EP3147393A1 - Textile reinforcement using yarn and method for preparing a yarn - Google Patents
Textile reinforcement using yarn and method for preparing a yarn Download PDFInfo
- Publication number
- EP3147393A1 EP3147393A1 EP16190540.1A EP16190540A EP3147393A1 EP 3147393 A1 EP3147393 A1 EP 3147393A1 EP 16190540 A EP16190540 A EP 16190540A EP 3147393 A1 EP3147393 A1 EP 3147393A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yarn
- reinforcement
- mineral
- plasma
- matrix material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000002787 reinforcement Effects 0.000 title claims abstract description 40
- 239000004753 textile Substances 0.000 title claims abstract description 18
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 43
- 239000011707 mineral Substances 0.000 claims abstract description 43
- 239000011159 matrix material Substances 0.000 claims abstract description 36
- 238000000576 coating method Methods 0.000 claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000004048 modification Effects 0.000 claims abstract description 13
- 238000012986 modification Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims description 29
- 239000004567 concrete Substances 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 17
- 239000000919 ceramic Substances 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000007900 aqueous suspension Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 2
- 230000035515 penetration Effects 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000002131 composite material Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000006223 plastic coating Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000011209 textile-reinforced concrete Substances 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J3/00—Modifying the surface
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/02—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
- D06M10/025—Corona discharge or low temperature plasma
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/04—Physical treatment combined with treatment with chemical compounds or elements
- D06M10/06—Inorganic compounds or elements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/77—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
- D06M11/79—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/044—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/07—Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M10/00—Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
- D06M10/04—Physical treatment combined with treatment with chemical compounds or elements
- D06M10/08—Organic compounds
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/16—Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
- E04C5/162—Connectors or means for connecting parts for reinforcements
- E04C5/166—Connectors or means for connecting parts for reinforcements the reinforcements running in different directions
Definitions
- the invention relates to a textile reinforcement by means of yarn, so that a component comprising a matrix material and the reinforcement is formed.
- An aqueous, mineral matrix material for example concrete, is also suitable as the matrix material.
- the invention furthermore relates to a method for preparing a yarn, in particular multifilament yarn, which can be used as textile reinforcement, in particular in an aqueous, mineral matrix material.
- the building material concrete is very well suited for absorbing pressure loads. However, it has only a low absorption capacity in terms of tensile stress and shows a pronounced brittle material failure. Therefore, concrete components for receiving tensile stresses, for example resulting from bending moments or from forced stresses (eg shrinkage, temperature), require reinforcement.
- the combination of concrete and tension-absorbing reinforcement creates a high-performance building material.
- the reinforcement can be installed in various geometric arrangements, with lattice-shaped structures or bars generally being used.
- Structural steel has hitherto been used as the material, which must be protected against corrosion depending on existing exposures with concrete coverages of up to 5.5 cm.
- corrosion-resistant materials such as carbon or alkali-resistant glass (AR glass) have been researched for several years, and reinforcements made from these materials are being prepared for a wide practical application.
- a first step was achieved with the composite material textile concrete.
- Textile concrete or textile-reinforced concrete is a composite material made of concrete and a textile fabric (scrim).
- the textile fabric used as reinforcement preferably consists of multifilament yarns, the materials used being AR glass, carbon and / or basalt.
- the individual multifilament yarns, referred to below as roving are composed of several thousand filaments.
- the filament diameters are in a range between about 7 ⁇ m (carbon) and 20 ⁇ m (AR glass). If you were to place the rovings uncoated in the concrete, only the outer filaments of the rovings would connect with the concrete.
- the inner filaments have no regular connection to the concrete matrix. Thus, primarily only the outer filaments will participate in the load transfer and the potential carrying capacity of the yarns will not be exploited.
- the coating materials used today are predominantly styrene butadiene and epoxy resin.
- the composite behavior between the inner filaments of the yarns is improved, and thus the load-bearing reserves of the yarn material are utilized to a greater extent.
- the bond between yarn and surrounding fine concrete is increased.
- the load-bearing capacity of the coated structures is thus significantly higher than that of uncoated rovings or textiles. In the same way, the load transfer takes place even with rod-shaped reinforcements made of fiber-reinforced plastic.
- the typically used reinforcing materials, such as carbon, and also the concrete as the matrix material are significantly more temperature resistant and durable than the plastic coating that wraps and bonds the reinforcing material to each other and to the matrix material.
- the coating which is decisive as a boundary layer, in particular for the decisive bond to the surrounding matrix of the component, therefore essentially determines the temperature or fire behavior, the creep behavior and the time-dependent deformation behavior of textile concrete under load (creep). Therefore, the properties of the coating material is of great importance.
- the current reinforcements similar to fiber-reinforced plastics, have a coating or a bonding matrix in flat or rod-shaped form, which, however, is neither very temperature-resistant nor durable.
- the problem of the plastics used so far is that they are usually very susceptible to temperature, depending on the system used. From temperatures between 40 ° C and 120 ° C, the positive effect of the coating decreases. Softening significantly reduces their function. When proving a component for a fire, a temperature resistance of the coating of up to 600 ° C is usually required. Furthermore, a continuous loading of the plastics can lead to pronounced creep of the coating and thus to the unwanted, very significant increase in the deformation of the composite component. The durability given to plastics for a limited time can lead to embrittlement and / or aging, in particular due to the alkaline environment in the concrete.
- the polymer dispersions used to increase the utilization of the theoretical yarn strength can be applied to the yarn structures relatively favorably in terms of production technology and are also able to more easily infiltrate the structures.
- the properties of the coated reinforcement structures can be adjusted specifically to the requirements of the handling. This concerns for example the deformability.
- the polymers are usually applied in the form of dispersions on coating rollers on flat textile structures and thermally dried by infrared radiation and crosslinked.
- Rod-shaped fiber reinforcements are made by pultruding with suitable systems of thermoplastic or thermosetting resins. Such a method describes by way of example the document US 4,728,387 A. ,
- Suitable coating materials with regard to their properties in the concrete are, for example, aqueous suspensions of mineral inorganic binders.
- a technological problem with the aforementioned approach is therefore that the uncoated fiber surfaces of multifilament yarns (eg carbon) are not affine towards the aqueous suspensions of mineral inorganic binders.
- the known solutions for application of the polymeric coatings can therefore not be transferred in particular to aqueous mineral coatings and matrix systems without adjustments and / or extensions of the technology. Due to the low affinity properties of the multifilament yarns compared to the suspensions, only an insufficient coating and / or embedding in the mineral matrix is achieved. Due to the reduced composite, the carrying reserves of the fiber structures are only insufficiently utilized.
- the object of the invention is therefore to improve the wettability of multifilament yarns in a simple and cost-effective manner, especially for aqueous mineral coatings, so that additional mineral or metallic layers can be applied to the fiber surface.
- a method or a method is to be made available with which the fiber surface of reinforcing structures can be designed affine or more hydrophilic compared to aqueous suspensions of mineral, inorganic binder matrices.
- a textile reinforcement with improved wettability and a reinforced component to be offered.
- additional measures can be carried out, for example by profiling the yarns or structures. These can be carried out by a local application with resin systems, which in turn behave problematic in terms of higher temperatures and / or fire.
- the object of the invention is further achieved by a plasma-chemical process.
- a specific modification of the fiber surface for example, carbon, AR glass, basalt
- a further substance here for example in the form of an aqueous suspension with mineral fines carried out.
- an interaction of the plasma with the fiber surfaces or with the production-technologically applied fiber size takes place.
- the surface energy can be selectively adjusted by the interaction plasma surface in the form of changes of the molecular structures on the surface and the associated increase in the polar binding fraction , which leads to an improvement of wettability or reactivity with the coating / impregnation material.
- boundary conditions are especially process parameters, such as composition of process gases, process time, excitation frequency and power, pressure and gas flow rate.
- the approach to the activation of fiber surfaces can thus be transferred to other matrix systems, such as polymer dispersions or various resin systems in addition to mineral-based systems such as reinforced concrete.
- the composite behavior of the reinforcement structures can be improved by the deposition of ceramic layers.
- the process of applying a layer is based on plasma-chemical processes (PECVD), in which a precursor corresponding to the ceramic material, e.g. HMDSO (hexamethyldisiloxane) or TEOS (tetraethyl orthosilicate) is used.
- PECVD plasma-chemical processes
- HMDSO hexamethyldisiloxane
- TEOS tetraethyl orthosilicate
- Electrically conductive contacts of carbon structures are, so far known, previously produced by pressing metallic sleeves or bands.
- metallic layers which is done by means of PVD process, electrically conductive yarns (carbon) can be permanently contacted.
- the PVD process is based on the sputtering of conductive material, which is condensed on the yarn structure during the coating process and thus deposited there.
- the sputtering process is magnetron sputtering with argon as working gas.
- the essence of the invention lies above all in the possibility of plasma technology for modifying the surface properties of materials, which in itself has been known for several decades.
- the practical and commercial application for industrial problem solutions has increased significantly over time.
- the fields of application are very different.
- the surface modification (inter alia by means of layer application) also plays an important role in improving the performance characteristics, for example scratch protection, mirroring, printability, barrier protection, etc.
- the use of plasma technology for the modification of fiber surfaces in multifilament yarns with the aim of better wettability (hydrophilization) with aqueous mineral suspensions despite the long knownness of the underlying technology is not known and represents the essence of the present invention with its surprising effect.
- the ultimate goal for the primary application is to increase the bond properties between the individual filaments and the mineral matrix both within the yarns and outside of the surrounding mineral matrix in cementitious components.
- the mineral matrix instead of the mineral matrix, other matrix systems are also conceivable.
- PECVD Plasma-enhanced chemical vapor deposition
- CVD chemical vapor deposition
- the plasma can burn directly on the substrate to be coated (direct plasma method) or in a separate chamber (remote plasma method).
- the order can be made over the entire surface or gradually.
- the gradual or sectional application allows a metered introduction of the composite forces in order to control the load-deformation behavior and failure behavior of the material according to the respective requirements.
- end anchorages of prestressed reinforcement structures can be produced by the application of ceramic layers.
- prestressed reinforcement structures for example carbon, AR glass, basalt
- these have the additional advantage of reducing the transverse pressure sensitivity for gripping the reinforcements.
- the electrical contacting of carbon by applying metals allows a low-resistance and durable connection.
- the object of the invention is also achieved by a textile reinforcement according to claim 8 and such a reinforced component according to claim 13.
- Fig. 1 schematically shows an embodiment of a reinforcement according to the invention comprising a yarn 1 and a detail of the yarn 1, in particular a multifilament yarn.
- the multifilament yarns or rovings form a scrim.
- the treatment according to the invention of the roving takes place only as a partial modification 2 in order to allow the application of mineral layers, here a ceramic as an additional mineral layer 3, at the nodal points of the layer.
- Fig. 2 schematically shows an embodiment of a yarn 1 according to the invention, which has the modification 2 instead of a full-surface modification 2, ie treatment of the surface or order of a further material, also in sections or only at the end. It is of importance how the forces are transferred to the matrix material, especially while avoiding tearing out of matrix material by overload.
- the treatment in the end area provides for an improved final anchorage 4. Shown is the coating order of a ceramic as an additional mineral layer 3.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Textile Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Vorbereitung eines Garns, insbesondere ein Multifilamentgarn, für einen Einsatz als textile Bewehrung in einem Matrixmaterial, insbesondere einem mineralischen Matrixmaterial, eine textile Bewehrung und ein Bauteil, umfassend diese Bewehrung. Aufgabe der Erfindung ist es, die Benetzbarkeit von Multifilamentgarnen zu verbessern, vor allem für wässrige mineralische Beschichtungen. Zur Lösung wird die Oberfläche des Garns mittels eines plasmachemischen und/oder plasmaphysikalischen Prozesses in der Weise modifiziert wird, dass durch die resultierende Modifikation zumindest die Benetzbarkeit verbessert wird.The invention relates to a method for preparing a yarn, in particular a multifilament yarn, for use as a textile reinforcement in a matrix material, in particular a mineral matrix material, a textile reinforcement and a component comprising this reinforcement. The object of the invention is to improve the wettability of multifilament yarns, especially for aqueous mineral coatings. To solve the surface of the yarn is modified by means of a plasma-chemical and / or plasma-physical process in such a way that at least the wettability is improved by the resulting modification.
Description
Die Erfindung betrifft eine textile Bewehrung mittels Garn, so dass ein ein Matrixmaterial und die Bewehrung umfassendes Bauteil gebildet wird. Als Matrixmaterial kommt auch ein wässriges, mineralisches Matrixmaterial, beispielsweise Beton, in Betracht. Die Erfindung betrifft weiterhin ein Verfahren zur Vorbereitung eines Garns, insbesondere Multifilamentgarn, das als textile Bewehrung insbesondere in einem wässrigen, mineralischen Matrixmaterial zum Einsatz kommen kann.The invention relates to a textile reinforcement by means of yarn, so that a component comprising a matrix material and the reinforcement is formed. An aqueous, mineral matrix material, for example concrete, is also suitable as the matrix material. The invention furthermore relates to a method for preparing a yarn, in particular multifilament yarn, which can be used as textile reinforcement, in particular in an aqueous, mineral matrix material.
Der Baustoff Beton ist sehr gut geeignet zur Aufnahme von Druckbelastungen. Er besitzt jedoch nur ein geringes Aufnahmevermögen hinsichtlich einer Zugbeanspruchung und zeigt ein ausgeprägt sprödes Materialversagen. Daher benötigen Betonbauteile zur Aufnahme von Zugspannungen, beispielsweise resultierend aus Biegemomenten oder aus Zwangsspannungen (z. B. Schwinden, Temperatur), eine Bewehrung. Durch die Kombination von Beton und zugkraftaufnehmender Bewehrung entsteht ein hochleistungsfähiger Baustoff. Die Bewehrung kann hierbei in verschiedenen geometrischen Anordnungen eingebaut werden, wobei meistens gitterförmige Strukturen oder Stäbe zur Anwendung kommen. Als Material wird bisher Baustahl eingesetzt, der in Abhängigkeit vorliegender Expositionen mit Betonüberdeckungen von bis zu 5,5 cm gegen Korrosion geschützt werden muss. Zur Reduzierungen der Betonüberdeckungen wird deshalb seit mehreren Jahren an korrosionsunempfindlichen Materialien wie Carbon oder alkaliresistentem Glas (AR-Glas) geforscht und es werden Bewehrungen aus diesen Materialien für eine breite baupraktische Anwendung vorbereitet. Ein erster Schritt wurde mit dem Verbundmaterial Textilbeton erreicht.The building material concrete is very well suited for absorbing pressure loads. However, it has only a low absorption capacity in terms of tensile stress and shows a pronounced brittle material failure. Therefore, concrete components for receiving tensile stresses, for example resulting from bending moments or from forced stresses (eg shrinkage, temperature), require reinforcement. The combination of concrete and tension-absorbing reinforcement creates a high-performance building material. In this case, the reinforcement can be installed in various geometric arrangements, with lattice-shaped structures or bars generally being used. Structural steel has hitherto been used as the material, which must be protected against corrosion depending on existing exposures with concrete coverages of up to 5.5 cm. To reduce concrete coverages, corrosion-resistant materials such as carbon or alkali-resistant glass (AR glass) have been researched for several years, and reinforcements made from these materials are being prepared for a wide practical application. A first step was achieved with the composite material textile concrete.
Textilbeton oder auch textilbewehrter Beton ist ein Verbundwerkstoff aus Beton und einem textilen Flächengebilde (Gelege). Das als Bewehrung dienende Textilgelege besteht bevorzugt aus Multifilamentgarnen, wobei als Werkstoffe AR-Glas, Carbon und/oder Basalt eingesetzt werden. Die einzelnen Multifilamentgarne, nachfolgend als Roving bezeichnet, sind aus mehreren tausend Filamenten zusammengesetzt. Die Filamentdurchmesser liegen in einem Bereich zwischen ca. 7 µm (Carbon) und 20 µm (AR-Glas). Würde man die Rovings unbeschichtet in den Beton einlegen, würden sich lediglich die äußeren Filamente der Rovings mit dem Beton verbinden. Die inneren Filamente haben regelmäßig keine Verbindung zur Betonmatrix. Somit werden sich in erster Linie nur die äußeren Filamente an der Lastabtragung beteiligen und die potenzielle Tragfähigkeit der Garne wird nicht ausgenutzt.Textile concrete or textile-reinforced concrete is a composite material made of concrete and a textile fabric (scrim). The textile fabric used as reinforcement preferably consists of multifilament yarns, the materials used being AR glass, carbon and / or basalt. The individual multifilament yarns, referred to below as roving, are composed of several thousand filaments. The filament diameters are in a range between about 7 μm (carbon) and 20 μm (AR glass). If you were to place the rovings uncoated in the concrete, only the outer filaments of the rovings would connect with the concrete. The inner filaments have no regular connection to the concrete matrix. Thus, primarily only the outer filaments will participate in the load transfer and the potential carrying capacity of the yarns will not be exploited.
Zur gewünschten Beteiligung aller Filamente am Lastabtrag wird der Roving bzw. das Textil mit einer Polymerbeschichtung bezüglich der Filamente bzw. einer Imprägnierung des gesamten Rovings versehen, die in die Struktur infiltriert. Als Beschichtungsmaterialien kommen heute überwiegend Stryrolbutadien und Epoxidharz zum Einsatz. Das Verbundverhalten zwischen den inneren Filamenten der Garne wird verbessert und damit werden die Tragreserven des Garnmaterials stärker ausgenutzt. Gleichzeitig wird auch der Verbund zwischen Garn und umgebendem Feinbeton gesteigert. Die Tragfähigkeit der beschichteten Strukturen ist damit deutlich höher als die der unbeschichteten Rovings bzw. Textilien. In gleicher Weise erfolgt die Lastabtragung auch bei stabförmigen Bewehrungen aus faserverstärktem Kunststoff.For the desired participation of all filaments in the load transfer of the roving or the textile is provided with a polymer coating with respect to the filaments or an impregnation of the entire roving, which infiltrates into the structure. The coating materials used today are predominantly styrene butadiene and epoxy resin. The composite behavior between the inner filaments of the yarns is improved, and thus the load-bearing reserves of the yarn material are utilized to a greater extent. At the same time, the bond between yarn and surrounding fine concrete is increased. The load-bearing capacity of the coated structures is thus significantly higher than that of uncoated rovings or textiles. In the same way, the load transfer takes place even with rod-shaped reinforcements made of fiber-reinforced plastic.
Die typischerweise verwendeten Bewehrungsmaterialien, wie beispielsweise Carbon, und auch der Beton als Matrixmaterial sind deutlich temperaturbeständiger und dauerhafter als die Kunststoffbeschichtung, die das Bewehrungsmaterial umhüllt und untereinander und mit dem Matrixmaterial verbindet. Die Beschichtung, die als Grenzschicht insbesondere für den entscheidenden Verbund zur umgebenden Matrix des Bauteils maßgebend ist, bestimmt daher wesentlich das Temperatur- bzw. Brandverhalten, das Dauerstandverhalten und das zeitabhängige Verformungsverhalten von Textilbeton unter Last (Kriechen). Deshalb kommt den Eigenschaften des Beschichtungsmaterials eine hohe Bedeutung zu.The typically used reinforcing materials, such as carbon, and also the concrete as the matrix material are significantly more temperature resistant and durable than the plastic coating that wraps and bonds the reinforcing material to each other and to the matrix material. The coating, which is decisive as a boundary layer, in particular for the decisive bond to the surrounding matrix of the component, therefore essentially determines the temperature or fire behavior, the creep behavior and the time-dependent deformation behavior of textile concrete under load (creep). Therefore, the properties of the coating material is of great importance.
Neben den vielen herstellungstechnologischen und gebrauchstechnischen Vorteilen besitzen die aktuellen Bewehrungen, vergleichbar mit faserverstärkten Kunststoffen, in flächiger oder stabförmiger Form eine Beschichtung bzw. eine Bindematrix, welche allerdings weder sehr temperaturbeständig noch dauerhaft ist. Das Problem der bisher verwendeten Kunststoffe ist, dass diese in Abhängigkeit des verwendeten Systems zumeist sehr temperaturanfällig sind. Ab Temperaturen zwischen 40 °C und 120 °C lässt die positive Wirkung der Beschichtung nach. Durch Erweichen wird ihre Funktion erheblich gemindert. Bei einem Bauteilnachweis für den Brandfall ist meist eine Temperaturbeständigkeit der Beschichtung von bis zu 600 °C erforderlich. Des Weiteren kann eine andauernde Belastung der Kunststoffe zum ausgeprägten Kriechen der Beschichtung und damit zur ungewollten, sehr deutlichen Verformungszunahme des Verbundbauteils führen. Die Dauerhaftigkeit, die bei Kunststoffen für eine begrenzte Zeit gegeben ist, kann insbesondere durch das alkalische Milieu im Beton zu einer Versprödungen und/oder Alterung führen.In addition to the many advantages in terms of manufacturing technology and use, the current reinforcements, similar to fiber-reinforced plastics, have a coating or a bonding matrix in flat or rod-shaped form, which, however, is neither very temperature-resistant nor durable. The problem of the plastics used so far is that they are usually very susceptible to temperature, depending on the system used. From temperatures between 40 ° C and 120 ° C, the positive effect of the coating decreases. Softening significantly reduces their function. When proving a component for a fire, a temperature resistance of the coating of up to 600 ° C is usually required. Furthermore, a continuous loading of the plastics can lead to pronounced creep of the coating and thus to the unwanted, very significant increase in the deformation of the composite component. The durability given to plastics for a limited time can lead to embrittlement and / or aging, in particular due to the alkaline environment in the concrete.
Die zur Erhöhung der Ausnutzung der theoretischen Garnfestigkeit eingesetzten Polymerdispersionen lassen sich herstellungstechnologisch relativ günstig auf die Garnstrukturen auftragen und sind auch in der Lage, die Strukturen leichter zu infiltrieren. Durch Modifikation und Anpassung der Polymere können die Eigenschaften der beschichteten Bewehrungsstrukturen gezielt an die Erfordernisse des Handlings eingestellt werden. Dies betrifft beispielsweise die Verformbarkeit. Die Polymere werden meist in Form von Dispersionen über Beschichtungswalzen auf flächige textile Strukturen aufgetragen und mittels Infrarotstrahlung thermisch getrocknet und vernetzt. Stabförmige Faserbewehrungen werden durch Pultrudieren mit geeigneten Systemen aus thermoplastischen oder duroplastischen Harzen hergestellt. Ein solches Verfahren beschreibt beispielhaft die Druckschrift
Während die nach dem Stand der Technik genutzten Polymere eine gute Beschichtung auch von Rovings zulassen, ist dies bei alternativen Materialien, die sehr temperaturbeständig und dauerhaft sind und auch im alkalischen Milieu im Beton nicht zu einer Versprödungen oder Alterung, nicht der Fall. Hinsichtlich ihrer Eigenschaften im Beton gut geeignete Beschichtungsmaterialien sind beispielsweise wässrige Suspensionen mineralischer anorganischer Bindemittel.While the polymers used in the prior art allow a good coating of rovings, this is not the case for alternative materials that are very temperature resistant and durable and also in the alkaline environment in the concrete to embrittlement or aging. Suitable coating materials with regard to their properties in the concrete are, for example, aqueous suspensions of mineral inorganic binders.
Es wäre somit sinnvoll eine Methode zu entwickeln, mit der auf die polymere Kunststoffbeschichtung verzichtet werden kann und die Bindung der einzelnen Filamente durch temperaturbeständige Matrices, beispielsweise auf mineralischer Basis, erfolgt. Dies ist vor allem für die Sicherstellung des Hochtemperaturverhaltens (Feuerwiderstand) von hoher Bedeutung. Wenn dazu Multifilamentgarne in kompakter Form durch eine mineralische Bindemittelsuspension geführt werden, erfolgt aufgrund der Partikelgröße der Bindemittelbestandteile eine Infiltrierung nur im äußeren Bereich des Garns, so dass die inneren Filamente unbenetzt bleiben. Ein Lösungsversuch wird mit der Druckschrift
Ein technologisches Problem bei dem zuvor genannten Lösungsansatz besteht folglich darin, dass die unbeschichteten Faseroberflächen von Multifilamentgarnen (beispielsweise Carbon) sich nicht affin gegenüber den wässrigen Suspensionen mineralischer anorganischer Bindemittel verhalten. Die bekannten Lösungen zum Auftrag der polymeren Beschichtungen können daher insbesondere nicht ohne Anpassungen und/oder Erweiterungen der Technologie auf wässrige mineralische Beschichtungen und Matrixsysteme übertragen werden. Auf Grund der wenig affinen Eigenschaften der Multifilamentgarne gegenüber den Suspensionen wird eine nur unzureichende Umhüllung und/oder Einbettung in die mineralische Matrix erzielt. Durch den verminderten Verbund werden die Tragreserven der Faserstrukturen nur unzureichend ausgenutzt.A technological problem with the aforementioned approach is therefore that the uncoated fiber surfaces of multifilament yarns (eg carbon) are not affine towards the aqueous suspensions of mineral inorganic binders. The known solutions for application of the polymeric coatings can therefore not be transferred in particular to aqueous mineral coatings and matrix systems without adjustments and / or extensions of the technology. Due to the low affinity properties of the multifilament yarns compared to the suspensions, only an insufficient coating and / or embedding in the mineral matrix is achieved. Due to the reduced composite, the carrying reserves of the fiber structures are only insufficiently utilized.
Aufgabe der Erfindung ist es daher, die Benetzbarkeit von Multifilamentgarnen auf einfache und kostengünstige Weise zu verbessern, vor allem für wässrige mineralische Beschichtungen, damit auf die Faseroberfläche zusätzliche mineralische oder metallische Schichten aufgetragen werden können. Es soll eine Methode oder ein Verfahren zur Verfügung gestellt werden, womit die Faseroberfläche von Bewehrungsstrukturen affiner bzw. hydrophiler gegenüber wässrigen Suspensionen von mineralischen, anorganischen Bindemittelmatrices gestaltet werden kann. Weiterhin sollen eine textile Bewehrung mit verbesserter Benetzbarkeit und ein bewehrtes Bauteil angeboten werden.The object of the invention is therefore to improve the wettability of multifilament yarns in a simple and cost-effective manner, especially for aqueous mineral coatings, so that additional mineral or metallic layers can be applied to the fiber surface. A method or a method is to be made available with which the fiber surface of reinforcing structures can be designed affine or more hydrophilic compared to aqueous suspensions of mineral, inorganic binder matrices. Furthermore, a textile reinforcement with improved wettability and a reinforced component to be offered.
Die Aufgabe der Erfindung wird gelöst durch ein Verfahren gemäß Anspruch 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.The object of the invention is achieved by a method according to
Zwar sind plasmachemische bzw. plasmaphysikalische Prozesse an sich bekannt aus dem Stand der Technik:Although plasma-chemical or plasma-physical processes are known per se from the prior art:
Hier werden jedoch nur die Oberflächeneigenschaften mittels Plasma manipuliert mit dem Ziel einer besseren Benetzbarkeit der Filamente zum Kleben der Garne, was als Ersatz für die textiltechnische Bindung dienen soll.
Here, however, only the surface properties are manipulated by means of plasma with the aim of better wettability of the filaments for gluing the yarns, which is to serve as a replacement for the textile-technical binding.
Hierbei dient jedoch die Plasmabehandlung nur einer Modifikation des Herstellungsprozesses einer Faser. Durch eine Nachbehandlung mit Plasma sollen dabei die mechanischen Eigenschaften verbessert werden.
In this case, however, the plasma treatment only serves to modify the production process of a fiber. By aftertreatment with plasma while the mechanical properties are to be improved.
Überraschend zeigte sich nach der erfindungsgemäßen Anpassung und Anwendung derartiger Prozesse auf Garne, insbesondere Multifilamentgarne, für den Einsatz als textile Bewehrung, dass ein verbesserter Verbund der Fasern zur Beschichtung oder zur umgebenden (insbesondere mineralischen) Matrix durch eine Vorbehandlung der Fasern, die eine Modifizierung der Oberfläche zum Ergebnis hat, erreicht werden konnte. Der Ansatz der vorliegenden Erfindung besteht darin, an sich bekannte Methoden und Verfahren auf Basis plasmachemischer und -physikalischer Prozesse zur Verfügung zu stellen und derart zu modifizieren, so dass mit ihnen:
- die Faseroberfläche von Multifilamentgarnen affiner/hydrophiler gegenüber den wässrigen Suspensionen von mineralischen anorganischen Bindemittelmatrices gestaltet werden kann,
- auf der Faseroberfläche von Multifilamentgarnen zusätzliche mineralische Schichten (beispielsweise Keramik) zur Steigerung des Verbundes aufgetragen werden können,
- auf der Faseroberfläche von Multifilamentgarnen zusätzliche elektrisch leitfähige Schichten zur Kontaktierung aufgetragen werden können (beispielsweise für Heizgelege, Sensorik etc.).
- the fiber surface of multifilament yarns can be made more affine / hydrophilic than the aqueous suspensions of mineral inorganic binder matrices,
- on the fiber surface of multifilament yarns additional mineral layers (for example ceramic) can be applied to increase the bond,
- on the fiber surface of multifilament yarns additional electrically conductive layers can be applied for contacting (for example, for Heizgelege, sensors, etc.).
Durch die verbesserte Benetzbarkeit der Filamente oder das Auftragen mineralischer Schichten kann das Verbundverhalten bzw. der Lastabtrag von Bewehrungsstrukturen aus Multifilamentgarnen generell entscheidend gesteigert werden.Due to the improved wettability of the filaments or the application of mineral layers, the bonding behavior or the load transfer of reinforcement structures made of multifilament yarns can generally be decisively increased.
Einen vielversprechenden positiven Effekt im Hinblick auf die Steigerung des Verbundverhaltens zeigte sich bei der Plasmabehandlung von Carbongarnen zur Oberflächenmodifizierung (Hydrophilierung), welche nachfolgend in mineralischen Matrices eingebettet wurden. Für die technologische Umsetzung zeigte sich als besonders vorteilhaft, dass sich auf der Faseroberfläche und zwischen den Filamenten im Faserbündel leichter kristalline Strukturen herausbilden können.A promising positive effect with regard to increasing the bonding behavior was found in the plasma treatment of carbonic anhydrides for surface modification (hydrophilization), which were subsequently embedded in mineral matrices. For the technological implementation, it has proven to be particularly advantageous that light crystalline structures can be formed on the fiber surface and between the filaments in the fiber bundle.
Zur Verbesserung der Verbundeigenschaften können zusätzliche Maßnahmen, beispielweise durch Profilierung der Garne bzw. Strukturen ausgeführt werden. Diese können durch einen lokalen Auftrag mit Harzsystemen ausgeführt werden, welche sich wiederum problematisch in Bezug auf höhere Temperaturen und/oder Brandeinwirkung verhalten.To improve the composite properties, additional measures can be carried out, for example by profiling the yarns or structures. These can be carried out by a local application with resin systems, which in turn behave problematic in terms of higher temperatures and / or fire.
Die Aufgabe der Erfindung wird weiterhin gelöst durch einen plasmachemischen Prozess. Dabei wird eine gezielte Modifizierung der Faseroberfläche (beispielsweise Carbon, AR-Glas, Basalt) für einen nachfolgenden Auftrag mit einem weiteren Stoff, hier beispielsweise in Form einer wässrigen Suspension mit mineralischen Feinststoffen, ausgeführt. Im Rahmen der plasmabasierten Modifizierung erfolgt eine Wechselwirkung des Plasmas mit den Faseroberflächen bzw. mit der herstellungstechnologisch aufgebrachten Faserschlichte. In Abhängigkeit der gewählten Prozessparameter (Zusammensetzung der Prozessgase, Prozesszeit, Anregungsfrequenz und -leistung, Druck und Gasdurchsatz) kann durch die Interaktion Plasma - Oberfläche in Form von Änderung der Molekülstrukturen an der Oberfläche und der damit verbundenen Erhöhung des polaren Bindungsanteils die Oberflächenenergie gezielt eingestellt werden, was zu einer Verbesserung der Benetzungsfähigkeit bzw. Reaktionsfähigkeit mit dem Beschichtungs-/ Imprägnierungsmaterial führt.The object of the invention is further achieved by a plasma-chemical process. In this case, a specific modification of the fiber surface (for example, carbon, AR glass, basalt) for a subsequent order with a further substance, here for example in the form of an aqueous suspension with mineral fines carried out. In the context of the plasma-based modification, an interaction of the plasma with the fiber surfaces or with the production-technologically applied fiber size takes place. Depending on the selected process parameters (composition of the process gases, process time, excitation frequency and power, pressure and gas flow rate), the surface energy can be selectively adjusted by the interaction plasma surface in the form of changes of the molecular structures on the surface and the associated increase in the polar binding fraction , which leads to an improvement of wettability or reactivity with the coating / impregnation material.
Neben der erwähnten wässrigen mineralischen Suspension sind durch Anpassungen der Prozessbedingungen und der technologischen Randbedingungen auch andere Arten von Beschichtungs-/ Matrixmaterialien denkbar. Solche Randbedingungen sind vor allem Prozessparameter, wie Zusammensetzung der Prozessgase, Prozesszeit, Anregungsfrequenz und -leistung, Druck und Gasdurchsatz.In addition to the mentioned aqueous mineral suspension, other types of coating / matrix materials are conceivable by adapting the process conditions and the technological boundary conditions. Such boundary conditions are especially process parameters, such as composition of process gases, process time, excitation frequency and power, pressure and gas flow rate.
Der Ansatz zur Aktivierung der Faseroberflächen kann somit neben mineralisch basierten Systemen wie bewehrten Beton auch auf andere Matrixsysteme, wie beispielsweise Polymerdispersionen oder verschiedene Harzsysteme übertragen werden.The approach to the activation of fiber surfaces can thus be transferred to other matrix systems, such as polymer dispersions or various resin systems in addition to mineral-based systems such as reinforced concrete.
Weiterhin kann das Verbundverhalten der Bewehrungsstrukturen durch die Abscheidung von keramischen Lagen verbessert werden. Der Prozess des Schichtauftrags basiert auf plasmachemischen Prozessen (PECVD-Verfahren, englisch: plasma-enhanced chemical vapour deposition), bei denen ein dem keramischen Material entsprechender Präkursor, z.B. HMDSO (Hexamethyldisiloxan) oder TEOS (Tetraethylorthosilicat), zur Anwendung kommt. Der Auftrag kann abschnittsweise bzw. lokal begrenzt erfolgen (beispielsweise Knoten), so dass der Vorteil der Flexibilität der Bewehrungsstrukturen aus Multifilamentgarnen erhalten bleibt.Furthermore, the composite behavior of the reinforcement structures can be improved by the deposition of ceramic layers. The process of applying a layer is based on plasma-chemical processes (PECVD), in which a precursor corresponding to the ceramic material, e.g. HMDSO (hexamethyldisiloxane) or TEOS (tetraethyl orthosilicate) is used. The job can be done in sections or locally limited (for example, nodes), so that the advantage of flexibility of the reinforcement structures of multifilament yarns is maintained.
Elektrisch leitfähige Kontaktierungen von Carbonstrukturen (Heizgelegen) werden, soweit bekannt, bisher durch Aufpressen von metallischen Hülsen oder Bändern hergestellt. Durch den Auftrag von metallischen Schichten, der mittels PVD-Verfahren erfolgt, können elektrische leitende Garne (Carbon) dauerhaft kontaktiert werden. Das PVD- Verfahren basiert auf der Zerstäubung von leitendem Material, welches im Laufe des Beschichtungsprozesses auf der Garnstruktur kondensiert und somit dort abgeschieden wird. Als Zerstäubungsprozess kommt das Magnetronsputtern mit Argon als Arbeitsgas zum Einsatz.Electrically conductive contacts of carbon structures (Heizgelegen) are, so far known, previously produced by pressing metallic sleeves or bands. By applying metallic layers, which is done by means of PVD process, electrically conductive yarns (carbon) can be permanently contacted. The PVD process is based on the sputtering of conductive material, which is condensed on the yarn structure during the coating process and thus deposited there. The sputtering process is magnetron sputtering with argon as working gas.
Der Kern der Erfindung liegt vor allem in der Möglichkeit der Plasmatechnologie zur Modifikation der Oberflächeneigenschaften von Materialien, die an sich zwar seit mehreren Jahrzehnten bekannt ist. Die praktische und kommerzielle Anwendung für industrielle Problemlösungen ist mit der Zeit deutlich angestiegen. Die Anwendungsfelder sind dabei sehr verschieden. Neben der Oberflächenmodifikation zum Fügen verschiedener Materialien spielt auch die Oberflächenmodifikation (u. a. mittels Schichtauftrag) zur Verbesserung der Gebrauchseigenschaften eine große Rolle, beispielsweise Kratzschutz, Verspiegelung, Bedruckbarkeit, Barriereschutz etc. Demgegenüber ist der Einsatz der Plasmatechnologie zur Modifikation von Faseroberflächen in Multifilamentgarnen mit dem Ziel einer besseren Benetzbarkeit (Hydrophilierung) mit wässrigen mineralischen Suspensionen trotz der langen Bekanntheit der zugrundeliegenden Technologie nicht bekannt und stellt mit seinem überraschenden Effekt das Wesentliche der vorliegenden Erfindung dar.The essence of the invention lies above all in the possibility of plasma technology for modifying the surface properties of materials, which in itself has been known for several decades. The practical and commercial application for industrial problem solutions has increased significantly over time. The fields of application are very different. In addition to the surface modification for joining various materials, the surface modification (inter alia by means of layer application) also plays an important role in improving the performance characteristics, for example scratch protection, mirroring, printability, barrier protection, etc. In contrast, the use of plasma technology for the modification of fiber surfaces in multifilament yarns with the aim of better wettability (hydrophilization) with aqueous mineral suspensions despite the long knownness of the underlying technology is not known and represents the essence of the present invention with its surprising effect.
Das finale Ziel für den vorrangigen Anwendungszweck ist die Erhöhung der Verbundeigenschaften zwischen den einzelnen Filamenten und der mineralischen Matrix sowohl innerhalb der Garne als auch außerhalb zur umgebenden mineralischen Matrix in zementgebundenen Bauteilen. Anstelle der mineralischen Matrix sind auch andere Matrixsysteme denkbar.The ultimate goal for the primary application is to increase the bond properties between the individual filaments and the mineral matrix both within the yarns and outside of the surrounding mineral matrix in cementitious components. Instead of the mineral matrix, other matrix systems are also conceivable.
Eine weitere Neuheit besteht in dem Auftrag mineralischer Schichten (Keramik) mittels PECVD-Verfahren auf (Carbon-) Bewehrungsstrukturen. Die plasmaunterstützte chemische Gasphasenabscheidung (englisch plasma-enhanced chemical vapour deposition, PECVD; auch engl. plasma-assisted chemical vapour deposition, PACVD, genannt) ist eine Sonderform der chemischen Gasphasenabscheidung (CVD), bei der die chemische Abscheidung durch ein Plasma unterstützt wird. Das Plasma kann direkt beim zu beschichtenden Substrat (Direktplasma-Methode) oder in einer getrennten Kammer (Remote-Plasma-Methode) brennen.Another novelty is the order of mineral layers (ceramics) using PECVD processes on (carbon) reinforcement structures. Plasma-enhanced chemical vapor deposition (PECVD) is a special form of chemical vapor deposition (CVD) in which chemical deposition is assisted by a plasma. The plasma can burn directly on the substrate to be coated (direct plasma method) or in a separate chamber (remote plasma method).
Der Auftrag kann vollflächig oder graduell erfolgen. Der graduelle bzw. abschnittsweise Auftrag ermöglicht eine dosierte Einleitung der Verbundkräfte, um das Last-Verformungsverhalten und Versagensverhalten des Materials den jeweiligen Anforderungen entsprechend zu steuern.The order can be made over the entire surface or gradually. The gradual or sectional application allows a metered introduction of the composite forces in order to control the load-deformation behavior and failure behavior of the material according to the respective requirements.
Ebenso können Endverankerungen von vorgespannten Bewehrungsstrukturen (beispielsweise Carbon, AR-Glas, Basalt) durch den Auftrag von keramischen Schichten hergestellt werden. Bei Carbon haben diese den zusätzlichen Vorteil, dass die Querdruckempfindlichkeit zum Fassen der Bewehrungen reduziert wird.Similarly, end anchorages of prestressed reinforcement structures (for example carbon, AR glass, basalt) can be produced by the application of ceramic layers. In carbon, these have the additional advantage of reducing the transverse pressure sensitivity for gripping the reinforcements.
Die elektrische Kontaktierung von Carbon durch Auftragen von Metallen ermöglicht eine widerstandsarme und dauerhafte Verbindung.The electrical contacting of carbon by applying metals allows a low-resistance and durable connection.
Die Aufgabe der Erfindung wird auch gelöst durch eine textile Bewehrung gemäß Anspruch 8 und ein derart bewehrtes Bauteil gemäß Anspruch 13.The object of the invention is also achieved by a textile reinforcement according to claim 8 and such a reinforced component according to claim 13.
Wesentliche Vorteile sind beispielsweise:
- bessere Benetzbarkeit der Filamentoberflächen von Multifilamentgarnen mit wässrigen mineralischen Suspensionen (Hydrophilierung);
- keine chemische Behandlung zur Aktivierung der Faseroberflächen erforderlich;
- Anwendbarkeit in einem großtechnischen Herstellungsprozess;
- eine zusätzliche Kunststoffbeschichtung zwischen Beton und Garnen oder Filamenten ist nicht notwendig;
- die Bewehrungsstrukturen sind damit temperaturbeständiger und dauerhafter als bisherige Lösungen;
- durch vollständiges oder graduelles Auftragen keramischer Schichten kann das Verbundverhalten gesteuert werden;
- eine gradueller Schichtauftrag ermöglicht den Erhalt der Flexibilität der Bewehrung beim Handling;
- durch Abscheidung metallischer Schichten können Carbonstrukturen leitfähig kontaktiert werden (beispielsweise Heizmatten);
- die Bewehrungsstrukturen besitzen einen hervorragenden Verbund zum später umgebenden Beton (chemisch kompatible Matrices von Bewehrung und Beton).
- better wettability of the filament surfaces of multifilament yarns with aqueous mineral suspensions (hydrophilization);
- no chemical treatment required to activate fiber surfaces;
- Applicability in a large-scale manufacturing process;
- an additional plastic coating between concrete and yarns or filaments is not necessary;
- The reinforcement structures are thus more temperature-resistant and more durable than previous solutions;
- By complete or gradual application of ceramic layers, the bonding behavior can be controlled;
- a gradual layer application allows maintaining the flexibility of the reinforcement during handling;
- by depositing metallic layers, carbon structures can be conductively contacted (for example, heating mats);
- the reinforcing structures have an excellent bond to the surrounding concrete (chemically compatible matrices of reinforcement and concrete).
Durch die verbesserte Benetzbarkeit der einzelnen Filamente werden das Verbundverhalten bzw. der Lastabtrag der finalen Bewehrungsstruktur entscheidend gesteigert. Hierdurch ist eine hohe Ausnutzung der Tragreserven der Garnstrukturen bei der Einbettung in mineralischen Matrixsystemen insbesondere im Hinblick auf das Verhalten von Verbundbauteilen (z. B. aus Textilbeton) bei erhöhten Temperaturen (einschließlich Brandbeanspruchung) erreichbar. Als Bewehrungsstrukturen sind sowohl Stäbe als auch gitterförmigen Strukturen vorgesehen.Due to the improved wettability of the individual filaments, the bonding behavior and the load transfer of the final reinforcement structure are significantly increased. This makes it possible to achieve a high utilization of the load-bearing reserves of the yarn structures when embedded in mineral matrix systems, in particular with regard to the behavior of composite components (eg of textile-reinforced concrete) at elevated temperatures (including fire stress). As reinforcing structures, both bars and lattice-shaped structures are provided.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezugnahme auf die zugehörigen Zeichnungen.Further details, features and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the accompanying drawings.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015116222 | 2015-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3147393A1 true EP3147393A1 (en) | 2017-03-29 |
EP3147393B1 EP3147393B1 (en) | 2022-02-09 |
Family
ID=57137819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16190540.1A Active EP3147393B1 (en) | 2015-09-25 | 2016-09-26 | Textile reinforcement using yarn and method for preparing a yarn |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3147393B1 (en) |
DK (1) | DK3147393T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019133755A1 (en) * | 2019-12-10 | 2021-06-10 | Technische Universität Chemnitz | Method and device for the production of a fiber- and / or textile-reinforced, mineral component |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0062491A2 (en) * | 1981-04-04 | 1982-10-13 | National Research Development Corporation | Polymers in matrix reinforcement |
US4728387A (en) | 1986-12-15 | 1988-03-01 | General Electric Company | Resin impregnation of fiber structures |
US6060163A (en) * | 1996-09-05 | 2000-05-09 | The Regents Of The University Of Michigan | Optimized geometries of fiber reinforcement of cement, ceramic and polymeric based composites |
US6174595B1 (en) | 1998-02-13 | 2001-01-16 | James F. Sanders | Composites under self-compression |
US20090305038A1 (en) * | 2005-11-10 | 2009-12-10 | Saint-Gobain Materiaux De Construction S.A.S | Method for functionalising a polymer fibre surface area |
US20150038618A1 (en) * | 2012-02-29 | 2015-02-05 | Daiwabo Holdings Co., Ltd. | Fiber for reinforcing cement, and cured cement produced using same |
DE102014102861A1 (en) * | 2014-03-04 | 2015-09-10 | Technische Universität Dresden | Reinforcement grid for concrete construction, high-performance filament yarn for concrete construction and process for its production |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372192B1 (en) * | 2000-01-28 | 2002-04-16 | Ut-Battelle, Inc. | Carbon fiber manufacturing via plasma technology |
US8227051B1 (en) * | 2004-06-24 | 2012-07-24 | UT-Battle, LLC | Apparatus and method for carbon fiber surface treatment |
FR2899224B1 (en) * | 2006-03-31 | 2009-12-04 | Saint Gobain Vetrotex | METHOD FOR FUNCTIONALIZATION OF A GLAZED REINFORCEMENT FOR COMPOSITE MATERIAL |
JP2009197143A (en) * | 2008-02-21 | 2009-09-03 | Honda Motor Co Ltd | Method for producing carbon fiber-reinforced composite material |
EP2975175A4 (en) * | 2013-03-12 | 2016-09-07 | Kurashiki Boseki Kk | Fibers for use in fiber-reinforced resin, and production method thereof |
-
2016
- 2016-09-26 DK DK16190540.1T patent/DK3147393T3/en active
- 2016-09-26 EP EP16190540.1A patent/EP3147393B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0062491A2 (en) * | 1981-04-04 | 1982-10-13 | National Research Development Corporation | Polymers in matrix reinforcement |
US4728387A (en) | 1986-12-15 | 1988-03-01 | General Electric Company | Resin impregnation of fiber structures |
US6060163A (en) * | 1996-09-05 | 2000-05-09 | The Regents Of The University Of Michigan | Optimized geometries of fiber reinforcement of cement, ceramic and polymeric based composites |
US6174595B1 (en) | 1998-02-13 | 2001-01-16 | James F. Sanders | Composites under self-compression |
US20090305038A1 (en) * | 2005-11-10 | 2009-12-10 | Saint-Gobain Materiaux De Construction S.A.S | Method for functionalising a polymer fibre surface area |
US20150038618A1 (en) * | 2012-02-29 | 2015-02-05 | Daiwabo Holdings Co., Ltd. | Fiber for reinforcing cement, and cured cement produced using same |
DE102014102861A1 (en) * | 2014-03-04 | 2015-09-10 | Technische Universität Dresden | Reinforcement grid for concrete construction, high-performance filament yarn for concrete construction and process for its production |
Non-Patent Citations (2)
Title |
---|
KÄPPLER, IRIS; HUND, ROLF-DIETER; CHERIF, CHOKRI: "Surface modification of carbon fibres using plasma technique", AUTEX RESEARCH JOURNAL, vol. 14, March 2014 (2014-03-01), pages 34 - 38 |
LEE, SEUNG-WOOK; LEE, HWA-YOUNG; JANG, SUNG-YEON; JO, SEONG-MU; LEE HUN-SOO; LE, SUNGHO: "Tensile Properties and Morphology of Carbon Fibers Stabilized by Plasma Treatment.", CARBON LETTERS, vol. 12, no. 1, March 2011 (2011-03-01), pages 16 - 20 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019133755A1 (en) * | 2019-12-10 | 2021-06-10 | Technische Universität Chemnitz | Method and device for the production of a fiber- and / or textile-reinforced, mineral component |
Also Published As
Publication number | Publication date |
---|---|
DK3147393T3 (en) | 2022-05-16 |
EP3147393B1 (en) | 2022-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2427309B1 (en) | Method and device for producing a thread made of a plurality of individual filaments | |
EP3245349B1 (en) | Reinforcing bar of filament composite and method for producing same | |
WO2015018598A2 (en) | Method for producing a composite molded part, composite molded part, sandwich component, rotor blade element, and wind turbine | |
EP0000734A1 (en) | Method for making rods or tubes having a constant profile of fibre reinforced material | |
EP3147393B1 (en) | Textile reinforcement using yarn and method for preparing a yarn | |
DE102018113587B4 (en) | Fiber profiles for use as reinforcement in concrete battens for high fire protection requirements and processes for their production | |
DE102015119700A1 (en) | Process for conditioning the surfaces of pultruded and / or otherwise combined by resins or adhesive carbon fibers into carbon fiber profiles or carbon fiber surfaces and arrangement for carrying out the method | |
EP2870304B1 (en) | Fibre-reinforced mineral building material | |
DE102015207815A1 (en) | Carbon fiber-metal composite material | |
EP3162546B1 (en) | Traction element made from fibre-reinforced plastic and method | |
WO2019110281A1 (en) | Connection element for a fibre-reinforced plastic component | |
DE102011055285B3 (en) | Method for manufacturing winding product e.g. wall of combustion chamber of rocket engine, on winding core, involves forming initial winding angle for second and third winding layers smaller than that of first and second winding layers | |
WO2008098838A1 (en) | Method for producing a fiber-reinforced carbide ceramic component and a carbide ceramic component | |
US10207427B2 (en) | Carbon fiber reinforcements for sheet molding composites | |
DE102010010876A1 (en) | Loose mold core for manufacturing of components of polymer fiber-reinforced composites, is provided partly, particularly locally or in layer, with fiber reinforcement or textile reinforcement | |
EP3568288A1 (en) | Strand profile and method for producing a strand profile | |
DE102019103434A1 (en) | Reinforcement device for a concrete structure and method for its production | |
DE102015122621A1 (en) | Method for adjusting the elasticity of a material and workpiece produced by this method | |
WO2013120644A1 (en) | Fibre composite material containing filaments and production method | |
EP2716436B1 (en) | Carbon composite component | |
DE10232142A1 (en) | Process for the manufacture of textile-reinforced concrete coverings | |
DE102010008633A1 (en) | Production method of a rigid body | |
DE102008011319B4 (en) | Installation set with a valve operating linkage and a coupling sleeve | |
DE102006057853B3 (en) | bending roller | |
DE10007543B4 (en) | Process for coating a multi-filament fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170907 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LEIBNIZ-INSTITUT FUER PLASMAFORSCHUNG UND TECHNOLO Owner name: TECHNISCHE UNIVERSITAET |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181024 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210927 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LEIBNIZ-INSTITUT FUER PLASMAFORSCHUNG UND TECHNOLOGIE E.V. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1467561 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016014488 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502016014488 Country of ref document: DE Representative=s name: SCHULZ JUNGHANS PATENTANWAELTE PARTGMBB, DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220509 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20220209 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20220922 Year of fee payment: 7 Ref country code: NO Payment date: 20220921 Year of fee payment: 7 Ref country code: NL Payment date: 20220922 Year of fee payment: 7 Ref country code: IE Payment date: 20220919 Year of fee payment: 7 Ref country code: GB Payment date: 20220927 Year of fee payment: 7 Ref country code: FI Payment date: 20220919 Year of fee payment: 7 Ref country code: DK Payment date: 20220926 Year of fee payment: 7 Ref country code: DE Payment date: 20220920 Year of fee payment: 7 Ref country code: AT Payment date: 20220919 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016014488 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220920 Year of fee payment: 7 Ref country code: BE Payment date: 20220921 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221110 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220930 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20220928 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220926 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160926 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502016014488 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20231001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1467561 Country of ref document: AT Kind code of ref document: T Effective date: 20230926 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231001 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240403 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230927 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 |