EP3123817B1 - Verfahren zur erzeugung einer strahlung im infrarot-bereich - Google Patents

Verfahren zur erzeugung einer strahlung im infrarot-bereich Download PDF

Info

Publication number
EP3123817B1
EP3123817B1 EP15731492.3A EP15731492A EP3123817B1 EP 3123817 B1 EP3123817 B1 EP 3123817B1 EP 15731492 A EP15731492 A EP 15731492A EP 3123817 B1 EP3123817 B1 EP 3123817B1
Authority
EP
European Patent Office
Prior art keywords
elements
embedded elements
embedded
pet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15731492.3A
Other languages
English (en)
French (fr)
Other versions
EP3123817A1 (de
Inventor
Edgar Johannes VAN HATTUM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feegoo Lizenz GmbH
Original Assignee
Feegoo Lizenz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Feegoo Lizenz GmbH filed Critical Feegoo Lizenz GmbH
Priority to PL15731492T priority Critical patent/PL3123817T3/pl
Priority to RS20181506A priority patent/RS58209B1/sr
Priority to EP18191212.2A priority patent/EP3471507B1/de
Publication of EP3123817A1 publication Critical patent/EP3123817A1/de
Application granted granted Critical
Publication of EP3123817B1 publication Critical patent/EP3123817B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a device for generating radiation in the infrared range, in which a radiation generator is electrically supplied and at least partially transforms the electrical supply energy into the infrared radiation.
  • PET polyethylene terephthalate
  • PET has a polar basic structure and strong intermolecular forces. PET molecules are also linear, i. built without networking. Due to the polar-linear structure, PET is characterized by semi-crystalline regions and fibers which cause high resistance to breakage and dimensional stability even in temperature ranges above 80 ° C. Thus, PET is generally suitable as a material for these temperature ranges.
  • PET materials are made from monomers such as terephthalic acid or benzene dicarboxylic acid and ethylene glycol or dihydroxyethane or ethanediol.
  • industrial production takes place by transesterification of dimethyl terephthalate with ethanediol.
  • this equilibrium reaction produces an undesirable increase in amount of ethanediol, or it is necessary for the reaction that this substance is distilled off again by the reaction, in order to influence the equilibrium favorable.
  • the alternative possible melt phase polycondensation is unsuitable for the production of large quantities, because this form of production takes too long periods of time.
  • PET In order to achieve a high PET quality, a solid state polycondensation is connected downstream, depending on the intended use, in order to achieve a further condensation.
  • Another known production possibility of PET is the esterification of ethanediol with terephthalic acid.
  • the PET molecules are long-chain structures that consist predominantly of carbon, hydrogen and some other atoms.
  • the molecules have a spiral to tangled arrangement. This leads to a large number of free spaces in the atomic region between the molecules, especially in the amorphous state.
  • these clearances can be reduced, which leads for example to a higher strength of the material and to a reduced gas permeability.
  • PET In addition to the use of PET in pure form, the material modification of the prior art is also known. As a base material for composite materials, other elements can be added to the thermoplastic resin. In its pure state, PET is essentially an electrical non-conductor. By incorporating, for example, metallic atoms into the free spaces between the molecules or by attaching, for example, metallic atoms to the PET molecules, the material can be imparted to a certain extent with electrically conductive properties. Correspondingly metallically doped PET fibers thus conduct an electric current when a voltage is applied.
  • magnetocaloric effect heats the material when it is exposed to a magnetic field, and it cools down when the magnetic field influence stops.
  • the cause of this heating reaction is the alignment of the magnetic moments of the material by the magnetic field and their dependence on the magnetic field strength.
  • the alignment speed of the magnetic moments creates heat.
  • a possible application could be the use as a coolant, wherein a cooling effect can be achieved by periodic magnetization and simultaneous removal of the resulting heat.
  • the magnetocaloric effect is heavily hysteresis-dependent depending on the alloy.
  • alloys are sought, which combine these physical effects and properties.
  • Another problem of the technical application of this effect In addition to the undesirable hysteresis behavior is the fact that so far this effect is relatively weak pronounced in known alloys and material compositions.
  • the skin effect also known as current displacement, is an effect in electrical conductors through which higher-frequency alternating current flows, which makes the current density inside a conductor lower than in external areas. It occurs in relation to the skin depth thick conductors and also in electrically conductive shields and cable shields.
  • the skin effect favors the transfer impedance of shielded lines and the screen attenuation of conductive shields with increasing frequency, but increases the resistance of an electrical line. This practically means that the skin depth, i. the Leit harshdicke, material-dependent decreases with increasing AC frequency.
  • a skin depth of 0.21 mm is present within a copper line.
  • the DE 20 2012 009 083 U1 discloses a sub-molecular surface heating system, which consists of at least one support, wherein individual nano and pico metals in certain matrices, completely isolated in a surface structure of polyamide / polyester, polyaramid, polymer, ceramite and other plastic compounds, in Plates, foils or be introduced in railway conductors.
  • PTC thermistors with a positive temperature coefficient known, which are formed by incorporation of conductive particles, such as metals or metal coated glass spheres, in thermoplastics.
  • the WO 2009/133048 describes a variety of magnetocaloric materials, particularly Fe2P-based compounds and Heussler alloys of the MnTP type, wherein T represents a transition metal and P represents a p-doping metal.
  • the object of the present invention is to improve a device of the aforementioned type such that generation of the radiation is supported with high efficiency and within a narrow and precisely definable frequency band.
  • the radiation generator comprises at least one fiber of plastic with electrical conductivity, wherein the fiber material is formed by a base material made of PET, which elements are incorporated and that the elements have an atomic size and are provided with a distance such that electron clouds overlap at least partially.
  • the doping elements can additionally impart the PET material with the capability of at least partially conducting electrical energy.
  • the doping elements can generate properties as absorbers for radiant energy, on the other hand they can generate properties as electrical conductors.
  • the PET material can be given a certain amount of electrically conductive properties.
  • PET fibers thus conduct an electric current when a voltage is applied. Depending on the electrical resistance of this composite material, this generates radiation or absorbs it as a function of the applied current. The effects are supported as a function of the previously described skin effect and by additive absorption of radiant energy.
  • the PET composite material according to the invention represents a new material alternative for the radiation absorption or radiation generation to the known metal fiber materials.
  • a further property of the absorber material according to the invention consists in its property, which is dependent on the respective doping elements, of being at least partially electrically conductive.
  • the PET composite material is a base material for any heat source of any kind
  • the physical effects of absorptivity and electrical conductivity can increase the amount of heat to be delivered combined and thus increased by the fact that in addition to the emitted heat radiation due to the radiation absorption by means of a voltage applied to the PET composite material voltage due to the electrical resistance of the material is additionally generated by electrical means heat energy.
  • PET composite material A further interesting application of the PET composite material is opened by its property to realize the magnetocaloric effect and at the same time have the PET's own improved mechanical material properties.
  • suitable doping elements By means of suitable doping elements, it is thus also possible to impress cooling effect properties on the material according to the invention.
  • MnFePhosphorENSen MnFe (As, PwGexSiz) s
  • FeMn-phosphorus compounds with As, Si-phosphorus substitution possibly combined with La (FeMnP) AICo FeMn-phosphorus compounds with As, Si-phosphorus substitution possibly combined with La (FeMnP) AICo
  • Compounds with Mn-Zn are.
  • a preferred application is the use of the doping structural formula MnFe (As, PwGexSiz) s.
  • This compound has high cooling capabilities at temperatures of 200 to 600 K, especially at 280 to 500 K.
  • This compound shows a very strong magnetocaloric effect.
  • the material is realized in a hexagonal Fe2P structure.
  • the preparation of the various material compositions can be carried out in a ball mill and under a protective gas atmosphere.
  • an alloy of 5 g FeMnP 0.7 Ge 0.3 having a critical temperature of about 350 K can be prepared by mixing the pure elements having a quality of 3N in the following amounts: FeMnP 0.7 Ge 0.3.
  • these elements are milled under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the properties of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the Powder is then heated in a closed ampule in a protected atmosphere until a temperature of about 800 to 1050 degrees C is reached. Thereafter, this is tempered to a temperature of about 650 degrees C.
  • the alloy crystallizes in a hexagonal Fe2P structure.
  • these elements are milled under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the properties of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then heated in a closed ampule in a protected atmosphere until a temperature of about 800 to 1050 degrees C is reached. Thereafter, this is tempered to a temperature of about 650 degrees C.
  • the alloy also crystallizes in a hexagonal Fe2P structure.
  • these elements are milled under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the properties of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then heated in a closed ampule in a protected atmosphere until a temperature of about 800 to 1050 degrees C is reached. Thereafter, this is tempered to a temperature of about 650 degrees C.
  • the alloy also crystallizes in a hexagonal Fe2P structure.
  • these elements are milled under a protective atmosphere until an amorphous or microcrystalline product is obtained. Depending on the properties of the mill, such a product can be obtained within 20 minutes to a few hours.
  • the powder is then heated (sintered) in a sealed ampule in a protected atmosphere until a temperature of about 800 to 1050 degrees C is reached. Thereafter, this is tempered to a temperature of about 650 degrees C.
  • the present invention is not limited to the exemplary embodiment.
  • the quantities can vary in many ways.
  • FIG. 1 shows the physical effect of current displacement in near-surface edge layers of a current-carrying conductor based on a diagram, ie, the equivalent Leit Mrsdicke ⁇ in mm of different metals over the AC frequency f in kH.
  • FIG. 2 Illustrates in an assembled representation the absorption behavior of different atmospheric gases as a function of the wavelength.
  • FIG. 3 shows the known microstructure of FeMnP 0.5 Si 0.5.
  • Ni2MnGa arrangements are ferromagnetic with a Curie temperature of 376 K and a magnetic moment of 4.17 ILB, which is largely confined to the Mn atoms and associated with the Ni atoms with a small momentum of about 0.3 IIB ,
  • the martensitic transformation temperature is close to 220 K. This martensitic transformation temperature can be easily varied to about room temperature by changing the composition of the alloy to a stoichiometric alloy.
  • a martensite phase generally accommodates the stem associated with transformation (that is 6.56% of c for Ni2MnGa), through the formation of twin variants.
  • the binary intermetallic compound Fe2P can be considered as a base alloy for a workable mixture of materials. This compound crystallizes in the hexagonal, non-point symmetric FeMnPhosphor structure, and has all the positive properties to be used as a transponder for home cooling systems.
  • Fe occupies the 3g and 3f sides and p the 1b and 2c sides. This gives a stack of alternating P-rich and P-lean layers.
  • the neutron diffraction reveals that the magnetic moment of the Fe on the 3g side is about 2my-B, while the momentum on the 3f side is about 1my-B.
  • the hexagonal shape has poor opportunities to be recovered by aging as a magnetic source.
  • a significant reason for the electrically conductive properties of the PET fibers by the doping is that in the dielectric support structure of the polyester, although the metal particles are spatially separated from each other, but that the electron clouds of the metal particles overlap each other.
  • the embedding of the doping elements in the polyester prevents decomposition processes and prevents external influences.
  • aramids As an alternative to using PET fibers, it is also possible to use aramids.
  • the production of the fibers can be carried out by means of electro-spinning method.
  • a typical diameter of the fibers is in the range 2 ⁇ m to 6 ⁇ m.
  • the doping with the metal particles is preferably carried out in a gas plasma.
  • a typical fiber length is in the range of 2 cm to 4 cm.
  • doping elements are the following chemical elements, either in the pure state or as an alloy.
  • the use of rare-earth metals is considered. It is also possible, for example, to use iron, manganese, phosphorus, silicon, lanthanum, germanium, sodium, zinc or arsenic.
  • aluminum, copper and / or nickel are also usable.
  • alkaline earth metals or alkali metals can be used as doping elements. Considered, for example, magnesium, calcium, sodium and potassium.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Erzeugung einer Strahlung im Infrarot-Bereich, bei der ein Strahlungsgenerator elektrisch versorgt wird und die elektrische Versorgungsenergie mindestens teilweise in die Infrarot-Strahlung transformiert.
  • Es ist seit geraumer Zeit bekannter Stand der Technik, Kunststoffe oder Kunststoffkompositwerkstoffe für verschiedene technische Anwendungen, beispielsweise als Basismaterial für Kleidungsstücke, als Isolationsmaterial usw. ein zusetzen. Eine dieser in großem Umfang eingesetzten Kunststoffsorte ist das Polyethylenterephthalat (PET). Dieser PET-Kunststoff ist ein durch Polykondensation hergestellter thermoplastischer Kunststoff aus der Familie der Polyester.
  • PET ist von polarer Grundstruktur und weist starke zwischenmolekulare Kräfte auf. PET-Moleküle sind darüber hinaus linear, d.h. ohne Vernetzungen aufgebaut. Aufgrund der polar-linearen Struktur ist PET durch teilkristalline Bereiche und Fasern gekennzeichnet, die eine hohe Bruchfestigkeit und Formbeständigkeit auch in Temperaturbereichen von über 80°C verursachen. Somit ist PET als Werkstoff generell auch für diese Temperaturbereiche geeignet.
  • PET-Werkstoffe werden aus Monomeren wie Terephthalsaure beziehungsweise Benzoldicarbonsäure und Ethylenglycol beziehungsweise Dihydroxyethan oder Ethandiol hergestellt. Um für die gewerbliche Anwendbarkeit relevante Mengen produzieren zu können, erfolgt die großtechnische Herstellung durch Umesterung von Dimethylterephthalat mit Ethandiol. Im Rahmen dieser Gleichgewichtsreaktion entsteht eine unerwünschte Mehrmenge von Ethandiol, beziehungsweise es ist für die Reaktion erforderlich, dass dieser Stoff durch die Reaktionsführung wieder abdestilliert wird, um das Gleichgewicht günstig zu beeinflussen. Die alternativ mögliche Schmelzphasenpolykondensation ist für die Produktion großer Mengen ungeeignet, weil diese Herstellungsform zu große Zeiträume beansprucht. Um eine hohe PET-Güte zu erreichen, wird abhängig vom gewünschten Verwendungszweck eine Festphasenpolykondensation nachgeschaltet, um eine weitere Kondensation zu erreichen. Eine weitere bekannte Herstellungsmöglichkeit von PET besteht in der Veresterung von Ethandiol mit Terephthalsäure.
  • Generell handelt es sich bei den PET-Molekülen um langkettige Strukturen, die überwiegend aus Kohlenstoff, Wasserstoff und einigen weiteren Atomen bestehen. Die Moleküle besitzen eine spiral- bis knäuelartige Anordnung. Dies führt dazu, dass insbesondere im amorphen Zustand eine Vielzahl von Freiräumen im atomaren Bereich zwischen den Molekülen vorhanden ist. Durch eine axiale oder biaxiale Orientierung des Materials können diese Freiräume verkleinert werden, was beispielsweise zu einer höheren Festigkeit des Materials und zu einer verringerten Gasdurchlässigkeit führt.
  • Neben der Anwendung von PET in reiner Form ist aus dem Stand der Technik auch dessen Werkstoffmodifikation bekannt. Als Basismaterial für Kompositwerkstoffe können dem thermoplastischen Kunststoff andere Elemente hinzugefügt werden. Im Reinzustand handelt es sich bei PET im Wesentlichen um einen elektrischen Nichtleiter. Durch eine Einlagerung beispielsweise von metallischen Atomen in die Freiräume zwischen den Molekülen oder durch eine Anlagerung von beispielsweise metallischen Atomen an die PET-Moleküle können dem Material in einem gewissen Umfang elektrisch leitfähige Eigenschaften verliehen werden. Entsprechend metallisch dotierte PET-Fasern leiten somit bei einem Anlegen einer Spannung einen elektrischen Strom.
  • Weiterhin ist bekannt, dass verschiedene, vorwiegend metallische Werkstoffe wie z.B. Legierungen mit Gadolinium oder anderen Seltene-Erden-Metallen, einen magnetokalorischen Effekt aufweisen. Bei dem magnetokalorischen Effekt erwärmt sich das Material, wenn es einem Magnetfeld ausgesetzt wird und es kühlt sich wieder ab, wenn der Magnetfeldeinfluss beendet wird. Ursache dieser Erwärmungsreaktion ist die Ausrichtung der magnetischen Momente des Materials durch das Magnetfeld und deren Abhängigkeit von der Magnetfeldstärke. Durch die Ausrichtungsgeschwindigkeit der magnetischen Momente entsteht Wärme. Eine mögliche Anwendung könnte die Verwendung als Kühlmittel sein, wobei durch periodische Magnetisierung und gleichzeitiges Abführen der entstehenden Wärme eine Kühlwirkung erreicht werden kann.
  • Der magnetokalorische Effekt ist legierungsabhängig stark hysteresebehaftet. Um den magnetokalorischen Effekt auch im Zusammenhang mit Anwendungen zu realisieren, die eine ggf. additive mechanische Belastung bedeutet, werden Legierungen gesucht, die diese physikalischen Effekte und Eigenschaften kombinieren. Ein weiteres Problem der technischen Anwendung dieses Effektes neben dem unerwünschten Hystereseverhalten ist die Tatsache, dass bisher dieser Effekt bei bekannten Legierungen und WerkstoffZusammensetzungen vergleichsweise schwach ausgeprägt ist.
  • Der Skin-Effekt, auch Stromverdrängung, ist ein Effekt in von höherfrequentem Wechselstrom durchflossenen elektrischen Leitern, durch den die Stromdichte im Inneren eines Leiters niedriger ist als in äußeren Bereichen. Er tritt in relativ zur Skin-Tiefe dicken Leitern und auch bei elektrisch leitfähigen Abschirmungen und Leitungsschirmen auf. Der Skin-Effekt begünstigt mit zunehmender Frequenz die Transferimpedanz geschirmter Leitungen und die Schirmdämpfung leitfähiger Abschirmungen, erhöht aber den Widerstandsbelag einer elektrischen Leitung. Das bedeutet praktisch, dass die Skintiefe, d.h. die Leitschichtdicke, werkstoffabhängig mit zunehmender Wechselstromfrequenz abnimmt. Infolge hoher Wechselstromfrequenzen von mehr als 100 kHz ist innerhalb einer Kupferleitung eine Skintiefe von 0,21 mm vorliegend.
  • Die DE 20 2012 009 083 U1 offenbart ein sub-molekulares Flächenheizungssystem, welches mindestens aus einem Träger besteht, worin einzelne Nano- und Pico-Metalle in bestimmten Matrizen, komplett isoliert in einer Flächenstruktur von Polyamid/Polyester-, Polyaramid-, Polymeren-, Ceramit- und sonstigen Kunststoffverbindungen, in Platten, Folien oder in Bahnleiter eingebracht werden.
  • Aus der US 2006/000823 A1 und der WO 2008/0642515 sind Kaltleiter mit positivem Temperaturkoeffizienten bekannt, die durch Einlagerung von leitenden Partikeln, beispielsweise von Metallen oder mit Metallen beschichtete Glaskugeln, in thermoplastische Kunststoffe gebildet werden.
  • Die WO 2009/133048 beschreibt eine Vielzahl von magnetokalorischen Materialien, insbesondere Fe2P-basierte Verbindungen und Heussler-Legierungen des Typs MnTP, worin T ein Übergangsmetall und P ein p-dotierendes Metall bedeutet.
  • Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung der einleitend genannten Art derart zu verbessern, dass eine Generierung der Strahlung mit hohem Wirkungsgrad und innerhalb eines schmalen und präzise definierbaren Frequenzbandes unterstützt wird.
  • Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung gemäß Anspruch 1 gelöst, bei welcher der Strahlungsgenerator mindestens eine Faser aus Kunststoff mit elektrischer Leitfähigkeit aufweist, wobei das Fasermaterial durch einen Grundwerkstoff aus PET gebildet ist, welchem Elemente eingelagert werden und dass die Elemente eine atomare Größe aufweisen und mit einem Abstand derart versehen sind, dass sich Elektronenwolken mindestens bereichsweise überdecken.
  • Die Dotierungselemente können dem PET-Werkstoff zusätzlich die Fähigkeit zur wenigstens teilweisen Leitung elektrischer Energie verleihen. Die Dotierungselemente können zum einen Eigenschaften als Absorber für Strahlungsenergie generieren, zum anderen können sie Eigenschaften als elektrische Leiter generieren. Durch eine Einlagerung beispielsweise von metallischen Atomen in die Freiräume zwischen den Molekülen oder durch eine Anlagerung von beispielsweise metallischen Atomen an die PET-Moleküle können dem PET-Material in einem gewissen Umfang elektrisch leitfähige Eigenschaften verliehen werden.
  • Entsprechend metallisch dotierte PET-Fasern leiten somit bei einem Anlegen einer Spannung einen elektrischen Strom. Je nach elektrischem Widerstand dieses Kompositwerkstoffes generiert dieser in Abhängigkeit vom angelegten Strom Strahlung oder absorbiert diese. Die Effekte werden in Abhängigkeit vom zuvor beschriebenen Skin-Effekt und durch additive Absorption von Strahlungsenergie unterstützt. Das bedeutet, dass der erfindungsgemäße PET-Kompositwerkstoff eine neue Werkstoffalternative für die Strahlungsabsorption oder Strahlungsgenerierung zu den bekannten Metall-Fasermaterialien darstellt.
  • Zusätzlich werden die mechanischen Eigenschaften des PET hinsichtlich seiner Bruchfestigkeit und Formbeständigkeit auch in Temperaturbereichen von über 80°C genutzt, um dem Absorbermaterial Anwendungsbereiche mit diesen erhöhten mechanischen Anforderungen zu eröffnen.
  • Eine weitere Eigenschaft des erfindungsgemäßen Absorbermaterials besteht in seiner von den jeweiligen Dotierungselementen abhängigen Eigenschaft, wenigstens teilweise elektrisch leitfähig zu sein. Insbesondere wenn der PET-Kompositwerkstoff ein Basismaterial für eine beliebig geartete Wärmequelle darstellt, können die physikalischen Effekte der Absorbtionsfähigkeit und der elektrischen Leitfähigkeit für die Erhöhung der abzugebenden Wärmemenge kombiniert und somit erhöht werden dadurch, dass zusätzlich zur emittierten Wärmestrahlung aufgrund der Strahlungsabsorbtion mittels eines an das PET-Kompositmaterial angelegten Spannung infolge des elektrischen Widerstandes des Materials zusätzlich auf elektrischem Weg Wärmeenergie erzeugt wird.
  • Eine weiterhin interessante Anwendung des PET- Kompositwerkstoffes ist durch seine Eigenschaft eröffnet, den magnetokalorischen Effekt zu realisieren und gleichzeitig die dem PET zu eigenen verbesserten mechanischen Werkstoffeigenschaften aufzuweisen. Durch geeignete Dotierungselemente lassen sich dem erfindungsgemäßen Material somit auch Kühlwirkungseigenschaften einprägen.
  • Die erfindungsgemäße Lehre erkennt, dass die für die PET-Dotierung geeigneten Elemente insbesondere MnFePhosphorverbindungen, MnFe(As,PwGexSiz)s; FeMn-PhosphorVerbindungen mit As,Si-Phosphor-Substitution ggf. kombiniert mit La(FeMnP)AICo; Verbindungen mit Mn-Zn sind.
  • Eine bevorzugte Anwendung liegt in der Verwendung der Dotierungs-Strukturformel MnFe(As,PwGexSiz)s. Diese Verbindung verfügt über hohe Kühlfähigkeiten bei Temperaturen von 200 bis 600 K, insbesondere bei 280 bis 500 K. Diese Verbindung zeigt einen sehr starken magnetokalorischen Effekt. Der Einsatz dieses Kompounds ist umweltfreundlich aufgrund der Tatsache, dass die umweltproblematischen Substanzen, insbesondere die Mn-Moleküle, in der PET-Grundmatrix gebunden sind. Sehr effiziente Ergebnisse sind erzielbar, wenn x = 0,3-0,7 ist und/oder w kleiner gleich 1-x und z = 1-x-w in seiner strukturellen Verbindung. Vorzugsweise ist in dieser spezifischen Einstellung das Material in einer hexagonalen Fe2P-Struktur realisiert.
  • Die Herstellung der verschiedenen Werkstoffzusammensetzungen kann in einer Kugelmühle und unter Schutzgasatmosphäre erfolgen.
  • Eine Legierung von 5g FeMnP0,7Ge0,3 mit einer kritischen Temperatur von etwa 350 K kann beispielsweise durch Mischen der reinen Elemente, die eine Qualität von 3N aufweisen, in den folgenden Mengen: FeMnP0,7Ge0,3 hergestellt werden. In einer geschlossenen Kugelmühle werden diese Elemente unter einer schützenden Atmosphäre gemahlen, bis ein amorphes oder mikrokristallines Produkt erhalten wird. Je nach den Eigenschaften der Mühle kann ein solches Produkt innerhalb von 20 Minuten bis zu wenigen Stunden gewonnen werden. Das Pulver wird danach in einer geschlossenen Ampulle in geschützter Atmosphäre erhitzt, bis eine Temperatur von etwa 800 bis 1050 GradC erreicht ist. Danach wird dieses auf eine Temperatur von etwa 650 GradC getempert. Die Legierung kristallisiert in einer hexagonalen Fe2P-Struktur.
  • Eine Legierung von 5g FeMnP0,5Ge0,5 mit einer kritischen Temperatur von etwa 600 K wird durch Mischen der reinen Elemente, die eine Qualität von 3N aufweisen, in den folgenden Mengen: Fe=1,72 g, Mn=1,69 g, P=0,476 g und Ge=1,12 g hergestellt. In einer geschlossenen Kugelmühle werden diese Elemente unter schützender Atmosphäre gemahlen, bis ein amorphes oder mikrokristallines Produkt erhalten wird. Je nach den Eigenschaften der Mühle kann ein solches Produkt innerhalb von 20 Minuten bis zu wenigen Stunden gewonnen werden. Das Pulver wird danach in einer geschlossenen Ampulle in qeschützter Atmosphäre erhitzt, bis eine Temperatur von etwa 800 bis 1050 GradC erreicht ist. Danach wird dieses auf eine Temperatur von etwa 650 GradC getempert.
  • Die Legierung kristallisiert ebenfalls in einer hexagonalen Fe2P-Struktur.
  • Eine Legierung von 5g FeMnP0,5Ge0,1Si0,4 mit einer kritischen Temperatur von etwa 300 K wird durch Mischen der reinen Elemente, die eine Qualität von 3N aufweisen, in den folgenden Mengen: Fe=1,93 g, Mn=1,90 g, P=0,535 g, Ge=1,251 g und Si=0,388 g hergestellt. In einer geschlossenen Kugelmühle werden diese Elemente unter schützender Atmosphäre gemahlen, bis ein amorphes oder mikrokristallines Produkt erhalten wird. Je nach den Eigenschaften der Mühle kann ein solches Produkt innerhalb von 20 Minuten bis zu wenigen Stunden gewonnen werden. Das Pulver wird danach in einer geschlossenen Ampulle in geschützter Atmosphäre erhitzt, bis eine Temperatur von etwa 800 bis 1050 GradC erreicht ist. Danach wird dieses auf eine Temperatur von etwa 650 GradC getempert. Die Legierung kristallisiert ebenfalls in einer hexagonalen Fe2P-Struktur.
  • Eine alternative Ausführung wird erhalten durch Modifikationen von Legierungen der Ausgangsmaterialien anstatt von den reinen Elementen - dies ist besonders vorteilhaft, wenn Si in der Legierung verwendet wird. Dies basiert auf der Tatsache, dass FeSi -Legierungen sehr stabil sind und erhalten werden, wenn reines Fe und Si in der Mühle verfügbar sind.
  • Eine Legierung von 10 g Fe0,86Mn1,14P0,5Si0,35Ge0,15, die eine kritische Temperatur von 390 K aufweist, wird erhalten durch Mischen der reinen Elemente, die eine Qualität von 3N aufweisen, und der Legierung Fe2P, die eine Qualität von 2N aufweist (Alpha Aesar 22951), in den folgenden Mengen: Fe2P=4,18 g, Mn=4,26 g, P=0,148 g, Si=0,669 g und Ge=0,742 g.
  • In einer geschlossenen Kugelmühle werden diese Elemente unter einer schützenden Atmosphäre gemahlen, bis ein amorphes oder mikrokristallines Produkt erhalten wird. Je nach den Eigenschaften der Mühle kann ein solches Produkt innerhalb von 20 Minuten bis zu wenigen Stunden gewonnen werden. Das Pulver wird danach in einer geschlossenen Ampulle in geschützter Atmosphäre erhitzt (gesintert), bis eine Temperatur von etwa 800 bis 1050 Grad C erreicht ist. Danach wird dieses auf eine Temperatur von etwa 650 Grad C getempert. Die vorliegende Erfindung ist nicht auf die beispielhaft beschriebene Ausführung beschränkt. Die Mengen können auf vielfaltige Weise variieren.
  • In den Zeichnungen sind die der Erfindung zugrundeliegenden Effekte und Ausführungsbeispiele der inneren Struktur des Materials schematisch dargestellt. Es zeigen:
  • Fig. 1
    den physikalischen Skin-Effekt anhand einer Diagrammdarstellung, d.h. die äquivalente Leitschichtdicke ö in mm verschiedener Metalle über der Wechselstromfrequenz f in kHz
    Fig. 2
    in einer zusammengestellten Darstellung das Absorptionsverhalten verschiedener Atmosphärengase in Abhängigkeit der Wellenlänge
    Fig. 3
    die Mikrostruktur von FeMnP0,5Si0,5,
  • Figur 1 zeigt den physikalischen Effekt der Stromverdrängung in oberflächennahe Randschichten eines stromdurchflossenen Leiters anhand einer Diagrammdarstellung, d.h. die äquivalente Leitschichtdicke δ in mm verschiedener Metalle über der Wechselstromfrequenz f in kH.
  • Figur 2 illustriert in einer zusammengestellten Darstellung das Absorptionsverhalten verschiedener Atmosphärengase in Abhängigkeit der Wellenlänge.
  • Figur 3 zeigt die bekannte Mikrostruktur von FeMnP0,5Si0,5.
  • Diese Heusler-Legierungen durchlaufen häufig einen martensitischen Übergang zwischen der martensitischen und der austenitischen Phase, die im Allgemeinen aufgrund der Temperaturinduzierung stattfindet und erster Ordnung ist. Ni2MnGa-Anordnungen sind ferromagnetisch mit einer Curie-Temperatur von 376 K und einem magnetischen Moment von 4,17 ILB, die weitgehend auf den Mn-Atomen beschränkt ist und mit einem kleinen Moment von etwa 0,3 IIB mit den Ni - Atomen verbunden sind. Wie aus seiner kubischen Struktur erwartet werden kann, hat die Ursprungsphase eine geringe magnetokristalline Anisotropie-Energie (Ha=0,15T). Jedoch hat in ihrer martensitischen Phase die Verbindung eine viel größere Anisotropie (Ha=0,8 T).
  • Die Martensitumwandlungstemperatur ist nahe 220 K. Diese martensitische Umwandlungstemperatur kann leicht auf etwa Raumtemperatur durch Ändern der Zusammensetzung der Legierung hin zu einer stochiometrischen Legierung variiert werden. Die Niedrigtemperaturphase entwickelt sich aus der Ausgangsphase durch eine diffusionslose, lageändernde Transformation hin zu einer tetragonalen Struktur, a = b = 5,90 A, c = 5,44 A. Eine Martensitphase nimmt im Allgemeinen den Stamm mit der Transformation assoziiert auf (das ist 6,56% an c für Ni2MnGa), durch die Bildung von Zwillingsvarianten.
  • Dies bedeutet, dass sich ein kubischer Kristall teilt in zwei tetragonalen Kristallite, die sich eine Kontaktebene teilen. Diese Zwillinge sind zusammengepackt in passenden Orientierungen, um die Spannungsenergie (ähnlich wie die Magnetisierung eines Ferromagneten auf unterschiedlichen Orientierungen durch Aufbrechen in Domänen, um die magnetostatische Energie zu minimieren). Die Ausrichtung dieser Zwillingsvarianten durch die Bewegung der Zwillingsgrenzen führen zu großen makroskopischen Stämmen.
  • In der tetragonalen Phase mit höherer magnetischer Anisotropie kann ein angelegtes Magnetfeld eine Änderung der Dehnung verursachen, weshalb diese Materialien als Aktuatoren verwendet werden können. Neben diesem ferromagnetischen Formgedächtniseffekt kann man sehr nah an der martensitischen Übergangstemperatur beobachten, dass eine große Änderung der Magnetisierung für niedrig angelegte Magnetfelder vorliegt. Diese Änderung in der Magnetisierung ist ebenfalls auf die magnetokristalline Anisotropie bezogen.
  • Diese Änderung in der Magnetisierung, welche zu einer moderaten magnetischen Entropieänderung von wenigen J/molK führt, wird verstärkt, wenn auf einem Einkristall implementiert wird. Wenn die Zusammensetzung in diesem Material in einer Weise vorliegt, dass die magnetische und strukturelle Umwandlung bei der gleichen Temperatur erfolgt und abgestimmt wird auf die größte magnetische Entropie, werden Veränderungen beobachtet.
  • Für die magnetischen Anwendungen werden extrem große Längenänderungen in dem martensitischen Übergang zu Alterungswirkung führen. Es ist bekannt, bei magnetischen Formgedächtnislegierungen, dass häufig nur Einkristalle gefahren werden, während polykristalline Materialien spontan pulverisieren nach mehreren Zyklen. Man kann die Temperatureffekte durch Druck auf die kristalline Formationen steigern, aber auch Alterungseffekte und Deklination der Polykristallinen werden dann beobachtet.
  • Fe2P-basierte Verbindungen bieten die Möglichkeit zur Verhinderung von Ionisationsprozessen, die binäre intermetallische Verbindung Fe2P kann als Basislegierung für eine praktikable Mischung aus Materialien berücksichtigt werden. Diese Verbindung kristallisiert in der hexagonalen, nichtpunktsymmetrischen FeMnPhosphor-Struktur, und hat alle positiven Eigenschaften, um als Transponder für Haus-Kühlsysteme verwendet zu werden.
  • Substitutionen von Fe und/oder Mn sind denkbar mit AS, Zi, Ni, Ge, Si. Fe belegt die 3g- und 3f-Seiten und p die 1b- und 2c-Seiten. Dadurch erhält man eine Stapelung von abwechselnd P-reichen und P-armen Schichten. Die Neutronenbeugung ergibt, dass das magnetische Moment des Fe auf dem 3g-Seite etwa 2my- B, während der Moment auf den 3f-Seite ist etwa 1my-B. Die hexagonale Form hat schlechte Möglichkeiten, durch die Alterung als magnetische Quelle wiedergewonnen zu werden.
  • Eine wesentliche Ursache für die elektrisch leitfähigen Eigenschaften der PET-Fasern durch die Dotierung liegt darin, dass in der dielektrischen Trägerstruktur des Polyesters die Metallpartikel zwar räumlich voneinander getrennt sind, dass jedoch die Elektronenwolken der Metallpartikel einander überlappen. Die Einbettung der Dotierungselemente in den Polyester verhindert Zersetzungsprozesse und verhindert äußere Einflüsse.
  • Insbesondere werden eine Reoxidation, eine Reibungszersetzung vermieden und die Flexibilität verbessert.
  • Es können im Hinblick auf die Strahlung genau fixierte, scharf begrenzte und reproduzierbare Frequenzgänge erreicht werden.
  • Insbesondere ist es im Hinblick auf die Strahlungsemission möglich, durch eine geeignete Dotierung die Generierung von Infrarotstrahlung im Frequenz-Bereich von 4,5 µm bis 11,5 µm zu erreichen.
  • Alternativ zur Verwendung von Fasern aus PET ist es auch möglich, Aramide einzusetzen. Die Herstellung der Fasern kann mittels Elektro-Spinningverfahren erfolgen.
  • Ein typischer Durchmesser der Fasern liegt mit Bereich 2 µm bis 6 µm. Die Dotierung mit den Metallpartikeln erfolgt vorzugsweise in einem Gasplasma.
  • Eine typische Faserlänge liegt im Bereich von 2 cm bis 4 cm.
  • Als Dotierungselemente eignen sich insbesondere die folgenden chemischen Elemente wahlweise im Reinzustand oder als Legierung. Gedacht ist insbesondere an die Verwendung von Seltenerd-Metallen. Verwendbar ist beispielsweise auch Eisen, Mangan, Phosphor, Silicium, Lanthan, Germanium, Natrium, Zink, oder Arsen. Darüber hinaus sind auch Aluminium, Kupfer und/oder Nickel verwendbar.
  • Alternativ können als Dotierungselemente Erdalkalimetalle oder Alkalimetalle verwendet werden. Gedacht ist beispielsweise an Magnesium, Calcium, Natrium und Kalium.

Claims (13)

  1. Vorrichtung zur Erzeugung einer Strahlung im Infrarotbereich, bei dem ein Strahlungsgenerator elektrisch versorgt wird und die elektrische Versorgung mindestens teilweise in die Infrarot-Strahlung transformiert, wobei der Strahlungsgenerator mindestens eine Faser aus Kunststoff mit elektrischer Leitfähigkeit aufweist, wobei das Fasermaterial durch einen Grundwerkstoff aus PET oder Aramid gebildet ist, in welchem Elemente eingelagert werden und wobei die Elemente eine atomare Größe aufweisen und mit einem Abstand derart versehen sind, dass sich Elektronenwolken mindestens bereichsweise überdecken, dadurch gekennzeichnet, dass die eingelagerten Elemente innerhalb des PET- oder Aramid-Grundwerkstoffes in einer ungleichen Dichteverteilung eingebracht sind, wobei die Elemente in Materialquerschnittsbereichen mit Stromverdrängungseffekt weniger dicht angeordnet sind als in Materialquerschnittsbereichen mit Stromverdichtungseffekt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die eingelagerten Elemente stromleitende Eigenschaften aufweisen, sodass die Faser wenigstens teilweise elektrisch leitend ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die eingelagerten Elemente magnetokalorische Effekte aufweisen, sodass die Faser durch Einwirkung eines Magnetfeldes wenigstens teilweise eine Temperaturerhöhung erfährt.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die eingelagerten Elemente in oberflächennahen Materialquerschnittsbereichen der äquivalenten Leitschichtdicke δ in einer höheren Dichte eingelagerten sind als außerhalb dieses Bereiches.
  5. Vorrichtung nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die eingelagerten Elemente durch Dotierung in den PET-Grundwerkstoff eingebracht sind.
  6. Vorrichtung nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, dass die eingelagerten Elemente durch MnFePhosphorverbindungen gebildet sind.
  7. Vorrichtung nach einem der vorgehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die eingelagerten Elemente durch MnFe(As,PwGexSiz)s gebildet ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die eingelagerten Elemente folgende Werte aufweisen: x=0,3-0,7 und, oder w kleiner gleich 1-x und z=l-x-w.
  9. Vorrichtung nach einem der vorgehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die eingelagerten Elemente durch FeMn-Phosphorverbindungen mit As,Si-Phosphor-Substitution und kombiniert mit La(FeMnP)AICo gebildet sind.
  10. Vorrichtung nach einem der vorgehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die eingelagerten Elemente durch Verbindungen mit Mn-Zn gebildet sind.
  11. Vorrichtung nach einem der vorgehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die eingelagerten Elemente durch eine Legierung mit FeMnP0,7Ge0,3 gebildet sind.
  12. Vorrichtung nach einem der vorgehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die eingelagerten Elemente durch eine Legierung mit FeMnP0,5Ge0,5 gebildet sind.
  13. Vorrichtung nach einem der vorgehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die eingelagerten Elemente durch eine Legierung mit Fe0,86Mn1,14P0,5Si0,35Ge0,15 gebildet sind.
EP15731492.3A 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich Active EP3123817B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL15731492T PL3123817T3 (pl) 2014-03-26 2015-03-26 Sposób wytwarzania promieniowania w zakresie podczerwieni
RS20181506A RS58209B1 (sr) 2014-03-26 2015-03-26 Postupak generisanja zračenja u infracrvenom okruženju
EP18191212.2A EP3471507B1 (de) 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014004595.1A DE102014004595A1 (de) 2014-03-26 2014-03-26 Verfahren zur Erzeugung einer Strahlung im Infrarot-Bereich
PCT/DE2015/000154 WO2015144122A1 (de) 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP18191212.2A Division EP3471507B1 (de) 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich

Publications (2)

Publication Number Publication Date
EP3123817A1 EP3123817A1 (de) 2017-02-01
EP3123817B1 true EP3123817B1 (de) 2018-09-12

Family

ID=53488085

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18191212.2A Active EP3471507B1 (de) 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich
EP15731492.3A Active EP3123817B1 (de) 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18191212.2A Active EP3471507B1 (de) 2014-03-26 2015-03-26 Verfahren zur erzeugung einer strahlung im infrarot-bereich

Country Status (8)

Country Link
EP (2) EP3471507B1 (de)
CY (1) CY1121013T1 (de)
DE (1) DE102014004595A1 (de)
DK (1) DK3123817T3 (de)
PL (1) PL3123817T3 (de)
RS (1) RS58209B1 (de)
TR (1) TR201819084T4 (de)
WO (1) WO2015144122A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840425A (en) * 1996-12-06 1998-11-24 Basf Corp Multicomponent suffused antistatic fibers and processes for making them
US7309849B2 (en) * 2003-11-19 2007-12-18 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
WO2008064215A2 (en) * 2006-11-20 2008-05-29 Sabic Innovative Plastics Ip Bv Thermally regulated electrically conducting compositions
TW201003024A (en) * 2008-04-28 2010-01-16 Basf Se Open-cell porous shaped bodies for heat exchangers
FR2933426B1 (fr) * 2008-07-03 2010-07-30 Arkema France Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres
DE102011109578B4 (de) * 2011-08-05 2015-05-28 Heraeus Noblelight Gmbh Verfahren zur Herstellung eines elektrisch leitenden Materials, elektrisch leitendes Material sowie Strahler mit elektrisch leitendem Material
DE202012009083U1 (de) * 2012-09-21 2013-01-30 Anke Hestermann de Boer Sub-molekularen Flächenheizungssystem, basierend auf einen Ferro magnetischer Kalorischer Gedächtnis Legierung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3471507C0 (de) 2024-03-13
CY1121013T1 (el) 2019-12-11
EP3471507A1 (de) 2019-04-17
RS58209B1 (sr) 2019-03-29
TR201819084T4 (tr) 2019-01-21
DE102014004595A1 (de) 2015-10-01
EP3471507B1 (de) 2024-03-13
EP3123817A1 (de) 2017-02-01
WO2015144122A1 (de) 2015-10-01
DK3123817T3 (en) 2019-01-07
PL3123817T3 (pl) 2019-03-29

Similar Documents

Publication Publication Date Title
Joshi et al. Structural, optical and ferroelectric properties of V doped ZnO
Rajan et al. Electrical and magnetic phase transition studies of Fe and Mn co-doped BaTiO3
EP3008221B1 (de) Magnetisches material, seine verwendung und verfahren zu dessen herstellung
WO2015003848A1 (de) Anisotroper seltenerdfreier matrixgebundener hochperformanter permanentmagnet mit nanokristalliner struktur und verfahren zu dessen herstellung
EP3123483B1 (de) Faser aus kunststoff mit elektrischer leitfähigkeit
WO2011020826A1 (de) Polykristalline magnetokalorische materialien
Yu et al. Magnetic, thermal stability and dynamic mechanical properties of beta isotactic polypropylene/natural rubber blends reinforced by NiZn ferrite nanoparticles
EP2457239A1 (de) Verwendung diamagnetischer materialien zur bündelung magnetischer feldlinien
EP3123817B1 (de) Verfahren zur erzeugung einer strahlung im infrarot-bereich
Pathania et al. Raman and Mössbauer spectroscopic studies of tungsten doped Ni–Zn nano ferrite
Sutradhar et al. Reduction of electromagnetic pollution by the enhancement of microwave absorption of strontium hexaferrite functionalized poly (vinylidene fluoride) composite film
Ghatak et al. Electrical conductivity, magnetoconductivity and dielectric behaviour of (Mg, Ni)-ferrite below room temperature
DE102009001356A1 (de) Artikel mit mindestens einem thermo-programmierbaren Schaltabschnitt für Anwendungen in Kontakt mit Materialien mit hohen Wärmeübergangszahlen
Ehi-Eromosele et al. Structural, morphological and magnetic properties of La 1− x Na y MnO 3 (y≤ x) nanoparticles produced by the solution combustion method
WO2015144124A2 (de) Einlegesohle für schuhwerk
WO2015144123A1 (de) Vorrichtung zur erzeugung von wärmestrahlung
DE102015015255A1 (de) Faser mit elektrischer Leitfähigkeit
DE102015015240A1 (de) Vorrichtung zur Kühlung
DE102015015256A1 (de) Vorrichtung zur Herstellung von Fasern mit elektrischer Leitfähigkeit
DE102015015254A1 (de) Vorrichtung zur Kühlung
DE102015015252A1 (de) Vorrichtung zur Erzeugung von Wärmestrahlung
DE102012213190B4 (de) Ferrimagnetischer Partikel, Verfahren zu seiner Herstellung und Verwendung des ferrimagnetischen Artikels
Agrawal et al. Electrical and thermal properties of Ca and Ni doped barium ferrite
DE102022108790A1 (de) Elektromagnetische Wellen dämpfende Dispersion, Halbzeug, Herstellverfahren und Verwendung
Coşkun et al. Shape Memory Materals Based on a NiMnSb Alloy and Polylactic Acid/Polyhydroxyalkanoate: Evaluation of The Chemical And Physical Properties

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTG Intention to grant announced

Effective date: 20180208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005846

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1042132

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FEEGOO LIZENZ GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A., CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190104

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20180403751

Country of ref document: GR

Effective date: 20190404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005846

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20210324

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20210323

Year of fee payment: 7

Ref country code: RS

Payment date: 20210324

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015005846

Country of ref document: DE

Representative=s name: PFLEIDERER, BERNHARD KARL, DIPL.-ING. DR.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20210323

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20210323

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230324

Year of fee payment: 9

Ref country code: FR

Payment date: 20230324

Year of fee payment: 9

Ref country code: DK

Payment date: 20230323

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230320

Year of fee payment: 9

Ref country code: AT

Payment date: 20230322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230324

Year of fee payment: 9

Ref country code: SE

Payment date: 20230314

Year of fee payment: 9

Ref country code: PL

Payment date: 20230217

Year of fee payment: 9

Ref country code: BE

Payment date: 20230321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 9

Ref country code: CH

Payment date: 20230401

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 10

Ref country code: GB

Payment date: 20240320

Year of fee payment: 10