EP3141736A1 - Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant - Google Patents

Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant Download PDF

Info

Publication number
EP3141736A1
EP3141736A1 EP15184500.5A EP15184500A EP3141736A1 EP 3141736 A1 EP3141736 A1 EP 3141736A1 EP 15184500 A EP15184500 A EP 15184500A EP 3141736 A1 EP3141736 A1 EP 3141736A1
Authority
EP
European Patent Office
Prior art keywords
power group
permanent magnets
central axis
fluid
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15184500.5A
Other languages
German (de)
English (en)
Inventor
Stefano Filippi
Mauro Grandi
Francesco Lenzi
Valerio Polidori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to EP15184500.5A priority Critical patent/EP3141736A1/fr
Priority to PCT/EP2016/069014 priority patent/WO2017041978A1/fr
Publication of EP3141736A1 publication Critical patent/EP3141736A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/08Fuel-injection apparatus having special means for influencing magnetic flux, e.g. for shielding or guiding magnetic flux

Definitions

  • the present invention relates to a power group (MPG) for a fluid injector, particularly a fuel injector for injecting fuel into a combustion engine.
  • MPG power group
  • the present invention relates also to a fluid injector including such power group.
  • Fuel injectors are used in internal combustion engines, where they are arranged in order to dose fuel into a combustion chamber of a cylinder of an internal combustion engine.
  • a known type of fuel injector comprises:
  • the power group may further comprise a permanent magnet with radial magnetization to support the magnetic force acting on the armature when the solenoid is actuated.
  • the permanent magnet is typically constituted by a ring of magnetic material, which is coaxial to the solenoid.
  • a magnetic material which is typically used in the permanent magnet is the so called plasto-neodymium (bounded neodymium).
  • Plasto-neodymium has limited magnetic density energy, i.e the maximum value of the magnetic field intensity is 8-10 MOe or, in SI units, 600-800 MA/m, due to the presence of not magnetic bounded media into its volume. Therefore a limited effect on actuator performances, in particular on the maximum fluid pressure (Pmax) capability, is expected for injector applications including permanent magnets made of plasto-neodymium.
  • Further objects of the present invention are to provide a fuel injector including such a power group and a method for manufacturing such a fuel injector.
  • a power group for a fluid injector comprises a housing and a solenoid including a coil wound around a central axis of the power group. It further comprises a plurality of permanent magnets, each permanent magnet having an arched shape around the central axis, each permanent magnet extending over an angle of less than 360° around the central axis, and a ring made of plastic material and including a plurality of slots, each slot accommodating one respective magnet of the permanent magnets of the power group.
  • a fluid injector comprising a valve body having a cavity defining a fuel path along a central axis, the valve body extending axially between a fluid inlet and a fluid outlet. It further comprises a needle which is moveable between a closing position preventing a fluid flow through the fluid outlet and at least one opening position for releasing fluid through the fluid outlet. The needle is attached to an armature so that it is axially movable together with the armature from the closing position to the at least one opening position.
  • the fluid injector comprises the power group for creating the magnetic field to axially move the armature and the needle.
  • a method for manufacturing a fluid injector includes a step of providing or manufacturing the valve assembly.
  • the method further includes a step of manufacturing the power group which has the armature to be attached to the needle of the valve assembly.
  • Manufacturing the power group comprises a step of inserting the plurality of permanent magnets into the plurality of slots.
  • the power group is fixed to the valve assembly.
  • the power group may be capable to improve the performances of a fuel injector, for example in order to support the European Emission Standards Euro 6 and 7 for multi-streaming direct injector applications. Specifically, the power group may permit to operate the fluid injector at particularly large fluid pressures.
  • the arched permanent magnets comprise a Sm-Co alloy.
  • this permits to reach high values of the intensity of the magnetic field generated by the power group.
  • a different permanent magnet material may be used, for example based Sm-Co which has a typical value of the magnetic field intensity in the range of 20-26 Moe or, in the SI, 1600-2100 MA/m.
  • a ring shape made of a Sm-Co alloy is not necessary. Radially magnetized, ring shaped permanent magnets of Sm-CO alloy are not possible due to internal field strength, which would create a stress level leading easily to the breaking of the permanent magnet ring.
  • a ring of plastic material including a plurality of slots for respectively accommodating the plurality of permanent magnets, simplifies the coupling operations between the valve assembly and the power group. For example, in a pre-assembly step, the arched permanent magnets may be accommodated in the respective positions, each in a respective slot of the plastic ring, and then the plastic ring may be included in the power group. In this way the permanent magnets will be automatically in the desired positions with respect to the other components of the power group.
  • the arched permanent magnets have the same dimensions.
  • all of the arched permanent magnets have identical dimensions.
  • this allows having a uniform distribution of the magnetic field around the central axis.
  • Using permanent magnets having all the same dimensions also implies that all the slots of the ring of plastic material have the same dimensions, thus further simplifying the assembly of the power group and of the overall fluid injector.
  • the arched permanent magnets together cover a complete angle of 360° around the central axis of the power group.
  • longitudinal walls of the plastic ring which may be present and separate the arched permanent magnets in circumferential direction, are in particular disregarded since they may expediently only occupy a small space compared to the permanent magnets.
  • this permits the magnetic field created by permanent magnets to be uniformly distributed around central axis.
  • the arched permanent magnets are in the numbers of 3 or higher.
  • the power group comprises three or more arched permanent magnets as said plurality of arched permanent magnets.
  • it comprises exactly three arched permanent magnets. This choice provides an optimal compromise between maximizing the power capability without breaking the permanent magnets and simplicity of assembling.
  • the ring of plastic material includes a bobbin and the coil of the solenoid is wounded in said bobbin, i.e. the ring of plastic material and the bobbin of the solenoid are integrated in the same plastic element.
  • the ring of plastic material comprises a plurality of longitudinal walls, each longitudinal wall separating two adjacent slots. This minimizes magnetic attractive forces during assembly operation.
  • the ring of plastic material may also comprise one or two annular walls for delimiting the slots along the axial direction, at one or both the axial end surfaces of the ring of plastic material.
  • the annular walls are planar in one embodiment. The annular walls improve the protection of the permanent magnets from dirt or other aggressive factors on the upper and/or lower side of the ring.
  • An additional overmolding step may be performed to improve such protection, in particular along the inner surface of the ring of plastic material.
  • the ring of plastic material together with the permanent magnets can be easily mounted into the power group without magnetic interferences between the magnets and the ferromagnetic material which may constitute the housing.
  • the longitudinal walls separating two adjacent slots and the planar annular walls may have a thickness ranging between 0,2 to 0,5 mm.
  • Fig. 1 shows a fluid injector 100, in particular a fuel injector for an internal combustion engine, with a central axis X.
  • the fluid injector 100 has a valve assembly 101 and a power group 10.
  • the valve assembly 101 has a valve body 20, in particular of ferromagnetic material at least in some places.
  • the valve body 20 is hollow, having a cavity 21 which extends axially between a fluid inlet 31 and a fluid outlet 32.
  • the fluid inlet 31 is connected to a fuel supply (not shown) and the fluid outlet 32 is connected to the combustion chamber (not shown) of a cylinder of the internal combustion engine.
  • the cavity 21 defines a fuel path along the central axis X, from the fluid inlet 31 to the fluid outlet 32.
  • the valve assembly 101 further has a valve needle 50, which is fixedly attached to an armature 40 of the power group 10.
  • the valve needle 50 is axially movable together with the armature 40 between a closing position preventing a fuel flow through the fluid outlet 32 and a plurality of opening positions for releasing the a fuel mass towards the combustion chamber.
  • the different opening positions may correspond to respective sets of different parameters of the released fuel mass, in particular mass flow rate.
  • the armature 40 is formed as a collar around the valve needle 50 and is axially movable in the cavity 21 along the central axis X when subject to a magnetic field created by the power group 10, as detailed below.
  • a pole piece 14 is arranged in the cavity 21 and is fixedly coupled to the valve body 20. In operation, the electro-magnetic force caused by the magnetic field created by the power group 10 magnetizes the pole piece 14 to attract the armature 14, thus also causing the armature 40, together with the valve needle 50, to move axially in the cavity 21 towards the pole piece 14, away from the closing position, i.e. towards one of the opening positions of the injector 100.
  • a main spring 52 is arranged in the cavity 21, mechanically coupled to the valve body 20 and the valve needle 50 at opposite axial ends.
  • the valve needle 50, and with it the armature 40 are normally urged in the closing position by the main spring 52.
  • a calibration tube 53 is housed inside the valve body 20 and the coupled to the pole piece 14 by a press-fit connection or by a thread. Before the injector 100 is put in operation, for example during the manufacturing process, a calibration process is carried out, during which the calibration tube 53 can be moved axially in the valve body 20 in order to preload the main spring 52 in a desired manner. In this way, a predefined force of the main spring 52 on the valve needle 50 is set to bias the valve needle 50 towards the closing position of the injector 100.
  • the armature 40 is axially displaceable relative to the valve needle 50 and mechanically coupled to the latter by means of an armature retainer of the valve needle 50 with which the armature is operable to engage in a form-fit connection for taking the valve needle 50 with it away from the closing position.
  • the fluid injector 100 further comprises an armature return spring 51.
  • the armature return spring 51 biases the armature 40 in direction towards the pole piece 14 against the armature retainer of the valve needle 50 and decelerates a movement of the armature 40 at the end of the closing transient when the valve needle 50 stops in the closing position.
  • Figs. 2 to 6 show in detail one embodiment of the power group 10 of the fluid injector 100.
  • the power group 10 provides the actuation of the injector 100 and includes:
  • the solenoid 12 with the coil 13 and the hollow ring 16 with the arched permanent magnets 15 are coupled to the valve assembly 101 by fixing the housing 11 to the valve body 20.
  • the housing 11 comprises an extension 11a, protruding from the valve body 20, for connecting, in operation, the fuel injector 100 to a control unit (not shown), which provides an operating current to energize the coil 13.
  • the permanent magnets 15 are made of a Sm-Co alloy. Other materials may be used according to the present invention, provided that they are able to assure a similar value of magnetic density energy, or in any case significantly higher than the magnetic density energy of known plasto-neodymium magnets.
  • Each permanent magnet 15 has an arched shape around an axis, which, when the magnets are installed in the injector 100, is coaxial with the central axis X.
  • the cross-sectional shape of the permanent magnets 15, in a longitudinal plane including the central axis X, is a rectangle with rounded corners. Other cross-sectional shapes are also possible, for example circular.
  • Each arched permanent magnet is provided with a radial magnetization H, directed towards the central axis X and schematically represented in Figs. 2 and 3 by the arrows H.
  • all the three arched permanent magnets 15 have the same dimensions. In particular, they extend radially, i.e. orthogonally to the central axis X, between the same inner diameter D1 and outer diameter D2 and they have the same thickness H.
  • Each permanent magnet 15 extends over an angle of less than 360° around the central axis X.
  • the outer and inner contours of each permanent magnet in top view along the central axis X is a circular arc of a circle having the central axis X as center.
  • they In a planar view parallel to the central axis X, they angularly extend for an angle ⁇ slightly lower than 120°, in such a way that, considering also the circumferential distances between any couple of adjacent permanent magnets 15, they together cover an angle of 360° around the central axis X.
  • This geometry assures a regular and symmetrical distribution of the magnetic field generated by the permanent magnets around the central axis X.
  • a different number of permanent magnets 15 is also possible: for example two permanent magnets 15 angularly extending for an angle ⁇ slightly lower than 180° or four permanent magnets 15 angularly extending for an angle ⁇ slightly lower than 90°.
  • the hollow ring 16 is made of any moldable plastic material which is able to resist to operation temperatures of 200 °C and more.
  • the hollow ring 16 comprises two - i.e. lower and upper - planar annular walls 28a, 28b, for delimiting the slots 17 along the axial direction X, respectively on a lower side, which in the assembly of the injector 100 is closer to the fluid outlet 32, and on a upper side, which in the assembly of the injector 100 is closer to the fluid inlet 31.
  • the two planar annular walls 28a, 28b are connected along the external radial side by a circular wall 29.
  • the slots 17 are open in order to allow insertion of the permanent magnets 15.
  • the circular wall 29 is positioned at the inner radial end of the annular walls 28a, 28b and the slots 17 are open at the outward radial side (see the second embodiment in Fig. 7 ). In this way, the permanent magnets 15 can easily be shifted into the slots 17 in radial inward direction.
  • the ring of plastic material 16 further comprises a plurality of longitudinal walls 18, each axially extending between the two planar annular walls 28a, 28b and radially projecting away from the circular wall 29.
  • Each longitudinal wall 18 separates two adjacent slots 17.
  • the thickness of the two planar annular walls 28a, 28b, the circular wall 29 and the longitudinal walls 18 in each case has a value between 0,2 and 0,5 mm, the limits being included. This minimizes magnetic attraction between the permanent magnets 15 when they are mounted in the hollow ring 16 and when the hollow ring 16 with the permanent magnets 15 inside is coupled to the valve body 20.
  • the slots have the same shape as the permanent magnets 15, but dimensions slightly greater in order to assure a lash coupling between each permanent magnet 15 and the respective slot 17. This assures an easier insertion of the permanent magnets in the slots 17.
  • Fig. 7 shows a further embodiment of a power group 10 according to the present invention in a longitudinal section view.
  • the portion on the left side of the central axis X is omitted in this figure.
  • the hollow ring 16 further includes a bobbin 19, in which the coil 13 of the solenoid 12 is wound.
  • the fluid injector 100 is manufactured according to the following manufacturing steps:
  • the power group 10 may be used for the production of different fuel injector configurations, for as example different from one another for the length of the valve body 20: short, standard, extended length.
EP15184500.5A 2015-09-09 2015-09-09 Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant Withdrawn EP3141736A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15184500.5A EP3141736A1 (fr) 2015-09-09 2015-09-09 Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant
PCT/EP2016/069014 WO2017041978A1 (fr) 2015-09-09 2016-08-10 Groupe de puissance pour injecteur de carburant et injecteur de carburant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15184500.5A EP3141736A1 (fr) 2015-09-09 2015-09-09 Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant

Publications (1)

Publication Number Publication Date
EP3141736A1 true EP3141736A1 (fr) 2017-03-15

Family

ID=54072760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15184500.5A Withdrawn EP3141736A1 (fr) 2015-09-09 2015-09-09 Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant

Country Status (2)

Country Link
EP (1) EP3141736A1 (fr)
WO (1) WO2017041978A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204181A1 (fr) * 1985-06-05 1986-12-10 Robert Bosch Gmbh Electroaimant
US5127585A (en) * 1989-02-25 1992-07-07 Siemens Aktiengesellschaft Electromaagnetic high-pressure injection valve
EP0952506A2 (fr) * 1998-04-21 1999-10-27 Saturn Electronics & Engineering, Inc. Vanne électromagnétique proportionnelle à force de commande variable pourvu d'un aimant permanent segmenté
WO2002012713A1 (fr) * 2000-08-10 2002-02-14 Robert Bosch Gmbh Soupape d'injection de carburant
EP2320066A1 (fr) * 2009-11-06 2011-05-11 Delphi Technologies Holding S.à.r.l. Actionneur électromagnétique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204181A1 (fr) * 1985-06-05 1986-12-10 Robert Bosch Gmbh Electroaimant
US5127585A (en) * 1989-02-25 1992-07-07 Siemens Aktiengesellschaft Electromaagnetic high-pressure injection valve
EP0952506A2 (fr) * 1998-04-21 1999-10-27 Saturn Electronics & Engineering, Inc. Vanne électromagnétique proportionnelle à force de commande variable pourvu d'un aimant permanent segmenté
WO2002012713A1 (fr) * 2000-08-10 2002-02-14 Robert Bosch Gmbh Soupape d'injection de carburant
EP2320066A1 (fr) * 2009-11-06 2011-05-11 Delphi Technologies Holding S.à.r.l. Actionneur électromagnétique

Also Published As

Publication number Publication date
WO2017041978A1 (fr) 2017-03-16

Similar Documents

Publication Publication Date Title
US9046188B2 (en) Solenoid actuator with magnetic sleeving
CN103119282B (zh) 用于喷射阀的阀组件和喷射阀
JP2001525905A (ja) 電磁操作可能な弁
CN105804828A (zh) 电磁致动器
EP3362669B1 (fr) Soupape d'injection électromagnétique et procédé d'assemblage d'une telle soupape
EP2589786A1 (fr) Ensemble de soupape pour vanne de contrôle et vanne de contrôle
KR20130042556A (ko) 자기 액추에이터
EP2888470B1 (fr) Ensemble de soupape pour soupape d'injection et soupape d'injection
US10253739B2 (en) Fuel injection valve for an internal combustion engine
EP3034853B1 (fr) Ensemble de bobine et soupape d'injection de fluide
EP3141736A1 (fr) Groupe d'alimentation pour un injecteur de carburant et injecteur de carburant
JP2006307831A (ja) 燃料噴射弁
KR20130105832A (ko) 연료분사밸브
CN107542612B (zh) 用于喷射阀的阀组件以及喷射阀
KR20150141974A (ko) 개선된 개방 및 폐쇄 거동을 가진 솔레노이드 밸브
EP2568155A1 (fr) Ensemble de soupape et soupape d'injection
JP4579342B2 (ja) 電磁弁の製造方法
JP2018530710A (ja) 高圧燃料ポンプ用のデジタル入口弁
EP2363595A1 (fr) Ensemble de soupape pour soupape d'injection et soupape d'injection
JP2006077726A (ja) 燃料噴射弁
CN106461111B (zh) 用于电磁阀的电磁组件以及用于制造电磁组件的方法
JP2020057703A (ja) 電磁弁
JP2010196898A (ja) 電磁弁の製造方法
JP2010196895A (ja) 電磁弁の製造方法
US9651163B2 (en) Component for a magnetic actuator as well as a method for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170915

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210316