EP3135551A1 - Vorrichtung und verfahren zur steuerung eines fahrzeugs mit einem motor - Google Patents
Vorrichtung und verfahren zur steuerung eines fahrzeugs mit einem motor Download PDFInfo
- Publication number
- EP3135551A1 EP3135551A1 EP15196255.2A EP15196255A EP3135551A1 EP 3135551 A1 EP3135551 A1 EP 3135551A1 EP 15196255 A EP15196255 A EP 15196255A EP 3135551 A1 EP3135551 A1 EP 3135551A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- speed
- regeneration torque
- coast regeneration
- controller
- driving wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 26
- 230000008929 regeneration Effects 0.000 claims abstract description 167
- 238000011069 regeneration method Methods 0.000 claims abstract description 167
- 230000001172 regenerating effect Effects 0.000 claims abstract description 6
- 230000001133 acceleration Effects 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/15—Control strategies specially adapted for achieving a particular effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/18—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
- B60T8/1761—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
- B60T8/17616—Microprocessor-based systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18172—Preventing, or responsive to skidding of wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/64—Road conditions
- B60L2240/647—Surface situation of road, e.g. type of paving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/60—Navigation input
- B60L2240/66—Ambient conditions
- B60L2240/662—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/24—Coasting mode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2240/00—Monitoring, detecting wheel/tire behaviour; counteracting thereof
- B60T2240/06—Wheel load; Wheel lift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/60—Regenerative braking
- B60T2270/602—ABS features related thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/18—Braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/246—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/26—Wheel slip
- B60W2520/263—Slip values between front and rear axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/12—Brake pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/05—Type of road, e.g. motorways, local streets, paved or unpaved roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/40—Coefficient of friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/20—Ambient conditions, e.g. wind or rain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
- B60W2710/085—Torque change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
- B60W2710/182—Brake pressure, e.g. of fluid or between pad and disc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/89—Repartition of braking force, e.g. friction braking versus regenerative braking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/905—Combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/906—Motor or generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/907—Electricity storage, e.g. battery, capacitor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/93—Conjoint control of different elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/947—Characterized by control of braking, e.g. blending of regeneration, friction braking
Definitions
- the present invention relates to an apparatus and a method for controlling a vehicle having a motor, and more particularly, to an apparatus and a method for controlling a vehicle having a motor capable of preventing the vehicle from rattling when an antilock brake system (ABS) is operated during regenerative braking.
- ABS antilock brake system
- an electric vehicle is a type of vehicle which may be driven using a power supply of a battery and may include a pure electric vehicle driven using the power supply of the battery and a hybrid electric vehicle using both of a traditional internal combustion engine and the power supply of the battery.
- the pure electric vehicle is driven by power of a driving motor operated by the power supply of the battery and the hybrid electric vehicle is driven by an efficient combination of the power of the internal combustion engine and the power of the driving motor.
- the hybrid electric vehicle is driven by the power of the motor and the engine and includes a starter and generator configured to start an engine or generate electricity by an output of the engine.
- the motor and/or the starter and generator are operated as a generator to recover inertial energy upon coasting which drives the vehicle by inertia.
- the motor is operated as the generator to recover inertial energy, the braking of the corresponding vehicle is required.
- the inertial energy may be recovered as power generation power by setting a coasting torque (e.g., torque in an opposite direction to a driving direction or coast regeneration torque) based on a vehicle speed in the motor upon the coasting.
- a coasting torque e.g., torque in an opposite direction to a driving direction or coast regeneration torque
- the braking is required.
- a braking hydraulic pressure is applied to a wheel by an operation of a brake pedal, to perform the braking.
- ABS antilock brake system
- the ABS includes hydraulic pressure control apparatuses such as a plurality of solenoid valves, an accumulator, and a hydraulic pressure pump configured to adjust the braking hydraulic pressure transferred to each hydraulic pressure brake side and an electric controller (ECU) configured to operate the various electric/electronic components.
- the ABS is configured to reduce, maintain, or increase the braking hydraulic pressure by sensing a slip of a wheel occurring due to rapid braking of the vehicle or a brake operation on a slide surface, thereby securing an appropriate cornering force and stopping the vehicle at a shortest distance while maintaining steering stability.
- the ABS apparatus has been used even in the electric vehicle using the motor as the driving source or the hybrid vehicle using the motor and the engine as the driving source.
- the latest trend is to greatly set the coast regeneration torque to increase an energy recovery rate when the vehicle is coasting.
- the slip may occur in the driving wheel due to the coast regeneration torque.
- the driving stability of the vehicle may deteriorate due to the slip.
- the coast regeneration torque is set to be "0".
- the control method may cause the coast regeneration torque to be repeatedly applied or may not be applied. Therefore, rattling of the vehicle may occur.
- the present invention provides an apparatus and a method for controlling a vehicle having a motor capable of preventing the vehicle from rattling based on whether a coast regeneration torque is applied, when the vehicle is driving on a road having a minimal friction coefficient.
- An exemplary embodiment of the present invention provides an apparatus for controlling a vehicle having a motor that may include: a driving information sensing unit configured to sense driving information of the vehicle including an open value of an accelerator position sensor (APS), an open value of a brake position sensor (BPS), a speed of a driving wheel, a speed of a non-driving wheel, external temperature, battery temperature, a vehicle speed, and a shift stage; a driving motor configured to generate a driving force and operated as a power generator when the vehicle is coasting to generate electric energy; an ABS configured to adjust a braking force applied to a driving wheel; and a controller configured to adjust a coast regeneration torque subject to regenerative braking by the driving motor when the vehicle is coasting, based on a difference between a speed of a driving wheel and a speed of a non-driving wheel sensed by the driving information sensing unit, correction temperature determined based on the external temperature and the battery temperature, a friction coefficient of a road, and an operation condition of the ABS.
- APS accelerator position
- the controller may be configured to reduce the coast regeneration torque more than a targeted coast regeneration torque determined by the vehicle speed and the shift stage, based on the speed difference, when the difference between the speed of the driving wheel and the speed of the non-driving wheel is greater than a set speed.
- the controller may be configured to increase the coast regeneration torque to have a first slope up to a first coast regeneration torque set based on the correction temperature when a wheel slip is reduced after the operation of the ABS and thus the ABS is not operated.
- the controller may be configured to increase the coast regeneration torque to have a slope less than the first slope up to the targeted coast regeneration torque determined by the current vehicle speed and the shift stage when the coast regeneration torque reaches the first coast regeneration torque and may be configured to calculate a friction coefficient of a road.
- the controller may further be configured to calculate the friction coefficient of the road from a load applied to a front wheel, a dynamic radius of a tire, and the cost regeneration torque.
- the friction coefficient of the road may be calculated by an equation of coast regeneration torque / (load applied to front wheel * dynamic radius of tire).
- the controller may be stored with a friction coefficient map based on the friction coefficient of the road and a wheel slip ratio which is the difference between the speed of the driving wheel and the speed of the non-driving wheel and the controller may be configured to calculate the friction coefficient of the road based on the speed of the driving wheel and the speed of the non-driving wheel sensed by the driving information sensing unit.
- the controller may be configured to increase the coast regeneration torque to have a second slope up to a second coast regeneration torque set based on the friction coefficient of the road.
- the controller may further be configured to increase the coast regeneration torque to have a slope less than the second slope up to the targeted coast regeneration torque determined by a current vehicle speed and the shift stage when the coast regeneration torque reaches the second coast regeneration torque.
- the controller may be configured to set the coast regeneration torque to be "0" when the ABS is operated.
- Another exemplary embodiment of the present invention provides a method for controlling a vehicle having a motor that may include: sensing driving information of the vehicle including an open value of an APS, an open value of a BPS, a speed of a driving wheel, a speed of a non-driving wheel, external temperature, battery temperature, a vehicle speed, and a shift stage; determining whether the vehicle is in a coasting state based on the driving information of the vehicle; calculating a difference between a speed of a driving wheel and a speed of a non-driving wheel; and changing the coast regeneration torque based on the speed difference when the speed difference is greater than a set speed.
- the coast regeneration torque may be reduced more than a targeted coast regeneration torque determined by the vehicle speed and the shift stage, based on the speed difference.
- the method may further include: determining whether an ABS is operated; and setting the coast regeneration torque to be "0" when the ABS is operated. Additionally, method may include: determining whether a friction coefficient of a road is calculated, when the ABS is not operated; increasing the coast regeneration torque to have a first slope up to a set first coast regeneration torque based on correction temperature calculated from external temperature and battery temperature, when the friction coefficient of the road is not calculated; and increasing the coast regeneration torque to have a slope less than the first slope up to the targeted coast regeneration torque determined by a current vehicle speed and the shift stage when the coast regeneration torque reaches the first coast regeneration torque.
- the method may further include: calculating the friction coefficient of the road from a load applied to a front wheel, a dynamic radius of a tire, and the cost regeneration torque; and changing the coast regeneration torque based on the calculated friction coefficient of the road.
- the friction coefficient of the road may be calculated by an equation of coast regeneration torque / (load applied to front wheel * dynamic radius of tire).
- the method may include: previously storing a friction coefficient map based on the friction coefficient of the road and a wheel slip ratio which is the difference between the speed of the driving wheel and the speed of the non-driving wheel in a controller and calculating the friction coefficient of the road stored in the friction coefficient map based on the speed of the driving wheel and the speed of the non-driving wheel sensed by the driving information sensing unit; and changing the coast regeneration torque based on the calculated friction coefficient of the road.
- the method may further include: increasing the coast regeneration torque to have a second slope up to a second coast regeneration torque set based on the friction coefficient of the road; and increasing the coast regeneration torque to have a slope less than the second slope up to the targeted coast regeneration torque determined by a current vehicle speed and the shift stage when the coast regeneration torque reaches the second coast regeneration torque.
- the second coast regeneration torque may be set to be decreasing as the friction coefficient of the road is reduced.
- the apparatus and method for controlling a vehicle having a motor may change the coast regeneration torque based on the external temperature, the operation of the ABS, and the friction coefficient of the road to prevent the vehicle from rattling when the vehicle is coasting on the road having the minimal friction coefficient.
- vehicle or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum).
- a hybrid vehicle is a vehicle that has two or more sources of power, for example both gasoline-powered and electric-powered vehicles.
- controller/control unit refers to a hardware device that includes a memory and a processor.
- the memory is configured to store the modules and the processor is specifically configured to execute said modules to perform one or more processes which are described further below.
- control logic of the present invention may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, controller/control unit or the like.
- the computer readable mediums include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards and optical data storage devices.
- the computer readable recording medium can also be distributed in network coupled computer systems so that the computer readable media is stored and executed in a distributed fashion, e.g., by a telematics server or a Controller Area Network (CAN).
- a telematics server or a Controller Area Network (CAN).
- CAN Controller Area Network
- FIG. 1 is a diagram illustrating a configuration of an apparatus for controlling a vehicle having a motor according to an exemplary embodiment of the present invention.
- an apparatus for controlling a vehicle having a motor may include a driving information sensing unit 10 configured to sense a driving state of the vehicle, a driving motor 30 configured to generate a driving torque and operated as a power generator when the vehicle is coasting to generate electric energy, an ABS 20 configured to adjust a braking force applied to a driving wheel, and a controller 40 configured to adjust a coast regeneration torque subjected to regenerative braking through the driving motor 30 based on driving information sensed by the driving information sensing unit 10.
- the controller 40 may be configured to operate the various components of the apparatus.
- the driving information sensing unit 10 may be configured to sense driving information of the vehicle including an open value of an acceleration position sensor (APS), an open value (e.g., an engagement amount or degree) of a brake position sensor (BPS), a speed of a driving wheel, a speed of a non-driving wheel, external temperature, battery temperature, a vehicle speed, and a shift stage and provide the sensed driving information to the controller 40.
- APS acceleration position sensor
- BPS brake position sensor
- the driving information sensing unit 10 may include a wheel speed sensor configured to sense the speed of the driving wheel and the speed of the non-driving wheel, a temperature sensor configured to sense the external temperature, a battery temperature sensor configured to sense the battery temperature, and a vehicle speed sensor or the wheel speed sensor configured to sense the vehicle speed.
- the driving motor 30 may be configured to generate a driving torque required to drive the vehicle by electric energy supplied from the battery. Further, the driving motor 30 may be operated as the power generator when the vehicle is coasting to generate electric energy, and the generated energy may be stored in the battery.
- the controller 40 may be implemented as at least one processor operated by a predetermined program which executes each step of a method for controlling a vehicle having a motor according to the exemplary embodiment of the present invention.
- the cost regeneration torque is a torque applied in an opposite direction to a driving direction of the vehicle when both of the open values of the accelerator pedal and a brake pedal are in a "0" state (e.g., coasting state) and indicates a torque that recovers inertial energy as a generated output by operating the driving motor 30 as the power generator.
- the coast regeneration torque may be set based on the vehicle speed and the shift stage.
- the coast regeneration torque set by the vehicle speed and the transmission is referred to as a targeted coast regeneration torque.
- the controller 40 may be configured to change the coast regeneration torque subject to the regenerative braking by the driving motor 30, based on correction temperature determined based on the external temperature and the battery temperature sensed by the driving information sensing unit 10, a friction coefficient of a road calculated from a slip state of the vehicle determined based on the difference between the speed of the driving wheel and the speed of the non-driving wheel, and an operation state of the ABS 20.
- the controller 40 may be configured to change the coast regeneration torque based on the difference between the speed of the driving wheel and the speed of the non-driving wheel. In particular, the greater the speed difference, the smaller the coast regeneration torque.
- the ABS 20 When the difference between the speed of the driving wheel and the speed of the non-driving wheel is greater than the set speed, the ABS 20 may be operated to adjust a braking hydraulic pressure transferred to a hydraulic pressure brake. Accordingly, when the ABS 20 is operated by adjusting the difference between the speed of the driving wheel and the speed of the non-driving wheel to be greater than the set speed, a slip of a driving shaft wheel may be substantial due to the coast regeneration torque. Therefore, when the ABS 20 is operated, the coast regeneration torque may be set to be "0".
- the controller 40 may be configured to increase the coast regeneration torque to have a first slope up to a first coast regeneration torque set based on the correction temperature. Further, the controller 40 may be configured to increase the coast regeneration torque to have a slope less than the first slope up to the targeted coast regeneration torque determined by a current vehicle speed and the shift stage when the coast regeneration torque reaches the first coast regeneration torque and calculate the friction coefficient of the road.
- the first coast regeneration torque is a coast regeneration torque at which the wheel slip is not generated based on the correction temperature, and the value thereof may be determined by experiment.
- the first coast regeneration torque may be set to be about 200N.m at which the wheel slip is not generated based on an icy road condition.
- the correction temperature may be determined based on the external temperature and the battery temperature.
- the correction temperature may be determined by adding a value obtained by multiplying a first weight value by the external temperature to a value obtained by multiplying a second weight value by the battery temperature.
- the second weight value may be set to be greater than the first weight value.
- the friction coefficient of the road may be predicted based on the correction temperature using the external temperature and the battery temperature. For example, when the correction temperature is a sub-zero temperature, the road may be determined to be in the icy road state and the friction coefficient of the road may be assumed to be about 0.1. Further, when the targeted coast regeneration torque is determined as about 500N.m by the current vehicle speed and the transmission, the first coast regeneration torque at which the wheel slip does not occur in the sub-zero state may be determined.
- the first coast regeneration torque may be determined as a value (e.g., about 100N.m) obtained by multiplying the targeted coast regeneration torque by a friction coefficient of about 0.1.
- the controller 40 may be configured to increase the coast regeneration torque to have a first slope having a sudden slope increase (e.g., a steep increase) to the first coast regeneration torque. Further, when the coast regeneration torque reaches the first coast regeneration torque, the coast regeneration torque may be smoothly increased to have a slope less than the first slope up to the targeted coast regeneration torque.
- the controller 40 may be previously stored with a friction coefficient map based on the friction coefficient of the road and the wheel slip ratio, and the controller 40 may be configured to calculate the wheel slip ratio based on the speed of the driving wheel and the speed of the non-driving wheel sensed by the driving information sensing unit 10, in which the friction coefficient of the road for the calculated wheel slip ratio may be extracted from the friction coefficient map.
- the wheel slip ratio is a ratio (speed of driving wheel / speed of non-driving wheel) of the speed of the non-driving wheel to the speed of the driving wheel.
- the controller 40 may be configured to change the coast regeneration torque based on the friction coefficient of the road.
- the controller 40 may be configured to calculate the second coast regeneration torque based on the targeted coast regeneration torque determined by the current vehicle speed and the shift stage and the friction coefficient of the road.
- the second coast regeneration torque is the coast regeneration torque at which the wheel slip is not generated based on the friction coefficient of the road, and the value thereof may be determined by experiment.
- the second coast regeneration torque may be set to decrease as the friction coefficient of the road is reduced.
- controller 40 may be configured to suddenly (e.g., rapidly) increase the coast regeneration torque to have a second slope up to the second coast regeneration torque.
- the controller 40 may also be configured to smoothly increase the coast regeneration torque to have a slope less than the second slope up to the targeted coast regeneration torque determined by the current vehicle speed and the shift stage when the coast regeneration torque reaches the second coast regeneration torque.
- FIG. 2 is a flow chart illustrating a method for controlling a vehicle having a motor according to an exemplary embodiment of the present invention.
- FIG. 3 is a graph illustrating a change in a coast regeneration torque over time according to an exemplary embodiment of the present invention.
- FIGS. 4A and 4B are graphs illustrating a relationship between a difference between a speed of a driving wheel and a speed of a non-driving wheel and the coast regeneration torque according to the exemplary embodiment of the present invention.
- the driving information sensing unit 10 may be configured to sense the driving information of the vehicle including the open value of the APS, the open value of the BPS, the speed of the driving wheel, the speed of the non-driving wheel, the external temperature, the battery temperature, the vehicle speed, and the shift stage (S10).
- the sensed driving information may be provided to the controller 40.
- the controller 40 may be configured to determine whether the vehicle is in a coasting state based on the driving information of the vehicle (S12). In particular, when both the opening of the APS and the opening of the BPS is "0", the controller may be configured to determine that the vehicle is in the coasting state. In other words, on the controller may be configured to determine that the accelerator pedal and the brake pedal are disengaged (e.g., no pressure is exerted onto the pedals) and the vehicle is in the coasting state. The controller 40 may then be configured to calculate the difference between the speed of the driving wheel and the speed of the non-driving wheel (S14).
- the controller 40 may be configured to change the coast regeneration torque based on the speed difference (S18). In other words, the controller 40 may be configured to reduce the coast regeneration torque more based on the speed difference than the targeted coast regeneration torque determined by the vehicle speed and the shift stage (see section 'a' of FIG. 3 ).
- a coast regeneration torque limiting factor may be about 0.6.
- the coast regeneration torque may be determined as a value (e.g., about 300N.m) obtained by multiplying a limiting coefficient of 0.6 by the targeted coast regeneration torque (500N.m).
- the coast regeneration torque limiting coefficient may be about 0.4.
- the coast regeneration torque may be determined as a value (e.g., 200N.m) obtained by multiplying a limiting coefficient of 0.4 by the targeted coast regeneration torque (500N.m).
- the controller 40 may further be configured to determine whether the ABP 20 is operated (S20). When the ABS 20 is operated, the controller 40 may be configured to set the coast regeneration torque to be "0" (see section 'b' of FIG. 3 ) (S22). Further, when the operation of the ABS 20 stops (S24), the controller 40 may be configured to determine whether the friction coefficient of the road is previously calculated (S26). When the friction coefficient of the road is not previously calculated, the controller 40 may be configured to suddenly increase the coast regeneration torque to have the first slope up to the set first coast regeneration torque based on the correction temperature calculated based on the external temperature and the battery temperature (see section 'c' of FIG. 3 ) (S30). In particular, the first coast regeneration torque is the coast regeneration torque at which the wheel slip is not generated, which is the same as described above.
- the controller 40 may be configured smoothly increase the coast regeneration torque to have a slope less than the first slope up to the targeted coast regeneration torque determined by the current vehicle speed and the shift stage (see section 'd' of FIG. 3 ) (S32). In the section 'd' of FIG. 3 , the wheel slip may occur, but the coast regeneration torque may be increased to recover the energy by the coasting.
- the controller 40 may be configured to calculate the friction coefficient of the road (S34).
- the detailed method for calculating a friction coefficient of a road is as described above.
- the difference between the speed of the driving wheel and the speed of the non-driving wheel is insufficient (e.g., less than a particular value), it may be difficult to accurately calculate the friction coefficient of the road. Therefore, when the difference between the speed of the driving wheel and the speed of the non-driving wheel is greater than the threshold speed, the friction coefficient of the road may be more accurately calculated by obtaining the friction coefficient of the road.
- the controller 40 may be configured to reduce the coast regeneration torque based on the speed difference (see section 'e' of FIG. 3 ).
- the controller 40 may be configured to set the coast regeneration torque to be "0" (see section 'f' of FIG. 3 ).
- the controller 40 may be configured to determine whether the friction coefficient of the road is present (S26). Since the friction coefficient of the road is calculated in step S34, the controller 40 may be configured to suddenly increase the coast regeneration torque to have a second slope up to the second coast regeneration torque set based on the friction coefficient of the road (see section 'g' of FIG. 3 ) (S28).
- the second coast regeneration torque is the coast regeneration torque at which the wheel slip is not generated based on the friction coefficient of the road, which may be determined by experiment based on the friction coefficient.
- the controller 40 may be configured to more smoothly increase the coast regeneration torque to have a slope less than the second slope up to the targeted coast regeneration torque determined by the current vehicle speed and the shift stage (S32) (see section 'h' of FIG. 3 ).
- the wheel slip may occur, but the coast regeneration torque may be increased to recover the energy by the coasting.
- the controller 40 may be configured to calculate the friction coefficient of the road (S34). The calculated friction coefficient may be displayed via a cluster of the vehicle and thus the road state may be provided to the driver.
- the coast regeneration torque may be changed based on the difference between the speed of the driving wheel and the speed of the non-driving wheel to prevent the ABS 20 from being frequently operated and the vehicle from rattling. Further, the coast regeneration torque may be set to be "0" when the ABS 20 is operated, thereby preventing the wheel slip from being increased.
- the coast regeneration torque may be suddenly increased up to the first coast regeneration torque at which the wheel slip is not generated and then the coast regeneration torque may be increased more smoothly, thereby calculating the friction coefficient of the road.
- the coast regeneration torque may be suddenly increased up to the second coast regeneration torque at which the wheel slip does not occur and then the coast regeneration torque may be increased more smoothly, thereby preventing the ABS 20 from being frequently operated.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150120393A KR101786666B1 (ko) | 2015-08-26 | 2015-08-26 | 모터를 구비한 차량의 제어 장치 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3135551A1 true EP3135551A1 (de) | 2017-03-01 |
EP3135551B1 EP3135551B1 (de) | 2019-07-03 |
Family
ID=54705075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15196255.2A Active EP3135551B1 (de) | 2015-08-26 | 2015-11-25 | Vorrichtung und verfahren zur steuerung eines kraftfahrzeugs |
Country Status (4)
Country | Link |
---|---|
US (2) | US9630509B2 (de) |
EP (1) | EP3135551B1 (de) |
KR (1) | KR101786666B1 (de) |
CN (1) | CN106476652B (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3575130A1 (de) * | 2018-05-30 | 2019-12-04 | Mando Corporation | Fahrzeugsteuerungssystem und verfahren zur steuerung davon und bremsvorrichtung |
CN110667395A (zh) * | 2019-09-30 | 2020-01-10 | 重庆大学 | 基于制动工况的两挡自动变速箱的纯电动汽车换挡规律多目标优化方法 |
CN111823873A (zh) * | 2020-07-11 | 2020-10-27 | 的卢技术有限公司 | 一种并联能量回收电动汽车的制动防抱死控制方法 |
CN114211965A (zh) * | 2021-12-29 | 2022-03-22 | 东风华神汽车有限公司 | 缓速控制方法、装置、设备及可读存储介质 |
WO2023061948A1 (de) * | 2021-10-15 | 2023-04-20 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum betreiben eines bremsregelungssystems, bremsregelungssystem, computerprogramm und computerlesbares speichermedium |
EP4116162A4 (de) * | 2020-02-24 | 2023-10-18 | Great Wall Motor Company Limited | Drehmomentsteuerungsverfahren und -vorrichtung für ein fahrzeug |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6794525B2 (ja) * | 2017-02-22 | 2020-12-02 | 日立オートモティブシステムズ株式会社 | 車両用制御装置 |
DE102017207248A1 (de) * | 2017-04-28 | 2018-10-31 | Deere & Company | Verfahren zur Ermittlung einer Aufstandskraft an einem Nutzfahrzeug |
KR102406178B1 (ko) * | 2017-10-11 | 2022-06-07 | 현대자동차주식회사 | 모터를 구비한 차량의 제어 장치 및 방법 |
KR102478125B1 (ko) * | 2017-11-24 | 2022-12-16 | 현대자동차주식회사 | 모터 구동 차량 제어방법 및 제어시스템 |
KR102432432B1 (ko) * | 2017-12-05 | 2022-08-17 | 현대자동차주식회사 | 차량 및 그 제어방법 |
WO2019111672A1 (ja) * | 2017-12-05 | 2019-06-13 | 日本電産株式会社 | 移動体、および搬送ロボット |
KR102506758B1 (ko) * | 2017-12-08 | 2023-03-07 | 현대자동차주식회사 | 제동에너지 회생단계 가변 제어시스템 및 제어방법 |
KR102518238B1 (ko) | 2017-12-22 | 2023-04-07 | 현대자동차주식회사 | 차량의 코스트 리젠 토크 적용 방법 |
CN109955721A (zh) * | 2017-12-25 | 2019-07-02 | 陕西汽车集团有限责任公司 | 一种基于abs的电动汽车制动控制策略 |
JP7047461B2 (ja) * | 2018-02-28 | 2022-04-05 | 株式会社デンソー | 制御装置 |
KR102501354B1 (ko) * | 2018-05-03 | 2023-02-21 | 현대자동차주식회사 | 차량 및 차량의 제어방법 |
US11077757B2 (en) * | 2018-05-03 | 2021-08-03 | Hyundai Motor Company | Vehicle and control method thereof |
DE102018207006A1 (de) * | 2018-05-07 | 2019-11-07 | Audi Ag | Verfahren zur Ermittlung einer prädizierten Beschleunigungsinformation in einem Elektrokraftfahrzeug und Elektrokraftfahrzeug |
CN111284491B (zh) * | 2018-12-06 | 2022-12-30 | 博世汽车部件(苏州)有限公司 | 滑行回收转矩的调节方法、调节装置和车辆 |
KR102676738B1 (ko) * | 2019-04-24 | 2024-06-18 | 현대자동차주식회사 | 조향 제어 성능을 위한 친환경 차량의 토크 제어 시스템 및 방법 |
CN110254408A (zh) * | 2019-05-21 | 2019-09-20 | 江苏大学 | 一种智能汽车防抱死制动系统自适应时变滑移率约束控制算法 |
CN110254407A (zh) * | 2019-05-21 | 2019-09-20 | 江苏大学 | 基于二阶滑移率模型的车辆防抱死制动系统滑移率约束控制算法 |
KR20210018652A (ko) * | 2019-08-08 | 2021-02-18 | 현대자동차주식회사 | 차량의 휠 슬립 제어 방법 |
KR20210020532A (ko) * | 2019-08-16 | 2021-02-24 | 현대자동차주식회사 | 차량 및 그 제어 방법 |
CN111634281A (zh) * | 2019-10-25 | 2020-09-08 | 长城汽车股份有限公司 | 车辆的能量回收控制方法及装置 |
KR20210052734A (ko) | 2019-10-30 | 2021-05-11 | 현대자동차주식회사 | 차량의 코스트 리젠 토크 적용 장치 및 방법 |
JP7327256B2 (ja) * | 2020-04-10 | 2023-08-16 | トヨタ自動車株式会社 | 電動車両の回生制動制御装置 |
KR20220023052A (ko) * | 2020-08-20 | 2022-03-02 | 현대자동차주식회사 | 퍼스널 모빌리티 장치 및 이를 이용한 안정성 제어 방법 |
CN112026527A (zh) * | 2020-09-07 | 2020-12-04 | 中国第一汽车股份有限公司 | 回收扭矩的控制方法、装置、设备及车辆 |
CN113511211B (zh) * | 2021-05-31 | 2022-09-06 | 重庆长安汽车股份有限公司 | 一种基于电动汽车电驱系统的扭振控制方法 |
CN113306409A (zh) * | 2021-06-15 | 2021-08-27 | 南京理工大学 | 基于能量法的分布式驱动电动汽车驱动防滑控制方法 |
CN114194191B (zh) * | 2021-11-30 | 2024-06-07 | 河南嘉晨智能控制股份有限公司 | 一种仓储车坡道驻坡溜车情况改善方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0754588A1 (de) * | 1995-07-18 | 1997-01-22 | Toyota Jidosha Kabushiki Kaisha | Nutzbremsregler zur Regelung des Wertes des Nutzbremsdrehmomentes durch Simulation des Motorbremsdrehmomentes |
EP1205328A2 (de) * | 2000-11-08 | 2002-05-15 | Honda Giken Kogyo Kabushiki Kaisha | Steuervorrichtung zur Steuerung eines Allradantriebsfahrzeugs |
US20060055239A1 (en) * | 2004-09-13 | 2006-03-16 | Crombez Dale S | Method for operating multiple axle regenerative braking in an automotive vehicle |
US20070046099A1 (en) * | 2005-08-29 | 2007-03-01 | Masahiro Matsuura | Vehicle brake system |
EP2823985A1 (de) * | 2012-03-07 | 2015-01-14 | Nissan Motor Co., Ltd. | Bremssteuervorrichtung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4106835B2 (ja) | 1999-12-07 | 2008-06-25 | トヨタ自動車株式会社 | 車両の回生制御装置 |
DE10204723A1 (de) | 2002-02-05 | 2003-08-14 | Continental Teves Ag & Co Ohg | Verfahren zur Koordination des Einsatzes eines regenerativen und eines blockierschutzgeregelten Systems |
JP3951957B2 (ja) | 2003-04-16 | 2007-08-01 | トヨタ自動車株式会社 | 動力出力装置及びその制御方法並びに車両 |
JP2009189121A (ja) | 2008-02-05 | 2009-08-20 | Bridgestone Corp | 車両制御装置 |
KR101220388B1 (ko) * | 2011-08-11 | 2013-01-09 | 현대자동차주식회사 | 전기자동차의 이코노미 주행장치 및 그 제어방법 |
WO2014054813A1 (ja) * | 2012-10-05 | 2014-04-10 | アイシン・エィ・ダブリュ株式会社 | 車輌用駆動装置の制御装置 |
-
2015
- 2015-08-26 KR KR1020150120393A patent/KR101786666B1/ko active IP Right Grant
- 2015-11-15 US US14/941,605 patent/US9630509B2/en active Active
- 2015-11-25 EP EP15196255.2A patent/EP3135551B1/de active Active
- 2015-12-04 CN CN201510886421.3A patent/CN106476652B/zh active Active
-
2017
- 2017-04-24 US US15/495,461 patent/US10384669B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0754588A1 (de) * | 1995-07-18 | 1997-01-22 | Toyota Jidosha Kabushiki Kaisha | Nutzbremsregler zur Regelung des Wertes des Nutzbremsdrehmomentes durch Simulation des Motorbremsdrehmomentes |
EP1205328A2 (de) * | 2000-11-08 | 2002-05-15 | Honda Giken Kogyo Kabushiki Kaisha | Steuervorrichtung zur Steuerung eines Allradantriebsfahrzeugs |
US20060055239A1 (en) * | 2004-09-13 | 2006-03-16 | Crombez Dale S | Method for operating multiple axle regenerative braking in an automotive vehicle |
US20070046099A1 (en) * | 2005-08-29 | 2007-03-01 | Masahiro Matsuura | Vehicle brake system |
EP2823985A1 (de) * | 2012-03-07 | 2015-01-14 | Nissan Motor Co., Ltd. | Bremssteuervorrichtung |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3575130A1 (de) * | 2018-05-30 | 2019-12-04 | Mando Corporation | Fahrzeugsteuerungssystem und verfahren zur steuerung davon und bremsvorrichtung |
CN110549859A (zh) * | 2018-05-30 | 2019-12-10 | 株式会社万都 | 车辆控制系统、车辆控制系统的控制方法及制动装置 |
KR20190136353A (ko) * | 2018-05-30 | 2019-12-10 | 주식회사 만도 | 브레이크 시스템 및 그 제어 방법 |
US11192532B2 (en) | 2018-05-30 | 2021-12-07 | Mando Corporation | Vehicle control system, method of controlling the same, and breaking device |
CN110667395A (zh) * | 2019-09-30 | 2020-01-10 | 重庆大学 | 基于制动工况的两挡自动变速箱的纯电动汽车换挡规律多目标优化方法 |
EP4116162A4 (de) * | 2020-02-24 | 2023-10-18 | Great Wall Motor Company Limited | Drehmomentsteuerungsverfahren und -vorrichtung für ein fahrzeug |
CN111823873A (zh) * | 2020-07-11 | 2020-10-27 | 的卢技术有限公司 | 一种并联能量回收电动汽车的制动防抱死控制方法 |
WO2023061948A1 (de) * | 2021-10-15 | 2023-04-20 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum betreiben eines bremsregelungssystems, bremsregelungssystem, computerprogramm und computerlesbares speichermedium |
CN114211965A (zh) * | 2021-12-29 | 2022-03-22 | 东风华神汽车有限公司 | 缓速控制方法、装置、设备及可读存储介质 |
CN114211965B (zh) * | 2021-12-29 | 2024-03-01 | 东风华神汽车有限公司 | 缓速控制方法、装置、设备及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3135551B1 (de) | 2019-07-03 |
KR20170024856A (ko) | 2017-03-08 |
CN106476652A (zh) | 2017-03-08 |
US20170225673A1 (en) | 2017-08-10 |
CN106476652B (zh) | 2021-02-05 |
US20170057361A1 (en) | 2017-03-02 |
US9630509B2 (en) | 2017-04-25 |
KR101786666B1 (ko) | 2017-10-18 |
US10384669B2 (en) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10384669B2 (en) | Apparatus and method for controlling vehicle having motor | |
US10618413B2 (en) | System and method for applying coast regeneration torque of vehicle | |
US9409577B2 (en) | Method and apparatus for controlling torque intervention of hybrid electric vehicle | |
US20160121898A1 (en) | Method of controlling coasting operation of hybrid vehicle and apparatus for performing the same | |
US9694823B2 (en) | Method and apparatus of controlling vehicle including driving motor | |
US9333877B2 (en) | Method and apparatus for controlling creep torque for vehicle including driving motor | |
US8744713B2 (en) | Method for controlling braking of vehicle | |
US10479352B2 (en) | Apparatus and method for controlling engine clutch | |
US9610859B1 (en) | System and method for controlling impact reduction of electric vehicle | |
US9254840B2 (en) | Apparatus, system and method for controlling engine starting while shifting of hybrid electric vehicle | |
CN105460004B (zh) | 用于控制混合动力电动车辆的缓行扭矩的装置和方法 | |
US20140163790A1 (en) | Method and system for controlling running mode change for hybrid vehicle | |
US9481371B2 (en) | Method and apparatus for controlling speed change of hybrid vehicle | |
US20140121873A1 (en) | Control system and method for hybrid vehicle | |
US10363932B2 (en) | SSC-SCC system for increasing SSC distance using SSC and method for controlling the same | |
US9862372B2 (en) | Method and apparatus for controlling engine start for hybrid electric vehicle | |
US20160121742A1 (en) | System and method for controlling charging battery of hybrid vehicle | |
US9981554B2 (en) | System and method for controlling braking of electric vehicle | |
US11136020B2 (en) | Hybrid vehicle and method of calibrating traveling direction for the same | |
US10399559B2 (en) | System and method of controlling engine clutch engagement during TCS operation of hybrid vehicle | |
US9610953B2 (en) | System and method for controlling regenerative braking | |
US9610952B2 (en) | Apparatus and method for controlling creep torque of a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170829 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1150612 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015033041 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NO Ref legal event code: T2 Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1150612 Country of ref document: AT Kind code of ref document: T Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191104 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191003 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191103 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191004 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015033041 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191125 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191125 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151125 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20231023 Year of fee payment: 9 Ref country code: FR Payment date: 20231024 Year of fee payment: 9 Ref country code: DE Payment date: 20231023 Year of fee payment: 9 |