EP3139392B1 - Medium frequency transformer and semiconductor converter with a medium frequency transformer - Google Patents

Medium frequency transformer and semiconductor converter with a medium frequency transformer Download PDF

Info

Publication number
EP3139392B1
EP3139392B1 EP15183787.9A EP15183787A EP3139392B1 EP 3139392 B1 EP3139392 B1 EP 3139392B1 EP 15183787 A EP15183787 A EP 15183787A EP 3139392 B1 EP3139392 B1 EP 3139392B1
Authority
EP
European Patent Office
Prior art keywords
transformer
coil
filaments
winding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15183787.9A
Other languages
German (de)
French (fr)
Other versions
EP3139392A1 (en
Inventor
Uwe Drofenik
Gabriel Ortiz
Thomas Gradinger
Daniel Kearney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Priority to EP15183787.9A priority Critical patent/EP3139392B1/en
Priority to ES15183787T priority patent/ES2710678T3/en
Priority to CN201610801793.6A priority patent/CN106504869B/en
Publication of EP3139392A1 publication Critical patent/EP3139392A1/en
Application granted granted Critical
Publication of EP3139392B1 publication Critical patent/EP3139392B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the invention relates to semiconductor converters having a medium-frequency transformer, in particular medium-voltage semiconductor converter.
  • Transformers in medium voltage converters are designed to transmit high power and must also meet high insulation requirements. To reduce the size of the transformer they are operated at relatively high operating frequencies of several kilohertz. Typical applications for such converters are, for example, traction applications or power grids in which such medium frequency transformers with powers between 100 kW and 1000 kW, at voltages of e.g. 20 kV and with transformer frequencies of between 5 kHz and 15 kHz.
  • stray fields outside the transformer core or transformer yoke result in induced voltages in the coil windings causing parasitic currents.
  • the stray magnetic fields are substantially parallel to the orientation of the transformer core or yoke. Due to the different spacing of the individual wires from the transformer yoke opposite parasitic currents are generated in the wires, which can lead to ring currents due to the parallel connection of the coil windings formed by the wires. These ring currents can lead to high currents in the range of several hundred amperes, since the wires have a low ohmic resistance and the ring currents are limited only by the internal inductance of the current path of the parasitic currents.
  • the parasitic ring currents superimpose the operating current through the coil winding of the medium-frequency transformer, resulting in an unbalanced current distribution within the wires of the coil winding.
  • the parasitic ring currents become very high, one of the wires may carry more than the entire nominal current and another of the wires may carry a correspondingly negative, ie, 180 ° out of phase current.
  • the copper fill factor reduced by 50%, but additional losses are incurred and the maximum power output of the medium frequency transformer is reduced by a factor of two or more.
  • a conventional solution to compensate for this effect is to twist the wires of the coil winding so as to reduce current imbalance.
  • twisting wires in manufacturing is difficult and leads to increased space requirements of the twisted wires, counteracting the intended size reduction.
  • a high bending stress is exerted on the wires, whereby they can be mechanically damaged and their electrical conductivity can be impaired.
  • the above object is achieved by the medium-frequency transformer according to claim 1 and by the semiconductor converter with a medium-frequency transformer according to the independent claim.
  • multi-core conductors are used because of the high operating frequencies of several kilohertz, which form two or more than two coil windings when winding the transformer core, which are connected in parallel at their terminals.
  • the wires are laid so that they are formed in different layers of a multilayer winding assembly. Due to leakage fluxes decreasing with increasing distance from the transformer core, different voltages are induced in the wires during operation of the transformer leading to different parasitic currents in the turns of the coil arms formed by the wires.
  • the multilayer arrangement of the wires causes the circulating flows caused in the coil branches to be opposite to one another. Since the coil branches are connected at their terminals, this can cause a ring current, which can reach high currents due to the low ohmic resistance of the wires.
  • At least two of the wires connected in parallel with each other via their terminals are transformer-coupled such that a parasitic substream in one of the wires leads to a correspondingly rectified parasitic compensation current in another of the wires.
  • the current components of the branch currents in each of the wires coupled in this way compensate each other and can thus be completely or partially extinguished.
  • the inductive coupling between each two wires may have a toroidal core, through which the various coil branches are led crosswise, so that they extend in mutually opposite directions with respect to the winding direction of the coil branches through the ring core.
  • a toroidal core constitutes a closed circular element made of magnetically conductive material. This may be ring-shaped or have another closed shape.
  • the inductive coupling between each pair of wires may comprise two toroidal cores coupled to each other via a separate crossover conductor ring, with the wires passing through one of the toroidal cores with a portion between one of the terminals and the spool branches and the conductor ring so through the ring cores is guided, that a ring current flowing therein flows through the toroidal cores with respect to the branch currents rectified.
  • the inductive coupling between each two wires may have a toroidal core, wherein a wire of a first of the bobbin branches is guided by the toroidal core at a portion which lies between the part winding and a second of the terminals and through the toroidal core the second wire of a second of the bobbin branches is guided with a portion that lies between the partial winding and a first of the terminals.
  • inductive couplings may be provided between each possible pairing of every two of the coil branches.
  • the multi-core winding is twisted, in particular twisted exactly once.
  • the wires of the multicore winding may be arranged in layers around the transformer core.
  • an inverter in another aspect, includes the above transformer and one or more inverters.
  • the one or more inverters may be configured to operate the transformer at a frequency of between 300 Hz to 30 kHz, in particular between 1 kHz to 20 kHz.
  • Medium frequency transformers are typically used in medium voltage semiconductor converters in the range between 10 kV and 100 kV.
  • One known arrangement of medium frequency transformers is to arrange them between semiconductor inverters.
  • Such semiconductor converters can be used for traction applications or network applications.
  • FIG. 1 For example, a DC / DC converter 1 with a medium-frequency transformer 2 is shown.
  • An input-side DC / AC inverter 3 is provided to convert an input-side DC voltage U DC1 into a first AC intermediate- circuit voltage U AC1 of a predetermined operating frequency.
  • the first alternating- link voltage U AC1 is connected on the primary side to the medium-frequency transformer 2.
  • a second AC intermediate circuit voltage U AC2 is obtained.
  • the second AC link voltage U AC2 is connected to an AC output side DC / DC inverter 4.
  • the predetermined operating frequencies are typically between 1 to 20 kHz.
  • the inverters 3, 4 generate this case from the input-side DC voltage U DC1, the first AC-link voltage U AC1 and from the second AC-link voltage U AC2 the output-side DC voltage U AC2.
  • an AC voltage or, on the output side an AC voltage can be provided on the input side.
  • FIG. 2 is exemplified such a medium-voltage transformer in cross section. It can be seen the transformer core 21, which is wrapped with a multi-core winding conductor 22, so that a first wire 22a is wound an inner layer and forms a first bobbin branch, and a second wire 22b is wound thereon a second layer and forms a second bobbin branch.
  • the coil branches are connected in the same direction to each other at two terminals 23, so that they are connected substantially in parallel. Due to a stray magnetic field, which occurs during operation of the winding frequency transformer and extends through the region of the coil winding, voltages are induced in the coil branches, which can lead to opposing parasitic current flows.
  • the parasitic currents add positively and form a parasitic circuit current, which can reach high currents due to the low ohmic resistance of the coil branches and thereby leads to a non-uniform current distribution in the coil branches. This results in an effective deterioration of the copper fill factor and additional electrical losses, so that the maximum power output of the medium frequency transformer may be reduced by a factor of two or more.
  • FIG. 3 is a schematic representation of the circuit diagram of the medium-frequency transformer 2 with an inductive coupling 5 between two bobbin branches 24a, 24b shown.
  • the inductive coupling 5 is disposed between one of the terminals 23 and the bobbin branches and is designed so that a first parasitic branch current in a first of the bobbin branches 24a leads to a rectified branch current in a second one of the bobbin branches 24b.
  • the parasitic branch current in one of the coil branches is compensated or completely or partially extinguished by the parasitic branch current in another coil branch.
  • a common mode filter can be provided which has a sufficiently high loop inductance to suppress the parasitic branch currents in the loop formed by the coil branches 24a, 24b.
  • no significant inductance of the transformer leakage inductance is added.
  • the inductive coupling 5 is realized by means of a ring core 51, through which the wires 22a, 22b of the different coil branches 24a, 24b are cross-guided so that they extend in mutually opposite directions with respect to the winding direction of the coil branches 24a, 24b through the ring core 51.
  • the inductive coupling 5 ' has two ring cores 52, 53, which via a separate crossover conductor ring 54 are coupled together, so that the effect of the inductive coupling is also achieved.
  • each of the wires 22a, 22b is passed through one of the ring cores 52, 53 with a portion between a terminal 23 and the coil trough.
  • the conductor ring 54 is guided through the ring cores 52, 53 such that a ring current flowing therein flows through the toroidal cores 52, 53 in the same direction with respect to the branch currents.
  • the embodiment of the FIG. 5 also shows an inductive coupling 5 "formed by means of a toroidal core 55.
  • a portion of the first wire 22a of the first winding branch 24a is interposed between the sub-winding and a second of the terminals 23b 55
  • a portion of the second wire 22b of the second bobbin branch 24b is interposed between the sub-winding and a first one of the terminals 23a, whereby the bobbin branches 24a, 24b are also oppositely coupled so that the parasitic branch currents cancel each other out
  • This embodiment has the advantage in that strong bends of the wires 22a, 22b can be avoided, which can represent a considerable facilitation in the production, in particular with high conductor cross-sections.
  • inductive couplings must be provided between each possible pairing of two coil branches in order to effectively compensate for parasitic circulating currents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft Halbleiterumrichter, die einen Mittelfrequenztransformator aufweisen, insbesondere Mittelspannungs-Halbleiterumrichter.The invention relates to semiconductor converters having a medium-frequency transformer, in particular medium-voltage semiconductor converter.

Technischer HintergrundTechnical background

Transformatoren in Mittelspannungsumrichter werden zum Übertragen von hohen Leistungen vorgesehen und müssen auch hohen Isolationsanforderungen genügen. Zur Reduzierung der Baugröße des Transformators werden diese bei relativ hohen Betriebsfrequenzen von mehreren Kilohertz betrieben. Übliche Anwendungen für derartige Umrichter sind beispielsweise Traktionsanwendungen oder Stromnetze, bei denen solche Mittelfrequenztransformatoren mit Leistungen zwischen 100 kW und 1000 kW, bei Spannungen von z.B. 20 kV und mit Transformatorfrequenzen von zwischen 5 kHz und 15 kHz betrieben werden.Transformers in medium voltage converters are designed to transmit high power and must also meet high insulation requirements. To reduce the size of the transformer they are operated at relatively high operating frequencies of several kilohertz. Typical applications for such converters are, for example, traction applications or power grids in which such medium frequency transformers with powers between 100 kW and 1000 kW, at voltages of e.g. 20 kV and with transformer frequencies of between 5 kHz and 15 kHz.

Zwar ist es durch die hohe Betriebsfrequenz des Mittelfrequenztransformators möglich, dessen Größe zu reduzieren, jedoch ist die Baugrößenreduzierung durch die für Mittelspannungsanwendungen geforderten Isolationsabstände und erforderlichen Kühlmaßnahmen begrenzt.Although it is possible by the high operating frequency of the medium-frequency transformer to reduce its size, but the size reduction is limited by the insulation distances required for medium voltage applications and necessary cooling measures.

Aufgrund der hohen Betriebsfrequenz werden in der Regel mehradrige Drähte für die Spulenwicklungen des Mittelfrequenztransformators verwendet, da aufgrund der ansonsten notwendigen hohen Spulenleiterquerschnitte die mechanische Wickelbarkeit erheblich erschwert ist und zudem Stromverdrängungseffekte durch benachbarte Windungen entstehen, die zu hohen Verlusten führen können. Bei Verwendung dieser Spulenwicklung werden die einzelnen Drähte zwischen den Anschlüssen des Transformators parallel geschaltet.Due to the high operating frequency multicore wires are used for the coil windings of the medium-frequency transformer usually because due to the otherwise necessary high coil conductor cross sections, the mechanical windability is considerably more difficult and also Stromverdrängungseffekte caused by adjacent turns, which can lead to high losses. Using this coil winding, the individual wires are connected in parallel between the terminals of the transformer.

Durch die Verwendung von mehradrigen Spulenwicklungen für Mittelfrequenztransformatoren führen jedoch Streufelder außerhalb des Transformatorkerns bzw. Transformatorjochs zu induzierten Spannungen in den Spulenwindungen, die parasitäre Stromflüsse bewirken. Die magnetischen Streufelder verlaufen im Wesentlichen parallel zu der Ausrichtung des Transformatorkerns bzw. -jochs. Aufgrund des unterschiedlichen Abstands der einzelnen Drähte vom Transformatorjoch werden in den Drähten zueinander gegenläufige parasitäre Ströme erzeugt, die aufgrund der Parallelschaltung der durch die Drähte gebildeten Spulenwicklungen zu Ringströmen führen können. Diese Ringströme können zu hohen Strömen im Bereich von mehreren hundert Ampere führen, da die Drähte einen niedrigen Ohm'schen Widerstand aufweisen und die Ringströme nur durch die innere Induktivität des Strompfades der parasitären Ströme begrenzt sind.However, by using multi-core coil windings for medium frequency transformers, stray fields outside the transformer core or transformer yoke result in induced voltages in the coil windings causing parasitic currents. The stray magnetic fields are substantially parallel to the orientation of the transformer core or yoke. Due to the different spacing of the individual wires from the transformer yoke opposite parasitic currents are generated in the wires, which can lead to ring currents due to the parallel connection of the coil windings formed by the wires. These ring currents can lead to high currents in the range of several hundred amperes, since the wires have a low ohmic resistance and the ring currents are limited only by the internal inductance of the current path of the parasitic currents.

Die parasitären Ringströme überlagern den Betriebsstrom durch die Spulenwicklung des Mittelfrequenztransformators, so dass es zu einer unausgeglichenen Stromverteilung innerhalb der Drähte der Spulenwicklung kommt. Wenn die parasitären Ringströme sehr hoch werden, kann einer der Drähte mehr als den gesamten nominalen Strom führen und ein weiterer der Drähte einen entsprechend negativen, d.h. um 180° phasenverschobenen Strom führen. Dadurch ist nicht nur der Kupferfüllfaktor um 50% reduziert, sondern es entstehen zusätzliche Verluste, und die maximale Leistungsabgabe des Mittelfrequenztransformators ist um einen Faktor von zwei oder mehr reduziert.The parasitic ring currents superimpose the operating current through the coil winding of the medium-frequency transformer, resulting in an unbalanced current distribution within the wires of the coil winding. When the parasitic ring currents become very high, one of the wires may carry more than the entire nominal current and another of the wires may carry a correspondingly negative, ie, 180 ° out of phase current. As a result, not only is the copper fill factor reduced by 50%, but additional losses are incurred and the maximum power output of the medium frequency transformer is reduced by a factor of two or more.

Eine herkömmliche Lösung, um diesen Effekt zu kompensieren, besteht darin, die Drähte der Spulenwicklung zu verdrillen, um so das Stromungleichgewicht zu reduzieren. Bei höheren Drahtquerschnitten ist jedoch das Verdrillen von Drähten in der Fertigung schwierig und führt zu einem erhöhten Raumbedarf der verdrillten Drähte, was der beabsichtigten Reduzierung der Baugröße entgegenwirkt. Zusätzlich wird durch das Verdrillen von Drähten bei größeren Querschnittsflächen ein hoher Biegestress auf die Drähte ausgeübt, wodurch diese mechanisch beschädigt werden können und deren elektrische Leitfähigkeit beeinträchtigt werden kann.A conventional solution to compensate for this effect is to twist the wires of the coil winding so as to reduce current imbalance. At higher wire cross-sections, however, twisting wires in manufacturing is difficult and leads to increased space requirements of the twisted wires, counteracting the intended size reduction. In addition, by twisting wires with larger cross-sectional areas, a high bending stress is exerted on the wires, whereby they can be mechanically damaged and their electrical conductivity can be impaired.

Aus der Druckschrift US 2015/114676 A1 ist bekannt, ein Stromverdrängungseffekt durch Verdrillen von Drähten auf eine einfach herzustellende Weise zu reduzieren.From the publication US 2015/114676 A1 It is known to reduce a current displacement effect by twisting wires in a manner that is easy to manufacture.

Aus den Druckschriften US 2003/141829 A1 und US 6,323,602 B1 ist dazu bekannt, Filterspulen vorzusehen, um einen Laststrom auszugleichen.From the pamphlets US 2003/141829 A1 and US 6,323,602 B1 is known to provide filter coils to balance a load current.

Es ist daher Aufgabe der vorliegenden Erfindung, die Entstehung von Ringströmen in Mittelfrequenztransformatoren für Mittelspannungsanwendungen zu reduzieren und die oben genannten Probleme, die sich aus dem Verdrillen von Drähten höherer Querschnittsfläche ergeben können, zu vermeiden.It is therefore an object of the present invention to reduce the generation of ring currents in medium frequency transformers for medium voltage applications and to avoid the above problems which may arise from the twisting of wires of higher cross sectional area.

Offenbarung der ErfindungDisclosure of the invention

Die obige Aufgabe wird durch den Mittelfrequenztransformator gemäß Anspruch 1 sowie durch den Halbleiterumrichter mit einem Mittelfrequenztransformator gemäß dem nebengeordneten Anspruch gelöst.The above object is achieved by the medium-frequency transformer according to claim 1 and by the semiconductor converter with a medium-frequency transformer according to the independent claim.

Weitere Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.Further embodiments are specified in the dependent claims.

Gemäß einem ersten Aspekt ist ein Transformator, insbesondere Mittelfrequenztransformator, zur Verwendung in einem Umrichter vorgesehen, umfassend:

  • einen Transformatorkern,
  • eine mehradrige Wicklung mit mehreren Drähten, die um den Transformatorkern gewickelt sind, wobei jeder der Drähte einen Spulenzweig bildet;
  • Anschlüsse, an denen jeweils die entsprechenden Enden der Drähte miteinander elektrisch verbunden sind;
  • eine induktive Kopplung, um die Spulenzweige paarweise miteinander so induktiv zu koppeln, dass sich parasitäre Zweigströme in den Spulenzweigen kompensieren.
According to a first aspect, a transformer, in particular medium-frequency transformer, is provided for use in an inverter, comprising:
  • a transformer core,
  • a multi-conductor winding having a plurality of wires wound around the transformer core, each of the wires forming a bobbin branch;
  • Terminals at each of which the respective ends of the wires are electrically connected to each other;
  • an inductive coupling to couples the coil branches in pairs so inductively that compensate parasitic branch currents in the coil branches.

Bei Mittelfrequenztransformatoren für die Verwendung in Umrichtern werden aufgrund der hohen Betriebsfrequenzen von mehreren Kilohertz mehradrige Leiter verwendet, die beim Bewickeln des Transformatorkerns zwei oder mehr als zwei Spulenwicklungen bilden, die an ihren Anschlüssen parallel geschaltet sind. In der Regel werden die Drähte so gelegt, dass diese in verschiedenen Lagen einer mehrlagigen Wicklungsanordnung ausgebildet sind. Aufgrund von Streuflüssen, die mit zunehmendem Abstand von dem Transformatorkern abnehmen, werden im Betrieb des Transformators unterschiedliche Spannungen in den Drähten induziert, die zu unterschiedlichen parasitären Strömen in den Windungen der durch die Drähte gebildeten Spulenzweige führen. Durch mehrlagige Anordnung der Drähte kommt es dazu, dass die in den Spulenzweigen bewirkten umlaufenden Ströme zueinander entgegengesetzt sind. Da die Spulenzweige an ihren Anschlüssen verbunden sind, kann dadurch ein Ringstrom entstehen, der aufgrund des geringen Ohm'schen Widerstandes der Drähte hohe Stromstärken erreichen kann.In medium-frequency transformers for use in converters, multi-core conductors are used because of the high operating frequencies of several kilohertz, which form two or more than two coil windings when winding the transformer core, which are connected in parallel at their terminals. In general, the wires are laid so that they are formed in different layers of a multilayer winding assembly. Due to leakage fluxes decreasing with increasing distance from the transformer core, different voltages are induced in the wires during operation of the transformer leading to different parasitic currents in the turns of the coil arms formed by the wires. The multilayer arrangement of the wires causes the circulating flows caused in the coil branches to be opposite to one another. Since the coil branches are connected at their terminals, this can cause a ring current, which can reach high currents due to the low ohmic resistance of the wires.

Bei dem obigen Mittelfrequenztransformator werden mindestens zwei der über ihre Anschlüsse parallel miteinander verbundenen Drähte transformatorisch gekoppelt, so dass ein parasitärer Teilstrom in einem der Drähte zu einem entsprechend gleichgerichteten parasitären Kompensationsstrom in einem anderen der Drähte führt. Dadurch kompensieren sich die Stromkomponenten der Zweigströme in jedem der so gekoppelten Drähte gegenseitig und können sich so ganz oder teilweise auslöschen.In the above medium frequency transformer, at least two of the wires connected in parallel with each other via their terminals are transformer-coupled such that a parasitic substream in one of the wires leads to a correspondingly rectified parasitic compensation current in another of the wires. As a result, the current components of the branch currents in each of the wires coupled in this way compensate each other and can thus be completely or partially extinguished.

Auf diese Weise ist es möglich, eine induktive Kopplung der Drähte von Teilwicklungen eines Transformators zum gegenseitigen Kompensieren der darin fließenden parasitären Stromflüsse zu erreichen, ohne dass ein Verdrillen der Drähte oder sonstige Maßnahmen innerhalb der Spulenzweige notwendig ist. Dadurch kann der Bauraum in dem Transformator auch bei Spulenwicklungen mit Drähten größerer Querschnitte optimal ausgenutzt werden und die Wicklungsverluste erheblich reduziert werden. Weiterhin kann die geringe Streuinduktivität der induktiven, als Gleichtaktfilter wirkenden induktiven Kopplung verwendet werden, um die Streuinduktivität des Transformators abzustimmen. Insbesondere wird der Transformator-Streuinduktivität keine erhebliche Induktivität hinzugefügt.In this way it is possible to achieve an inductive coupling of the wires of partial windings of a transformer for mutual compensation of the parasitic current flows flowing therein, without twisting the wires or otherwise Measures within the coil branches is necessary. As a result, the space in the transformer can be optimally utilized even with coil windings with wires of larger cross-sections and the winding losses are significantly reduced. Furthermore, the low leakage inductance of the inductive coupling acting as common mode filter can be used to tune the stray inductance of the transformer. In particular, no significant inductance is added to the transformer leakage inductance.

Weiterhin kann die induktive Kopplung zwischen jeweils zwei Drähten einen Ringkern aufweisen, durch den die verschiedenen Spulenzweige über Kreuz geführt werden, so dass diese bezüglich der Wicklungsrichtung der Spulenzweige durch den Ringkern in zueinander entgegengesetzten Richtungen verlaufen. Ein Ringkern stellt ein geschlossenes Kreiselement aus magnetisch leitfähigem Material dar. Dieses kann ringförmig ausgebildet sein oder eine sonstige geschlossene Form aufweisen.Furthermore, the inductive coupling between each two wires may have a toroidal core, through which the various coil branches are led crosswise, so that they extend in mutually opposite directions with respect to the winding direction of the coil branches through the ring core. A toroidal core constitutes a closed circular element made of magnetically conductive material. This may be ring-shaped or have another closed shape.

Gemäß einer Ausführungsform kann die induktive Kopplung zwischen jeweils zwei Drähten zwei Ringkerne aufweisen, die über einen separaten über Kreuz geführten Leiterring miteinander gekoppelt sind, wobei der Drähte mit einem Abschnitt zwischen einem der Anschlüsse und den Spulenzweigen durch einen der Ringkerne geführt und der Leiterring so durch die Ringkerne geführt wird, dass ein darin fließender Ringstrom die Ringkerne bezüglich der Zweigströme gleichgerichtet durchfließt.According to one embodiment, the inductive coupling between each pair of wires may comprise two toroidal cores coupled to each other via a separate crossover conductor ring, with the wires passing through one of the toroidal cores with a portion between one of the terminals and the spool branches and the conductor ring so through the ring cores is guided, that a ring current flowing therein flows through the toroidal cores with respect to the branch currents rectified.

Weiterhin kann die induktive Kopplung zwischen jeweils zwei Drähten einen Ringkern aufweisen, wobei durch den Ringkern ein Draht eines ersten der Spulenzweige an einem Abschnitt geführt wird, der zwischen der Teilwicklung und einem zweiten der Anschlüsse liegt und durch den Ringkern der zweite Draht eines zweiten der Spulenzweige mit einem Abschnitt geführt wird, der zwischen der Teilwicklung und einem ersten der Anschlüsse liegt.Furthermore, the inductive coupling between each two wires may have a toroidal core, wherein a wire of a first of the bobbin branches is guided by the toroidal core at a portion which lies between the part winding and a second of the terminals and through the toroidal core the second wire of a second of the bobbin branches is guided with a portion that lies between the partial winding and a first of the terminals.

Gemäß einer Ausführungsform können bei mehr als zwei Drähten zum Realisieren von mehr als zwei Teilwicklungen induktive Kopplungen zwischen jeder möglichen Paarung von jeweils zwei der Spulenzweige vorgesehen sein.According to one embodiment, with more than two wires for realizing more than two partial windings, inductive couplings may be provided between each possible pairing of every two of the coil branches.

Es kann vorgesehen sein, dass die mehradrige Wicklung verdrillt ist, insbesondere genau einmal verdrillt ist.It can be provided that the multi-core winding is twisted, in particular twisted exactly once.

Gemäß einer Ausführungsform können die Drähte der mehradrigen Wicklung in Lagen um den Transformatorkern angeordnet sein.According to one embodiment, the wires of the multicore winding may be arranged in layers around the transformer core.

Gemäß einem weiteren Aspekt ist ein Umrichter vorgesehen, der den obigen Transformator und einen oder mehreren Wechselrichter umfasst.In another aspect, an inverter is provided that includes the above transformer and one or more inverters.

Weiterhin können der eine oder die mehreren Wechselrichter so ausgebildet sein, um den Transformator mit einer Frequenz von zwischen 300Hz bis 30kHz, insbesondere zwischen 1 kHz bis 20 kHz zu betreiben.Furthermore, the one or more inverters may be configured to operate the transformer at a frequency of between 300 Hz to 30 kHz, in particular between 1 kHz to 20 kHz.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Ausführungsformen werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung eines Mittelspannungsumrichters mit einem Mittelfrequenztransformator;
Figur2
eine schematische Querschnittsdarstellung einer zweiadrigen Spulenwicklung eines Mittelfrequenztransformators;
Figur 3
ein Schaltbild eines Mittelspannungstransformators mit einer ersten Variante einer induktiven Kopplung der Spulenzweige; und
Figur 4
ein Schaltbild eines Mittelspannungstransformators mit einer weiteren Variante einer induktiven Kopplung der Spulenzweige.
Figur 5
ein Schaltbild eines Mittelspannungstransformators mit einer weiteren Variante einer induktiven Kopplung der Spulenzweige.
Embodiments are explained below with reference to the accompanying drawings. Show it:
FIG. 1
a schematic representation of a medium-voltage converter with a medium-frequency transformer;
Figur2
a schematic cross-sectional view of a two-wire coil winding of a medium-frequency transformer;
FIG. 3
a circuit diagram of a medium-voltage transformer with a first variant of an inductive coupling of the bobbin branches; and
FIG. 4
a circuit diagram of a medium-voltage transformer with a further variant of an inductive coupling of the bobbin branches.
FIG. 5
a circuit diagram of a medium-voltage transformer with a further variant of an inductive coupling of the bobbin branches.

Beschreibung von AusführungsformenDescription of embodiments

Mittelfrequenztransformatoren werden in der Regel in Halbleiterumrichtern für Mittelspannungen in Bereichen zwischen 10 kV und 100 kV verwendet. Eine bekannte Anordnungsweise von Mittelfrequenztransformatoren besteht darin, diese zwischen Halbleiterwechselrichtern anzuordnen. Derartige Halbleiterumrichter können werden für Traktionsanwendungen oder Netzanwendungen verwendet werden.Medium frequency transformers are typically used in medium voltage semiconductor converters in the range between 10 kV and 100 kV. One known arrangement of medium frequency transformers is to arrange them between semiconductor inverters. Such semiconductor converters can be used for traction applications or network applications.

In Figur 1 ist exemplarisch ein DC/DC-Umrichter 1 mit einem Mittelfrequenztransformator 2 gezeigt. Ein eingangsseitiger DC/AC-Wechselrichter 3 ist vorgesehen, um eine eingangsseitige Gleichspannung UDC1 in eine erste Wechsel-Zwischenkreisspannung UAC1 einer vorgegebenen Betriebsfrequenz zu wandeln. Die erste Wechsel-Zwischenkreisspannung UAC1 wird primärseitig mit dem Mittelfrequenztransformator 2 verbunden. Sekundärseitig wird eine zweite Wechsel-Zwischenkreisspannung UAC2 erhalten. Die zweite Wechsel-Zwischenkreisspannung UAC2 wird mit einem ausgangsseitigen AC/DC-Wechselrichter 4 verbunden. Die vorgegebenen Betriebsfrequenzen liegen typischerweise zwischen 1 bis 20 kHz. Die Wechselrichter 3, 4 generieren dabei aus der eingangsseitigen Gleichspannung UDC1 die erste Wechsel-Zwischenkreisspannung UAC1 und aus der zweiten Wechsel-Zwischenkreisspannung UAC2 die ausgangsseitige Gleichspannung UAC2. Anstelle der eingangsseitigen Gleichspannung UDC1 und/oder der ausgangsseitigen Gleichspannung UDC2 können eingangsseitig auch eine Wechselspannung bzw. ausgangsseitig eine Wechselspannung zur Verfügung gestellt werden.In FIG. 1 For example, a DC / DC converter 1 with a medium-frequency transformer 2 is shown. An input-side DC / AC inverter 3 is provided to convert an input-side DC voltage U DC1 into a first AC intermediate- circuit voltage U AC1 of a predetermined operating frequency. The first alternating- link voltage U AC1 is connected on the primary side to the medium-frequency transformer 2. On the secondary side, a second AC intermediate circuit voltage U AC2 is obtained. The second AC link voltage U AC2 is connected to an AC output side DC / DC inverter 4. The predetermined operating frequencies are typically between 1 to 20 kHz. The inverters 3, 4 generate this case from the input-side DC voltage U DC1, the first AC-link voltage U AC1 and from the second AC-link voltage U AC2 the output-side DC voltage U AC2. Instead of the input-side DC voltage U DC1 and / or the output-side DC voltage U DC2 , an AC voltage or, on the output side, an AC voltage can be provided on the input side.

In Figur 2 ist beispielhaft ein solcher Mittelspannungstransformator im Querschnitt dargestellt. Man erkennt den Transformatorkern 21, der mit einem mehradrigen Wicklungsleiter 22 umwickelt ist, so dass ein erster Draht 22a eine innere Lage gewickelt ist und einen ersten Spulenzweig bildet, und ein zweiter Draht 22b eine darauf liegende zweite Lage gewickelt ist und einen zweiten Spulenzweig bildet. Die Spulenzweige sind an zwei Anschlüssen 23 miteinander gleichsinnig verbunden, so dass diese im Wesentlichen parallel geschaltet sind. Durch ein magnetisches Streufeld, das beim Betrieb des Wickelfrequenztransformators auftritt und durch den Bereich der Spulenwicklung verläuft, werden in den Spulenzweigen Spannungen induziert, die zueinander gegenläufigen parasitären Stromflüssen führen können. Da die Spulenzweige an ihren Anschlüssen miteinander verbunden sind, addieren sich die parasitären Ströme positiv und bilden einen parasitären Kreisstrom, der aufgrund des niedrigen Ohm'schen Widerstands der Spulenzweige hohe Stromstärken erreichen kann und dadurch zu einer ungleichförmigen Stromverteilung in den Spulenzweigen führt. Dies führt zu einer effektiven Verschlechterung des Kupferfüllfaktors und zu zusätzlichen elektrischen Verlusten, so dass unter Umständen die maximale Leistungsabgabe des Mittelfrequenztransformators um einen Faktor von zwei oder mehr reduziert sein kann.In FIG. 2 is exemplified such a medium-voltage transformer in cross section. It can be seen the transformer core 21, which is wrapped with a multi-core winding conductor 22, so that a first wire 22a is wound an inner layer and forms a first bobbin branch, and a second wire 22b is wound thereon a second layer and forms a second bobbin branch. The coil branches are connected in the same direction to each other at two terminals 23, so that they are connected substantially in parallel. Due to a stray magnetic field, which occurs during operation of the winding frequency transformer and extends through the region of the coil winding, voltages are induced in the coil branches, which can lead to opposing parasitic current flows. Since the coil branches are connected at their terminals, the parasitic currents add positively and form a parasitic circuit current, which can reach high currents due to the low ohmic resistance of the coil branches and thereby leads to a non-uniform current distribution in the coil branches. This results in an effective deterioration of the copper fill factor and additional electrical losses, so that the maximum power output of the medium frequency transformer may be reduced by a factor of two or more.

In Figur 3 ist eine schematische Darstellung des Schaltbildes des Mittelfrequenztransformators 2 mit einer induktiven Kopplung 5 zwischen zwei Spulenzweigen 24a, 24b gezeigt. Die induktive Kopplung 5 ist zwischen einem der Anschlüsse 23 und den Spulenzweigen angeordnet und ist so ausgelegt, dass ein erster parasitärer Zweigstrom in einem ersten der Spulenzweige 24a zu einem gleichgerichteten Zweigstrom in einem zweiten der Spulenzweige 24b führt. Dadurch wird der parasitäre Zweigstrom in einer der Spulenzweige durch den parasitären Zweigstrom in einer anderen Spulenzweigen kompensiert bzw. ganz oder teilweise ausgelöscht. Auf diese Weise kann ein Gleichtaktfilter geschaffen werden, der eine ausreichend hohe Schleifeninduktivität aufweist, um die parasitären Zweigströme in der durch die Spulenzweigen 24a, 24b gebildeten Schleife zu unterdrücken. Weiterhin wird jedoch keine erhebliche Induktivität der Transformator-Streuinduktivität hinzugefügt.In FIG. 3 is a schematic representation of the circuit diagram of the medium-frequency transformer 2 with an inductive coupling 5 between two bobbin branches 24a, 24b shown. The inductive coupling 5 is disposed between one of the terminals 23 and the bobbin branches and is designed so that a first parasitic branch current in a first of the bobbin branches 24a leads to a rectified branch current in a second one of the bobbin branches 24b. As a result, the parasitic branch current in one of the coil branches is compensated or completely or partially extinguished by the parasitic branch current in another coil branch. In this way, a common mode filter can be provided which has a sufficiently high loop inductance to suppress the parasitic branch currents in the loop formed by the coil branches 24a, 24b. Furthermore, however, no significant inductance of the transformer leakage inductance is added.

In Figur 3 ist die induktive Kopplung 5 mithilfe eines Ringkerns 51 realisiert, durch den die Drähte 22a, 22b der verschiedenen Spulenzweige 24a, 24b über Kreuz geführt werden, so dass diese bezüglich der Wicklungsrichtung der Spulenzweige 24a, 24b durch den Ringkern 51 in zueinander entgegengesetzten Richtungen verlaufen.In FIG. 3 the inductive coupling 5 is realized by means of a ring core 51, through which the wires 22a, 22b of the different coil branches 24a, 24b are cross-guided so that they extend in mutually opposite directions with respect to the winding direction of the coil branches 24a, 24b through the ring core 51.

In der Darstellung der Figur 4 ist eine weitere Möglichkeit einer induktiven Kopplung 5' gezeigt. Die induktive Kopplung 5' weist zwei Ringkerne 52, 53 auf, die über einen separaten über Kreuz geführten Leiterring 54 miteinander gekoppelt sind, so dass der Effekt der induktiven Kopplung ebenfalls erreicht wird. Insbesondere wird jeder der Drähte 22a, 22b mit einem Abschnitt zwischen einem Anschluss 23 und den Spulenzweigendurch einen der Ringkerne 52, 53 geführt. Weiterhin wird der Leiterring 54 so durch die Ringkerne 52, 53 geführt, dass ein darin fließender Ringstrom die Ringkerne 52, 53 bezüglich der Zweigströme gleichgerichtet durchfließt.In the presentation of the FIG. 4 a further possibility of an inductive coupling 5 'is shown. The inductive coupling 5 'has two ring cores 52, 53, which via a separate crossover conductor ring 54 are coupled together, so that the effect of the inductive coupling is also achieved. Specifically, each of the wires 22a, 22b is passed through one of the ring cores 52, 53 with a portion between a terminal 23 and the coil trough. Furthermore, the conductor ring 54 is guided through the ring cores 52, 53 such that a ring current flowing therein flows through the toroidal cores 52, 53 in the same direction with respect to the branch currents.

Die Ausführungsform der Figur 5 zeigt ebenfalls eine induktive Kopplung 5", die mithilfe eines Ringkerns 55 ausgebildet ist. Durch den Ringkern 55 wird ein Abschnitt des ersten Drahts 22a des ersten Spulenzweiges 24a geführt, der zwischen der Teilwicklung und einem zweiten der Anschlüsse 23b liegt. Analog wird durch denselben Ringkern 55 ein Abschnitt des zweiten Drahts 22b des zweiten Spulenzweiges 24b geführt, der zwischen der Teilwicklung und einem ersten der Anschlüsse 23a liegt. Dadurch sind die Spulenzweige 24a, 24b ebenfalls gegenläufig gekoppelt, so dass die parasitären Zweigströme sich gegenseitig kompensieren. Diese Ausführungsvariante hat den Vorteil, dass starke Biegungen der Drähte 22a, 22b vermieden werden können, was insbesondere bei hohen Leiterquerschnitten eine erhebliche Erleichterung bei der Fertigung darstellen kann.The embodiment of the FIG. 5 also shows an inductive coupling 5 "formed by means of a toroidal core 55. Through the toroidal core 55, a portion of the first wire 22a of the first winding branch 24a is interposed between the sub-winding and a second of the terminals 23b 55, a portion of the second wire 22b of the second bobbin branch 24b is interposed between the sub-winding and a first one of the terminals 23a, whereby the bobbin branches 24a, 24b are also oppositely coupled so that the parasitic branch currents cancel each other out This embodiment has the advantage in that strong bends of the wires 22a, 22b can be avoided, which can represent a considerable facilitation in the production, in particular with high conductor cross-sections.

Sind mehr als zwei Drähte zum Realisieren von mehr als zwei Spulenzweigen vorgesehen, so sind induktive Kopplungen zwischen jeder möglichen Paarung von jeweils zwei Spulenzweigen vorzusehen, um parasitäre Kreisströme effektiv zu kompensieren. If more than two wires are provided for realizing more than two coil branches, then inductive couplings must be provided between each possible pairing of two coil branches in order to effectively compensate for parasitic circulating currents.

Claims (10)

  1. Transformer (2), specifically a medium-frequency transformer, for use in a converter (1), comprising:
    - a transformer core (21),
    - a multicore winding (22) with a plurality of filaments (22a, 22b) which are wound around the transformer core (21), wherein each of the filaments (22a, 22b) forms a coil branch (24a, 24b);
    - terminals (23), on which the corresponding ends of the filaments (22a, 22b) are electrically interconnected;
    - an inductive coupling (5), for the inductive coupling of the coil branches (24a, 24b) in pairs, such that stray branch-circuit currents in the coil branches (24a, 24b) are compensated.
  2. Transformer (2) according to Claim 1, wherein the inductive coupling (5) between two respective filaments (22a, 22b) is provided with an annular core (51), through which the various coil branches (24a, 24b) are fed crosswise such that, in respect of the winding direction of the coil branches (24a, 24b), these are routed through the annular core (51) in mutually opposing directions.
  3. Transformer (2) according to Claim 1, wherein the inductive coupling (5) between two respective filaments (22a, 22b) is provided with two annular cores (52, 53), which are interconnected by means of a separate and crosswise conductor ring (54), whereby one section of the filaments (22a, 22b) is routed between one of the terminals (23) and the coil branches (24a, 24b) through one of the annular cores (52, 53), and the conductor ring (54) is routed through the annular cores (52, 53) such that the ring current flowing in the annular cores (52, 53) is oriented in the same direction, in respect of the branch-circuit currents.
  4. Transformer (2) according to Claim 1, wherein the inductive coupling (5) between two respective filaments (22a, 22b) is provided with an annular core (55), wherein a filament (22a) of a first coil branch (24a) is routed through the annular core (55) at a section which lies between the part-winding and a second terminal (23b), and a second filament (22b) of a second coil branch (24b) is routed through the annular core (55) with a section which lies between the part-winding and a first terminal (23a).
  5. Transformer (2) according to one of Claims 1 to 4 wherein, if more than two filaments form more than two part-windings, inductive couplings (5) are provided between each potential pairing of any two of the coil branches (24a, 24b).
  6. Transformer (2) according to Claims 1 to 5, wherein the multicore winding is twisted and, more specifically, is twisted exactly once.
  7. Transformer (2) according to Claims 1 to 6, wherein the filaments of the multicore winding are arranged in layers around the transformer core (21).
  8. Converter (1) with a transformer (2) according to one of Claims 1 to 7 and with one or more inverters (3, 4).
  9. Converter (1) according to Claim 8, wherein the one or more inverters (3, 4) is designed for the operation of the transformer (2) at a frequency between 300 Hz and 30 kHz, and specifically between 1 kHz and 20 kHz.
  10. Converter (1) according to Claim 8 or 9, wherein the one or more inverters (3, 4) is designed for the operation of the transformer (2) at a frequency between 50 Hz and 60 kHz.
EP15183787.9A 2015-09-04 2015-09-04 Medium frequency transformer and semiconductor converter with a medium frequency transformer Active EP3139392B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15183787.9A EP3139392B1 (en) 2015-09-04 2015-09-04 Medium frequency transformer and semiconductor converter with a medium frequency transformer
ES15183787T ES2710678T3 (en) 2015-09-04 2015-09-04 Medium frequency transformer and semiconductor frequency inverter with a medium frequency transformer
CN201610801793.6A CN106504869B (en) 2015-09-04 2016-09-05 Intermediate frequency transformer and semiconductor converter with intermediate frequency transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15183787.9A EP3139392B1 (en) 2015-09-04 2015-09-04 Medium frequency transformer and semiconductor converter with a medium frequency transformer

Publications (2)

Publication Number Publication Date
EP3139392A1 EP3139392A1 (en) 2017-03-08
EP3139392B1 true EP3139392B1 (en) 2018-11-14

Family

ID=54064196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15183787.9A Active EP3139392B1 (en) 2015-09-04 2015-09-04 Medium frequency transformer and semiconductor converter with a medium frequency transformer

Country Status (3)

Country Link
EP (1) EP3139392B1 (en)
CN (1) CN106504869B (en)
ES (1) ES2710678T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712912B1 (en) 2017-12-27 2023-11-22 Huawei Technologies Co., Ltd. Oscillator system comprising a transformer
EP3767653B1 (en) * 2019-07-16 2023-01-11 ABB Schweiz AG Transformer assembly with medium frequency transformers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539619A (en) * 1999-03-09 2002-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Circuit device
US20030141829A1 (en) 2002-01-31 2003-07-31 Shan-Ho Yu Current equalizer assembly for LCD backlight panel
US20150114676A1 (en) 2013-10-31 2015-04-30 Alstom Technology Ltd. Conductor bar with multi-strand conductor element
CN204066995U (en) * 2014-09-02 2014-12-31 群光电能科技股份有限公司 Transformer
CN104409202B (en) * 2014-12-15 2017-01-04 温州大学 Tightly-coupled LLC resonant transformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106504869A (en) 2017-03-15
CN106504869B (en) 2020-11-24
ES2710678T3 (en) 2019-04-26
EP3139392A1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
DE4344459A1 (en) Insulated electrical conductors and coil assemblies using these conductors
DE112010005649T5 (en) Isolation transformer and power source
EP3139392B1 (en) Medium frequency transformer and semiconductor converter with a medium frequency transformer
EP3785345B1 (en) Power-electronic device comprising a transformer unit and method
EP2362514B1 (en) Device for reducing earth leakage current
EP1529296B1 (en) Winding arrangement
CN104521129B (en) Inverter in parallel on choke
EP2863403B1 (en) Transformer
DE2018981C3 (en) Multi-phase generator
DE102013111433A1 (en) Planar balanced coil for integrated RF circuits
EP3751692B1 (en) High voltage direct current power transmission station
WO2009138099A1 (en) Coupling of transformer winding modules
CH389768A (en) Cylindrical winding for transformers made of several parallel-connected and radially wound one above the other and crossed out conductors
WO2012079861A1 (en) Device for the inductive transmission of electrical energy
EP1183696B1 (en) Capacitively controlled high-voltage winding
EP0253298B1 (en) High-capacity transformer
EP4089696A1 (en) Electric coil arranged in an alternating electromagnetic field for generating electricity for own use
EP3420570B1 (en) Electrical high-voltage device with a regulating winding group
DE2653591A1 (en) HIGH PERFORMANCE TRANSFORMER FOR ULTRA HIGH VOLTAGE
DE102020214444A1 (en) Transformer, electrical circuitry and magnetic resonance imaging equipment
DE617351C (en) Arrangement on high-voltage long-distance lines, which consist of several interconnected lines (single or multi-phase lines) to increase operational safety and to create an operating reserve
WO2018215531A1 (en) Inductive energy transmission system
DE642507C (en) Double-line telecommunication cables with parallel wires, pairs or fours, etc. and crossings in a straight step
AT406204B (en) Transformer
DE934842C (en) Composable primary winding for current transformer consisting of full copper conductors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170907

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180320

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1065824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006845

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2710678

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006845

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190904

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150904

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1065824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 9

Ref country code: CH

Payment date: 20231001

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240925

Year of fee payment: 10