EP3145275B1 - Induction heating coil - Google Patents

Induction heating coil Download PDF

Info

Publication number
EP3145275B1
EP3145275B1 EP15185774.5A EP15185774A EP3145275B1 EP 3145275 B1 EP3145275 B1 EP 3145275B1 EP 15185774 A EP15185774 A EP 15185774A EP 3145275 B1 EP3145275 B1 EP 3145275B1
Authority
EP
European Patent Office
Prior art keywords
coil
induction heating
heating coil
winding
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15185774.5A
Other languages
German (de)
French (fr)
Other versions
EP3145275A1 (en
Inventor
Chris VOLKMAR
Ubbo Ricklefs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Hochschule Mittelhessen
Original Assignee
Technische Hochschule Mittelhessen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Hochschule Mittelhessen filed Critical Technische Hochschule Mittelhessen
Priority to EP15185774.5A priority Critical patent/EP3145275B1/en
Publication of EP3145275A1 publication Critical patent/EP3145275A1/en
Application granted granted Critical
Publication of EP3145275B1 publication Critical patent/EP3145275B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters

Definitions

  • the present invention relates to a radio frequency ion thruster (RIT) having an improved induction heating coil for heating low temperature plasmas.
  • RIT radio frequency ion thruster
  • electromagnetic coils are windings and winding goods that are suitable for generating or detecting a magnetic field. They are often part of an electrical component or device, such as a transformer, relay, electric motor or loudspeaker.
  • An important field of application for coils is the area of inductive heating of electrically conductive materials.
  • Coils usually comprise at least one winding of an electrical conductor. This consists, for example, of wire, enamelled copper wire, silver-plated copper wire or high-frequency stranded wire. Coils are often wound on a bobbin (bobbin).
  • the bobbin can be either solid or hollow. Hollow bobbins may include a core of a different material (e.g., a soft magnetic material).
  • the winding arrangement and shape, the wire diameter, the winding and core material determine the value of the inductance and other (quality) properties of the coil.
  • the working principle of coils is based on the fact that when alternating current flows through them, a magnetic field is created inside them B builds up. This causes an electric field E, which accelerates the charge carriers inside the coil.
  • This field essentially comprises the two components E ⁇ and E z if the coil is a cylindrical coil.
  • the first component E ⁇ causes the charge carriers to be accelerated on a circular path perpendicular to the main axis of the coil.
  • the main axis of the coil is also referred to as the z-axis.
  • the plane of this perpendicular to the main axis of the coil is also referred to as being in the azimuthal plane.
  • the second component E z causes the charge carriers to accelerate along the main axis of the coil.
  • the electrical properties of coils are largely determined by the way the electrical conductor they are made of is wound. What is important here is the resulting geometric structure consisting of one or more windings or layers. This structure is also referred to as a winding.
  • the mirrored ladder element is offset by the gradient compared to the ladder element under consideration.
  • the gradient leads to a small E-field in the direction of the z-axis inside the coil. Outside the coil, on the other hand, the E-field in the direction of the z-axis is considerably larger.
  • Coils used as induction heating coils usually have only a few turns and are considered to be short. This means that charge carriers inside the coil usually have a non-negligible acceleration in find out the z-direction. If the material to be heated inside the coil consists of condensed matter, ie it is present as a solid or liquid, the acceleration along the z-axis is irrelevant since the charge carriers of these materials cannot leave the coil.
  • charge carriers can leave the induction heating coil and thus get lost in the heating process.
  • the inner coil in particular generates a strong E-field in the direction of the z-axis.
  • the E field vanishes in the direction of the z-axis. Therefore the outer coil has only a small influence on the resulting E-field along the z-axis.
  • the z-component of the E-field caused by the slope of the outer coil is negligible compared to the z-component of the E-field caused by the inner coil in the gap. This reduces the efficiency of a heating process. So far, the influence of the charge carriers escaping along the main axis of the coil and thus not contributing to the heating has been reduced by increasing the electromagnetic energy fed in solved. However, this solution is energy-intensive and reduces the efficiency of the induction heating coil.
  • the object of the invention is to provide a radio-frequency ion thruster (RIT) with an improved induction heating coil for inductive heating, which has a reduced acceleration of the charge carriers located in it along the z-axis.
  • RIT radio-frequency ion thruster
  • the induction heating coil of the radio frequency ion thruster (RIT) has a first inner winding W 1 and at least one further outer winding W 2 .
  • the inner winding W 1 has a radius r 1 and the outer winding W 2 has a radius r 2 ( 3 ). r 1 is smaller than r 2 .
  • the inner winding W 1 lies within the outer winding W 2 .
  • the windings W 1 and W 2 are connected at a point 100 at one end of the coil, so that at this point 100 a current flow i through the coil changes its axial direction to the z-direction.
  • the z-components of the electrical fields of the first winding W 1 and the second winding W 2 are superimposed in opposite directions, so that the charge carriers inside the coil have a reduced acceleration along the z-axis.
  • the radii r 1 and r 2 of the windings W 1 and W 2 are preferably 10 mm to 100 mm.
  • the length of the induction heating coil is preferably between 10 mm and 100 mm.
  • the number of turns N of the windings W 1 and W 2 of the induction heating coil is preferably 3 to 20, particularly preferably 5 to 10. Coils with a smaller number of turns have a larger z-component of the resulting electric field. With a larger number of turns, the efficiency of the induction heating coil decreases due to the greater electrical resistance.
  • its induction heating coil w has a rectangular, round or ellipsoidal shape. This allows the coil to be adapted to the bobbin. Furthermore, such a regular shape of the coil leads to a more homogeneous field inside the coil.
  • One use of the induction heating coil of the radio-frequency ion thruster (RIT) according to the invention is inductively or inductively-capacitively excited ion or electron sources. Here it serves to couple in electromagnetic energy.
  • a gas e.g. xenon
  • electrons to be excited at high frequency are located within an insulated vessel, the discharge vessel.
  • an induction heating coil for feeding a to
  • Plasma excitation necessary high-frequency energy wound.
  • the flow of current in the coil results in a magnetic field which, in the sense of electromagnetic induction, creates an electric field that accelerates electrons inside the coil. These electrons now collide with the gas atoms or gas molecules in the discharge vessel and ionize them.
  • the inductively coupled plasma is heated more efficiently since proportionally more field energy is induced in the azimuthal plane and is not lost to acceleration along the z-axis.
  • a plasma to be excited at high frequency is located within an insulated vessel, the so-called discharge vessel.
  • An induction heating coil often also referred to as a coupling coil, is wound around the discharge vessel for feeding in the energy required for plasma excitation.
  • the plasma is therefore inside the coil. If an ion engine comprises the induction coil of the present invention, it is more efficient since almost all of the electrons in the plasma discharge contribute to its maintenance by being prevented from leaving the heated areas.
  • the structure of the induction heating coil of the radio frequency ion thruster (RIT) according to the invention results in the axially induced fields in the z-direction almost canceling out due to the symmetry, since the same current flows in both the positive and negative z-directions. This means that the component E z of the resulting electric field is attenuated. Since the current flows through both windings of the induction heating coil in parallel, the resulting field components E ⁇ are simultaneously superimposed and thus amplified. In addition, due to the increasing coil inductance L, a lower current I is required to provide the magnetic field. This favors the thermal behavior of the coil, since smaller currents lead to less ohmic power loss.
  • the radius of the outer winding W 2 is greater than the radius of the inner winding W 1 , so the magnitude of the field induced by W 2 is somewhat smaller than that induced by W 1 . Nevertheless, the component E z of the resulting electric field is negligibly small.
  • radio frequency ion thruster (RIT) according to the invention is described below as an example.
  • the comparative values of the electrical parameters and the performance data are here figure 5 refer to.
  • the difference between the unmodified and modified engine with regard to the required coil power P s is 1.5 W with a total power P s of 15.23 W.
  • the engine, which includes the induction heating coil according to the invention, is therefore approximately 10% more efficient.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Induction Heating (AREA)
  • Plasma Technology (AREA)

Description

Die vorliegende Erfindung betrifft ein Radiofrequenz-Ionentriebwerk (RIT) mit einer verbesserten Induktionsheizspule, zum Heizen von Niedertemperaturplasmen.The present invention relates to a radio frequency ion thruster (RIT) having an improved induction heating coil for heating low temperature plasmas.

Stand der TechnikState of the art

Elektromagnetische Spulen sind in der Elektrotechnik Wicklungen und Wickelgüter, die geeignet sind, ein Magnetfeld zu erzeugen oder zu detektieren. Sie sind dabei oftmals Teil eines elektrischen Bauelementes oder Gerätes, wie beispielsweise eines Transformators, Relais, Elektromotors oder Lautsprechers. Ein wichtiges Anwendungsfeld von Spulen ist der Bereich des induktiven Heizens von elektrisch leitfähigen Materialien. Spulen umfassen üblicherweise mindestens eine Wicklung eines Stromleiters. Dieser besteht beispielsweise aus Draht, Kupferlackdraht, versilbertem Kupferdraht oder Hochfrequenzlitze. Spulen sind oftmals auf einen Spulenkörper (Spulenträger) gewickelt. Der Spulenkörper kann entweder massiv oder hohl sein. Hohle Spulenkörper können einen Kern aus einem anderen Material (z.B. aus einem weichmagnetischen Material) umfassen. Die Windungsanordnung und -form, der Drahtdurchmesser, das Wickel- und das Kernmaterial legen den Wert der Induktivität und weitere (Güte-)Eigenschaften der Spule fest.In electrical engineering, electromagnetic coils are windings and winding goods that are suitable for generating or detecting a magnetic field. They are often part of an electrical component or device, such as a transformer, relay, electric motor or loudspeaker. An important field of application for coils is the area of inductive heating of electrically conductive materials. Coils usually comprise at least one winding of an electrical conductor. This consists, for example, of wire, enamelled copper wire, silver-plated copper wire or high-frequency stranded wire. Coils are often wound on a bobbin (bobbin). The bobbin can be either solid or hollow. Hollow bobbins may include a core of a different material (e.g., a soft magnetic material). The winding arrangement and shape, the wire diameter, the winding and core material determine the value of the inductance and other (quality) properties of the coil.

Das Wirkprinzip von Spulen basiert darauf, dass wenn diese vom elektrischen Wechselstrom durchflossen werden, sich in ihrem Inneren ein magnetisches Feld B aufbaut. Dieses bewirkt ein elektrisches Feld E, welches eine Beschleunigung der Ladungsträger im Spuleninneren bewirkt. Dieses Feld umfasst im Wesentlichen die zwei Komponenten Eϕ und Ez, wenn es sich bei der Spule um eine Zylinderspule handelt. Die erste Komponente Eϕ bewirkt, dass die Ladungsträger auf einer Kreisbahn senkrecht zur Spulenhauptachse beschleunigt werden. Die Spulenhauptachse wird auch als z-Achse bezeichnet. Die Ebene dieser senkrecht zur Spulenhauptachse wird dabei auch als in der Azimutalebene bezeichnet. Die zweite Komponente Ez bewirkt eine Beschleunigung der Ladungsträger entlang der Spulenhauptachse.The working principle of coils is based on the fact that when alternating current flows through them, a magnetic field is created inside them B builds up. This causes an electric field E, which accelerates the charge carriers inside the coil. This field essentially comprises the two components E ϕ and E z if the coil is a cylindrical coil. The first component E ϕ causes the charge carriers to be accelerated on a circular path perpendicular to the main axis of the coil. The main axis of the coil is also referred to as the z-axis. The plane of this perpendicular to the main axis of the coil is also referred to as being in the azimuthal plane. The second component E z causes the charge carriers to accelerate along the main axis of the coil.

Die elektrischen Eigenschaften von Spulen werden stark durch die Art und Weise bestimmt, wie der elektrische Leiter aus dem sie bestehen aufgewickelt ist. Wichtig ist hierbei die dabei entstehende geometrische Struktur aus einer oder mehreren Windungen oder Lagen. Diese Struktur wird auch als Wicklung bezeichnet.The electrical properties of coils are largely determined by the way the electrical conductor they are made of is wound. What is important here is the resulting geometric structure consisting of one or more windings or layers. This structure is also referred to as a winding.

In langen Spulen (Fig.1), deren Länge I üblicherweise mindestens um einen Faktor 10 größer ist als ihr Durchmesser, verlaufen die Feldlinien des Magnetfeldes der Spule im Wesentlichen parallel. Daraus folgt, dass das aus dem Magnetfeld resultierende elektrische Feld, im Wesentlichen nur eine Komponente Eϕ umfasst. Die Komponente Ez und damit die Beschleunigung entlang der Spulenhauptachse kann dadurch vernachlässig werden. Daraus folgt, dass die Ladungsträger auf einer festen Kreisbahn beschleunigt werden und sich nicht in einer schraubenförmigen Bewegung in Richtung Spulenende bewegen.In long coils ( Fig.1 ), whose length I is usually at least a factor of 10 greater than its diameter, the field lines of the magnetic field of the coil run essentially parallel. From this it follows that the electric field resulting from the magnetic field essentially comprises only one component E ϕ . The component E z and thus the acceleration along the main axis of the coil can thus be neglected. It follows that the charge carriers are accelerated on a fixed circular path and do not move in a helical motion towards the end of the coil.

In vielen Anwendungsfällen gilt diese Idealisierung nicht. In diesen Fällen kann die Komponente Ez des elektrischen Feldes nicht vernachlässig werden. Dies gilt insbesondere für kurze Spulen, deren Länge nicht wesentlich größer ist als ihr Durchmesser. Diese umfassen oftmals nur wenige Windungen. In diesen Fällen erfahren Ladungsträger im Inneren der Spule auch eine Beschleunigung entlang der z-Achse. (Fig. 3) Verursacht wird das E-Feld in Richtung der z-Achse durch die spiralförmige Wicklung der Spule. Die Stromrichtung in der Wicklung bekommt durch die Spulensteigung auch eine z-Komponente. Betrachtet man nur diese z-Komponente und fasst man für diese Stromrichtung in z-Richtung die Spule als Hohlrohr auf, das über den Umfang gleichmäßig bestromt wird, dann wird das B-Feld senkrecht zur Stromrichtung im Inneren dieses Rohres zu null, wohingegen es außen mit dem Abstand r gemäß 1/r schnell abfällt. Bei einem oszillierenden Strom würde das E-Feld in z-Richtung senkrecht zu diesem B-Feld entstehen. Da das B-Feld aber null ist, würde auch das E-Feld in z-Richtung zu null. Die Abweichung von diesem Idealfall entsteht dadurch, dass zu einem Leiterelement auf der einen Seite der Spule gespiegelt an der z-Achse kein Leiterelement auf der anderen Seite der z-Achse gegenübersteht. Das gespiegelte Leiterelement ist durch die Steigung versetzt gegen das betrachtete Leiterelement. Die Steigung führt damit im Inneren der Spule zu einem kleinen E-Feld in Richtung der z-Achse. Außerhalb der Spule ist das E-Feld in Richtung der z-Achse dagegen erheblich größer.In many applications, this idealization does not apply. In these cases, the electric field component E z cannot be neglected. this applies especially for short coils whose length is not significantly greater than their diameter. These often include only a few turns. In these cases, charge carriers inside the coil also experience acceleration along the z-axis. ( 3 ) The E-field in the direction of the z-axis is caused by the spiral winding of the coil. The current direction in the winding also has a z-component due to the coil gradient. If one only considers this z-component and if one considers the coil as a hollow tube for this current direction in the z-direction, which is evenly energized over the circumference, then the B field perpendicular to the current direction inside this tube becomes zero, whereas it is outside decreases rapidly with the distance r according to 1/r. With an oscillating current, the E field would arise in the z direction perpendicular to this B field. However, since the B field is zero, the E field in the z direction would also be zero. The deviation from this ideal case arises from the fact that a conductor element on one side of the coil is mirrored on the z-axis and there is no conductor element on the other side of the z-axis. The mirrored ladder element is offset by the gradient compared to the ladder element under consideration. The gradient leads to a small E-field in the direction of the z-axis inside the coil. Outside the coil, on the other hand, the E-field in the direction of the z-axis is considerably larger.

Spulen, die als Induktionsheizspulen dienen, umfassen üblicherweise nur wenige Wicklungen und sind als kurz anzusehen. Das bedeutet, dass Ladungsträger im Spuleninneren üblicherweise eine nicht zu vernachlässigende Beschleunigung in z-Richtung erfahren. Besteht das zu erhitzende Material im Spuleninneren aus kondensierter Materie d.h. es liegt als Feststoff oder Flüssigkeit vor, ist die Beschleunigung entlang der z-Achse irrelevant, da die Ladungsträger dieser Materialien die Spule nicht verlassen können.Coils used as induction heating coils usually have only a few turns and are considered to be short. This means that charge carriers inside the coil usually have a non-negligible acceleration in find out the z-direction. If the material to be heated inside the coil consists of condensed matter, ie it is present as a solid or liquid, the acceleration along the z-axis is irrelevant since the charge carriers of these materials cannot leave the coil.

Dies ist nicht der Fall, wenn Plasmen, insbesondere auch Niedertemperaturplasmen induktiv erzeugt und erhitzt werden. Hier sind die Ladungsträger frei beweglich. Dies ist beispielsweise bei Radiofrequenz-Ionentriebwerken (RIT) der Fall.This is not the case when plasmas, especially low-temperature plasmas, are generated and heated inductively. Here the charge carriers can move freely. This is the case, for example, with radio frequency ion thrusters (RIT).

Hier können die Ladungsträger die Induktionsheizspule verlassen und damit dem Heizprozess verloren gehen.Here the charge carriers can leave the induction heating coil and thus get lost in the heating process.

Beispielsweise ist in der EP 1 662 848 A2 eine Spule mit mehreren Wicklungen gezeigt, wobei zwischen den Wicklungen ein Spalt gebildet ist, in dem sich die elektrischen Felder der einzelnen Wicklungen so überlagern, dass die Ladungsträger in diesem Spalt beschleunigt werden. Da das Plasma bei dieser Anordnung für die innere Spule in deren Außenbereich erzeugt wird, erzeugt insbesondere die innere Spule ein kräftiges E-Feld in Richtung der z-Achse. Im Inneren einer idealen Spule verschwindet das E-Feld in Richtung der z-Achse. Deshalb hat die äußere Spule nur einen geringen Einfluss auf das resultierende E-Feld entlang der z-Achse. Die z-Komponente des E-Feldes, das von der äußeren Spule durch dessen Steigung verursacht wird, ist vernachlässigbar gegen die z-Komponente des E-Feldes, das von der inneren Spule im Spalt verursacht wird. Dadurch sinkt der Wirkungsgrad eines Heizprozesses. Bislang wird der Einfluss der entlang der Spulenhauptachse entweichenden und damit nicht zur Heizung beitragenden Ladungsträger durch eine Erhöhung der eingespeisten elektromagnetischen Energie gelöst. Diese Lösung ist aber energieaufwändig und senkt die Effizienz der Induktionsheizspule.For example, in the EP 1 662 848 A2 a coil with several windings is shown, with a gap being formed between the windings, in which the electric fields of the individual windings are superimposed in such a way that the charge carriers are accelerated in this gap. Since the plasma is generated in the outer area of the inner coil in this arrangement, the inner coil in particular generates a strong E-field in the direction of the z-axis. Inside an ideal coil, the E field vanishes in the direction of the z-axis. Therefore the outer coil has only a small influence on the resulting E-field along the z-axis. The z-component of the E-field caused by the slope of the outer coil is negligible compared to the z-component of the E-field caused by the inner coil in the gap. This reduces the efficiency of a heating process. So far, the influence of the charge carriers escaping along the main axis of the coil and thus not contributing to the heating has been reduced by increasing the electromagnetic energy fed in solved. However, this solution is energy-intensive and reduces the efficiency of the induction heating coil.

Aufgabetask

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, ein Radiofrequenz-lonentriebwerk (RIT) mit einer verbesserten Induktionsheizspule zum induktiven Heizen bereitzustellen, welche eine verringerte Beschleunigung der in ihr befindlichen Ladungsträger entlang der z-Achse aufweist.Proceeding from this, the object of the invention is to provide a radio-frequency ion thruster (RIT) with an improved induction heating coil for inductive heating, which has a reduced acceleration of the charge carriers located in it along the z-axis.

Lösung der Aufgabesolution of the task

Gelöst wird diese Aufgabe durch eine Vorrichtung mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungsformen und Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen.This object is achieved by a device having the features of claim 1. Advantageous embodiments and developments of the present invention result from the dependent claims.

Die Induktionsheizspule des erfindungsgemäßen Radiofrequenz-Ionentriebwerks (RIT) weist eine erste innere Wicklung W1 und wenigstens eine weitere äußere Wicklung W2 auf. Dabei weist die innere Wicklung W1 einen Radius r1 und die äußeren Wicklung W2, einen Radius r2 auf (Fig. 3). r1 ist dabei kleiner als r2. Weiterhin liegt die innere Wicklung W1 innerhalb der äußeren Wicklung W2. Die Wicklungen W1 und W2 sind an einer Stelle 100 an einem Ende der Spule verbunden, sodass an dieser Stelle 100 ein Stromfluss i durch die Spule seine axiale Richtung in z-Richtung wechselt. Im Spuleninneren überlagern sich die z-Komponenten der elektrischen Felder der ersten Wicklung W1 und der zweiten Wicklung W2 gegenläufig, so dass die Ladungsträger im Spuleninneren eine verringerte Beschleunigung entlang der z-Achse aufweisen.The induction heating coil of the radio frequency ion thruster (RIT) according to the invention has a first inner winding W 1 and at least one further outer winding W 2 . The inner winding W 1 has a radius r 1 and the outer winding W 2 has a radius r 2 ( 3 ). r 1 is smaller than r 2 . Furthermore, the inner winding W 1 lies within the outer winding W 2 . The windings W 1 and W 2 are connected at a point 100 at one end of the coil, so that at this point 100 a current flow i through the coil changes its axial direction to the z-direction. Inside the coil, the z-components of the electrical fields of the first winding W 1 and the second winding W 2 are superimposed in opposite directions, so that the charge carriers inside the coil have a reduced acceleration along the z-axis.

Das bewirkt, dass sich die Komponenten Ez und E-z des resultierenden elektrischen Feldes entlang der z-Achse aufheben. Durch die Überlagerung der Ströme an jeder Stelle, wird zudem eine größere Feldstärke Eϕ bewirkt. Das heißt zum einen, dass weniger Ladungsträger beim induktiven Heizen die Spule entlang der z-Achse verlassen und zum anderen, dass mit derselben Stromstärke eine höhere Heizleistung erreicht wird.This causes the E z and E -z components of the resultant electric field to cancel along the z-axis. The superimposition of the currents at every point also causes a greater field strength E ϕ . On the one hand, this means that fewer charge carriers leave the coil along the z-axis during inductive heating and, on the other hand, that a higher heating capacity is achieved with the same current intensity.

Die Radien r1 und r2 der Wicklungen W1 und W2 liegen bei bevorzugt 10 mm bis 100 mm.The radii r 1 and r 2 of the windings W 1 and W 2 are preferably 10 mm to 100 mm.

Die Länge der Induktionsheizspule beträgt bevorzugt zwischen 10 mm und 100 mm.The length of the induction heating coil is preferably between 10 mm and 100 mm.

Die Windungszahl N der Wicklungen W1 und W2 der Induktionsheizspule liegt vorzugsweise bei 3 bis 20, besonders bevorzugt bei 5 bis10. Spulen mit kleineren Windungszahlen weisen eine größere z-Komponente des resultierenden elektrischen Feldes auf. Bei größeren Windungszahlen sinkt durch den größeren elektrischen Widerstand der Wirkungsgrad der Induktionsheizspule.The number of turns N of the windings W 1 and W 2 of the induction heating coil is preferably 3 to 20, particularly preferably 5 to 10. Coils with a smaller number of turns have a larger z-component of the resulting electric field. With a larger number of turns, the efficiency of the induction heating coil decreases due to the greater electrical resistance.

In besonders vorteilhaften Ausführungsarten des erfindungsgemäßen Radiofrequenz-lonentriebwerks (RIT) weist deren Induktionsheizspule w eine rechteckige, runde oder ellipsoide Form auf. Das erlaubt eine Anpassung der Spule an den Spulenkörper. Des Weiteren führt so eine regelmäßige Form der Spule zu einem homogeneren Feld im Spuleninneren.In particularly advantageous embodiments of the radio frequency ion thruster (RIT) according to the invention, its induction heating coil w has a rectangular, round or ellipsoidal shape. This allows the coil to be adapted to the bobbin. Furthermore, such a regular shape of the coil leads to a more homogeneous field inside the coil.

Eine Verwendung der Induktionsheizspule des erfindungsgemäßen Radiofrequenz-lonentriebwerks (RIT) liegt in induktiv oder induktiv-kapazitiv angeregten lonen- oder Elektronenquellen. Hier dient sie der Einkopplung von elektromagnetischer Energie.One use of the induction heating coil of the radio-frequency ion thruster (RIT) according to the invention is inductively or inductively-capacitively excited ion or electron sources. Here it serves to couple in electromagnetic energy.

Bei diesen Quellen befinden sich ein Gas (z.B. Xenon) und hochfrequent anzuregende Elektronen innerhalb eines isolierten Gefäßes, des Entladungsgefäßes. Um das Entladungsgefäß ist eine Induktionsheizspule zur Einspeisung einer zurWith these sources, a gas (e.g. xenon) and electrons to be excited at high frequency are located within an insulated vessel, the discharge vessel. To the discharge vessel is an induction heating coil for feeding a to

Plasma-Anregung notwendigen Hochfrequenz-Energie gewickelt. Aus dem Stromfluss in der Spule resultiert ein Magnetfeld, welches im Sinne der elektromagnetischen Induktion ein elektrisches Feld bewirkt, welches Elektronen im Spuleninneren beschleunigt. Diese Elektronen stoßen nun auf die im Entladungsgefäß befindlichen Gasatome oder Gasmoleküle und ionisieren diese.Plasma excitation necessary high-frequency energy wound. The flow of current in the coil results in a magnetic field which, in the sense of electromagnetic induction, creates an electric field that accelerates electrons inside the coil. These electrons now collide with the gas atoms or gas molecules in the discharge vessel and ionize them.

Durch die Dämpfung der elektrischen Feldkomponente, die parallel zur z-Achse wirkt, wird das induktiv-gekoppelte Plasma effizienter geheizt, da verhältnismäßig mehr Feldenergie in die azimutale Ebene induziert wird und nicht durch die Beschleunigung entlang der z-Achse verloren geht. Dies führt dazu, dass die durch die elektrischen Felder beschleunigten Elektronen auf Spiralbahnen gezwungen werden, deren axiale Steigung immer geringer wird. Letzteres bewirkt, dass ein größerer Anteil der beschleunigten Elektronen innerhalb der Spule bleibt und bei der Heizung des Plasmas mitwirkt.By damping the electric field component acting parallel to the z-axis, the inductively coupled plasma is heated more efficiently since proportionally more field energy is induced in the azimuthal plane and is not lost to acceleration along the z-axis. This means that the electrons, which are accelerated by the electric fields, are forced into spiral paths whose axial gradient becomes ever smaller. The latter causes a larger proportion of the accelerated electrons to remain inside the coil and help to heat the plasma.

Bei einem Radiofrequenz-Ionen-Triebwerk befindet sich ein hochfrequent anzuregendes Plasma innerhalb eines isolierten Gefäßes, des sog. Entladungsgefäßes. Um das Entladungsgefäß ist eine oft auch als Koppelspule bezeichnete Induktionsheizspule zur Einspeisung einer zur Plasma-Anregung notwendigen Energie gewickelt. Das Plasma befindet sich damit innerhalb der Spule. Wenn ein lonentriebwerk die erfindungsgemäße Induktionsspule umfasst, ist sie effizienter, da nahezu alle Elektronen in der Plasmaentladung zur Erhaltung dieser beitragen, da sie gehindert werden, die geheizten Bereiche zu verlassen.In a radio frequency ion thruster, a plasma to be excited at high frequency is located within an insulated vessel, the so-called discharge vessel. An induction heating coil, often also referred to as a coupling coil, is wound around the discharge vessel for feeding in the energy required for plasma excitation. The plasma is therefore inside the coil. If an ion engine comprises the induction coil of the present invention, it is more efficient since almost all of the electrons in the plasma discharge contribute to its maintenance by being prevented from leaving the heated areas.

Der Aufbau der Induktionsheizspule des efindungsgemäßen Radiofrequenzlonentriebwerks (RIT) führt dazu, dass sich die axial induzierten Felder in z-Richtung aufgrund der Symmetrie nahezu aufheben, da derselbe Strom sowohl in positiver als auch in negativer z-Richtung fließt. Das heißt, dass die Komponente Ez des resultierenden elektrischen Feldes gedämpft wird. Da der Strom durch beide Wicklungen der Induktionsheizspule parallel fließt, überlagern sich gleichzeitig die resultierenden Feldkomponenten Eϕ und werden damit verstärkt. Zusätzlich wird bedingt durch die steigende Spuleninduktivität L, eine geringere Stromstärke Strom I zur Bereitstellung des magnetischen Feldes benötigt. Dies begünstigt das thermische Verhalten der Spule, da kleinere Ströme zu weniger Ohm'scher Verlustleistung führen. Dies ist trotz nahezu doppelter Länge des stromdurchflossenen Leiters der Spule der Fall, da sich die Verlustleistung zu P = I2 R, linear zum Widerstand R und somit zur Länge des stromdurchflossenen Leiters wächst, aber gleichzeitig quadratisch mit der kleineren benötigten Stromstärke I sinkt.The structure of the induction heating coil of the radio frequency ion thruster (RIT) according to the invention results in the axially induced fields in the z-direction almost canceling out due to the symmetry, since the same current flows in both the positive and negative z-directions. This means that the component E z of the resulting electric field is attenuated. Since the current flows through both windings of the induction heating coil in parallel, the resulting field components E ϕ are simultaneously superimposed and thus amplified. In addition, due to the increasing coil inductance L, a lower current I is required to provide the magnetic field. This favors the thermal behavior of the coil, since smaller currents lead to less ohmic power loss. This is the case despite almost twice the length of the current-carrying conductor of the coil, since the power loss increases to P = I 2 R, linearly with the resistance R and thus with the length of the current-carrying conductor, but at the same time decreases quadratically with the smaller current I required.

Der Radius der äußeren Wicklung W2 ist größer als der Radius der inneren Wicklung W1, dadurch ist das durch W2 induzierte Feld betragsmäßig etwas kleiner als das durch W1 induzierte. Dennoch ist die Komponente Ez des resultierenden elektrischen Feldes vernachlässigbar klein.The radius of the outer winding W 2 is greater than the radius of the inner winding W 1 , so the magnitude of the field induced by W 2 is somewhat smaller than that induced by W 1 . Nevertheless, the component E z of the resulting electric field is negligibly small.

Ausführungsbeispiel:Example:

Im Folgenden wie beispielhaft eine Ausführungsform des erfindungsgemäßen Radiofrequenz-Ionentriebwerk (RIT) geschrieben. Hierzu wurden Vergleichsmessungen an einem ersten unmodifizierten lonentriebwerk RIM-4 mit einer Induktionsspule mit konventioneller Wicklung und einem weiteren modifizierten Ionentriebwerk RIM-4 mod. mit erfindungsgemäßer Induktionsheizspule jeweils bei einem lonenstrom Ib = 10 mA bei einem Volumenstrom des verwendeten Gases von 0,2 sccm vorgenommen. Die Vergleichswerte der elektrischen Parameter sowie der Leistungsdaten sind hierbei Fig. 5 zu entnehmen. Der Unterschied zwischen unmodifiziertem und modifiziertem Triebwerk hinsichtlich der benötigten Spulenleistung Ps beträgt 1.5 W bei einer Gesamtleistung Ps von 15,23 W. Damit ist das Triebwerk, welches die erfindungsgemäße Induktionsheizspule umfasst, ca. 10 % effizienter.An embodiment of the radio frequency ion thruster (RIT) according to the invention is described below as an example. For this purpose, comparative measurements were carried out on a first unmodified RIM-4 ion engine with an induction coil with conventional winding and another modified RIM-4 ion engine mod. with an induction heating coil according to the invention in each case at an ion current I b =10 mA at a volume flow of the gas used of 0.2 sccm. The comparative values of the electrical parameters and the performance data are here figure 5 refer to. The difference between the unmodified and modified engine with regard to the required coil power P s is 1.5 W with a total power P s of 15.23 W. The engine, which includes the induction heating coil according to the invention, is therefore approximately 10% more efficient.

Es wird weniger Leistung für das Heizen des Plasmas benötigt, da weniger Elektronen verloren gehen. Ebenfalls von hoher Bedeutung ist, dass mit etwa der halben Stromamplitude Ic gearbeitet werden kann, was auch zu einer besseren elektromagnetischen Verträglichkeit (EMV) führt. So werden die anderen Triebwerkskomponenten weniger durch die Induktionsheizspule beeinflusst.Less power is required to heat the plasma because fewer electrons are lost. It is also of great importance that one can work with about half the current amplitude Ic , which also leads to better electromagnetic compatibility (EMC). This means that the other engine components are less affected by the induction heating coil.

Kurze Beschreibung der AbbildungenBrief description of the illustrations

  • Fig. 1 zeigt eine lange Spule. Die Feldlinien des inneren Magnetfeldes sind hier über einen weiten Bereich der Länge l parallel. Dies bewirkt, dass auf die Ladungsträger im Inneren nur in den Randbereichen der Spule eine Beschleunigung entlang der z-Achse erfolgt. 1 shows a long coil. The field lines of the internal magnetic field are parallel over a wide area of length l. The effect of this is that the charge carriers inside are only accelerated along the z-axis in the edge areas of the coil.
  • Fig. 2 zeigt eine typische kurze Spule mit wenigen Windungen. In dieser Art von Spulen erfahren die Ladungsträger eine Beschleunigung entlang der z-Achse. Im Fall eines induktiv geheizten Plasmas innerhalb der Spule würden diese Ladungsträger die Spule verlassen. 2 shows a typical short coil with few turns. In this type of coil, the charge carriers experience an acceleration along the z-axis. In the case of an inductively heated plasma inside the coil, these charge carriers would leave the coil.
  • Fig. 3 zeigt die Induktionsheizspule des erfindungsgemäßen Radiofrequenzlonentriebwerks (RIT). In dieser Spule heben sich durch die gegenläufige Wicklung die auf die Ladungsträger wirkenden Kräfte entlang der z-Achse auf. Dadurch bleiben auch frei bewegliche Ladungsträger in der Spule. Aufgrund leicht unterschiedlicher Radien der beiden Spulen heben sich die Felder nicht vollständig auf. In guter Näherung kann allerdings davon ausgegangen werden, dass die Ladungsträger nahezu keine Beschleunigung in z-Richtung erfahren und die Elektronen auf der Achse verschwinden. 3 Figure 12 shows the induction heating coil of the radio frequency ion thruster (RIT) of the present invention. In this coil, the forces acting on the charge carriers along the z-axis are canceled out by the counter-rotating winding. This means that charge carriers that can move freely remain in the coil. Due to the slightly different radii of the two coils, the fields do not completely cancel each other out. As a good approximation, however, it can be assumed that the charge carriers experience almost no acceleration in the z-direction and the electrons on the axis disappear.
  • Fig. 4 zeigt in Teilabbildung 4a die axial in z-Richtung induzierte elektrische Feldstärkenkomponente Ez einer konventionellen einfach gewickelten Induktionsheizspule in einem lonentriebwerk und in Teilabbildung 4b die axial in z-Richtung induzierte elektrische Feldstärkenkomponente einer erfindungsgemäßen Spule. 4 FIG. 4a shows the electric field strength component E z induced axially in the z-direction of a conventional single-wound induction heating coil in an ion engine, and FIG. 4b shows the electric field strength component induced axially in the z-direction of a coil according to the invention.
  • Fig. 5 zeigt die Betriebsparameter des lonentriebwerkes RIM-4 und des modifizierten lonentriebwerkes RIM-4 mod. ηm bezeichnet hier den Massenwirkungsgrad, ηel den elektrischen Wirkungsgrad, Rs den elektrischen Widerstand der Induktionsspule, Hs die magnetische Feldstärke der Spule, ς den Koppelfaktor und ι die Übertragungseffizienz. figure 5 shows the operating parameters of the ion engine RIM-4 and the modified ion engine RIM-4 mod. η m denotes the mass efficiency, η el the electrical efficiency, R s the electrical resistance of the induction coil, H s the magnetic field strength of the coil, ς the coupling factor and ι the transmission efficiency.

Claims (5)

  1. A radio frequency ion thruster (RIT) comprising an induction heating coil, whereby said induction heating coil having a first inner winding W1 and at least one further outer winding W2, said inner winding W1 having a radius r1 and said outer winding W2 having a radius r2, where r1 is smaller than r2, the inner winding W1 lying inside the outer winding W2 and the windings W1 and W2 being connected at one end of the coil at a point (100), so that at this point (100) a current flow i through the coil changes its direction of flow with respect to the z-axis of the induction heating coil,
    characterized in that
    the windings W1 and W2 are connected in such a way that the electric fields of the first winding W1 and the second winding W2 are superimposed in the interior of the coil in such a way that the components Ez and E-z of the resulting electric field cancel each other out along the z-axis.
  2. Radio frequency ion thruster (RIT) according to claim 1, characterized in that the radii r1 and r2 of its induction heating coil are between 10 mm and 100 mm.
  3. Radio-frequency ion thruster (RIT) according to claim 1 or 2, characterized in that the length of its induction heating coil is between 10 mm and 100 mm.
  4. Radio frequency ion thruster (RIT) according to any one of claims 1 to 3, characterised in that the induction heating coil thereof has a rectangular, round or ellipsoidal shape.
  5. Radio-frequency ion thruster (RIT) according to one of the claims 1 to 4, characterized in that the number of turns of the windings W1 and W2 of its induction heating coil is between 3 and 20.
EP15185774.5A 2015-09-18 2015-09-18 Induction heating coil Active EP3145275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15185774.5A EP3145275B1 (en) 2015-09-18 2015-09-18 Induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15185774.5A EP3145275B1 (en) 2015-09-18 2015-09-18 Induction heating coil

Publications (2)

Publication Number Publication Date
EP3145275A1 EP3145275A1 (en) 2017-03-22
EP3145275B1 true EP3145275B1 (en) 2022-04-20

Family

ID=54196795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15185774.5A Active EP3145275B1 (en) 2015-09-18 2015-09-18 Induction heating coil

Country Status (1)

Country Link
EP (1) EP3145275B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3632340C2 (en) * 1986-09-24 1998-01-15 Leybold Ag Inductively excited ion source
KR100599094B1 (en) * 2004-11-29 2006-07-12 삼성전자주식회사 Electro-magnatic accelerator with Coil turn modulation
DE102013216668A1 (en) * 2013-08-22 2015-02-26 Continental Automotive Gmbh Method and device for producing a heating coil on a metallic base body

Also Published As

Publication number Publication date
EP3145275A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
DE19509284B4 (en) Device for generating a flat plasma using varying magnetic poles
DE102016123067A1 (en) Rod winding arrangement of a stator or a rotor of an electrical machine
DE102016123068A1 (en) Rotary electric machine and specially adapted method for producing such
EP2546842A2 (en) Coil for limiting energy
EP3329739B1 (en) Inductor and inductor arrangement
EP3145275B1 (en) Induction heating coil
EP2495742B1 (en) High-voltage resistant electricity-compensated interference suppression choke
DE3302205C2 (en)
EP2974820B1 (en) Arc welding device, system and method for de-magnetising a metal pipe
DE102018109565A1 (en) coil assembly
EP3724902B1 (en) Choke and test assembly for carrying out high-voltage testing
EP3724360B1 (en) Inductor and method for hardening rack gears
DE3238609A1 (en) Demagnetisation device
EP2082624B1 (en) Betatron with a variable orbital radius
EP1614783B1 (en) Inductor core for a heatable galette
DE2062013A1 (en) Delay line for a high frequency electron tube
DE1764813C3 (en) Arrangement for ionizing a gas in a gas laser or maser
DE1589595C (en) Device for generating a strong magnetic field
DE102006027185B4 (en) Electric cable with balanced current density distribution in the conductors
DE102022131395A1 (en) Device and method for demagnetizing a component
DE202007019359U1 (en) Winding body for electromagnetic undulators
DE19808341A1 (en) Low inductance cored reactor e.g. as power reactor in power pack
DE19606299A1 (en) Transformer, including heavy current types, construction and manufacturing method e.g. for electro-metallurgy, electrothermy, converter engineering, thyristor drives and in domestic appliances etc
DE1162429B (en) Device for taking off signal energy
DE102017004279A1 (en) Bifilar constructed inductive transducer element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170922

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOLKMAR, CHRIS

Inventor name: RICKLEFS, UBBO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220225

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICKLEFS, UBBO

Inventor name: VOLKMAR, CHRIS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015774

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1486182

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015774

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220918

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1486182

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 9

Ref country code: DE

Payment date: 20230930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420