EP3121900A1 - Ligne d'alimentation en énergie - Google Patents
Ligne d'alimentation en énergie Download PDFInfo
- Publication number
- EP3121900A1 EP3121900A1 EP14891056.5A EP14891056A EP3121900A1 EP 3121900 A1 EP3121900 A1 EP 3121900A1 EP 14891056 A EP14891056 A EP 14891056A EP 3121900 A1 EP3121900 A1 EP 3121900A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- horn
- wavelength
- bent portion
- opening end
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
Definitions
- the present invention relates to the field of antenna technologies, and in particular, to a feeding apparatus.
- a free space loss is in direct proportion to a square of a radio-frequency frequency in a transmission process. For example, when a frequency is higher than 100 GHz, a free space loss caused by using an electromagnetic wave having a high frequency band such as a millimetric wave is above 40 dB. Output power of a device using an electromagnetic wave having a high frequency band such as a millimetric wave is relatively low. Therefore, an antenna with a higher gain needs to be designed to compensate the caused free space loss, so as to ensure normal communication.
- Embodiments of the present invention provide a feeding apparatus, which can reduce a transmission loss and ensure an antenna gain.
- a first aspect of the present invention provides a feeding apparatus, which may include a horn antenna, a dielectric substrate, and a transmission line 30 and a grounding portion 40 that are disposed on the dielectric substrate, where the horn antenna 10 includes a horn opening end 11 and a horn feeding input end 12 that are disposed opposite to each other and includes a cavity located between the horn opening end 11 and the horn feeding input end 12, where the cavity includes a first inner surface 13; and the transmission line 30 includes a straight portion 31 and a bent portion 32, where the grounding portion 40 is laid at two sides of the straight portion 31, the straight portion 31, the bent portion 32, and the grounding portion 40 extend into the cavity through the horn feeding input end 12, the straight portion 31 is attached to the first inner surface 13, and a particular angle is formed between the bent portion 32 and the first inner surface 13.
- the horn feeding input end 12 is provided with a through hole 121, and the straight portion 31, the bent portion 32, and the grounding portion 40 extend into the cavity through the through hole 121.
- the through hole 121 is of a square, where a side length of the square ranges from 1/16 of a wavelength to 1/4 of the wavelength, and the wavelength is an wavelength of an electromagnetic wave.
- a covering portion 50 configured to cover the straight portion 31 and the grounding portion 40 is disposed on the first inner surface 13, where a passage is formed between the covering portion 50 and the first inner surface 13, and the passage includes a first opening end and a second opening end, where the first opening end is connected to the through hole 121, and the second opening end faces the bent portion 32.
- the first opening end has a shape and size the same as those of the through hole 121.
- a length of the passage is equal to a distance between the second opening end and the bent portion 32.
- a length of the passage ranges from 1/8 of the wavelength to 1/5 of the wavelength, and the wavelength is the wavelength of the electromagnetic wave.
- the particular angle is 90 degrees.
- a distance between the through hole 121 and the bent portion 32 is 1/4 of the wavelength, and the wavelength is the wavelength of the electromagnetic wave.
- a height of the bent portion 32 is 1/4 of the wavelength.
- a straight portion, a grounding portion, and a bent portion of a transmission line directly extend into a cavity of a horn antenna through a horn feeding input end of the horn antenna, the straight portion is attached to a first inner surface of the horn antenna, the bent portion is used as a feeding probe, and a particular angle is formed between the bent portion and the first inner surface of the cavity, so as to directly couple energy into the horn antenna.
- a transmission structure for sending a signal to the antenna is simplified and a transmission distance is shortened, so that a free space loss is reduced in a transmission process.
- the transmission line and the horn antenna with a high gain are coplanar, and integration of the horn antenna on a circuit board is facilitated.
- FIG. 1 and FIG. 2 show a feeding apparatus according to an embodiment of the present invention.
- the feeding apparatus includes a horn antenna 10, a dielectric substrate 20, and a transmission line 30 and a grounding portion 40 that are disposed on the dielectric substrate 20.
- the horn antenna 10 includes a horn opening end 11 and a horn feeding input end 12 that are disposed opposite to each other and includes a cavity located between the horn opening end 11 and the horn feeding input end 12, where the cavity includes a first inner surface 13.
- the horn antenna 10 is a microwave antenna having a gradient wide waveguide opening plane and a round or rectangular section, and generally includes: a conical horn, an E-plane sectoral horn, an H-plane sectoral horn, and a pyramidal horn.
- the horn feeding input end 12 is an end having a relatively small opening
- the horn opening end 11 is an end having a relatively large opening.
- This embodiment of the present invention mainly uses a pyramidal horn antenna as an example to implement coplanarity of one surface of the pyramidal horn antenna (the surface is the first inner surface 13) and the dielectric substrate 20.
- the transmission line 30 is a central conductor strip disposed on one surface of the dielectric substrate of the coplanar waveguide, and the grounding portion 40 is disposed at two sides of the central conductor strip.
- the coplanar waveguide has advantages that manufacture is simple and it is easy to implement a serial connection and a parallel connection (there is no need to perforate on a substrate) of a passive or active device in a circuit and easy to improve a circuit density.
- the transmission line 30 includes a straight portion 31 and a bent portion 32, where the grounding portion 40 is laid at two sides of the straight portion 31, the straight portion 31, the bent portion 32, and the grounding portion 40 extend into the cavity through the horn feeding input end 12, the straight portion 31 is attached to the first inner surface 13, and a particular angle is formed between the bent portion 32 and the first inner surface 13.
- the bent portion 32 is a bent part of the transmission line 30 after the transmission line 30 extends into the cavity for a given distance, a function of which is to form a feeding structure of a probe.
- the particular angle formed by the bent portion 32, that is, the probe, and the first inner surface 13 is generally 90 degrees, that is, the bent portion 32 is perpendicular to the first inner surface 13 (an unavoidable error may occur during a manufacturing process, and the error needs to be within an acceptable range so that an overall effect is not affected).
- a signal and energy transmitted by the straight portion 31 are directly fed to the horn antenna 10 by using the probe, which simplifies a signal transmission structure and shortens a transmission distance, thereby reducing a transmission loss.
- the horn feeding input end 12 is provided with a through hole 121, and the straight portion 31 and the bent portion 32 of the transmission line 30 and the grounding portion 40 extend into the cavity through the through hole 121.
- the through hole 121 is of a square, and a side length of the square ranges from 1/16 of a wavelength to 1/4 of the wavelength.
- the through hole 121 is set to square, higher bandwidth is obtained, and the square through hole facilitates an operation during processing, and may have a more precise size. It should be noted that, it should be avoided as far as possible to design the side length of the square to 1/8 of the wavelength within the range, because when the length is exactly 1/8 of the wavelength, an impedance matching status of an input port obviously deteriorates.
- the through hole 121 may be round.
- lengths of the straight portion 31 and the grounding portion 40 in the cavity matches a length of the bent portion 32 (that is, a size of the probe).
- a distance between the through hole 121 and the bent portion 32 is 1/4 of the wavelength, that is, the lengths of the straight portion 31 and the grounding portion 40 in the cavity are 1/4 of the wavelength.
- the distance between the through hole 121 and the bent portion 32 is 0.56 mm.
- a height of the bent portion 32 (the probe) that is perpendicular to the first inner surface 13 and that performs feeding in the horn antenna 10 mainly affects a resonance frequency.
- a feeding end of the horn antenna 10 needs to match the probe. Therefore, not only the height of the probe affects the resonance frequency, but also a length of a reflection cavity (that is, the lengths of the straight portion 31 and the grounding portion 40 in the cavity) also affect impedance bandwidth.
- a length of a reflection cavity that is, the lengths of the straight portion 31 and the grounding portion 40 in the cavity
- good impedance bandwidth can be obtained. For example, when the frequency is 140 GHz, the height of the bent portion 32 is 0.56 mm.
- a covering portion 50 configured to cover the straight portion 31 and the grounding portion 40 is further disposed on the first inner surface 13, where a passage is formed between the covering portion 50 and the first inner surface 13, and the passage includes a first opening end and a second opening end, where the first opening end is connected to the through hole 121, and the second opening end faces the bent portion 32.
- a length of the passage that is, a covered length, may be set to be equal to a distance between the second opening end and the bent portion 32 (that is, a half of the lengths of the straight portion 31 and the grounding portion 40 in the cavity), or the length ranges from 1/8 of the wavelength to 1/5 of the wavelength.
- the first opening end has a shape and size the same as those of the through hole 121, and the passage may be cylindrical, that is, the second opening end also has a shape and size the same as those of the first opening end or the through hole 121.
- the covering portion 50 may be provided with a hollow portion that matches the covering portion 50 according to the shape and size of the through hole 121.
- a cross section of the hollow portion is of a square having a side length of 1/4 of the wavelength, and the length is equal to the length of the passage.
- the covering portion 50 is added on the parts of the straight portion 31 and the grounding portion 40 in the cavity, a function of which is to widen the impedance bandwidth. After the horn antenna 10 uses a probe structure to perform feeding, the bandwidth is relatively narrow. Therefore, addition of the covering portion 50 can cause an additional resonant peak, and a status of matching between the additional resonant peak and an original resonant peak can be correspondingly adjusted by adjusting the length of the passage.
- the reflection cavity generally has a requirement of 1/4 of the wavelength (that is, the lengths of the straight portion 31 and the grounding portion 40 in the cavity), and an impedance matching bandwidth characteristic is relatively good when the length of the passage is within a particular range less than 1/4 of the wavelength. Therefore, the range may be set to 1/8 of the wavelength to 1/5 of the wavelength.
- wavelengths involved above are all a wavelength of an electromagnetic wave, where a propagation speed of the electromagnetic wave is equal to a speed of light c (3 ⁇ 10 ⁇ 8 m/s), that is, a product of the wavelength and a frequency f.
- a straight portion, a grounding portion, and a bent portion of a transmission line directly extend into a cavity of a horn antenna through a horn feeding input end of the horn antenna, the straight portion is attached to a first inner surface of the horn antenna, the bent portion is used as a feeding probe, and a particular angle is formed between the bent portion and the first inner surface of the cavity, so as to directly couple energy to the horn antenna.
- a transmission structure for sending a signal to the antenna is simplified and a transmission distance is shortened, so that a free space loss is reduced in a transmission process.
- the transmission line and the horn antenna with a high gain are coplanar, and integration of the horn antenna on a circuit board is facilitated.
- the present invention may be implemented by hardware, firmware or a combination thereof.
- the foregoing functions may be stored in a computer-readable medium or transmitted as one or more instructions or code in the computer-readable medium.
- the computer-readable medium includes a computer storage medium and a communications medium, where the communications medium includes any medium that enables a computer program to be transmitted from one place to another.
- the storage medium may be any available medium accessible to a computer.
- the computer-readable medium may include a RAM, a ROM, an EEPROM, a CD-ROM, or another optical disc storage or disk storage medium, or another magnetic storage device, or any other medium that can carry or store expected program code in a form of an instruction or a data structure and can be accessed by a computer.
- any connection may be appropriately defined as a computer-readable medium.
- the coaxial cable, optical fiber/cable, twisted pair, DSL or wireless technologies such as infrared ray, radio and microwave are included in a definition of a medium to which they belong.
- a disk (Disk) and disc (disc) used by the present invention includes a compact disc (CD), a laser disc, an optical disc, a digital versatile disc (DVD), a floppy disk and a Blu-ray disc, where the disk generally copies data by a magnetic means, and the disc copies data optically by a laser means.
Landscapes
- Waveguide Aerials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/076655 WO2015165098A1 (fr) | 2014-04-30 | 2014-04-30 | Ligne d'alimentation en énergie |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3121900A1 true EP3121900A1 (fr) | 2017-01-25 |
EP3121900A4 EP3121900A4 (fr) | 2017-03-22 |
EP3121900B1 EP3121900B1 (fr) | 2020-03-18 |
Family
ID=54358050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14891056.5A Active EP3121900B1 (fr) | 2014-04-30 | 2014-04-30 | Ligne d'alimentation en énergie |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3121900B1 (fr) |
CN (1) | CN105874649B (fr) |
WO (1) | WO2015165098A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11876295B2 (en) * | 2017-05-02 | 2024-01-16 | Rogers Corporation | Electromagnetic reflector for use in a dielectric resonator antenna system |
FR3079677B1 (fr) * | 2018-03-27 | 2021-12-17 | Radiall Sa | Dispositif de communication sans fil integrant une pluralite d’antennes-cornets sur un circuit imprime (pcb), procede de realisation et utilisation associes |
RU2761101C1 (ru) * | 2020-08-18 | 2021-12-03 | Акционерное общество "Калужский научно-исследовательский радиотехнический институт" | Сверхширокополосная рупорная антенна |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2398095A (en) * | 1940-08-31 | 1946-04-09 | Rca Corp | Electromagnetic horn radiator |
DE1565266A1 (de) * | 1965-06-18 | 1970-02-05 | Fried. Krupp Gmbh, 4300 Essen | Querstrahler |
KR100357283B1 (ko) * | 2001-02-20 | 2002-10-18 | 엔알디테크 주식회사 | Nrd 가이드용 혼 안테나 |
JP2009296301A (ja) * | 2008-06-05 | 2009-12-17 | Japan Radio Co Ltd | ホーンアンテナおよびフレア付きアンテナ |
CN101593872B (zh) * | 2009-07-01 | 2012-09-12 | 电子科技大学 | 一种后馈式毫米波宽带双脊喇叭天线 |
CN101667682A (zh) * | 2009-09-23 | 2010-03-10 | 东南大学 | 多模基片集成波导单脉冲天线 |
-
2014
- 2014-04-30 CN CN201480072238.3A patent/CN105874649B/zh not_active Expired - Fee Related
- 2014-04-30 EP EP14891056.5A patent/EP3121900B1/fr active Active
- 2014-04-30 WO PCT/CN2014/076655 patent/WO2015165098A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP3121900B1 (fr) | 2020-03-18 |
CN105874649A (zh) | 2016-08-17 |
EP3121900A4 (fr) | 2017-03-22 |
CN105874649B (zh) | 2019-05-03 |
WO2015165098A1 (fr) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Piltyay et al. | Analytical modeling and optimization of new Ku‐band tunable square waveguide iris‐post polarizer | |
US8089327B2 (en) | Waveguide to plural microstrip transition | |
JP5788548B2 (ja) | マイクロストリップアンテナ | |
CN109935972B (zh) | 一种基于等离子体激元的宽带天线 | |
Kumar et al. | On the design of nano-arm fractal antenna for UWB wireless applications | |
Beukman et al. | A quadraxial feed for ultra-wide bandwidth quadruple-ridged flared horn antennas | |
WO2016186136A1 (fr) | Circuit de conversion ligne coaxiale/ligne microruban | |
KR101496302B1 (ko) | 마이크로스트립 라인과 도파관 사이 밀리미터파 천이 방법 | |
US9431715B1 (en) | Compact wide band, flared horn antenna with launchers for generating circular polarized sum and difference patterns | |
EP3121900B1 (fr) | Ligne d'alimentation en énergie | |
CN109802235B (zh) | 一种表面波激励装置 | |
KR101890363B1 (ko) | 안테나 장치 | |
CN115642405A (zh) | 一种覆盖全Ka波段的宽带圆极化集成馈源透射阵天线 | |
CN112259969B (zh) | 一种基于超表面的毫米波宽带圆极化馈源天线 | |
KR101974548B1 (ko) | 필터 내장형 캐비티 백 안테나 | |
US11114735B2 (en) | Coaxial to waveguide transducer including an L shape waveguide having an obliquely arranged conductor and method of forming the same | |
EP3091611B1 (fr) | Antenne et dispositif sans fil | |
Abbas-Azimi et al. | Sensitivity analysis of a 1 to 18 GHz broadband DRGH antenna | |
US20190305434A1 (en) | Connection Arrangement | |
Esfandiarpour et al. | Wideband planar horn antenna using substrate integrated waveguide technique | |
US20200185805A1 (en) | Waveguide-excited terahertz microstrip antenna | |
Ain et al. | Hybrid dielectric resonator integrated pyramidal horn antenna | |
KR101306394B1 (ko) | 무선 주파수(rf) 디바이스 | |
WO2022001914A1 (fr) | Coupleur, module émetteur-récepteur et système de communication | |
CN113097724B (zh) | 一种介质谐振天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161020 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170221 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 13/02 20060101AFI20170215BHEP |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190328 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191011 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014062700 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1247011 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200618 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200618 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200619 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200718 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1247011 Country of ref document: AT Kind code of ref document: T Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014062700 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
26N | No opposition filed |
Effective date: 20201221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200518 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200618 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210408 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014062700 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221103 |