybridize to the target gene mRNA molecule or single stranded genomic DNA through Watson-Crick base pairing) or that is complementary to a target DNA molecule such as, for example genomic DNA present in the host cell.
  • Coding region when used in reference to a structural gene refers to the nucleotide sequences which encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule.
  • the coding region is bounded, in eukaryotes, on the 5'-side by the nucleotide triplet "ATG” which encodes the initiator methionine and on the 3'-side by one of the three triplets which specify stop codons (i.e., TAA, TAG, TGA).
  • ATG nucleotide triplet
  • genomic forms of a gene may also include sequences located on both the 5'- and 3'-end of the sequences which are present on the RNA transcript.
  • flanking sequences or regions are referred to as "flanking" sequences or regions (these flanking sequences are located 5' or 3' to the non-translated sequences present on the mRNA transcript).
  • the 5'-flanking region may contain regulatory sequences such as promoters and enhancers which control or influence the transcription of the gene.
  • the 3'-flanking region may contain sequences which direct the termination of transcription, post-transcriptional cleavage and polyadenylation.
  • Complementary refers to two nucleotide sequences which comprise antiparallel nucleotide sequences capable of pairing with one another (by the base-pairing rules) upon formation of hydrogen bonds between the complementary base residues in the antiparallel nucleotide sequences.
  • sequence 5'-AGT-3' is complementary to the sequence 5'-ACT-3'.
  • Complementarity can be "partial” or “total.”
  • Partial complementarity is where one or more nucleic acid bases are not matched according to the base pairing rules.
  • Total or “complete” complementarity between nucleic acid molecules is where each and every nucleic acid base is matched with another base under the base pairing rules.
  • a "complement" of a nucleic acid sequence as used herein refers to a nucleotide sequence whose nucleic acid molecules show total complementarity to the nucleic acid molecules of the nucleic acid sequence.
  • Double-stranded RNA A "double-stranded RNA” molecule or “dsRNA” molecule comprises a sense RNA fragment of a nucleotide sequence and an antisense RNA fragment of the nucleotide sequence, which both comprise nucleotide sequences complementary to one another, thereby allowing the sense and antisense RNA fragments to pair and form a double-stranded RNA molecule.
  • Endogenous nucleotide sequence refers to a nucleotide sequence, which is present in the genome of the untransformed plant cell.
  • Enhanced expression “enhance” or “increase” the expression of a nucleic acid molecule in a plant cell are used equivalently herein and mean that the level of expression of the nucleic acid molecule in a plant, part of a plant or plant cell after applying a method of the present invention is higher than its expression in the plant, part of the plant or plant cell before applying the method, or compared to a reference plant lacking a recombinant nucleic acid molecule of the invention.
  • the reference plant is comprising the same construct which is only lacking the respective NEENA.
  • the term “enhanced” or “increased” as used herein are synonymous and means herein higher, preferably significantly higher expression of the nucleic acid molecule to be expressed.
  • an “enhancement” or “increase” of the level of an agent such as a protein, mRNA or RNA means that the level is increased relative to a substantially identical plant, part of a plant or plant cell grown under substantially identical conditions, lacking a recombinant nucleic acid molecule of the invention, for example lacking the NEENA molecule, the recombinant construct or recombinant vector of the invetion.
  • “enhancement” or “increase” of the level of an agent means that the level is increased 50% or more, for example 100% or more, preferably 200% or more, more preferably 5 fold or more, even more preferably 10 fold or more, most preferably 20 fold or more for example 50 fold relative to a cell or organism lacking a recombinant nucleic acid molecule of the invention.
  • the enhancement or increase can be determined by methods with which the skilled worker is familiar.
  • the enhancement or increase of the nucleic acid or protein quantity can be determined for example by an immunological detection of the protein.
  • techniques such as protein assay, fluorescence, Northern hybridization, nuclease protection assay, reverse transcription (quantitative RT-PCR), ELISA (enzyme-linked immunosorbent assay), Western blotting, radioimmunoassay (RIA) or other immunoassays and fluorescence-activated cell analysis (FACS) can be employed to measure a specific protein or RNA in a plant or plant cell.
  • RIA radioimmunoassay
  • FACS fluorescence-activated cell analysis
  • Methods for determining the protein quantity are known to the skilled worker.
  • Expression refers to the biosynthesis of a gene product, preferably to the transcription and/or translation of a nucleotide sequence, for example an endogenous gene or a heterologous gene, in a cell.
  • expression involves transcription of the structural gene into mRNA and - optionally - the subsequent translation of mRNA into one or more polypeptides. In other cases, expression may refer only to the transcription of the DNA harboring an RNA molecule.
  • Expression construct as used herein mean a DNA sequence capable of directing expression of a particular nucleotide sequence in an appropriate part of a plant or plant cell, comprising a promoter functional in said part of a plant or plant cell into which it will be introduced, operatively linked to the nucleotide sequence of interest which is - optionally - operatively linked to termination signals. If translation is required, it also typically comprises sequences required for proper translation of the nucleotide sequence.
  • the coding region may code for a protein of interest but may also code for a functional RNA of interest, for example RNAa, siRNA, snoRNA, snRNA, microRNA, ta-siRNA or any other noncoding regulatory RNA, in the sense or antisense direction.
  • the expression construct comprising the nucleotide sequence of interest may be chimeric, meaning that one or more of its components is heterologous with respect to one or more of its other components.
  • the expression construct may also be one, which is naturally occurring but has been obtained in a recombinant form useful for heterologous expression.
  • the expression construct is heterologous with respect to the host, i.e., the particular DNA sequence of the expression construct does not occur naturally in the host cell and must have been introduced into the host cell or an ancestor of the host cell by a transformation event.
  • the expression of the nucleotide sequence in the expression construct may be under the control of a constitutive promoter or of an inducible promoter, which initiates transcription only when the host cell is exposed to some particular external stimulus.
  • the promoter can also be specific to a particular tissue or organ or stage of development.
  • Foreign refers to any nucleic acid molecule (e.g., gene sequence) which is introduced into the genome of a cell by experimental manipulations and may include sequences found in that cell so long as the introduced sequence contains some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) and is therefore distinct relative to the naturally-occurring sequence.
  • nucleic acid molecule e.g., gene sequence
  • some modification e.g., a point mutation, the presence of a selectable marker gene, etc.
  • Functional linkage is to be understood as meaning, for example, the sequential arrangement of a regulatory element (e.g. a promoter) with a nucleic acid sequence to be expressed and, if appropriate, further regulatory elements (such as e.g., a terminator or a NEENA) in such a way that each of the regulatory elements can fulfill its intended function to allow, modify, facilitate or otherwise influence expression of said nucleic acid sequence.
  • a regulatory element e.g. a promoter
  • further regulatory elements such as e.g., a terminator or a NEENA
  • operble linkage or “operably linked” may be used.
  • the expression may result depending on the arrangement of the nucleic acid sequences in relation to sense or antisense RNA. To this end, direct linkage in the chemical sense is not necessarily required.
  • Genetic control sequences such as, for example, enhancer sequences, can also exert their function on the target sequence from positions which are further away, or indeed from other DNA molecules.
  • Preferred arrangements are those in which the nucleic acid sequence to be expressed recombinantly is positioned behind the sequence acting as promoter, so that the two sequences are linked covalently to each other.
  • the distance between the promoter sequence and the nucleic acid sequence to be expressed recombinantly is preferably less than 200 base pairs, especially preferably less than 100 base pairs, very especially preferably less than 50 base pairs.
  • the nucleic acid sequence to be transcribed is located behind the promoter in such a way that the transcription start is identical with the desired beginning of the chimeric RNA of the invention.
  • sequences which, for example, act as a linker with specific cleavage sites for restriction enzymes, or as a signal peptide, may also be positioned between the two sequences.
  • the insertion of sequences may also lead to the expression of fusion proteins.
  • the expression construct consisting of a linkage of a regulatory region for example a promoter and nucleic acid sequence to be expressed, can exist in a vector-integrated form and be inserted into a plant genome, for example by transformation.
  • Gene refers to a region operably joined to appropriate regulatory sequences capable of regulating the expression of the gene product (e.g., a polypeptide or a functional RNA) in some manner.
  • a gene includes untranslated regulatory regions of DNA (e.g., promoters, enhancers, repressors, etc.) preceding (up-stream) and following (downstream) the coding region (open reading frame, ORF) as well as, where applicable, intervening sequences (i.e., introns) between individual coding regions (i.e., exons).
  • constructural gene as used herein is intended to mean a DNA sequence that is transcribed into mRNA which is then translated into a sequence of amino acids characteristic of a specific polypeptide.
  • Genome and genomic DNA are referring to the heritable genetic information of a host organism.
  • Said genomic DNA comprises the DNA of the nucleus (also referred to as chromosomal DNA) but also the DNA of the plastids (e.g., chloroplasts) and other cellular organelles (e.g., mitochondria).
  • the terms genome or genomic DNA is referring to the chromosomal DNA of the nucleus.
  • heterologous refers to a nucleic acid molecule which is operably linked to, or is manipulated to become operably linked to, a second nucleic acid molecule to which it is not operably linked in nature, or to which it is operably linked at a different location in nature.
  • a heterologous expression construct comprising a nucleic acid molecule and one or more regulatory nucleic acid molecule (such as a promoter or a transcription termination signal) linked thereto for example is a constructs originating by experimental manipulations in which either a) said nucleic acid molecule, or b) said regulatory nucleic acid molecule or c) both (i.e.
  • Natural genetic environment refers to the natural chromosomal locus in the organism of origin, or to the presence in a genomic library.
  • the natural genetic environment of the sequence of the nucleic acid molecule is preferably retained, at least in part.
  • the environment flanks the nucleic acid sequence at least at one side and has a sequence of at least 50 bp, preferably at least 500 bp, especially preferably at least 1,000 bp, very especially preferably at least 5,000 bp, in length.
  • a protein encoding nucleic acid molecule operably linked to a promoter which is not the native promoter of this molecule, is considered to be heterologous with respect to the promoter.
  • heterologous DNA is not endogenous to or not naturally associated with the cell into which it is introduced, but has been obtained from another cell or has been synthesized.
  • Heterologous DNA also includes an endogenous DNA sequence, which contains some modification, non-naturally occurring, multiple copies of an endogenous DNA sequence, or a DNA sequence which is not naturally associated with another DNA sequence physically linked thereto.
  • heterologous DNA encodes RNA or proteins that are not normally produced by the cell into which it is expressed.
  • a "high expression constitutive promoter” as used herein means a promoter causing constitutive expression in a plant or part thereof wherein the accumulation or rate of synthesis of RNA or stability of RNA derived from the nucleic acid molecule under the control of the respective promoter is higher, preferably significantly higher than the expression caused by the promoter lacking the NEENA of the invention.
  • the amount of RNA and/or the rate of RNA synthesis and/or stability of RNA is increased 50% or more, for example 100% or more, preferably 200% or more, more preferably 5 fold or more, even more preferably 10 fold or more, most preferably 20 fold or more for example 50 fold relative to a constitutive promoter lacking a NEENA of the invention.
  • Hybridization includes "any process by which a strand of nucleic acid molecule joins with a complementary strand through base pairing.” ( J. Coombs (1994) Dictionary of Biotechnology, Stockton Press, New York ). Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acid molecules) is impacted by such factors as the degree of complementarity between the nucleic acid molecules, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acid molecules.
  • Tm is used in reference to the "melting temperature.”
  • the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands.
  • Identity when used in respect to the comparison of two or more nucleic acid or amino acid molecules means that the sequences of said molecules share a certain degree of sequence similarity, the sequences being partially identical.
  • percentage identity herein used interchangeably
  • the sequences are written one underneath the other for an optimal comparison (for example gaps may be inserted into the sequence of a protein or of a nucleic acid in order to generate an optimal alignment with the other protein or the other nucleic acid).
  • amino acid residues or nucleic acid molecules at the corresponding amino acid positions or nucleotide positions are then compared. If a position in one sequence is occupied by the same amino acid residue or the same nucleic acid molecule as the corresponding position in the other sequence, the molecules are homologous at this position (i.e. amino acid or nucleic acid "homology” as used in the present context corresponds to amino acid or nucleic acid "identity”.
  • Results of high quality are reached by using the algorithm of Needleman and Wunsch or Smith and Waterman. Therefore programs based on said algorithms are preferred.
  • the comparisons of sequences can be done with the program PileUp (J. Mol. Evolution., 25, 351 (1987 ), Higgins et al., CABIOS 5, 151 (1989 )) or preferably with the programs "Gap” and “Needle”, which are both based on the algorithms of Needleman and Wunsch (J. Mol. Biol. 48; 443 (1970 )), and "BestFit", which is based on the algorithm of Smith and Waterman (Adv. Appl. Math. 2; 482 (1981 )).
  • Gap and “BestFit” are part of the GCG software-package (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991); Altschul et al., (Nucleic Acids Res. 25, 3389 (1997 )), "Needle” is part of the The European Molecular Biology Open Software Suite (EMBOSS) (Trends in Genetics 16 (6), 276 (2000 )). Therefore preferably the calculations to determine the percentages of sequence identity are done with the programs "Gap” or “Needle” over the whole range of the sequences.
  • EMBOSS European Molecular Biology Open Software Suite
  • sequence SEQ ID NO: 1 For example a sequence, which is said to have 80% identity with sequence SEQ ID NO: 1 at the nucleic acid level is understood as meaning a sequence which, upon comparison with the sequence represented by SEQ ID NO: 1 by the above program "Needle" with the above parameter set, has a 80% identity.
  • the identity is calculated on the complete length of the query sequence, for example SEQ ID NO:1.
  • Intron refers to sections of DNA (intervening sequences) within a gene that do not encode part of the protein that the gene produces, and that is spliced out of the mRNA that is transcribed from the gene before it is exported from the cell nucleus.
  • Intron sequence refers to the nucleic acid sequence of an intron.
  • introns are those regions of DNA sequences that are transcribed along with the coding sequence (exons) but are removed during the formation of mature mRNA. Introns can be positioned within the actual coding region or in either the 5' or 3' untranslated leaders of the pre-mRNA (unspliced mRNA).
  • Introns in the primary transcript are excised and the coding sequences are simultaneously and precisely ligated to form the mature mRNA.
  • the junctions of introns and exons form the splice site.
  • the sequence of an intron begins with GU and ends with AG.
  • two examples of AU-AC introns have been described: the fourteenth intron of the RecA-like protein gene and the seventh intron of the G5 gene from Arabidopsis thaliana are AT-AC introns.
  • Pre-mRNAs containing introns have three short sequences that are -beside other sequences- essential for the intron to be accurately spliced. These sequences are the 5' splice-site, the 3' splice-site, and the branchpoint.
  • mRNA splicing is the removal of intervening sequences (introns) present in primary mRNA transcripts and joining or ligation of exon sequences. This is also known as cis-splicing which joins two exons on the same RNA with the removal of the intervening sequence (intron).
  • the functional elements of an intron is comprising sequences that are recognized and bound by the specific protein components of the spliceosome (e.g. splicing consensus sequences at the ends of introns). The interaction of the functional elements with the spliceosome results in the removal of the intron sequence from the premature mRNA and the rejoining of the exon sequences.
  • Introns have three short sequences that are essential -although not sufficient- for the intron to be accurately spliced. These sequences are the 5' splice site, the 3' splice site and the branch point.
  • the branchpoint sequence is important in splicing and splice-site selection in plants.
  • the branchpoint sequence is usually located 10-60 nucleotides upstream of the 3' splice site.
  • Isogenic organisms (e.g., plants), which are genetically identical, except that they may differ by the presence or absence of a heterologous DNA sequence.
  • Isolated means that a material has been removed by the hand of man and exists apart from its original, native environment and is therefore not a product of nature.
  • An isolated material or molecule (such as a DNA molecule or enzyme) may exist in a purified form or may exist in a non-native environment such as, for example, in a transgenic host cell.
  • a naturally occurring polynucleotide or polypeptide present in a living plant is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated.
  • Such polynucleotides can be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and would be isolated in that such a vector or composition is not part of its original environment.
  • isolated when used in relation to a nucleic acid molecule, as in "an isolated nucleic acid sequence” refers to a nucleic acid sequence that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in its natural source. Isolated nucleic acid molecule is nucleic acid molecule present in a form or setting that is different from that in which it is found in nature.
  • non-isolated nucleic acid molecules are nucleic acid molecules such as DNA and RNA, which are found in the state they exist in nature.
  • a given DNA sequence e.g., a gene
  • RNA sequences such as a specific mRNA sequence encoding a specific protein, are found in the cell as a mixture with numerous other mRNAs, which encode a multitude of proteins.
  • an isolated nucleic acid sequence comprising for example SEQ ID NO: 1 includes, by way of example, such nucleic acid sequences in cells which ordinarily contain SEQ ID NO:1 where the nucleic acid sequence is in a chromosomal or extrachromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature.
  • the isolated nucleic acid sequence may be present in single-stranded or double-stranded form.
  • the nucleic acid sequence will contain at a minimum at least a portion of the sense or coding strand (i.e., the nucleic acid sequence may be single-stranded). Alternatively, it may contain both the sense and anti-sense strands (i.e., the nucleic acid sequence may be double-stranded).
  • Minimal Promoter promoter elements, particularly a TATA element, that are inactive or that have greatly reduced promoter activity in the absence of upstream activation. In the presence of a suitable transcription factor, the minimal promoter functions to permit transcription.
  • NEENA see "Nucleic acid expression enhancing nucleic acid”.
  • Non-coding refers to sequences of nucleic acid molecules that do not encode part or all of an expressed protein. Non-coding sequences include but are not limited to introns, enhancers, promoter regions, 3' untranslated regions, and 5' untranslated regions.
  • Nucleic acid expression enhancing nucleic acid refers to a sequence and/or a nucleic acid molecule of a specific sequence having the intrinsic property to enhance expression of a nucleic acid under the control of a promoter to which the NEENA is functionally linked. Unlike promoter sequences, the NEENA as such is not able to drive expression. In order to fulfill the function of enhancing expression of a nucleic acid molecule functionally linked to the NEENA, the NEENA itself has to be functionally linked to a promoter. In distinction to enhancer sequences known in the art, the NEENA is acting in cis but not in trans and has to be located close to the transcription start site of the nucleic acid to be expressed.
  • Nucleic acids and nucleotides refer to naturally occurring or synthetic or artificial nucleic acid or nucleotides.
  • nucleic acids and “nucleotides” comprise deoxyribonucleotides or ribonucleotides or any nucleotide analogue and polymers or hybrids thereof in either single- or double-stranded, sense or antisense form.
  • a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated.
  • nucleic acid is used interchangeably herein with “gene”, “cDNA, “mRNA”, “oligonucleotide,” and “polynucleotide”.
  • Nucleotide analogues include nucleotides having modifications in the chemical structure of the base, sugar and/or phosphate, including, but not limited to, 5-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitution of 5-bromo-uracil, and the like; and 2'-position sugar modifications, including but not limited to, sugar-modified ribonucleotides in which the 2'-OH is replaced by a group selected from H, OR, R, halo, SH, SR, NH2, NHR, NR2, or CN.
  • Short hairpin RNAs also can comprise non-natural elements such as non-natural bases, e.g., ionosin and xanthine, non-natural sugars, e.g., 2'-methoxy ribose, or non-natural phosphodiester linkages, e.g., methylphosphonates, phosphorothioates and peptides.
  • non-natural bases e.g., ionosin and xanthine
  • non-natural sugars e.g., 2'-methoxy ribose
  • non-natural phosphodiester linkages e.g., methylphosphonates, phosphorothioates and peptides.
  • nucleic acid sequence refers to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5'- to the 3'-end. It includes chromosomal DNA, self-replicating plasmids, infectious polymers of DNA or RNA and DNA or RNA that performs a primarily structural role. "Nucleic acid sequence” also refers to a consecutive list of abbreviations, letters, characters or words, which represent nucleotides.
  • a nucleic acid can be a "probe” which is a relatively short nucleic acid, usually less than 100 nucleotides in length.
  • nucleic acid probe is from about 50 nucleotides in length to about 10 nucleotides in length.
  • a "target region” of a nucleic acid is a portion of a nucleic acid that is identified to be of interest.
  • a “coding region” of a nucleic acid is the portion of the nucleic acid, which is transcribed and translated in a sequence-specific manner to produce into a particular polypeptide or protein when placed under the control of appropriate regulatory sequences. The coding region is said to encode such a polypeptide or protein.
  • Oligonucleotide refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof, as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.
  • An oligonucleotide preferably includes two or more nucleomonomers covalently coupled to each other by linkages (e.g., phosphodiesters) or substitute linkages.
  • Overhang is a relatively short single-stranded nucleotide sequence on the 5'- or 3'-hydroxyl end of a double-stranded oligonucleotide molecule (also referred to as an "extension,” “protruding end,” or “sticky end”).
  • Plant is generally understood as meaning any eukaryotic single-or multi-celled organism or a cell, tissue, organ, part or propagation material (such as seeds or fruit) of same which is capable of photosynthesis. Included for the purpose of the invention are all genera and species of higher and lower plants of the Plant Kingdom. Annual, perennial, monocotyledonous and dicotyledonous plants are preferred. The term includes the mature plants, seed, shoots and seedlings and their derived parts, propagation material (such as seeds or microspores), plant organs, tissue, protoplasts, callus and other cultures, for example cell cultures, and any other type of plant cell grouping to give functional or structural units. Mature plants refer to plants at any desired developmental stage beyond that of the seedling.
  • Seedling refers to a young immature plant at an early developmental stage. Annual, biennial, monocotyledonous and dicotyledonous plants are preferred host organisms for the generation of transgenic plants. The expression of genes is furthermore advantageous in all ornamental plants, useful or ornamental trees, flowers, cut flowers, shrubs or lawns.
  • Plants which may be mentioned by way of example but not by limitation are angiosperms, bryophytes such as, for example, Hepaticae (liverworts) and Musci (mosses); Pteridophytes such as ferns, horsetail and club mosses; gymnosperms such as conifers, cycads, ginkgo and Gnetatae; algae such as Chlorophyceae, Phaeophpyceae, Rhodophyceae, Myxophyceae, Xanthophyceae, Bacillariophyceae (diatoms), and Euglenophyceae.
  • angiosperms bryophytes such as, for example, Hepaticae (liverworts) and Musci (mosses); Pteridophytes such as ferns, horsetail and club mosses; gymnosperms such as conifers, cycads, ginkgo and Gnetatae; algae such as Ch
  • Preferred are plants which are used for food or feed purpose such as the families of the Leguminosae such as pea, alfalfa and soya; Gramineae such as rice, maize, wheat, barley, sorghum, millet, rye, triticale, or oats; the family of the Umbelliferae, especially the genus Daucus, very especially the species carota (carrot) and Apium, very especially the species Graveolens dulce (celery) and many others; the family of the Solanaceae, especially the genus Lycopersicon, very especially the species esculentum (tomato) and the genus Solanum, very especially the species tuberosum (potato) and melongena (egg plant), and many others (such as tobacco); and the genus Capsicum, very especially the species annuum (peppers) and many others; the family of the Leguminosae, especially the genus Glycine, very especially the
  • Polypeptide The terms “polypeptide”, “peptide”, “oligopeptide”, “polypeptide”, “gene product”, “expression product” and “protein” are used interchangeably herein to refer to a polymer or oligomer of consecutive amino acid residues.
  • Pre-protein Protein, which is normally targeted to a cellular organelle, such as a chloroplast, and still comprising its transit peptide.
  • Primary transcript refers to a premature RNA transcript of a gene.
  • a “primary transcript” for example still comprises introns and/or is not yet comprising a polyA tail or a cap structure and/or is missing other modifications necessary for its correct function as transcript such as for example trimming or editing.
  • promoter refers to a DNA sequence which when ligated to a nucleotide sequence of interest is capable of controlling the transcription of the nucleotide sequence of interest into RNA.
  • a promoter is located 5' (i.e., upstream), proximal to the transcriptional start site of a nucleotide sequence of interest whose transcription into mRNA it controls, and provides a site for specific binding by RNA polymerase and other transcription factors for initiation of transcription.
  • Said promoter comprises for example the at least 10 kb, for example 5 kb or 2 kb proximal to the transcription start site. It may also comprise the at least 1500 bp proximal to the transcriptional start site, preferably the at least 1000 bp, more preferably the at least 500 bp, even more preferably the at least 400 bp, the at least 300 bp, the at least 200 bp or the at least 100 bp.
  • the promoter comprises the at least 50 bp proximal to the transcription start site, for example, at least 25 bp.
  • the promoter does not comprise exon and/or intron regions or 5' untranslated regions.
  • the promoter may for example be heterologous or homologous to the respective plant.
  • a polynucleotide sequence is "heterologous to" an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form.
  • a promoter operably linked to a heterologous coding sequence refers to a coding sequence from a species different from that from which the promoter was derived, or, if from the same species, a coding sequence which is not naturally associated with the promoter (e.g. a genetically engineered coding sequence or an allele from a different ecotype or variety).
  • Suitable promoters can be derived from genes of the host cells where expression should occur or from pathogens for this host cells (e.g., plants or plant pathogens like plant viruses).
  • a plant specific promoter is a promoter suitable for regulating expression in a plant. It may be derived from a plant but also from plant pathogens or it might be a synthetic promoter designed by man.
  • tissue specific refers to a promoter that is capable of directing selective expression of a nucleotide sequence of interest to a specific type of tissue (e.g., petals) in the relative absence of expression of the same nucleotide sequence of interest in a different type of tissue (e.g., roots).
  • Tissue specificity of a promoter may be evaluated by, for example, operably linking a reporter gene to the promoter sequence to generate a reporter construct, introducing the reporter construct into the genome of a plant such that the reporter construct is integrated into every tissue of the resulting transgenic plant, and detecting the expression of the reporter gene (e.g., detecting mRNA, protein, or the activity of a protein encoded by the reporter gene) in different tissues of the transgenic plant.
  • the detection of a greater level of expression of the reporter gene in one or more tissues relative to the level of expression of the reporter gene in other tissues shows that the promoter is specific for the tissues in which greater levels of expression are detected.
  • cell type specific refers to a promoter, which is capable of directing selective expression of a nucleotide sequence of interest in a specific type of cell in the relative absence of expression of the same nucleotide sequence of interest in a different type of cell within the same tissue.
  • the term "cell type specific” when applied to a promoter also means a promoter capable of promoting selective expression of a nucleotide sequence of interest in a region within a single tissue. Cell type specificity of a promoter may be assessed using methods well known in the art, e.g., GUS activity staining, GFP protein or im-munohistochemical staining.
  • constitutive when made in reference to a promoter or the expression derived from a promoter means that the promoter is capable of directing transcription of an operably linked nucleic acid molecule in the absence of a stimulus (e.g., heat shock, chemicals, light, etc.) in the majority of plant tissues and cells throughout substantially the entire lifespan of a plant or part of a plant.
  • constitutive promoters are capable of directing expression of a transgene in substantially any cell and any tissue.
  • promoter specificity when referring to a promoter means the pattern of expression conferred by the respective promoter.
  • the specificity describes the tissues and/or developmental status of a plant or part thereof, in which the promoter is conferring expression of the nucleic acid molecule under the control of the respective promoter.
  • Specificity of a promoter may also comprise the environmental conditions, under which the promoter may be activated or down-regulated such as induction or repression by biological or environmental stresses such as cold, drought, wounding or infection.
  • purified refers to molecules, either nucleic or amino acid sequences that are removed from their natural environment, isolated or separated. “Substantially purified” molecules are at least 60% free, preferably at least 75% free, and more preferably at least 90% free from other components with which they are naturally associated.
  • a purified nucleic acid sequence may be an isolated nucleic acid sequence.
  • Recombinant refers to nucleic acid molecules produced by recombinant DNA techniques.
  • Recombinant nucleic acid molecules may also comprise molecules, which as such does not exist in nature but are modified, changed, mutated or otherwise manipulated by man.
  • a "recombinant nucleic acid molecule” is a non-naturally occurring nucleic acid molecule that differs in sequence from a naturally occurring nucleic acid molecule by at least one nucleic acid.
  • a “recombinant nucleic acid molecule” may also comprise a "recombinant construct” which comprises, preferably operably linked, a sequence of nucleic acid molecules not naturally occurring in that order.
  • Preferred methods for producing said recombinant nucleic acid molecule may comprise cloning techniques, directed or non-directed mutagenesis, synthesis or recombination techniques.
  • Sense is understood to mean a nucleic acid molecule having a sequence which is complementary or identical to a target sequence, for example a sequence which binds to a protein transcription factor and which is involved in the expression of a given gene.
  • the nucleic acid molecule comprises a gene of interest and elements allowing the expression of the said gene of interest.
  • an increase or decrease for example in enzymatic activity or in gene expression, that is larger than the margin of error inherent in the measurement technique, preferably an increase or decrease by about 2-fold or greater of the activity of the control enzyme or expression in the control cell, more preferably an increase or decrease by about 5-fold or greater, and most preferably an increase or decrease by about 10-fold or greater.
  • Small nucleic acid molecules are understood as molecules consisting of nucleic acids or derivatives thereof such as RNA or DNA. They may be double-stranded or single-stranded and are between about 15 and about 30 bp, for example between 15 and 30 bp, more preferred between about 19 and about 26 bp, for example between 19 and 26 bp, even more preferred between about 20 and about 25 bp for example between 20 and 25 bp.
  • the oligonucleotides are between about 21 and about 24 bp, for example between 21 and 24 bp.
  • the small nucleic acid molecules are about 21 bp and about 24 bp, for example 21 bp and 24 bp.
  • substantially complementary when used herein with respect to a nucleotide sequence in relation to a reference or target nucleotide sequence, means a nucleotide sequence having a percentage of identity between the substantially complementary nucleotide sequence and the exact complementary sequence of said reference or target nucleotide sequence of at least 60%, more desirably at least 70%, more desirably at least 80% or 85%, preferably at least 90%, more preferably at least 93%, still more preferably at least 95% or 96%, yet still more preferably at least 97% or 98%, yet still more preferably at least 99% or most preferably 100% (the later being equivalent to the term "identical" in this context).
  • identity is assessed over a length of at least 19 nucleotides, preferably at least 50 nucleotides, more preferably the entire length of the nucleic acid sequence to said reference sequence (if not specified otherwise below). Sequence comparisons are carried out using default GAP analysis with the University of Wisconsin GCG, SEQWEB application of GAP, based on the algorithm of Needleman and Wunsch ( Needleman and Wunsch (1970) J Mol. Biol. 48: 443-453 ; as defined above). A nucleotide sequence "substantially complementary" to a reference nucleotide sequence hybridizes to the reference nucleotide sequence under low stringency conditions, preferably medium stringency conditions, most preferably high stringency conditions (as defined above).
  • transgene refers to any nucleic acid sequence, which is introduced into the genome of a cell by experimental manipulations.
  • a transgene may be an "endogenous DNA sequence," or a “heterologous DNA sequence” (i.e., “foreign DNA”).
  • endogenous DNA sequence refers to a nucleotide sequence, which is naturally found in the cell into which it is introduced so long as it does not contain some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring sequence.
  • transgenic when referring to an organism means transformed, preferably stably transformed, with a recombinant DNA molecule that preferably comprises a suitable promoter operatively linked to a DNA sequence of interest.
  • Vector refers to a nucleic acid molecule capable of transporting another nucleic acid molecule to which it has been linked.
  • a genomic integrated vector or "integrated vector” which can become integrated into the chromosomal DNA of the host cell.
  • Another type of vector is an episomal vector, i.e., a nucleic acid molecule capable of extra-chromosomal replication.
  • Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors”.
  • expression vectors vectors capable of directing the expression of genes to which they are operatively linked.
  • Expression vectors designed to produce RNAs as described herein in vitro or in vivo may contain sequences recognized by any RNA polymerase, including mitochondrial RNA polymerase, RNA pol I, RNA pol II, and RNA pol III. These vectors can be used to transcribe the desired RNA molecule in the cell according to this invention.
  • a plant transformation vector is to be understood as a vector suitable in the process of plant transformation.
  • Wild-type The term “wild-type”, “natural” or “natural origin” means with respect to an organism, polypeptide, or nucleic acid sequence, that said organism is naturally occurring or available in at least one naturally occurring organism which is not changed, mutated, or otherwise manipulated by man.
  • cloning procedures carried out for the purposes of the present invention including restriction digest, agarose gel electrophoresis, purification of nucleic acids, Ligation of nucleic acids, transformation, selection and cultivation of bacterial cells were performed as described (Sambrook et al., 1989). Sequence analyses of recombinant DNA were performed with a laser fluorescence DNA sequencer (Applied Biosystems, Foster City, CA, USA) using the Sanger technology (Sanger et al., 1977). Unless described otherwise, chemicals and reagents were obtained from Sigma Aldrich (Sigma Aldrich, St.
  • NEENAc constitutive NEENA candidates
  • Genomic DNA was extracted from A. thaliana green tissue using the Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany).
  • DNA of the vector construct 1bxPcUbi4-2GUS ( WO 2003102198 ) was used.
  • Genomic DNA fragments containing putative NEENA molecules were isolated by conventional polymerase chain reaction (PCR).
  • the polymerase chain reaction comprised 19 sets of primers (Table 2). Primers were designed on the basis of the A. thaliana genome sequence with a multitude of NEENA candidates.
  • the nucleotide sequence of the vector construct 1bxPcUbi4-2GUS was used for the design of primers (SEQ ID NO56 and 57) for amplification of the NEENA candidate with SEQ ID NO1 (Table 2).
  • the polymerase chain reaction followed the protocol outlined by Phusion High Fidelity DNA Polymerase (Cat No F-540L, New England Biolabs, Ipswich, MA, USA).
  • the isolated DNA was used as template DNA in a PCR amplification using the following primers: Table 2: Primer sequences Primer name Sequence SEQ ID NO PCR yielding SEQ ID NO NEENAc1_for tttatggtaccagccgcaagactcctttcagattct 20 7 NEENAc1_rev aaattccatggtagctgtcaaaacaaaacaaaatcga 21 NEENAc2_for aaaaggtacctcgaagaaccaaaaccaaaaaacgtga 22 10 NEENAc2_rev tttttccatggttatttatccaaaatcccacgatccaaattcca 23 NEENAc4_for ttttggtaccgatccctacttctctcgacact 24 12 NEENAc4_rev ttttaccatggtgactggaggatcaa
  • a touch-down approach was employed for the PCR with the following parameters: 98,0°C for 30 sec (1 cycle), 98,0°C for 30 sec, 56,0°C for 30 sec and 72,0°C for 60 sec (4 cycles), 4 additional cycles each for 54,0°C, 51,0°C and 49,0°C annealing temperature, followed by 20 cycles with 98,0°C for 30 sec, 46,0°C for 30 sec and 72,0°C for 60 sec (4 cycles) and 72,0°C for 5 min.
  • the amplification products was loaded on a 2 % (w/v) agarose gel and separated at 80V.
  • the PCR products were excised from the gel and purified with the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany). Following a DNA restriction digest with KpnI (10 U/microl) and NcoI (10 U/microl) or EcoRV (10U/microl) restriction endonuclease, the digested products were again purified with the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).
  • the promoter::NEENA::reporter-gene cassettes were assembled into binary constructs for plant transformation.
  • the A. thaliana p-AtNit1 (At3g44310, GenBank X86454; WO03008596 , with the prefix p- denoting promoter) promoter was used in the reporter gene construct, and firefly luciferase (Promega, Madison, WI, USA) was utilized as reporter protein for quantitatively determining the expression enhancing effects of the putative NEENA molecules to be analyzed.
  • the pENTR/A vector holding the p-AtNit1 promoter was cloned via site specific recombination (BP-reaction) between the pDONR/A vector and p-AtNit1 amplification products with primers p-AtNit1-for and p-AtNit1-rev (Table 3) on genomic DNA (see above) with site specific recombination sites at either end according to the manufacturers manual (Invitrogen, Carlsbad, CA, USA). Positive pENTR/A clones underwent sequence analysis to ensure correctness of the p-AtNit1 promoter.
  • Table 3 Primer sequences (p-AtNit1) Primer name Sequence SEQ ID NO.
  • the pENTR/C vector was constructed by introduction of a multiple cloning site (SEQ ID NO60) via KpnI and HindIII restriction sites. By performing a site specific recombination (LR-reaction), the created pENTR/A, pENTR/B and pENTR/C were combined with the pSUN destination vector (pSUN derivative) according to the manufacturers (Invitrogen, Carlsbad, CA, USA) Multisite Gateway manual.
  • the reactions yielded 1 binary vector with p-AtNit1 promoter, the firefly luciferase coding sequence c-LUC and the t-nos terminator and 19 vectors harboring SEQ ID NO1, NO2, NO3, NO4, NO5, NO6, NO7, NO8, NO9, NO10, NO11, NO12, NO13, NO14, NO15, NO16, NO17, NO18 and NO19 immediately upstream of the firefly luciferase coding sequence (Table 5), for which the combination with SEQ ID NO1 is given exemplary (SEQ ID NO61). Except for varying SEQ ID NO2 to NO19, the nucleotide sequence is identical in all vectors (Table 5).
  • Table 5 Plant expression vectors for A. thaliana transformation plant expression vector Composition of the expression cassette Promoter::SEQ ID NO::reporter gene::terminator SEQ ID NO LJK132 p-AtNit1::-::c-LUC::t-nos LJK133 p-AtNit1::SEQ ID NO1::c-LUC::t-nos 61 LJK91 p-AtNit1::SEQ ID NO7::c-LUC::t-nos LJK92 p-AtNit1::SEQ ID NO10::c-LUC::t-nos LJK94 p-AtNit1::SEQ ID NO12::c-LUC::t-nos LJK95 p-AtNit1::SEQ ID NO3:c-LUC::t-nos LJK97 p-AtNit1::SEQ ID NO
  • the resulting vectors were subsequently used to transform A. thaliana leaf protoplasts transiently.
  • Renilla luciferase cDNA was amplified using 10ng of the plasmid pRL-null from Promega (Madison, WI, USA) as DNA template and primers R-LUC_for and R-LUC_rev (Table 6) with PCR parameters as described above.
  • Table 6 Primer sequences (c-RLUC) Primer name Sequence SEQ ID NO RLUC_for aaaaaggtaccatgacttcgaaagtttatgatc 62 RLUC_rev aaattgagctcttattgttcatttttgagaactc 63
  • Example 2 Screening for NEENA candidate molecules enhancing gene expression in A. thaliana transiently transformed leaf protoplasts
  • Renilla luciferase (Dual-Luciferase® Reporter Assay System, Promega, Madison, WI, USA) was used to normalize the firefly luciferase expression capabilities of the constructs above.
  • Transfected A. thaliana protoplasts were collected by centrifugation at 100 g and frozen in liquid nitrogen after removal of supernatant.
  • the assay for detection of firefly and Renilla luciferase activity in the transfected cells was performed according to the manufacturers (Promega, Madison, WI, USA) Dual-Luciferase Reporter Assay System manual. Luminescence measurements were conducted in a MicroLumat Plus LB96V (Berthold Technologies, Bad Wildbad, Germany) recorded after addition of the luciferase substrates. Instrument readings of both luciferase recordings were normalized by generating a ratio between firefly luciferase and Renilla luciferase.
  • NEENA molecules comprising sequences with SEQ ID NO1, NO2, NO3, NO4, NO5, NO6, NO7, NO8 and NO9 conferred a greater than 2-fold increase in gene expression based on luciferase reporter gene activity compared to the NEENA-less promoter-only reporter gene construct ( Fig. 1 ) and hence are functional NEENA molecules. Since a number of the tested NEENA candidate molecules have marginal or even negative effects on the enhancement of gene expression, not all putative NEENA molecules are mediating a common stimulatory effect, but rather that the selected NEENA sequences convey significant enhancement of gene expression (SEQ ID NO. 1 to 9).
  • Example 3 Test of NEENA molecules for enhancement of gene expression in oilseed rape plants
  • NEENA molecules can be used across species to enhance gene expression in all tissues tested compared to a NEENA-less promoter-only approach.
  • NEENA molecules mediating the strongest enhancement in gene expression in the pre-screening cp. Example 2, SEQ ID NO1, NO2, NO3, NO4 and NO5 were selected for determining the enhancement on gene expression levels in transgenic oilseed rape plants.
  • reporter gene expression cassettes without and with gene expression control molecules (SEQ IDs NO1 - NO5) were combined with a gene expression cassette carrying a selectable marker gene for detecting transgenic plant lines within a pENTR/C vector.
  • LR-reaction site specific recombination
  • the pENTR/A, pENTR/B and the pENTR/C carrying the selectable marker cassette were combined with the pSUN destination vector according to the manufacturers (Invitrogen, Carlsbad, CA, USA) Multisite Gateway manual.
  • the binary vectors were transformed into Agrobacterium tumefaciens C58C1:pGV2260 ( Deblaere et al., 1985, Nucl. Acids. Res. 13: 4777-4788 ).
  • a 1:50 dilution of an overnight culture of Agrobacteria harboring the respective binary construct was grown in Murashige-Skoog Medium ( Murashige and Skoog, 1962, Physiol. Plant 15, 473 ) supplemented with 3 % saccharose (3MS-Medium).
  • Growing shoots were transferred to MS-Medium containing 2 % saccharose, 250 mg/l Claforan and 0,8 % Bacto-agar. After 3 weeks, the growth hormone 2-Indolbutyl acid was added to the medium to promote root formation. Shoots were transferred to soil following root development, grown for two weeks in a growth chamber and grown to maturity in greenhouse conditions.
  • Tissue samples were collected from the generated transgenic plants from leaves, flowers and siliques, stored in a freezer at -80°C subjected to a Luciferase reporter gene assay (amended protocol after Ow et al., 1986). After grinding the frozen tissue samples were resuspended in 800 microl of buffer I (0,1 M Phosphate buffer pH7,8, 1 mM DTT (Sigma Aldrich, St. Louis, MO, USA), 0,05 % Tween 20 (Sigma Aldrich, St. Louis, MO, USA)) followed by centrifugation at 10 000 g for 10 min. 75 microl of the aqueous supernatant were transferred to 96-well plates.
  • buffer I 0.,1 M Phosphate buffer pH7,8, 1 mM DTT (Sigma Aldrich, St. Louis, MO, USA), 0,05 % Tween 20 (Sigma Aldrich, St. Louis, MO, USA)
  • the protein concentration was determined in the aqueous supernatant in parallel to the luciferase activity (adapted from Bradford, 1976, Anal. Biochem. 72, 248 ). 5 microl of the aqueous cell extract in buffer I were mixed with 250 microl of Bradford reagent (Sigma Aldrich, St. Louis, MO, USA), incubated for 10 min at room temperature. Absorption was determined at 595 nm in a plate reader (Thermo Electron Corporation, Multiskan Ascent 354). The total protein amounts in the samples were calculated with a previously generated standard concentration curve. Values resulting from a ratio of RLU/min and mg protein/ml sample were averaged for transgenic plants harboring identical constructs and fold change values were calculated to assess the impact of NEENA molecule presence over NEENA-less reporter gene constructs.
  • NEENA molecules SEQ ID NO:1, 2, 3, 4 and 5
  • leafs, flowers and siliques harboring seeds of plants having identical developmental stages and which were grown under equal growth conditions were collected.
  • the samples were taken from individual transgenic oilseed rape plant lines harboring either a promoter-only reporter gene construct or Luciferase reporter gene constructs containing a NEENA (SEQ ID NO1, 2, 3, 4 and 5). 10 seeds were collected from each transgenic event, processed and analyzed for Luciferase activity as described above (Example 3.3).
  • NEENA molecules can be used in a wide array of plant species and across species borders from different plant families to enhance gene expression in all tissues compared to a NEENA-less promoter-only approach.
  • NEENA sequence molecules mediating the strongest enhancement in gene expression in the pre-screening were selected for determining the enhancement on gene expression levels in transgenic soybean plants.
  • Plant expression vectors LJK138, LJK139, LJK141, LJK142, LJK143 and LJK144 were used for stable soybean transformation.
  • Soybean seed germination, propagation, A. rhizogenes and axillary meristem explant preparation, and inoculations were done as previously described ( WO2005/121345; Olhoft et al., 2007 ) with the exception that the constructs LJK138, LJK139, LJK141, LJK142, LJK143 and LJK144 (cp. example 3.1) each contained a mutated AHAS gene driven by the parsley ubiquitin promoter PcUbi4-2, mediating tolerance to imidazolinone herbicides for selection.
  • Tissue samples were collected from the generated transgenic plants from leaves, flowers and seeds. The tissue samples were processed and analyzed as described above (cp. example 3.3) In comparison to the constitutive p-AtNit1 promoter-only NEENA-less reporter gene construct, the five tested NEENA molecules all mediated strong enhancements in gene expression in leaves ( Fig. 3a ). Comparable enhancement of gene expression mediated by NEENAs (SEQ ID NO1 to NO5) was detected in soybean flowers and siliques ( Fig. 3, b and c ).
  • This example describes the analysis of NEENA sequences with SEQ ID NO 1, 2, 3, 4 and 5 in monocotyledonous plants.
  • a pUC-based expression vector harboring an expression cassette composed of the NEENA-less, constitutive monocotyledonous promoter p-Ubi from Z. Mosa is combined with a coding sequence of the beta-Glucuronidase (GUS) gene followed by the nopaline synthase (NOS) transcriptional terminator.
  • GUS beta-Glucuronidase
  • NOS nopaline synthase transcriptional terminator.
  • Genomic DNA is extracted from A. thaliana green tissue using the Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Genomic DNA fragments containing NEENA molecules are isolated by conventional polymerase chain reaction (PCR). Primers are designed on the basis of the A.
  • Amplification during the PCR and purification of the amplification products is carried out as detailed above (example 1.2).
  • the digested products are purified with the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).
  • NEENA PCR fragments are cloned separately upstream of the beta-Glucuronidase coding sequence using AscI restriction sites.
  • the reaction yields one binary vector with the p-Ubi promoter, the beta-Glucuronidase coding sequence c-GUS and the t-nos terminator and five vectors harboring SEQ ID NO1, NO2, NO3, NO4 and NO5, immediately upstream of the beta-Glucuronidase coding sequence (Table 9), for which the combination with SEQ ID NO1 is given exemplary (SEQ ID NO75). Except for varying SEQ ID NO2 to NO5, the nucleotide sequence is identical in all vectors (Table 9).
  • Table 9 Plant expression vectors plant expression vector Composition of the expression cassette Promoter::SEQ ID NO::reporter gene::terminator SEQ ID NO RTP2940 p-Ubi::-::c-GUS::t-nos LJK361 p-Ubi::SEQ ID NO1::c-GUS::t-nos 75 LJK362 p-Ubi::SEQ ID NO2::c-GUS::t-nos LJK363 p-Ubi::SEQ ID NO3::c-GUS::t-nos LJK364 p-Ubi::SEQ ID NO4::c-GUS::t-nos LJK365 p-Ubi::SEQ ID NO5::c-GUS::t-nos
  • These experiments are performed by bombardment of monocotyledonous plant tissues or culture cells (Example 6.2.1), by PEG-mediated (or similar methodology) introduction of DNA to plant protoplasts (Example 6.2.2), or by Agrobacterium -mediated transformation (Example 6.3.3).
  • the target tissue for these experiments can be plant tissues (e.g. leaf tissue), cultured plant cells (e.g. maize Black Mexican Sweetcorn (BMS), or plant embryos for Agrobacterium protocols.
  • the plasmid constructs are isolated using Qiagen plasmid kit (cat# 12143). DNA is precipitated onto 0.6 microM gold particles (Bio-Rad cat# 165 -2262) according to the protocol described by Sanford et al. (1993) (Optimizing the biolistic process for different biological applications. Methods in Enzymology, 217: 483-509 ) and accelerated onto target tissues (e.g. two week old maize leaves, BMS cultured cells, etc .) using a PDS-1000/He system device (Bio-Rad). All DNA precipitation and bombardment steps are performed under sterile conditions at room temperature.
  • BMS Black Mexican Sweet corn suspension cultured cells are propagated in BMS cell culture liquid medium [Murashige and Skoog (MS) salts (4.3 g/L), 3% (w/v) sucrose, myo-inositol (100 mg/L), 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (1 g/L), thiamine (10 mg/L) and L-proline (1.15 g/L), pH 5.8]. Every week 10 mL of a culture of stationary cells are transferred to 40 mL of fresh medium and cultured on a rotary shaker operated at 110 rpm at 27°C in a 250 mL flask.
  • 60 mg of gold particles in a siliconized Eppendorf tube are resuspended in 100% ethanol followed by centrifugation for 30 seconds.
  • the pellet is rinsed once in 100% ethanol and twice in sterile water with centrifugation after each wash.
  • the pellet is finally resuspended in 1 mL sterile 50% glycerol.
  • the gold suspension is then divided into 50 microL aliquots and stored at 4°C.
  • the following reagents are added to one aliquot: 5 microL of 1 microg/microL total DNA, 50 microL 2.5 M CaCl 2 , 20 microL 0.1 M spermidine, free base.
  • the DNA solution is vortexed for 1 minute and placed at -80°C for 3 min followed by centrifugation for 10 seconds.
  • the supernatant is removed.
  • the pellet is carefully resuspended in 1 mL 100% ethanol by flicking the tube followed by centrifugation for 10 seconds.
  • the supernatant is removed and the pellet is carefully resuspended in 50 microL of 100% ethanol and placed at -80°C until used (30 min to 4 hr prior to bombardment). If gold aggregates are visible in the solution the tubes are sonicated for one second in a waterbath sonicator just prior to use.
  • two -week-old maize leaves are cut into pieces approximately 1 cm in length and placed ad-axial side up on osmotic induction medium M-N6-702 [N6 salts (3.96 g/L), 3% (w/v) sucrose, 1.5 mg/L 2,4 -dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (100 mg/L), and L-proline (2.9 g/L), MS vitamin stock solution (1 mL/L), 0.2 M mannitol, 0.2 M sorbitol, pH 5.8]. The pieces are incubated for 1-2 hours.
  • BMS cultured cells In the case of BMS cultured cells, one-week-old suspension cells are pelleted at 1000 g in a Beckman/Coulter Avanti J25 centrifuge and the supernatant is discarded. Cells are placed onto round ash-free No 42 Whatman filters as a 1/16 inch thick layer using a spatula. The filter papers holding the plant materials are placed on osmotic induction media at 27°C in darkness for 1-2 hours prior to bombardment. Just before bombardment the filters are removed from the medium and placed onto on a stack of sterile filter paper to allow the calli surface to partially dry.
  • Each plate is shot with 6 microL of gold -DNA solution twice, at 1,800 psi for the leaf materials and at 1,100 psi for the BMS cultured cells.
  • a sterilized wire mesh screen is laid on top of the sample.
  • the filters holding the samples are transferred onto M-N6-702 medium lacking mannitol and sorbitol and incubated for 2 days in darkness at 27°C prior to transient assays.
  • the transient transformation via microprojectile bombardment of other monocotyledonous plants are carried out using, for example, a technique described in Wang et al., 1988 (Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment.
  • GUS staining is done by incubating the plant materials in GUS solution [100 mM NaHPO4, 10 mM EDTA, 0.05% Triton X100, 0.025% X-Gluc solution (5-bromo-4-chloro -3-indolyl-beta-D-glucuronic acid dissolved in DMSO), 10% methanol, pH 7.0] at 37 °C for 16-24 hours. Plant tissues are vacuum-infiltrated 2 times for 15 minutes to aid even staining. Analyses of luciferase activities are performed as described above (example 2 and 3.3). In comparison to the constitutive p-Ubi promoter-only NEENA-less reporter gene construct, the NEENA molecules all mediate strong enhancement in gene expression in these assays.
  • Isolation of protoplasts is conducted by following the protocol developed by Sheen (1990) (Metabolic Repression of Transcription in Higher Plants. The Plant Cell 2 (10), 1027-1038 ). Maize seedlings are kept in the dark at 25°C for 10 days and illuminated for 20 hours before protoplast preparation.
  • the middle part of the leaves are cut to 0.5 mm strips (about 6 cm in length) and incubated in an enzyme solution containing 1% (w/v) cellulose RS, 0.1% (w/v) macerozyme R10 (both from Yakult Honsha, Nishinomiya, Japan), 0.6 M mannitol, 10 mM Mes (pH 5.7), 1 mM CaCl 2 , 1 mM MgCl 2 , 10 mM beta-mercaptoethanol, and 0.1% BSA (w/v) for 3 hr at 23°C followed by gentle shaking at 80 rpm for 10 min to release protoplasts.
  • 1% (w/v) cellulose RS, 0.1% (w/v) macerozyme R10 both from Yakult Honsha, Nishinomiya, Japan
  • 0.6 M mannitol 10 mM Mes (pH 5.7)
  • 1 mM CaCl 2 1 mM MgCl 2
  • Protoplasts are collected by centrifugation at 100 x g for 2 min, washed once in cold 0.6 M mannitol solution, centrifuged, and resuspended in cold 0.6 M mannitol (2 x 10 6 /mL).
  • a total of 50 microg plasmid DNA in a total volume of 100 microL sterile water is added into 0.5 mL of a suspension of maize protoplasts (1 x 10 6 cells/mL) and mixed gently.
  • 0.5 mL PEG solution (40 % PEG 4,000, 100 mM CaNO 3 , 0.5 mannitol) is added and pre-warmed at 70°C with gentle shaking followed by addition of 4.5 mL MM solution (0.6 M mannitol, 15 mM MgCl 2 , and 0.1 % MES). This mixture is incubated for 15 minutes at room temperature.
  • the protoplasts are washed twice by pelleting at 600 rpm for 5 min and resuspending in 1.0 mL of MMB solution [0.6 M mannitol, 4 mM Mes (pH 5.7), and brome mosaic virus (BMV) salts (optional)] and incubated in the dark at 25°C for 48 hr. After the final wash step, the protoplasts are collected in 3 mL MMB medium, and incubated in the dark at 25°C for 48 hr.
  • the transient transformation of protoplasts of other monocotyledonous plants are carried out using, for example, a technique described in Hodges et al., 1991 (Transformation and regeneration of rice protoplasts. Biotechnology in agriculture No. 6, Rice Biotechnology.
  • GUS staining is done by incubating the plant materials in GUS solution [100 mM NaHPO4, 10 mM EDTA, 0.05% Triton X100, 0.025% X-Gluc solution (5-bromo-4-chloro -3-indolyl-beta-D-glucuronic acid dissolved in DMSO), 10% methanol, pH 7.0] at 37 °C for 16-24 hours. Analyses of luciferase activities are performed as described above (Example 2 and 3.3). In comparison to the constitutive p-Ubi promoter-only NEENA-less reporter gene construct, the NEENA molecules mediate strong enhancement in gene expression in these assays.
  • the Agrobacterium -mediated plant transformation using standard transformation and regeneration techniques may also be carried out for the purposes of transforming crop plants ( Gelvin and Schilperoort, 1995, Plant Molecular Biology Manual, 2nd Edition, Dordrecht: Kluwer Academic Publ. ISBN 0-7923-2731-4 ; Glick and Thompson (1993) Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, ISBN 0-8493-5164-2 ).
  • the transformation of maize or other monocotyledonous plants can be carried out using, for example, a technique described in US 5,591,616 .
  • Expression levels of the expressed genes in the constructs described above are determined by GUS staining, quantification of luminescence or fluorescence, RT-PCR, protein abundance (detection by specific antibodies) using the protocols in the art.
  • GUS staining is done by incubating the plant materials in GUS solution [100 mM NaHPO4, 10 mM EDTA, 0.05% Triton X100, 0.025% X-Gluc solution (5-bromo-4-chloro -3-indolyl-beta-D-glucuronic acid dissolved in DMSO), 10% methanol, pH 7.0] at 37 °C for 16-24 hours. Plant tissues are vacuum-infiltrated 2 times for 15 minutes to aid even staining. Analyses of luciferase activities are performed as described above (Examples 2 and 3.3).
  • the NEENA molecules mediate strong enhancement in gene expression in plants.
  • This example describes the analysis of NEENA sequences with SEQ ID NO 1 and 2 in corn plants.
  • a pUC-based expression vector harboring an expression cassette composed of the NEENA-less, constitutive monocotyledonous promoter p-Ubi from Z grass was combined with a coding sequence of the firefly luciferase (LUC) gene (Promega, Madison, WI, USA) followed by the nopaline synthase (NOS) transcriptional terminator.
  • LOC firefly luciferase
  • NOS nopaline synthase
  • Amplification during the PCR and purification of the amplification products was carried out as detailed above (example 1.2). Following a DNA restriction digest with MluI (10 U/microl) and AscI (10 U/microl) restriction endonucleases, the digested products were purified with the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).
  • NEENA PCR fragments were cloned separately upstream of the firefly luciferase coding sequence using AscI restriction sites.
  • the reaction yielded one binary vector with the p-Ubi promoter, the firefly luciferase coding sequence c-LUC and the t-nos terminator and two vectors harboring SEQ ID NO1 and NO2, immediately upstream of the firefly luciferase coding sequence (Table 11), for which the combination with SEQ ID NO1 is given exemplary (SEQ ID NO80). Except for varying SEQ ID NO2, the nucleotide sequence is identical in the vectors (Table 11).
  • Table 11 Plant expression vectors plant expression vector Composition of the expression cassette Promoter::SEQ ID NO::reporter gene::terminator SEQ ID NO LJK309 p-Ubi::-::c-LUC::t-nos LJK327 p-Ubi::SEQ ID NO1::c-LUC::t-nos 80 LJK326 p-Ubi::SEQ ID NO2::c-LUC::t-nos
  • Tissue samples were collected from the generated transgenic plants from leaves and kernels. The tissue samples were processed and analyzed as described above (cp. example 3.3)
  • This example describes the analysis of NEENA sequences with SEQ ID NO 1 in rice plants.
  • pENTR/B vectors LJK1 and LJK4 were combined with a destination vector harboring the constitutive PRO0239 upstream of the recombination site using site specific recombination (LR-reaction) according to the manufacturers (Invitrogen, Carlsbad, CA, USA) Gateway manual.
  • the reactions yielded one binary vector with PRO0239 promoter, the firefly luciferase coding sequence c-LUC and the t-nos terminator as well as 1 vector harboring SEQ ID NO1 immediately upstream of the firefly luciferase coding sequence (Table 12),.
  • Table 12 Plant expression vectors plant expression vector Composition of the expression cassette Promoter::SEQ ID NO::reporter gene::terminator SEQ ID NO p-PRO0239 CD30963 ::-::c-LUC::t-nos p-PRO0239 CD30964 ::SEQ ID NO1::c-LUC::t-nos -
  • the Agrobacterium containing the respective expression vector was used to transform Oryza sativa plants. Mature dry seeds of the rice japonica cultivar Nipponbare were dehusked. Sterilization was carried out by incubating for one minute in 70% ethanol, followed by 30 minutes in 0.2% HgCl 2 , followed by a 6 times 15 minutes wash with sterile distilled water. The sterile seeds were then germinated on a medium containing 2,4-D (callus induction medium). After incubation in the dark for four weeks, embryogenic, scutellum-derived calli were excised and propagated on the same medium. After two weeks, the calli were multiplied or propagated by subculture on the same medium for another 2 weeks. Embryogenic callus pieces were subcultured on fresh medium 3 days before co-cultivation (to boost cell division activity).
  • Agrobacterium strain LBA4404 containing the respective expression vector was used for co-cultivation.
  • Agrobacterium was inoculated on AB medium with the appropriate antibiotics and cultured for 3 days at 28°C.
  • the bacteria were then collected and suspended in liquid co-cultivation medium to a density (OD 600 ) of about 1.
  • the suspension was then transferred to a Petri dish and the calli immersed in the suspension for 15 minutes.
  • the callus tissues were then blotted dry on a filter paper and transferred to solidified, co-cultivation medium and incubated for 3 days in the dark at 25°C.
  • Co-cultivated calli were grown on 2,4-D-containing medium for 4 weeks in the dark at 28°C in the presence of a selection agent.
  • T0 rice transformants Approximately 35 independent T0 rice transformants were generated for one construct. The primary transformants were transferred from a tissue culture chamber to a greenhouse. After a quantitative PCR analysis to verify copy number of the T-DNA insert, only single copy transgenic plants that exhibit tolerance to the selection agent were kept for harvest of T1 seed. Seeds were then harvested three to five months after transplanting. The method yielded single locus transformants at a rate of over 50 % (Aldemita and Hodges1996, Chan et al. 1993, Hiei et al. 1994).
  • Tissue samples were collected from the generated transgenic plants from leaves and kernels. The tissue samples were processed and analyzed as described above (cp. example 3.3)
  • the tested NEENA molecule (SEQ ID NO 1) mediated strong enhancements in gene expression in leaves ( Fig. 5a ). Strong enhancement of gene expression mediated by the NEENA (SEQ ID NO1) was detected in rice seeds ( Fig. 5b ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Plant Substances (AREA)
EP16194415.2A 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants Active EP3153585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19183559.4A EP3581657B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23823009P 2009-08-31 2009-08-31
EP09169019 2009-08-31
PCT/EP2010/061659 WO2011023537A1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP10751837.5A EP2473610B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP10751837.5A Division-Into EP2473610B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP10751837.5A Division EP2473610B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
PCT/EP2010/061659 Previously-Filed-Application WO2011023537A1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP19183559.4A Division EP3581657B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP19183559.4A Previously-Filed-Application EP3581657B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP19183559.4A Division-Into EP3581657B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Publications (3)

Publication Number Publication Date
EP3153585A2 EP3153585A2 (en) 2017-04-12
EP3153585A3 EP3153585A3 (en) 2017-07-05
EP3153585B1 true EP3153585B1 (en) 2019-10-09

Family

ID=42938516

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10751837.5A Active EP2473610B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP16194415.2A Active EP3153585B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP19183559.4A Active EP3581657B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10751837.5A Active EP2473610B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19183559.4A Active EP3581657B1 (en) 2009-08-31 2010-08-11 Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants

Country Status (15)

Country Link
US (4) US9828607B2 (es)
EP (3) EP2473610B1 (es)
JP (1) JP5794986B2 (es)
KR (1) KR20120092104A (es)
CN (3) CN102482684B (es)
AR (3) AR078010A1 (es)
AU (4) AU2010288758B2 (es)
CA (5) CA3090172C (es)
DE (1) DE112010003500T5 (es)
IL (1) IL218094A0 (es)
MX (1) MX2012002047A (es)
RU (1) RU2012112347A (es)
SG (1) SG178389A1 (es)
WO (1) WO2011023537A1 (es)
ZA (1) ZA201202246B (es)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3090172C (en) 2009-08-31 2023-12-12 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
EP3418387B1 (en) 2009-08-31 2020-11-25 Basf Plant Science Company GmbH Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
CA3167819A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific and/or seed-preferential gene expression in plants
CN105838717A (zh) 2011-03-18 2016-08-10 巴斯夫植物科学有限公司 用于调节在植物中的表达的启动子
WO2013005152A1 (en) * 2011-07-05 2013-01-10 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
US20140237682A1 (en) * 2011-07-19 2014-08-21 Tedd D. Elich Regulatory polynucleotides and uses thereof
AU2012310193A1 (en) * 2011-09-15 2014-03-06 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for reliable gene expression in plants
EP2677035A1 (en) 2012-06-22 2013-12-25 BASF Plant Science Company GmbH Plants having enhanced yield-related traits and a method for making the same
EP2816115A1 (en) 2013-06-17 2014-12-24 BASF Plant Science Company GmbH Plants having one or more enhanced yield-related traits and a method for making the same
MX2016000225A (es) 2013-07-05 2016-06-15 Basf Plant Science Co Gmbh Elementos potenciadores de la expresion o actividad genica.
EP2896698A1 (en) 2014-01-17 2015-07-22 BASF Plant Science Company GmbH Plants having one or more enhanced yield-related traits and a method for making the same
CN106148344B (zh) * 2016-06-30 2019-05-03 中国农业大学 一种具有增强植物基因表达活性的5′utr序列及其应用
EP3500666A4 (en) 2016-08-17 2020-04-08 Monsanto Technology LLC METHODS AND COMPOSITIONS FOR SMALL-SIZED PLANTS THROUGH THE MANIPULATION OF GIBBERRELL METABOLISM TO INCREASE HARVEST YIELD
US20220220495A1 (en) * 2019-05-10 2022-07-14 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
US20230203515A1 (en) * 2019-09-12 2023-06-29 Basf Se Regulatory Nucleic Acid Molecules for Enhancing Gene Expression in Plants
WO2021069387A1 (en) * 2019-10-07 2021-04-15 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
EP4069852A1 (en) * 2019-12-03 2022-10-12 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants
CN114317594B (zh) * 2021-08-30 2023-06-06 中国科学院南京土壤研究所 拟南芥种子调控基因rpp1a的应用
CN113957073B (zh) * 2021-10-19 2023-09-01 山东寿光巨能金玉米开发有限公司 一种tkt基因启动子突变体及其在生产L-赖氨酸中的应用
CN115568304A (zh) * 2022-09-09 2023-01-06 西北农林科技大学 一种破除黑褐苔草种子休眠的方法
WO2024083579A1 (en) * 2022-10-20 2024-04-25 Basf Se Regulatory nucleic acid molecules for enhancing gene expression in plants

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232A (en) * 1847-08-07 Fike-gkate
ZA88319B (en) * 1987-02-06 1988-08-12 Lubrizol Enterprises, Inc. Ocs enhancer
WO1993020216A1 (en) 1991-02-22 1993-10-14 University Technologies International, Inc. Oil-body protein cis-elements as regulatory signals
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
EP0733059B1 (en) 1993-12-09 2000-09-13 Thomas Jefferson University Compounds and methods for site-directed mutations in eukaryotic cells
US5750866A (en) 1994-09-08 1998-05-12 American Cyanamid Company AHAS promoter useful for expression of introduced genes in plants
WO1999067389A2 (en) 1995-05-15 1999-12-29 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Agriculture And Agri-Food Canada Cryptic regulatory elements obtained from plants
US5994123A (en) 1996-08-09 1999-11-30 Regents Of University Of Minnesota Sugarcane bacilliform virus promoter
US6555732B1 (en) 1998-09-14 2003-04-29 Pioneer Hi-Bred International, Inc. Rac-like genes and methods of use
US20110014706A2 (en) 1998-12-14 2011-01-20 Monsanto Technology Llc Arabidopsis thaliana Genome Sequence and Uses Thereof
EP1033405A3 (en) * 1999-02-25 2001-08-01 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
JP2004512806A (ja) 1999-03-18 2004-04-30 ユニバーシティ オブ シカゴ 植物セントロメア
US8877916B2 (en) 2000-04-26 2014-11-04 Ceres, Inc. Promoter, promoter control elements, and combinations, and uses thereof
WO2001098480A2 (en) * 2000-06-23 2001-12-27 Syngenta Participations Ag Promoters for regulation of plant gene expression
AU8681101A (en) 2000-08-24 2002-03-04 Scripps Research Inst Stress-regulated genes of plants, transgenic plants containing same, and methodsof use
US8022272B2 (en) 2001-07-13 2011-09-20 Sungene Gmbh & Co. Kgaa Expression cassettes for transgenic expression of nucleic acids
AU2002319285A1 (en) 2001-07-13 2003-03-03 Sungene Gmbh And Co. Kgaa Expression cassettes for transgenically expressing selection markers
EP1409697B1 (de) 2001-07-13 2008-04-30 Sungene GmbH & Co. KGaA Expressionskassetten zur transgenen expression von nukleinsäuren
DE10224889A1 (de) * 2002-06-04 2003-12-18 Metanomics Gmbh & Co Kgaa Verfahren zur stabilen Expression von Nukleinsäuren in transgenen Pflanzen
US7803983B2 (en) 2004-06-30 2010-09-28 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant growth rate and biomass in plants
US7402667B2 (en) 2003-10-14 2008-07-22 Ceres, Inc. Promoter, promoter control elements, and combinations, and uses thereof
US20100170002A1 (en) 2006-03-24 2010-07-01 Ceres, Inc. Promoter, promoter control elements, and combinations, and uses thereof
US20070006335A1 (en) * 2004-02-13 2007-01-04 Zhihong Cook Promoter, promoter control elements, and combinations, and uses thereof
AU2005219533B2 (en) 2004-03-01 2010-03-04 Basf Plant Science Gmbh Transgenic expression constructs for vegetative plant tissue specific expression of nucleic acids
ES2463474T3 (es) * 2004-05-13 2014-05-28 Cropdesign N.V. Procedimiento para aumentar la expresión de transgén
EP1756282B1 (en) 2004-06-07 2009-04-08 BASF Plant Science GmbH Improved transformation of soybean
EP1614754A1 (en) 2004-07-06 2006-01-11 Biogemma Method for enhancing gene expression in plants
AU2005287547B2 (en) 2004-09-23 2010-09-02 Basf Plant Science Gmbh Recombination cassettes and methods for sequence excision in plants
EP2163632A1 (en) * 2004-10-05 2010-03-17 SunGene GmbH Constitutive expression cassettes for regulation of plant expression
ATE525473T1 (de) * 2004-10-05 2011-10-15 Sungene Gmbh Konstitutive expressionskassette zur regulierung der expression in pflanzen.
WO2006076099A2 (en) 2004-12-08 2006-07-20 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring modulated plant size and biomass in plants
CA2596600A1 (en) 2005-02-09 2006-08-17 Basf Plant Science Gmbh Expression cassettes for regulation of expression in monocotyledonous plants
CA2598436A1 (en) 2005-02-22 2006-08-31 Ceres, Inc. Modulating plant alkaloids
WO2006089950A2 (en) 2005-02-26 2006-08-31 Basf Plant Science Gmbh Expression cassettes for seed-preferential expression in plants
US7994399B2 (en) 2005-06-23 2011-08-09 Basf Plant Science Gmbh Methods for the production of stably transformed, fertile Zea mays plants
EP2980220A1 (en) 2005-09-20 2016-02-03 BASF Plant Science GmbH Improved methods controlling gene expression
US20070204367A1 (en) 2006-02-17 2007-08-30 Stanislaw Flasinski Chimeric regulatory sequences comprising introns for plant gene expression
EP1996712A2 (en) 2006-03-17 2008-12-03 BASF Plant Science GmbH D-amino acid selection for soybean
DE102006034313A1 (de) 2006-07-21 2008-01-24 Basf Plant Science Gmbh Verfahren zur Herstellung von Arachidonsäure und/oder Eicosapentaensäure
US8222388B2 (en) * 2006-11-22 2012-07-17 Ceres, Inc. Broadly expressing regulatory regions
WO2008104559A1 (de) 2007-02-27 2008-09-04 Norddeutsche Pflanzenzucht Verfahren zur herstellung von mehrfach ungesättigten fettsäuren in transgenen organismen
AP2009004993A0 (en) 2007-04-04 2009-10-31 Basf Plant Science Gmbh Ahas mutants
DE112008001989A5 (de) 2007-07-31 2010-06-10 Basf Plant Science Gmbh Desaturasen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2594647A3 (en) * 2007-09-21 2013-07-24 BASF Plant Science GmbH Plants with increased yield
EP3418387B1 (en) 2009-08-31 2020-11-25 Basf Plant Science Company GmbH Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
CA3167819A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific and/or seed-preferential gene expression in plants
CA3090172C (en) 2009-08-31 2023-12-12 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
AU2012310193A1 (en) 2011-09-15 2014-03-06 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for reliable gene expression in plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR078010A1 (es) 2011-10-05
AU2019240730B2 (en) 2021-08-19
US10689657B2 (en) 2020-06-23
JP2013502907A (ja) 2013-01-31
EP2473610B1 (en) 2017-07-19
EP3153585A3 (en) 2017-07-05
CA2771252C (en) 2019-03-12
EP3581657A3 (en) 2020-03-18
IL218094A0 (en) 2012-04-30
US20180066270A1 (en) 2018-03-08
CA3175433C (en) 2024-05-28
DE112010003500T5 (de) 2012-06-14
WO2011023537A1 (en) 2011-03-03
MX2012002047A (es) 2012-04-11
EP2473610A1 (en) 2012-07-11
CA3031259C (en) 2020-12-29
US20120167248A1 (en) 2012-06-28
CN105132425A (zh) 2015-12-09
AU2016202274B2 (en) 2017-09-28
RU2012112347A (ru) 2013-10-10
SG178389A1 (en) 2012-03-29
CN102482684A (zh) 2012-05-30
EP3581657B1 (en) 2022-01-12
CA3090172A1 (en) 2011-03-03
CA3090172C (en) 2023-12-12
AU2010288758B2 (en) 2016-02-04
KR20120092104A (ko) 2012-08-20
US20240035040A1 (en) 2024-02-01
AU2017248552B2 (en) 2019-07-11
CA3175433A1 (en) 2011-03-03
AR115692A2 (es) 2021-02-17
CA3031259A1 (en) 2011-03-03
ZA201202246B (en) 2013-06-26
US20200318128A1 (en) 2020-10-08
US11708578B2 (en) 2023-07-25
CA2771252A1 (en) 2011-03-03
CN109468339A (zh) 2019-03-15
EP3581657A2 (en) 2019-12-18
CN105132425B (zh) 2018-10-02
CN102482684B (zh) 2015-11-25
JP5794986B2 (ja) 2015-10-14
CN109468339B (zh) 2022-11-04
AR116107A2 (es) 2021-03-31
US9828607B2 (en) 2017-11-28
AU2019240730A1 (en) 2019-11-14
AU2010288758A1 (en) 2012-04-12
AU2017248552A1 (en) 2017-11-09
EP3153585A2 (en) 2017-04-12
CA3235747A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
US11708578B2 (en) Regulatory nucleic acid molecules for enhancing constitutive gene expression in plants
US10041081B2 (en) Regulatory nucleic acid molecules for enhancing seed-specific and/or seed-preferential gene expression in plants
US20140230087A1 (en) Regulatory Nucleic Acid Molecules for Enhancing Constitutive Gene Expression in Plants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2473610

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: A01H 5/00 20060101ALN20170526BHEP

Ipc: C12N 15/82 20060101AFI20170526BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181026

RIC1 Information provided on ipc code assigned before grant

Ipc: A01H 5/00 20180101ALN20181214BHEP

Ipc: C12N 15/82 20060101AFI20181214BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C12N 15/82 20060101AFI20190218BHEP

Ipc: A01H 5/00 20180101ALN20190218BHEP

INTG Intention to grant announced

Effective date: 20190320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2473610

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010061496

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1188846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1188846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010061496

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230828

Year of fee payment: 14

Ref country code: BE

Payment date: 20230825

Year of fee payment: 14