EP3120939B1 - Coated substrates, and their use and systems for the production of coated substrates - Google Patents

Coated substrates, and their use and systems for the production of coated substrates Download PDF

Info

Publication number
EP3120939B1
EP3120939B1 EP16160981.3A EP16160981A EP3120939B1 EP 3120939 B1 EP3120939 B1 EP 3120939B1 EP 16160981 A EP16160981 A EP 16160981A EP 3120939 B1 EP3120939 B1 EP 3120939B1
Authority
EP
European Patent Office
Prior art keywords
metal substrate
metal
layer
plasma
optionally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16160981.3A
Other languages
German (de)
French (fr)
Other versions
EP3120939A1 (en
Inventor
Matthias Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEC High End Coating GmbH
Original Assignee
HEC High End Coating GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEC High End Coating GmbH filed Critical HEC High End Coating GmbH
Priority to EP16160981.3A priority Critical patent/EP3120939B1/en
Publication of EP3120939A1 publication Critical patent/EP3120939A1/en
Application granted granted Critical
Publication of EP3120939B1 publication Critical patent/EP3120939B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer

Definitions

  • the present invention relates to coated substrates and the use of these coated substrates.
  • Metallic and non-metallic components are often coated to create a smooth and/or shiny surface. As a rule, these are multi-layer coating systems. In addition to the desire to obtain a surface with a high-quality appearance, pronounced corrosion protection is also regularly sought with such coating systems. Permanent corrosion protection is often destroyed by mechanical damage. In many cases, even the slightest mechanical damage to coated surfaces will result in corrosion. In addition to discoloration, this can also result in infiltration phenomena. It is not uncommon for this to lead to the coating areas flaking off. There has been no lack of attempts to make coated shiny surfaces corrosion-resistant.
  • the EP 2 752 504 relates to a method for producing a metallic or non-metallic metallically coated substrate, comprising the steps of: a) providing at least one substrate with at least one surface which can be metallically coatable at least in some areas; c) Application of at least one metallic composite protective layer containing at least one first metal selected from the group consisting of aluminum, manganese, magnesium and zinc as the main component, or at least one first metal alloy selected from the group consisting of steel, stainless steel, a magnesium alloy and a Aluminum alloy, and distributed in the main component present as a minor component at least one second metal and/or at least one oxidically bonded second metal selected from the group consisting of zirconium, titanium and hafnium, or consisting of the main component and the minor component, process step c ) comprises the partial steps: i) application of at least one metal layer containing or consisting of the at least one first metal or containing or consisting of the at least one first metal alloy by means of vapor deposition and/or sputtering technology on
  • the EP 306 612 describes a method for applying layers to substrates, wherein layer material is converted into the gaseous state by means of at least two different devices in a vacuum chamber and deposited on the substrates to form a layer.
  • a magnetic field-assisted cathode sputtering is carried out to convert a part of the material into vapor form and the conversion of another part of the material is effected by means of an electric arc discharge.
  • at least five atomic percent of the metal content to be applied to the functional surfaces of the substrates must come from the conversion of electrode material from the arc discharge into the vapor form.
  • U.S. 2014/295141 describes a coating process comprising the steps of depositing a layer of aluminum by evaporation on a surface of a semicrystalline polymer article and depositing a layer of hexamethyldisiloxane, also by evaporation, in a manner such that after heating the coated article to a temperature range of 165°C to 190 °C over a period of between one and four hours resulted in an aluminum layer with a thickness of less than 200 nm and a layer based on hexamethyldisiloxane with a thickness of less than 325 nm.
  • the surface obtained in this way should be free of lines and be characterized by a diffuse reflection of not more than 2%, measured at 600 nm according to ASTM C1650-07.
  • the result described is only obtained if an aluminum target with a Power density of 40 W/cm 2 is sputtered for a maximum of two minutes and the object to be coated is passed in front of the aluminum target between two and 25 times. Gaseous hexamethyldisiloxane is then passed past the object to be coated for a period of between 1 and 20 seconds at a pressure of 20 to 75 mtorr.
  • hexamethyldisiloxane While the hexamethyldisiloxane is being passed, it is exposed to a power density in the range between 0.5 W/cm 2 and 3 W/cm 2 for a period of between 0.2 and 3.3 minutes. This process can be repeated 40 times.
  • the DE 198 59 695 A1 shows a method for coating substrates made of plastic with a light-reflecting layer, preferably an aluminum layer, and a further layer arranged between the substrate and the light-reflecting layer, the further layer being a highly crosslinked hydrocarbon, for example a silicon oxide, silicon nitride or Silicon oxynitride layer has a thickness of at least 15 nm and the plastic content of the barrier layer is ⁇ 15%.
  • the JP 5 298 189 B2 relates to a device comprising a vapor deposition chamber with an internal space that can be relieved of pressure, at least two vapor deposition sources in which the vapor deposition material is accommodated and which vaporize the vapor deposition material, a substrate that is arranged in the vapor deposition chamber, and a vapor injection nozzle with a mixing chamber and tubes in the form of flexible, pliable Tubing connecting the at least two vapor deposition sources and the vapor injection nozzle. Furthermore, this device comprises a heating element provided on the steam injection nozzle and on at least a portion of the tubes. The vapors mixed in the mixing chamber reach the vapor deposition chamber, in which the substrate to be coated is present, via the vapor injection nozzle. With the device according to JP 5 298 189 B2 It is said that various types of vapor deposition materials can be mixed and a homogeneous thin-film deposition film made of a composite material can be obtained.
  • anti-corrosion coatings for metal substrates still show considerable potential for improvement in terms of adhesion and corrosion protection, especially for mass-produced products, especially those with complex geometries.
  • the present invention was therefore based on the object of providing coated substrates which no longer have the disadvantages of the prior art and which, in particular, also in mass production provide coated products with improved corrosion protection and/or very good adhesion properties. Coated products are also sought which do not immediately show infiltration phenomena in the event of mechanical surface damage, in particular not associated with layers peeling off. Furthermore, the invention was based on the object of arriving at coated substrates which, even with complex geometry, show an equally high coating result over the entire component, including in the area of edge profiles.
  • steps d), e) and f) are only optional. In individual cases, they can contribute to improved adhesion and increased protection against corrosion.
  • step i) It has been shown that it is advantageous if a polysiloxane layer, in particular a plasma-generated one, is present on both sides of the metal layer and has preferably been subjected to a plasma treatment and/or a corona treatment, in particular a plasma treatment.
  • the variant of the method described above, including the application of a primer layer is particularly useful for non-metallic substrates, in particular plastic substrates, with a surface that has unevenness or is of inferior quality.
  • step h) can also be used here.
  • step h) it is advantageous to apply a polysiloxane layer, in particular a plasma-generated one, before the step of applying the metal layer k) (step i)).
  • the layer to which the metal layer is applied according to step k) is subjected to a plasma treatment with the plasma generator and/or a corona treatment before step k) (e.g. step j), f) or d)).
  • the non-metallic substrate in particular the plastic substrate, is subjected to a plasma treatment and/or corona treatment, in particular plasma treatment (step d)) .
  • Suitable non-metallic substrates include glass, ceramic, composite fiber materials, carbon materials, plastic, or wood. The process described here is particularly well suited for the coating of plastic substrates in order to obtain permanently high-gloss products.
  • Suitable plastic substrates include or consist, for example, of PVC, polyurethanes, polyacrylates, polyesters, e.g. PBT and PET, polyolefins, in particular polypropylene, polycarbonates, polyamides, polyphenylene ethers, polystyrene, styrene (co)polymers such as ABS, SAN, ASA or MABS, polyoxyalkylene, e.g. POM, Teflon and polymer blends, in particular ABS/PPE, ASA/PPE, SAN/PPE and/or ABS/PC blends.
  • a particularly pronounced protection against corrosion is also obtained with the metal substrate obtainable by the method described herein by applying at least one metal layer containing or consisting of a second metal selected from the group to the metal substrate cleaned according to step D) or the cleaned coatable surface of the metal substrate consisting of titanium, hafnium and zirconium, in particular zirconium, or from a second metal alloy selected from the group consisting of titanium, hafnium and zirconium alloys, applied with the application system, in particular by means of vapor deposition and/or sputtering technology (step E) ). It is particularly advantageous here if this metal layer is subsequently subjected to a plasma treatment step (step F)).
  • process steps D), G), H), M), O), Q), S), T) and U) can also be provided as mandatory process steps for the production of coated metal substrates to fall back.
  • the method described herein delivers by following the sequence of the mandatory method steps D), E), G), H), M), O), Q), S), T) and U) or by following the sequence of the mandatory Process steps D), M), N), O), Q), S), T) and U) or in compliance with the sequence of mandatory process steps D), G), H), O), Q), S), T) and U) very satisfactory results in terms of adhesion, gloss and corrosion resistance, particularly when the process steps follow one another directly in the order mentioned.
  • process sequence is also very expedient, in which, in addition to process steps A) to C), use is made of the sequence D), I), K), L), O), Q), S), T) and U) or from the sequence D), F), O), Q), S), T) and U) or from the sequence D), G), H), O), Q), S), T) and U ).
  • the layer to which the metal layer is applied according to step Q) is subjected to a plasma treatment with the plasma generator and/or a corona treatment (for example steps P), N), L) before step Q). J), H), F) or D)).
  • a plasma treatment with the plasma generator and/or a corona treatment (for example steps P), N), L) before step Q).
  • J), H), F) or D) also applies in particular to the polysiloxane layer.
  • the metallic substrate in particular the cleaned metallic substrate, is subjected to a plasma treatment and/or corona treatment, in particular plasma treatment (step F)) .
  • Metals and metal alloys can be used for the metal substrates, with particularly suitable metal substrates being able to be selected from the group consisting of aluminum, aluminum alloys, iron, iron alloys, in particular steel or stainless steel, copper, copper alloys, titanium, titanium alloys, zinc, zinc alloys, nickel, Nickle alloys, molybdenum, molybdenum alloys, magnesium, magnesium alloys, lead, lead alloys, tungsten, tungsten alloys, manganese, manganese alloys, brass, bronze, die-cast nickel, die-cast zinc and die-cast aluminum or any mixtures thereof.
  • Suitable methods for cleaning metal substrates are known to those skilled in the art.
  • Such cleaning processes include degreasing, pickling, phosphating, in particular iron and/or zinc phosphating, polishing, grinding, in particular vibratory grinding, and/or treating with dry ice.
  • These methods can be used individually or in any combination.
  • dry ice particles in the form of pellets or in the form of crystals which have been scraped off a corresponding block of dry ice, are generally accelerated with the aid of compressed air and directed onto the metal surface to be cleaned.
  • the cleaning effect is said to be due to thermal, kinetic and phase change effects.
  • Devices and methods for cleaning of metal surfaces with dry ice are for example the DE 195 44 906 A1 and EP 2 886 250 refer to.
  • the surface of metal substrates can be degreased with alkaline or acidic reagents.
  • Commercial degreasing steps are also known by the terms boiling or pickling degreasing.
  • a metal surface can be anodically degreased in an electrolytic degreasing bath.
  • the pickling step is generally completed by a rinsing step. If the metal substrate surface is polished and/or ground or tumbled, the degreasing and/or pickling step can often be omitted. With this type of surface treatment, sufficient material is usually removed from this surface, with the result that impurities or other components lying on or adhering to the surface are also removed.
  • the surface is polished or ground, it is also often possible to dispense with the application of a first and optionally a second primer layer. Such an even or smooth surface is usually obtained by polishing or grinding that smoothing by applying a primer layer is no longer necessary. However, if the metal substrate has numerous nooks and crannies that cannot be readily polished or ground sufficiently, it may be advisable to add a first and possibly a second priming step.
  • the metallic substrate surface can be phosphated and/or passivated. This is particularly preferred in the case of substrates made of or containing aluminum.
  • a first metal in particular aluminum, or a first metal alloy, in particular an aluminum alloy
  • a metal layer in particular the vacuum vapor deposition system or the sputter system, overlapping in time with a second metal that is different from the first metal, in particular selected from the group consisting of titanium, zirconium and hafnium, in particular zirconium, or with a second metal alloy, in particular a zirconium alloy different from the first metal alloy is co-evaporated.
  • the primer layer can be based on, in particular UV-curing, powdered polyester resin compounds or on epoxy/polyester powder.
  • the primer layer can be based on, in particular UV-curing, powdered polyester resin compounds or on epoxy/polyester powder.
  • mechanically smooth the metal substrate surface for example by means of grinding and/or polishing or vibratory grinding.
  • Suitable organosilicon compounds are known to those skilled in the art.
  • at least one amino-containing silane is used for this purpose, in particular aminopropyltriethoxysilane, hexamethyldisiloxane, tetramethyldisiloxane or any mixtures thereof.
  • Hexamethyldisiloxane and tetramethyldisiloxane are particularly preferably used, hexamethyldisiloxane being regularly particularly suitable.
  • radicals X include, for example, vinyl, alkylvinyl, especially methyl, ethyl or propylvinyl, (meth)acryloxyalkyl, especially (meth)acryloxymethyl, (meth)acryloxyethylene or (meth)acryloxypropyl, especially (meth)acryloxypropyl.
  • a first organosilicon compound is supplied via a supply line from a first container of this application system, in particular vacuum chamber, located outside the application system for the application of a metal layer, in particular outside the vacuum chamber of the vacuum vapor deposition system, and that a second organosilicon compound, which differs from the first organosilicon compound, is supplied via a feed line from a second container located outside the application system for the application of a metal layer, in particular outside the vacuum chamber of the vacuum vapor deposition system, of this application system, in particular vacuum chamber.
  • the same organosilicon compound can also be present in the first and the second container.
  • the methods described herein are also characterized in that at least one colorant, in particular a dye, is introduced into the application system for the application of a metal layer, preferably in the form of a mixture, together with the at least one organosilicon compound, in particular for the plasma polymerization .
  • a colorant in particular a dye
  • an application system for the application of a metal layer comprising at least one first container, in particular outside the application system for the application of a metal layer, in particular outside the vacuum chamber of the vacuum vapor deposition system, for receiving a first silicon-organic compound with a feed line the application system, in particular to the vacuum chamber, and at least a second, in particular outside the application system for the application of a metal layer, in particular Outside the vacuum chamber of the vacuum vapor deposition system, present container for receiving a second organosilicon compound with a feed line to the application system, in particular to the vacuum chamber.
  • the at least one organosilicon compound, in particular hexamethyldisiloxane, and the at least one reactive gas, in particular oxygen or air can be used as a mixture for the treatment step.
  • the previously described embodiment of the use of reactive gases in the, in particular plasma-generated, production of the polysiloxane layer is preferably used in at least one step of the treatment with at least one organosilicon compound, in particular by means of plasma polymerisation, with the formation of a polysiloxane layer or also in every step for the production of a polysiloxane layer Mission.
  • This process variant is particularly preferably used in the production of coated non-metallic substrates, in particular plastic substrates, in process step m) and in the production of coated metallic substrates in process step S).
  • the plasma treatment is preferably formed with the aid of a plasma gas from an inert gas, in particular argon, and oxygen or air or nitrogen, in particular oxygen, or with the aid of a plasma gas formed from oxygen, air or nitrogen carried out. This procedure also contributes again to improved adhesion of the overall system, including the top layer.
  • the plasma can be formed using at least one inert gas, in particular argon.
  • argon a reactive gas such as oxygen, nitrogen, carbon dioxide, hydrogen, carbon monoxide, hydrogen peroxide gas, water vapor, ozone and/or air
  • a reactive gas such as oxygen, nitrogen, carbon dioxide, hydrogen, carbon monoxide, hydrogen peroxide gas, water vapor, ozone and/or air
  • Oxygen and nitrogen, in particular oxygen are preferably used here.
  • reactive gases such as oxygen, nitrogen, hydrogen, carbon dioxide, carbon monoxide, hydrogen peroxide gas, water vapor, ozone and/or air for generating the plasma without using inert gases.
  • Oxygen is preferably used here.
  • a plasma treatment with the plasma generator, the surface of the substrate to be coated is activated.
  • a high-energy plasma regularly acts on the surface of the molded part, so that active centers are formed on this surface. These can be, for example, hydroxyl groups and/or carbonyl groups.
  • activation of the surface of the substrate surface to be coated can take place by means of flaming.
  • a volatile silane or a compound containing titanium and aluminum can be added to a flame, for example a propane gas flame, which burns in an air atmosphere.
  • the surface of the substrate, in particular a plastic substrate can be changed by the flame treatment in a manner similar to that in the plasma process, for example with the formation of hydroxyl groups.
  • the methods described here offer the great advantage that almost all method steps can be carried out in the application system for the application of a metal layer.
  • this also applies to the activation of surfaces by means of plasma treatment with the plasma generator and the application of the polysiloxane layer, in particular by means of plasma polymerisation. Only the cleaning steps, the application of a primer layer, the application of a conversion layer and the application of the top layer are regularly applied outside of the application system mentioned.
  • the, in particular each, plasma treatment with the plasma generator and/or the, in particular each, application of the metal layer and/or the, in particular each, application of the polysiloxane layer in the application system for the application of a metal layer, in particular in the vacuum vapor deposition system or in the sputtering system is carried out and/or that the application of the primer layer and/or the application of the conversion layer and/or the application of the cover layer is carried out outside of the application system for the application of a metal layer, in particular the vacuum vapor deposition system or the sputter system.
  • top layer can be formed from polyacrylate resins, polyester resins, amino resins or polyurethane compounds.
  • top layers which are based on a UV-curing coating material are preferably applied.
  • a preferred topcoat is a UV-cured topcoat.
  • the topcoat can be obtained, for example, via a clear coat or a transparent powder.
  • the top layer is preferably applied using a wet paint process or a powder coating process.
  • the top coat can be, for example, one-, two- or multi-component paints, with clear paints being preferred.
  • These clear coats can be, for example, chemically crosslinking two-component, one-component, heat-curing or UV-curing coatings.
  • 1K or 2K stove enamel can be used for the top layer.
  • the cover layer generally has a thickness in the range from 10 to 50 ⁇ m, preferably in the range from 20 to 30 ⁇ m. It is essential for the methods described herein that the material forming the cover layer is applied to a polysiloxane layer previously activated by means of plasma treatment and/or corona treatment, which in turn was preferably obtained by means of plasma polymerisation, preferably essentially without a time delay.
  • the plasma treatment with the plasma generator is sometimes also described with the term smoldering.
  • suitable application systems for the application of a metal layer are, for example, preferably vacuum vapor deposition systems or sputter systems.
  • Suitable vacuum evaporation systems suitably include PVD systems (Physical Vapor Deposition), CVD systems (Chemical Vapor Deposition), electron beam evaporators, resistance evaporators, induction evaporators and ARC evaporators.
  • Suitable sputtering equipment includes, for example, cathode atomizers and anode atomizers.
  • a metal layer consists primarily of metal. This does not completely rule out additives such as those used in stainless steel in the form of carbon.
  • the metal content of the present metal layer is preferably greater than 90% by weight, in particular 95% by weight and very particularly preferably ⁇ 98% by weight.
  • the metal layer is preferably a vapor-deposited or sputtered-on metal layer, in particular a PVD metal layer.
  • Resistance-heated metal coil or metal boat evaporators are generally used in the PVD process, with tungsten coils of various shapes being preferred.
  • an evaporator is generally equipped with coils that can be clamped onto evaporator rails that are insulated from one another. A precisely determined quantity of metal to be vapor-deposited is preferably placed in each coil. After closing and evacuating the PVD system, the evaporation can be started by switching on the power supply, which causes the evaporator bars to glow the coils. The solid metal begins to melt and completely wets the mostly twisted coils.
  • the liquid metal is converted into the gas phase so that it can be deposited on the substrate to be coated.
  • the thickness of the metal layer and thus also the appearance of the same can be adjusted in a targeted manner via the amount of metal transferred into the gas phase and/or the duration of the coating phase.
  • cathode sputtering sputtering method
  • a cathode is placed in an evacuated container and is connected to the negative pole of a power supply.
  • the coating material to be sputtered is mounted immediately in front of the cathode and the substrates to be coated are placed opposite the coating material to be sputtered.
  • argon can be passed through the container as a process gas, which finally also has an anode which is connected to the positive pole of a power supply. After the container has been pre-evacuated, the cathode and anode are connected to the power supply.
  • the mean free path length of the charge carriers is significantly reduced by the targeted and controlled admission of argon.
  • Argon atoms are ionized in the electric field between cathode and anode.
  • the positively charged particles are accelerated towards the negatively charged cathode with high energy.
  • this Upon impact and particle collisions in the coating material, this is converted into the vapor phase, accelerated into free space with high energy and then condenses on the substrates to be coated.
  • Different metal layer thicknesses can be specifically adjusted with the sputtering process.
  • the metal layers obtainable with the methods and systems mentioned preferably have an average, in particular absolute, thickness in the range from 1 nm to 150 nm, in particular in the range from 5 nm to 120 nm Example with a thickness in the range of 60 nm to 120 nm, preferably set with a thickness in the range of 75 nm to 110 nm. With these thicknesses, the metal layer, in particular the aluminum layer, is covering, i.e. essentially not transparent or translucent on the surface. In this way, high-gloss layers can be obtained.
  • Coloring of the coating present on the non-metallic and metallic substrates can also be accomplished using the methods described herein by using a coating material containing at least one colorant, for example at least one pigment and/or at least one dye, for the application of the top layer. is used. Glazes known to those skilled in the art can also be used to color the top layer, for example to obtain brass, titanium and gold tones or individual color tones such as red, blue, yellow, green, etc. or anodized color tones. For example, effect pigments such as pearlescent pigments, LCP pigments (liquid crystal polymer) or OV pigments (optically variable) can also be incorporated into the top layer.
  • at least one colorant for example at least one pigment and/or at least one dye
  • Glazes known to those skilled in the art can also be used to color the top layer, for example to obtain brass, titanium and gold tones or individual color tones such as red, blue, yellow, green, etc. or anodized color tones.
  • effect pigments such as pearlescent pigments
  • an application system for the application of a metal layer comprising or representing a vacuum vapor deposition system with a vacuum chamber, and at least one, in particular a large number of first heatable receiving units, in particular shells, boats or coils , each in operative connection with a first heating device or comprising or representing a first heating device, each designed and suitable for receiving a first metal or a first metal alloy with a first melting point or melting range, and at least one, in particular a large number of second heatable receiving units, in particular Shells, boats or coils, each in operative connection with a second heating device or comprising or representing a second heating device, each designed and suitable for receiving a second meta lls or second metal alloy with a second melting point or melting range, the first melting point or the first melting range being different from the second melting point or second melting range, and also a control device for setting the first and second temperatures in such a way that the first and evaporate (co-evapor
  • the application system for the application of a metal layer has at least a first container, in particular outside the vacuum chamber of the vacuum vapor deposition system, for receiving a first organosilicon compound with a feed line to the vacuum chamber and at least a second container, in particular outside the vacuum chamber of the vacuum vapor deposition system present container for receiving a second organosilicon compound with a line to the vacuum chamber.
  • Suitable frames that can be used with the application system according to the invention are, for example EP 2 412 445 and the DE 20 2007 016 072 refer to.
  • the non-metallic and metallic substrates obtainable by the process according to the invention can be used, for example, as accessories for automobile construction, motorcycle construction, bicycle construction or shipbuilding, for rims, in particular light metal rims, wheels, in particular light metal wheels, or as a component thereof, for sanitary fittings, in particular as Annatur , or as a component thereof, for interior or exterior body parts or as a component thereof, for handles or handle components, in particular door handles or as a component thereof, for profiles or frames, in particular window frames or as a component thereof, for fitting systems or as a component thereof, in particular signs and doorplates, for casings or as packaging or as a component thereof, for interior or exterior components of ships or as a component thereof, for ornaments or as a component thereof, for precious components or as a component thereof, for interior or outdoor furniture or components thereof, for household appliances, in particular coffee machines, or components thereof, for internal or external components of aircraft or as a component thereof, for internal or external components of buildings or as a component thereof, for radiators or
  • the invention is based on the surprising finding that the substrates obtainable by the processes described herein provide a high-quality gloss coating which permanently retains its gloss.
  • the coated non-metallic and metallic substrates obtainable by the process described herein are endowed with outstanding corrosion resistance.
  • the coated substrates obtainable by the processes described herein are also distinguished by pronounced adhesion. Accordingly, these coated substrates show outstanding resistance to corrosion even when the surfaces have suffered mechanical damage, for example from stone chipping or scratching.
  • a further advantage associated with the methods described here and with the application system described here is that only very short changeover times are required to coat new substrate batches.
  • the method described here makes it possible to significantly reduce the scope of the overall system for producing coated substrates, starting from the substrate to be coated that has not yet been cleaned, so that there is a significantly reduced space requirement compared to conventional systems.

Description

Die vorliegende Erfindung betrifft beschichtete Substrate sowie die Verwendung dieser beschichteten Substrate.The present invention relates to coated substrates and the use of these coated substrates.

Metallische wie nicht-metallische Bauteile werden häufig zur Erzeugung einer glatten und/oder glänzenden Oberfläche beschichtet. In der Regel handelt es sich hierbei um mehrlagige Beschichtungssysteme. Neben dem Wunsch, eine Oberfläche mit hochwertiger Anmutung zu erhalten, wird mit derartigen Beschichtungssystemen regelmäßig auch ein ausgeprägter Korrosionsschutz angestrebt. Ein dauerhafter Korrosionsschutz wird nicht selten durch mechanische Beschädigung zunichte gemacht. Vielfach setzt bereits bei geringfügigsten mechanischen Beschädigungen beschichteter Oberflächen Korrosion ein. Dies kann neben Verfärbungen auch Unterwanderungsphänomene zur Folge haben. Nicht selten führt dies dann zum Abplatzen von Beschichtungsarealen. Es hat nicht an Versuchen gefehlt, beschichtete glänzende Oberflächen korrosionsbeständig auszustatten. Beispielsweise be schreibt die DE 123 765 A1 ein Verfahren zur Erzeugung einer Korrosionsschutzschicht auf einer metallischen Oberfläche, bei dem ein auf Siliziumverbindungen basierendes Sol, ein Aminoalkylfunktionalisiertes Alkoxysilan oder ein Umsetzungsprodukt der beiden vorangehend genannten Komponenten zum Einsatz kommt.Metallic and non-metallic components are often coated to create a smooth and/or shiny surface. As a rule, these are multi-layer coating systems. In addition to the desire to obtain a surface with a high-quality appearance, pronounced corrosion protection is also regularly sought with such coating systems. Permanent corrosion protection is often destroyed by mechanical damage. In many cases, even the slightest mechanical damage to coated surfaces will result in corrosion. In addition to discoloration, this can also result in infiltration phenomena. It is not uncommon for this to lead to the coating areas flaking off. There has been no lack of attempts to make coated shiny surfaces corrosion-resistant. For example be writes the DE 123 765 A1 a method for producing an anti-corrosion layer on a metallic surface, in which a sol based on silicon compounds, an aminoalkyl-functionalized alkoxysilane or a reaction product of the two components mentioned above is used.

Gemäß der DE 38 33 119 C2 erhält man eine sehr gut auf einem Substrat haftende korrosionsgeschützte chromatierte Metalloberfläche dadurch, dass ein Elektrotauchlack direkt auf die Chromatierschicht ohne Zwischentrocknung abgeschieden wird. 'According to the DE 38 33 119 C2 a corrosion-protected chromated metal surface that adheres very well to a substrate is obtained by depositing an electrophoretic paint directly onto the chromated layer without intermediate drying. '

Die EP 2 752 504 betrifft ein Verfahren zur Herstellung eines metallischen oder nicht-metallischen metallisch beschichteten Substrats, umfassend die Schritte: a) Zurverfügungstellung mindestens eines Substrats mit mindestens einer zumindest bereichsweise metallisch beschichtbaren Oberfläche; c) Aufbringen mindestens einer metallischen Kompositschutzschicht, enthaltend als Hauptkomponente mindestens ein erstes Metall ausgewählt aus der Gruppe, bestehend aus Aluminium, Mangan, Magnesium und Zink, oder mindestens eine erste Metalllegierung ausgewählt aus der Gruppe, bestehend aus Stahl, Edelstahl, einer Magnesiumlegierung und einer Aluminiumlegierung, und in der Hauptkomponente verteilt vorliegend als Minderkomponente mindestens ein zweites Metall und/oder mindestens ein oxydisch gebundenes zweites Metall, ausgewählt aus der Gruppe, bestehend aus Zirkonium, Titan und Hafnium, oder bestehend aus der Hauptkomponente und der Minderkomponente, wobei der Verfahrensschritt c) die Teilschritte umfasst: i) Aufbringen mindestens einer Metallschicht enthaltend das oder bestehend aus dem mindestens einen ersten Metall oder enthaltend die oder bestehend aus der mindestens einen ersten Metalllegierung mittels Aufdampfund/oder Sputter-Technik auf der beschichtbaren Oberfläche des Substrats und ii) Behandeln der Metallschicht gemäß Schritt i) mit mindestens einem ersten wässrigen System, enthaltend mindestens eine erste Verbindung des zweiten Metalls; d) Silanisieren der Kompositschutzschicht aus Schritt c) ii) durch Behandeln mit mindestens einem zweiten wässrigen System unter Ausbildung mindestens einer Polysiloxanschicht; und e) Aufbringen mindestens einer Lackschicht auf der Polysiloxanschicht gemäß Schritt d). Mit diesem Verfahren soll man zu beschichteten Substraten gelangen, die bei mechanischer Beanspruchung oder Beschädigung über einen langen Zeitraum korrosionsbeständig sind, die sich durch eine gute Haftung sämtlicher Schichten auszeichnen und die eine ansprechende Optik behalten sowie keine Ablaufspuren oder Schlieren zeigen.the EP 2 752 504 relates to a method for producing a metallic or non-metallic metallically coated substrate, comprising the steps of: a) providing at least one substrate with at least one surface which can be metallically coatable at least in some areas; c) Application of at least one metallic composite protective layer containing at least one first metal selected from the group consisting of aluminum, manganese, magnesium and zinc as the main component, or at least one first metal alloy selected from the group consisting of steel, stainless steel, a magnesium alloy and a Aluminum alloy, and distributed in the main component present as a minor component at least one second metal and/or at least one oxidically bonded second metal selected from the group consisting of zirconium, titanium and hafnium, or consisting of the main component and the minor component, process step c ) comprises the partial steps: i) application of at least one metal layer containing or consisting of the at least one first metal or containing or consisting of the at least one first metal alloy by means of vapor deposition and/or sputtering technology on the coatable surface of the substrate and ii) treating the metal layer according to step i) with at least one first aqueous system containing at least one first compound of the second metal; d) silanizing the composite protective layer from step c) ii) by treatment with at least one second aqueous system to form at least one polysiloxane layer; and e) applying at least one lacquer layer to the polysiloxane layer according to step d). With this method one should arrive at coated substrates that are corrosion-resistant under mechanical stress or damage over a long period of time, which is characterized by a good Excellent adhesion of all layers and which retain an attractive appearance and show no signs of run-off or streaks.

Aus der EP 1 174 526 geht ein Verfahren zum Aufgedampften mehrerer unterschiedlicher Metalldämpfe wie Zinkdampf und Magnesiumdampf auf Stahlsubstrate unter sogenannten gedrosselten Bedingungen hervor, wobei die unterschiedlichen Metalldämpfe vor der Auftragung auch miteinander vermengt werden können. Indem man die Auftragung unter gedrosselten Bedingungen vornimmt, sollen sich zwei oder mehr unterschiedliche Metalldämpfe problemlos auf einer Substratoberfläche abscheiden lassen.From the EP 1 174 526 describes a process for the vapor deposition of several different metal vapors, such as zinc vapor and magnesium vapor, onto steel substrates under so-called throttled conditions, in which case the different metal vapors can also be mixed with one another before application. By applying the application under restricted conditions, it is said that two or more different metal vapors can be readily deposited on a substrate surface.

Die EP 306 612 beschreibt ein Verfahren zur Aufbringung von Schichten auf Substraten, wobei in einer Vakuumkammer Schichtmaterial mittels wenigstens zweier verschiedener Einrichtungen in den gasförmigen Zustand übergeführt und auf den Substraten unter Bildung einer Schicht niedergeschlagen wird. Hierbei wird zur Überführung eines Teiles des Materials in Dampfform eine magnetfeldunterstützte Kathodenzerstäubung vorgenommen und die Überführung eines anderen Teils des Materials mittels einer elektrischen Bogenentladung bewirkt. Im zeitlichen Mittel haben dabei wenigstens fünf Atomprozente des auf die Funktionsflächen der Substrate aufzubringenden Metallanteiles aus der Überführung von Elektrodenmaterial der Bogenentladung in die Dampfform herzurühren. Mit diesem Verfahren soll es möglich sein, kompaktere, dichtere Schichten herzustellen, als dies bisher mittels Kathodenzerstäubung gelingt.the EP 306 612 describes a method for applying layers to substrates, wherein layer material is converted into the gaseous state by means of at least two different devices in a vacuum chamber and deposited on the substrates to form a layer. In this case, a magnetic field-assisted cathode sputtering is carried out to convert a part of the material into vapor form and the conversion of another part of the material is effected by means of an electric arc discharge. On average over time, at least five atomic percent of the metal content to be applied to the functional surfaces of the substrates must come from the conversion of electrode material from the arc discharge into the vapor form. With this method, it should be possible to produce more compact, denser layers than has previously been possible using cathode sputtering.

In der US 2014/295141 wird ein Beschichtungsverfahren beschrieben, umfassend die Schritte des Auftragens einer Aluminiumschicht mittels Verdampfung auf einer Oberfläche eines Gegenstands aus einem semikristallinen Polymer und des Auftragens einer Hexamethyldisiloxanschicht, ebenfalls mittels Verdampfung, in einer Weise, dass nach Erhitzung des beschichteten Gegenstands auf einen Temperaturbereich von 165 °C bis 190 °C über einen Zeitraum zwischen einer und vier Stunden eine Aluminiumschicht mit einer Dicke kleiner 200 nm und eine Schicht auf Basis von Hexamethyldisiloxan mit einer Dicke kleiner 325 nm resultierten. Die derart erhaltene Oberfläche soll frei von Linien sein und sich durch eine diffuse Reflexion nicht oberhalb von 2 % auszeichnen, gemessen bei 600 nm gemäß ASTM C1650-07. Das geschilderte Resultat wird dabei nur dann erhalten, wenn ein Aluminiumtarget mit einer Leistungsdichte von 40 W/cm2 für eine Dauer von maximal zwei Minuten gesputtert und der zu beschichtende Gegenstand zwischen zwei- und 25-mal vor dem Aluminiumtarget vorbeigeführt wird. Anschließend ist gasförmiges Hexamethyldisiloxan für einen Zeitraum zwischen 1 und 20 Sekunden bei einem Druck von 20 bis 75 mTorr an dem zu beschichtenden Gegenstand vorbeizuleiten. Während des Vorbeileitens von Hexamethyldisiloxan ist dieses einer Leistungsdichte im Bereich zwischen 0,5 W/cm2 und 3 W/cm2 für einen Zeitraum zwischen 0,2 und 3,3 Minuten auszusetzen. Dieser Vorgang kann 40-mal wiederholt werden.In the U.S. 2014/295141 describes a coating process comprising the steps of depositing a layer of aluminum by evaporation on a surface of a semicrystalline polymer article and depositing a layer of hexamethyldisiloxane, also by evaporation, in a manner such that after heating the coated article to a temperature range of 165°C to 190 °C over a period of between one and four hours resulted in an aluminum layer with a thickness of less than 200 nm and a layer based on hexamethyldisiloxane with a thickness of less than 325 nm. The surface obtained in this way should be free of lines and be characterized by a diffuse reflection of not more than 2%, measured at 600 nm according to ASTM C1650-07. The result described is only obtained if an aluminum target with a Power density of 40 W/cm 2 is sputtered for a maximum of two minutes and the object to be coated is passed in front of the aluminum target between two and 25 times. Gaseous hexamethyldisiloxane is then passed past the object to be coated for a period of between 1 and 20 seconds at a pressure of 20 to 75 mtorr. While the hexamethyldisiloxane is being passed, it is exposed to a power density in the range between 0.5 W/cm 2 and 3 W/cm 2 for a period of between 0.2 and 3.3 minutes. This process can be repeated 40 times.

Die DE 198 59 695 A1 zeigt ein Verfahren zum Beschichten von Substraten aus Kunststoff mit einer das Licht reflektierenden Schicht, vorzugsweise einer Aluminiumschicht, und einer zwischen dem Substrat und der lichtreflektierenden Schicht angeordneten weiteren Schicht, wobei die weitere Schicht eine hochvernetzte Kohlenwasserstoff-, beispielsweise eine Siliziumoxid-, Siliziumnitrid- oder Siliziumoxinitridschicht ist mit einer Dicke von mindestens 15 nm und wobei der Kunststoffgehalt der Sperrschicht < 15% beträgt.the DE 198 59 695 A1 shows a method for coating substrates made of plastic with a light-reflecting layer, preferably an aluminum layer, and a further layer arranged between the substrate and the light-reflecting layer, the further layer being a highly crosslinked hydrocarbon, for example a silicon oxide, silicon nitride or Silicon oxynitride layer has a thickness of at least 15 nm and the plastic content of the barrier layer is < 15%.

Die JP 5 298 189 B2 betrifft eine Vorrichtung umfassend eine Aufdampfungskammer mit einem druckentlastbaren Innenraum, mindestens zwei Aufdampfungsquellen, in denen das Aufdampfungsmaterial untergebracht ist und welche das Aufdampfungsmaterial verdampfen, ein Substrat, das in der Aufdampfungskammer angeordnet ist, und eine Dampfeinspritzdüse mit einer Mischkammer sowie Rohre in Form flexibler, biegsamer Schläuche, die die mindestens zwei Aufdampfquellen und die Dampfeinspritzdüse verbinden. Ferner umfasst diese Vorrichtung ein Heizelement, das an der Dampfeinspritzdüse und an mindestens einem Abschnitt der Rohre vorgesehen ist. Über die Dampfeinspritzdüse gelangen die in der Mischkammer vermischten Dämpfe in die Aufdampfungskammer, in der das zu beschichtende Substrat vorliegt. Mit der Vorrichtung gemäß der JP 5 298 189 B2 sollen sich verschiedene Arten von Aufdampfmaterialien vermischen lassen und man soll zu einem homogenen Dünnschichtabscheidungsfilm aus einem Verbundmaterial gelangen können.the JP 5 298 189 B2 relates to a device comprising a vapor deposition chamber with an internal space that can be relieved of pressure, at least two vapor deposition sources in which the vapor deposition material is accommodated and which vaporize the vapor deposition material, a substrate that is arranged in the vapor deposition chamber, and a vapor injection nozzle with a mixing chamber and tubes in the form of flexible, pliable Tubing connecting the at least two vapor deposition sources and the vapor injection nozzle. Furthermore, this device comprises a heating element provided on the steam injection nozzle and on at least a portion of the tubes. The vapors mixed in the mixing chamber reach the vapor deposition chamber, in which the substrate to be coated is present, via the vapor injection nozzle. With the device according to JP 5 298 189 B2 It is said that various types of vapor deposition materials can be mixed and a homogeneous thin-film deposition film made of a composite material can be obtained.

Korrosionsschutzbeschichtungen für Metallsubstrate zeigen jedoch noch stets erhebliches Verbesserungspotential in Sachen Haftung und Korrosionsschutz, insbesondere bei massengefertigten Produkten, vor allem solchen mit anspruchsvoller Geometrie.However, anti-corrosion coatings for metal substrates still show considerable potential for improvement in terms of adhesion and corrosion protection, especially for mass-produced products, especially those with complex geometries.

Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, beschichtete Substrate zur Verfügung zu stellen, die nicht mehr mit den Nachteilen des Stands der Technik behaftetet sind und die insbesondere auch in der Massenfertigung beschichtete Produkte mit verbessertem Korrosionsschutz und/oder sehr guten Haftungseigenschaften liefern. Es werden auch solche beschichteten Produkte angestrebt, die bei mechanischer Oberflächenbeschädigung nicht sogleich Unterwanderungsphänomene zeigen, insbesondere auch nicht verbunden mit dem Abblättern von Schichten. Des Weiteren lag der Erfindung die Aufgabe zugrunde, zu beschichteten Substraten zu gelangen, die selbst mit komplexer Geometrie über das gesamte Bauteil, einschließlich im Bereich von Kantenverläufen, ein gleichwertig hohes Beschichtungsergebnis zeigen.The present invention was therefore based on the object of providing coated substrates which no longer have the disadvantages of the prior art and which, in particular, also in mass production provide coated products with improved corrosion protection and/or very good adhesion properties. Coated products are also sought which do not immediately show infiltration phenomena in the event of mechanical surface damage, in particular not associated with layers peeling off. Furthermore, the invention was based on the object of arriving at coated substrates which, even with complex geometry, show an equally high coating result over the entire component, including in the area of edge profiles.

Demgemäß wurde ein beschichtetes nicht-metallisches Substrat erhalten oder erhältlich nach einem Verfahren zur Herstellung eines beschichteten nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, gefunden, umfassend die Schritte

  1. a) Zurverfügungstellung eines nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, mit mindestens einer zumindest bereichsweise beschichtbaren Oberfläche,
  2. b) Zurverfügungstellung einer Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere Vakuumaufdampfanlage oder Sputter-Anlage,
  3. c) Zurverfügungstellung mindestens eines Plasmagenerators und/oder mindestens einer Corona-Anlage, insbesondere in der Applikationsanlage für die Aufbringung einer Metallschicht, wie Vakuumaufdampfanlage oder Sputter-Anlage, oder als Bestandteil hiervon,
  4. d) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, oder der beschichtbaren Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats,
  5. e) gegebenenfalls Behandeln des nach Schritt a) oder d) erhaltenen nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, oder der beschichtbaren Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  6. f) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt e),
  7. g) gegebenenfalls Aufbringen mindestens einer Grundierungsschicht auf das nicht-metallische Substrat, insbesondere Kunststoffsubstrat, oder die beschichtbare Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, gemäß Schritt a) oder d) oder auf die Polysiloxanschicht gemäß Schritt e) oder f),
  8. h) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Grundierungsschicht gemäß Schritt g),
  9. i) Behandeln des nach Schritt a) oder d) erhaltenen nicht-metallischen Substrats oder der beschichtbaren Oberfläche des nicht-metallischen Substrats oder der nach Schritt g) oder h) erhaltenen Grundierungsschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  10. j) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt i),
  11. k) Aufbringen mindestens einer Metallschicht, enthaltend oder bestehend aus einem ersten Metall ausgewählt aus der Gruppe bestehend aus Aluminium, Silber, Gold, Blei, Vanadium, Mangan, Magnesium, Eisen, Kobalt, Nickel, Kupfer, Chrom, Palladium, Molybdän, Wolfram, Platin, Titan, Zirkonium und Zink, insbesondere Aluminium, oder enthaltend oder bestehend aus einer ersten Metalllegierung ausgewählt aus der Gruppe bestehend aus Messing, Bronze, Stahl, insbesondere Edelstahl, Alu minium-, Magnesium- und Titanlegierungen, mit der Applikationsanlage, insbesondere mittels Aufdampf- und/oder Sputter-Technik, auf das nicht-metallische Substrat, insbesondere Kunststoffsubstrat, oder auf die beschichtbare Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, gemäß Schritt a) oder d) oder auf die Polysiloxanschicht gemäß Schritt e) oder f) oder auf die Grundierungsschicht gemäß Schritt g) oder h) oder auf die Polysiloxanschicht gemäß Schritt i) oder j),
  12. l) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Metallschicht gemäß Schritt k),
  13. m) Behandeln der nach Schritt k) oder 1) erhaltenen Metallschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  14. n) Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt m) und
  15. o) Auftragen einer, insbesondere transparenten, Deckschicht auf die behandelte Polysiloxanschicht gemäß Schritt n).
Accordingly, a coated non-metallic substrate was obtained or found to be obtainable by a method for producing a coated non-metallic substrate, in particular a plastic substrate, comprising the steps
  1. a) Provision of a non-metallic substrate, in particular a plastic substrate, with at least one surface that can be coated at least in certain areas,
  2. b) Provision of an application system for the application of a metal layer, in particular a vacuum vapor deposition system or sputter system,
  3. c) Provision of at least one plasma generator and/or at least one corona system, in particular in the application system for the application of a metal layer, such as a vacuum vapor deposition system or sputter system, or as a component thereof,
  4. d) optionally plasma treatment with the plasma generator and/or corona treatment of the non-metallic substrate, in particular plastic substrate, or the coatable surface of the non-metallic substrate, in particular plastic substrate,
  5. e) optionally treating the non-metallic substrate obtained after step a) or d), in particular plastic substrate, or the coatable surface of the non-metallic substrate, in particular plastic substrate, with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  6. f) optionally plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step e),
  7. g) optionally applying at least one primer layer to the non-metallic substrate, in particular plastic substrate, or the coatable surface of the non-metallic substrate, in particular plastic substrate, according to step a) or d) or to the polysiloxane layer according to step e) or f),
  8. h) optionally plasma treatment with the plasma generator and/or corona treatment of the primer layer according to step g),
  9. i) treating the non-metallic substrate obtained after step a) or d) or the coatable surface of the non-metallic substrate or the primer layer obtained after step g) or h) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer ,
  10. j) optionally plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step i),
  11. k) Application of at least one metal layer containing or consisting of a first metal selected from the group consisting of aluminum, silver, gold, lead, vanadium, manganese, magnesium, iron, cobalt, nickel, copper, chromium, palladium, molybdenum, tungsten, platinum, titanium, zirconium and zinc, especially aluminium, or containing or consisting of a first metal alloy selected from the group consisting of brass, bronze, steel, in particular stainless steel, aluminum minium, magnesium and titanium alloys, with the application system, in particular by means of vapor deposition and/or sputtering technology, on the non-metallic substrate, in particular plastic substrate, or on the coatable surface of the non-metallic substrate, in particular plastic substrate, according to step a ) or d) or on the polysiloxane layer according to step e) or f) or on the primer layer according to step g) or h) or on the polysiloxane layer according to step i) or j),
  12. l) optionally plasma treatment with the plasma generator and/or corona treatment of the metal layer according to step k),
  13. m) treating the metal layer obtained after step k) or 1) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  14. n) plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step m) and
  15. o) Application of a cover layer, in particular a transparent one, to the treated polysiloxane layer according to step n).

Die der Erfindung zu Grunde liegende Aufgabe wird dabei insbesondere auch durch ein beschichtetes nicht-metallisches Substrat gelöst, erhalten oder erhältlich nach einem Verfahren, umfassend die Schritte

  • a) Zurverfügungstellung eines nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, mit mindestens einer zumindest bereichsweise beschichtbaren Oberfläche,
  • b) Zurverfügungstellung einer Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere Vakuumaufdampfanlage oder Sputter-Anlage,
  • c) Zurverfügungstellung mindestens eines Plasmagenerators und/oder mindestens einer Corona-Anlage, insbesondere in der Applikationsanlage für die Aufbringung einer Metallschicht, wie Vakuumaufdampfanlage oder Sputter-Anlage, oder als Bestandteil hiervon,
  • d) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, oder der beschichtbaren Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats,
  • e) gegebenenfalls Behandeln des nach Schritt a) oder d) erhaltenen nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, oder der beschichtbaren Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  • f) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt e),
  • g) Aufbringen mindestens einer Grundierungsschicht auf das nicht-metallische Substrat, insbesondere Kunststoffsubstrat, oder die beschichtbare Oberfläche des nicht-metallischen Substrats, insbesondere Kunststoffsubstrats, gemäß Schritt a) oder d) oder auf die Polysiloxanschicht gemäß Schritt e) oder f),
  • h) Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Grundierungsschicht gemäß Schritt g),
  • i) Behandeln des nach Schritt a) oder d) erhaltenen nicht-metallischen Substrats oder der beschichtbaren Oberfläche des nicht-metallischen Substrats oder der nach Schritt g) oder h) erhaltenen Grundierungsschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  • k) Aufbringen mindestens einer Metallschicht, enthaltend oder bestehend aus einem ersten Metall ausgewählt aus der Gruppe bestehend aus Aluminium, Silber, Gold, Blei, Vanadium, Mangan, Magnesium, Eisen, Kobalt, Nickel, Kupfer, Chrom, Palladium, Molybdän, Wolfram, Platin, Titan, Zirkonium und Zink, insbesondere Aluminium, oder enthaltend oder bestehend aus einer ersten Metalllegierung ausgewählt aus der Gruppe bestehend aus Messing, Bronze, Stahl, insbesondere Edelstahl, Aluminium-, Magnesium- und Titanlegierungen, mit der Applikationsanlage, insbesondere mittels Aufdampf- und/oder Sputter-Technik, auf die Grundierungsschicht gemäß Schritt g) oder h) oder auf die Polysiloxanschicht gemäß Schritt i),
  • m) Behandeln der nach Schritt k) erhaltenen Metallschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  • n) Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt m) und
  • o) Auftragen einer, insbesondere transparenten, Deckschicht auf die behandelte Polysiloxanschicht gemäß Schritt n).
The object on which the invention is based is also achieved in particular by a coated non-metallic substrate, obtained or obtainable by a method comprising the steps
  • a) Provision of a non-metallic substrate, in particular a plastic substrate, with at least one surface that can be coated at least in certain areas,
  • b) Provision of an application system for the application of a metal layer, in particular a vacuum vapor deposition system or sputter system,
  • c) Provision of at least one plasma generator and/or at least one corona system, in particular in the application system for the application of a metal layer, such as a vacuum vapor deposition system or sputter system, or as a component thereof,
  • d) optionally plasma treatment with the plasma generator and/or corona treatment of the non-metallic substrate, in particular the plastic substrate, or the coatable surface of the non-metallic substrate, in particular a plastic substrate,
  • e) optionally treating the non-metallic substrate obtained after step a) or d), in particular plastic substrate, or the coatable surface of the non-metallic substrate, in particular plastic substrate, with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  • f) optionally plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step e),
  • g) Application of at least one primer layer to the non-metallic substrate, in particular plastic substrate, or the coatable surface of the non-metallic substrate, in particular plastic substrate, according to step a) or d) or to the polysiloxane layer according to step e) or f),
  • h) plasma treatment with the plasma generator and/or corona treatment of the primer layer according to step g),
  • i) treating the non-metallic substrate obtained after step a) or d) or the coatable surface of the non-metallic substrate or the primer layer obtained after step g) or h) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer ,
  • k) Application of at least one metal layer containing or consisting of a first metal selected from the group consisting of aluminum, silver, gold, lead, vanadium, manganese, magnesium, iron, cobalt, nickel, copper, chromium, palladium, molybdenum, tungsten, Platinum, titanium, zirconium and zinc, in particular aluminium, or containing or consisting of a first metal alloy selected from the group consisting of brass, bronze, steel, in particular stainless steel, aluminium, magnesium and titanium alloys, with the application system, in particular by means of vapor deposition and/or sputtering technique, on the primer layer according to step g) or h) or on the polysiloxane layer according to step i),
  • m) treating the metal layer obtained after step k) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  • n) plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step m) and
  • o) Application of a cover layer, in particular a transparent one, to the treated polysiloxane layer according to step n).

Bei dieser Verfahrensvariante sind die Schritte d), e) und f) nur optional. Sie können in Einzelfällen zu einer verbesserten Haftung und einem erhöhten Korrosionsschutz beitragen. Das gleiche trifft auf den Schritt i) zu. Es hat sich gezeigt, dass es von Vorteil ist, wenn beidseitig der Metallschicht eine, insbesondere plasmagenerierte, Polysiloxanschicht vorliegt, die vorzugsweise jeweils einer Plasmabehandlung und/oder einer Corona-Behandlung, insbesondere Plasmabehandlung, unterzogen wurde.In this process variant, steps d), e) and f) are only optional. In individual cases, they can contribute to improved adhesion and increased protection against corrosion. The same applies to step i). It has been shown that it is advantageous if a polysiloxane layer, in particular a plasma-generated one, is present on both sides of the metal layer and has preferably been subjected to a plasma treatment and/or a corona treatment, in particular a plasma treatment.

Die vorangehend geschilderte Verfahrensvariante umfassend die Aufbringung einer Grundierungsschicht bietet sich insbesondere bei nicht-metallischen Substraten, insbesondere Kunststoffsubstraten, mit einer Oberfläche an, die Unebenheiten aufweist bzw. die von minderer Qualität ist.The variant of the method described above, including the application of a primer layer, is particularly useful for non-metallic substrates, in particular plastic substrates, with a surface that has unevenness or is of inferior quality.

Für viele Anwendungen hat sich jedoch ein solches Verfahren als völlig ausreichend erwiesen, um die der Erfindung zugrunde liegenden Aufgaben zu lösen, das neben den Verfahrensschritten a), b) und c) auch die Verfahrensschritte d), e), f), i), k), m), n) und o) bzw. i), k), m), n) und o) als zwingende Verfahrensschritte umfasst, wobei jeweils vor dem Schritt der Aufbringung der Metallschicht k) die Aufbringung einer, insbesondere plasmagenerierten, Polysiloxanschicht (Schritt i)) vorgesehen ist. Die vorangehend geschilderte Verfahrensvariante kann insbesondere bei einwandfreien nicht-metallischen Substraten, insbesondere Kunststoffsubstraten mit einwandfreier bzw. glatter Oberfläche eingesetzt werden.For many applications, however, such a method has proven to be completely sufficient to solve the objects on which the invention is based, which, in addition to method steps a), b) and c), also includes method steps d), e), f), i) , k), m), n) and o) or i), k), m), n) and o) as mandatory process steps, each prior to the step of applying the metal layer k) the application of a, in particular plasma-generated , Polysiloxane layer (step i)) is provided. The variant of the method described above can be used in particular with perfect non-metallic substrates, in particular plastic substrates with a perfect or smooth surface.

Ferner kann in einer Weiterentwicklung des hierin beschriebenen Verfahrens für die Herstellung erfindungsgemäßer nicht-metallischer Substrate, insbesondere von Kunststoffsubstraten, Gebrauch gemacht werden von der Einhaltung der Schrittfolge d), e), f), g), i), k), m), n) und o) bzw. g), i), k), m), n) und o), d.h. unter Weglassung der Behandlung bzw. Aktivierung der Grundierungsschicht mit einem Plasma (Schritt h)). Gleichwohl kann hier auch der Schritt h) zur Anwendung kommen. Auch hier ist es von Vorteil, vor dem Schritt der Aufbringung der Metallschicht k) eine, insbesondere plasmagenerierte, Polysiloxanschicht aufzutragen (Schritt i)). Ferner kann in einer Ausgestaltung neben den Verfahrensschritten a), b) und c) von der Abfolge der Verfahrensschritte d), e), f), g), h), i), k), m), n) und o) oder der Verfahrensschritte d), j), k), m), n) und o) Gebrauch gemacht werden.Furthermore, in a further development of the method described herein for the production of non-metallic substrates according to the invention, in particular plastic substrates, use can be made of adhering to the sequence of steps d), e), f), g), i), k), m) , n) and o) or g), i), k), m), n) and o), ie without treating or activating the primer layer with a plasma (step h)). Nevertheless, step h) can also be used here. Here, too, it is advantageous to apply a polysiloxane layer, in particular a plasma-generated one, before the step of applying the metal layer k) (step i)). Furthermore, in one embodiment, in addition to method steps a), b) and c), on the sequence of process steps d), e), f), g), h), i), k), m), n) and o) or process steps d), j), k), m), n ) and o) are made use of.

In einer besonders zweckmäßigen Ausgestaltung, insbesondere wie vorangehend spezifiziert, wird die Schicht, auf die die Metallschicht gemäß Schritt k) aufgebracht wird, vor dem Schritt k) einer Plasmabehandlung mit dem Plasmagenerator und/oder einer Corona-Behandlung unterzogen (beispielsweise Schritte j), f) oder d)).In a particularly expedient embodiment, in particular as specified above, the layer to which the metal layer is applied according to step k) is subjected to a plasma treatment with the plasma generator and/or a corona treatment before step k) (e.g. step j), f) or d)).

Es hat sich als vorteilhaft erwiesen, die vorangehend genannten Verfahrensschritte im Wesentlichen unmittelbar aufeinanderfolgen zu lassen. Dies bedeutet insbesondere, dass nach den Plasmabehandlungsschritten eine längere Lagerung vermieden werden sollte. Vielmehr ist es von Vorteil, wenn der nachfolgende Verfahrensschritt direkt folgt. Auch hat sich gezeigt, dass neben den vorangehend genannten Verfahrensschritten es nicht erforderlich ist, weitere Verfahrensschritte zwischenzuschalten.It has proven to be advantageous to have the method steps mentioned above essentially follow one another directly. In particular, this means that prolonged storage after the plasma treatment steps should be avoided. Rather, it is advantageous if the subsequent method step follows directly. It has also been shown that, in addition to the method steps mentioned above, it is not necessary to interpose further method steps.

Auch hat es sich in einer bevorzugten Ausführungsform als günstig insbesondere in Bezug auf gute Haftung und Korrosionsschutz erwiesen, wenn das nicht-metallische Substrat, insbesondere das Kunststoffsubstrat, einer Plasmabehandlung und/oder Corona-Behandlung, insbesondere Plasmabehandlung, unterzogen wird (Schritt d)).In a preferred embodiment, it has also proven to be favorable, in particular with regard to good adhesion and corrosion protection, if the non-metallic substrate, in particular the plastic substrate, is subjected to a plasma treatment and/or corona treatment, in particular plasma treatment (step d)) .

Geeignete nicht-metallische Substrate umfassen Glas, Keramik, Verbundfasermaterialien, Carbonmaterialien, Kunststoff oder Holz. Besonders gut geeignet ist das hier geschilderte Verfahren für die Beschichtung von Kunststoffsubstraten zwecks Erhalts dauerhaft hochglänzender Produkte. Geeignete Kunststoffsubstrate umfassen oder bestehen z.B. aus PVC, Polyurethanen, Polyacrylaten, Polyestern, z.B. PBT und PET, Polyolefinen, insbesondere Polypropylen, Polycarbonaten, Polyamiden, Polyphenylenethern, Polystyrol, Styrol(co)polymere, wie ABS, SAN, ASA oder MABS, Polyoxyalkylene, z.B. POM, Teflon und Polymerblends, insbesondere ABS/PPE-, ASA/PPE-, SAN/PPE- und/oder ABS/PC-Blends.Suitable non-metallic substrates include glass, ceramic, composite fiber materials, carbon materials, plastic, or wood. The process described here is particularly well suited for the coating of plastic substrates in order to obtain permanently high-gloss products. Suitable plastic substrates include or consist, for example, of PVC, polyurethanes, polyacrylates, polyesters, e.g. PBT and PET, polyolefins, in particular polypropylene, polycarbonates, polyamides, polyphenylene ethers, polystyrene, styrene (co)polymers such as ABS, SAN, ASA or MABS, polyoxyalkylene, e.g. POM, Teflon and polymer blends, in particular ABS/PPE, ASA/PPE, SAN/PPE and/or ABS/PC blends.

Die der Erfindung zu Grunde liegende Aufgabe wird des Weiteren gelöst durch ein beschichtetes metallisches Substrat erhalten oder erhältlich nach einem Verfahren zur Herstellung eines beschichteten Metallsubstrats, umfassend

  1. A) Zurverfügungstellung eines Metallsubstrats mit mindestens einer zumindest bereichsweise beschichtbaren Oberfläche,
  2. B) Zurverfügungstellung einer Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere Vakuumaufdampfanlage,
  3. C) Zurverfügungstellung mindestens eines Plasmagenerators und/oder mindestens einer Corona-Anlage, insbesondere in der Applikationsanlage für die Aufbringung einer Metallschicht, wie Vakuumaufdampfanlage oder der Sputter-Anlage, oder als Bestandteil hiervon,
  4. D) gegebenenfalls Reinigung des Metallsubstrats oder der beschichtbaren Oberfläche des Metallsubstrats,
  5. E) gegebenenfalls Aufbringen mindestens einer Metallschicht, enthaltend oder bestehend aus einem zweiten Metall ausgewählt aus der Gruppe bestehend aus Titan, Hafnium und Zirkonium, insbesondere Zirkonium, oder aus einer zweiten Metalllegierung ausgewählt aus der Gruppe bestehend aus Titan-, Hafnium- und Zirkoniumlegierungen, mit der Applikationsanlage, insbesondere mittels Aufdampf- und/oder Sputter-Technik, auf das Metallsubstrat oder die beschichtbare Oberfläche des Metallsubstrats gemäß Schritt A) oder D),
  6. F) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung des Metallsubstrats oder der beschichtbaren Oberfläche des Metallsubstrats gemäß Schritt A) oder D) oder der Metallschicht gemäß Schritt E),
  7. G) gegebenenfalls Behandeln des nach Schritt A) oder D) erhaltenen Metallsubstrats oder Behandeln der nach Schritt A) oder D) erhaltenen beschichtbaren Oberfläche des Metallsubstrats oder der nach Schritt E) oder F) erhaltenen Metallschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  8. H) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt G),
  9. I) gegebenenfalls Aufbringen einer Konversionsschicht auf das Metallsubstrat oder die beschichtbare Oberfläche des Metallsubstrats gemäß Schritt A) oder D) oder auf die Metallschicht gemäß Schritt E) oder F) oder auf die Polysiloxanschicht gemäß Schritt G) oder H),
  10. J) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Konversionsschicht gemäß Schritt I),
  11. K) gegebenenfalls Behandeln der nach Schritt I) oder J) erhaltenen Konversionsschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  12. L) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der nach Schritt K) erhaltenen behandelten Polysiloxanschicht,
  13. M) gegebenenfalls Aufbringen mindestens einer Grundierungsschicht auf das Metallsubstrat oder die beschichtbare Oberfläche des Metallsubstrats gemäß Schritt A) oder D) oder auf die Metallschicht gemäß Schritt E) oder F) oder auf die Polysiloxanschicht gemäß Schritt G) oder H) oder auf die Konversionsschicht gemäß Schritt I) oder J) oder auf die Polysiloxanschicht gemäß Schritt K) oder L),
  14. N) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Grundierungsschicht gemäß Schritt M),
  15. O) Behandeln des nach Schritt A) oder D) erhaltenen Metallsubstrats oder Behandeln der nach Schritt A) oder D) erhaltenen beschichtbaren Oberfläche des Metallsubstrats oder der nach Schritt E) oder F) erhaltenen Metallschicht oder der nach Schritt I) oder J) erhaltenen Konversionsschicht oder der nach Schritt M) oder N) erhaltenen Grundierungsschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  16. P) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der nach Schritt O) erhaltenen behandelten Polysiloxanschicht,
  17. Q) Aufbringen mindestens einer Metallschicht, enthaltend oder bestehend aus einem ersten Metall ausgewählt aus der Gruppe bestehend aus Aluminium, Silber, Gold, Blei, Vanadium, Mangan, Magnesium, Eisen, Kobalt, Molybdän, Wolfram, Nickel, Kupfer, Chrom, Palladium, Platin, Titan, Zirkonium und Zink, insbesondere Aluminium, oder enthaltend oder bestehend aus einer ersten Metalllegierung ausgewählt aus der Gruppe bestehend aus Messing, Bronze, Stahl, insbesondere Edelstahl, Aluminium-, Magnesium- und Titanlegierungen, mit der Applikationsanlage, insbesondere mittels Aufdampf- und/oder Sputter-Technik, auf das Metallsubstrat oder die beschichtbare Oberfläche des Metallsubstrats gemäß Schritt A) oder D) oder F) auf oder die Polysiloxanschicht gemäß Schritt G) oder H) oder auf die Konversionsschicht gemäß Schritt I) oder J) oder auf die Polysiloxanschicht gemäß Schritt K) oder L) oder auf die Grundierungsschicht gemäß Schritt M) oder N) oder auf die Polysiloxanschicht gemäß Schritt O) oder P),
  18. R) gegebenenfalls Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Metallschicht gemäß Schritt Q),
  19. S) Behandeln der nach Schritt Q) oder R) erhaltenen Metallschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  20. T) Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt S) und
  21. U) Auftragen einer, insbesondere transparenten, Deckschicht auf die behandelte Polysiloxanschicht gemäß Schritt T).
The object on which the invention is based is furthermore achieved by a coated metal substrate obtained or obtainable by a method for producing a coated metal substrate, comprising
  1. A) Provision of a metal substrate with at least one surface that can be coated at least in certain areas,
  2. B) Provision of an application system for the application of a metal layer, in particular a vacuum vapor deposition system,
  3. C) Provision of at least one plasma generator and/or at least one corona system, in particular in the application system for the application of a metal layer, such as a vacuum vapor deposition system or the sputter system, or as a component thereof,
  4. D) optionally cleaning the metal substrate or the coatable surface of the metal substrate,
  5. E) optionally applying at least one metal layer containing or consisting of a second metal selected from the group consisting of titanium, hafnium and zirconium, in particular zirconium, or a second metal alloy selected from the group consisting of titanium, hafnium and zirconium alloys, with the application system, in particular by means of vapor deposition and/or sputtering technology, onto the metal substrate or the coatable surface of the metal substrate according to step A) or D),
  6. F) optionally plasma treatment with the plasma generator and/or corona treatment of the metal substrate or the coatable surface of the metal substrate according to step A) or D) or the metal layer according to step E),
  7. G) optionally treating the metal substrate obtained according to step A) or D) or treating the coatable surface of the metal substrate obtained according to step A) or D) or the metal layer obtained according to step E) or F) with at least one organosilicon compound, in particular by means of plasma polymerization, with the formation of a polysiloxane layer,
  8. H) optionally plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step G),
  9. I) optionally applying a conversion layer to the metal substrate or the coatable surface of the metal substrate according to step A) or D) or to the metal layer according to step E) or F) or to the polysiloxane layer according to step G) or H),
  10. J) optionally plasma treatment with the plasma generator and/or corona treatment of the conversion layer according to step I),
  11. K) optionally treating the conversion layer obtained after step I) or J) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  12. L) optionally plasma treatment with the plasma generator and/or corona treatment of the treated polysiloxane layer obtained after step K),
  13. M) optionally applying at least one primer layer to the metal substrate or the coatable surface of the metal substrate according to step A) or D) or to the metal layer according to step E) or F) or to the polysiloxane layer according to step G) or H) or to the conversion layer according to Step I) or J) or on the polysiloxane layer according to step K) or L),
  14. N) optionally plasma treatment with the plasma generator and/or corona treatment of the primer layer according to step M),
  15. O) treating the metal substrate obtained after step A) or D) or treating the coatable surface of the metal substrate obtained after step A) or D) or the metal layer obtained after step E) or F) or the conversion layer obtained after step I) or J). or the primer layer obtained after step M) or N) with at least one organosilicon compound, in particular by means of plasma polymerisation, to form a polysiloxane layer,
  16. P) optionally plasma treatment with the plasma generator and/or corona treatment of the treated polysiloxane layer obtained after step O),
  17. Q) Application of at least one metal layer containing or consisting of a first metal selected from the group consisting of aluminum, silver, gold, lead, vanadium, manganese, magnesium, iron, cobalt, molybdenum, tungsten, nickel, copper, chromium, palladium, Platinum, titanium, zirconium and zinc, in particular aluminium, or containing or consisting of a first metal alloy selected from the group consisting of brass, bronze, steel, in particular stainless steel, aluminium, magnesium and titanium alloys, with the application system, in particular by means of vapor deposition and/or sputtering technique, onto the metal substrate or the coatable surface of the metal substrate according to step A) or D) or F) or onto the polysiloxane layer according to step G) or H) or onto the conversion layer according to step I) or J) or on the polysiloxane layer according to step K) or L) or on the primer layer according to step M) or N) or on the polysiloxane layer according to step O) or P),
  18. R) optionally plasma treatment with the plasma generator and/or corona treatment of the metal layer according to step Q),
  19. S) treating the metal layer obtained after step Q) or R) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  20. T) plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step S) and
  21. U) Application of a cover layer, in particular a transparent one, to the treated polysiloxane layer according to step T).

Die der Erfindung zu Grunde liegende Aufgabe wird insbesondere auch durch ein beschichtetes metallisches Substrat gelöst, erhalten oder erhältlich nach einem solchen Verfahren, umfassend die Schritte

  • A) Zurverfügungstellung eines Metallsubstrats mit mindestens einer zumindest bereichsweise beschichtbaren Oberfläche,
  • B) Zurverfügungstellung einer Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere Vakuumaufdampfanlage,
  • C) Zurverfügungstellung mindestens eines Plasmagenerators und/oder mindestens einer Corona-Anlage, insbesondere in der Applikationsanlage für die Aufbringung einer Metallschicht, wie Vakuumaufdampfanlage oder der Sputter-Anlage, oder als Bestandteil hiervon,
  • D) Reinigung des Metallsubstrats oder der beschichtbaren Oberfläche des Metallsubstrats,
  • M) Aufbringen mindestens einer Grundierungsschicht auf das Metallsubstrat oder die beschichtbare Oberfläche des Metallsubstrats gemäß Schritt D),
  • O) Behandeln des nach Schritt A) oder D) erhaltenen Metallsubstrats oder Behandeln der nach Schritt A) oder D) erhaltenen beschichtbaren Oberfläche des Metallsubstrats oder der nach Schritt E) oder F) erhaltenen Metallschicht oder der nach Schritt I) oder J) erhaltenen Konversionsschicht oder der nach Schritt M) oder N) erhaltenen Grundierungsschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  • Q) Aufbringen mindestens einer Metallschicht, enthaltend oder bestehend aus einem ersten Metall ausgewählt aus der Gruppe bestehend aus Aluminium, Silber, Gold, Blei, Vanadium, Mangan, Magnesium, Eisen, Kobalt, Molybdän, Wolfram, Nickel, Kupfer, Chrom, Palladium, Platin, Titan, Zirkonium und Zink, insbesondere Aluminium, oder enthaltend oder bestehend aus einer ersten Metalllegierung ausgewählt aus der Gruppe bestehend aus Messing, Bronze, Stahl, insbesondere Edelstahl, Aluminium-, Magnesium- und Titanlegierungen, mit der Applikationsanlage, insbesondere mittels Aufdampf- und/oder Sputter-Technik, auf die Grundierungsschicht gemäß Schritt M),
  • S) Behandeln der nach Schritt Q) erhaltenen Metallschicht mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht,
  • T) Plasmabehandlung mit dem Plasmagenerator und/oder Corona-Behandlung der Polysiloxanschicht gemäß Schritt S) und
  • U) Auftragen einer, insbesondere transparenten, Deckschicht auf die Polysiloxanschicht gemäß Schritt T).
The object on which the invention is based is also achieved in particular by a coated metallic substrate, obtained or obtainable by such a method, comprising the steps
  • A) Provision of a metal substrate with at least one surface that can be coated at least in certain areas,
  • B) Provision of an application system for the application of a metal layer, in particular a vacuum vapor deposition system,
  • C) Provision of at least one plasma generator and/or at least one corona system, in particular in the application system for the application of a metal layer, such as a vacuum vapor deposition system or the sputter system, or as a component thereof,
  • D) cleaning of the metal substrate or the coatable surface of the metal substrate,
  • M) applying at least one primer layer to the metal substrate or the coatable surface of the metal substrate according to step D),
  • O) treating the metal substrate obtained after step A) or D) or treating the coatable surface of the metal substrate obtained after step A) or D) or the metal layer obtained after step E) or F) or the conversion layer obtained after step I) or J). or the primer layer obtained after step M) or N) with at least one organosilicon compound, in particular by means of plasma polymerisation, to form a polysiloxane layer,
  • Q) Application of at least one metal layer containing or consisting of a first metal selected from the group consisting of aluminum, silver, gold, lead, vanadium, manganese, magnesium, iron, cobalt, molybdenum, tungsten, nickel, copper, chromium, palladium, Platinum, titanium, zirconium and zinc, in particular aluminum, or containing or consisting of a first metal alloy selected from the group consisting of brass, bronze, steel, in particular stainless steel, aluminium, magnesium and titanium alloys, with the application system, in particular by means of vapor deposition and/or sputtering technology, onto the primer layer according to step M),
  • S) treating the metal layer obtained after step Q) with at least one organosilicon compound, in particular by means of plasma polymerization, to form a polysiloxane layer,
  • T) plasma treatment with the plasma generator and/or corona treatment of the polysiloxane layer according to step S) and
  • U) Application of a cover layer, in particular a transparent one, to the polysiloxane layer according to step T).

Es hat sich gezeigt, dass es auch bei der Herstellung von beschichteten Metallsubstraten von Vorteil ist, wenn beidseitig der Metallschicht eine, insbesondere plasmapolymerisierte, Polysiloxanschicht vorliegt, vorzugsweise mit anschließender Plasmabehandlung und/oder Corona-Behandlung, insbesondere Plasmabehandlung. Somit kann zum Beispiel auch die vorangehend geschilderte Verfahrensvariante mit Schritt O) ausgestattet sein.It has been shown that it is also advantageous in the production of coated metal substrates if there is a polysiloxane layer, in particular plasma-polymerized, on both sides of the metal layer, preferably with subsequent plasma treatment and/or corona treatment, in particular plasma treatment. Thus, for example, the method variant described above can also be equipped with step O).

Ein besonders ausgeprägter Korrosionsschutz wird bei den nach dem hierin beschriebenen Verfahren erhältlichen Metallsubstrat auch dadurch erhalten, dass man auf das gemäß Schritt D) gereinigte Metallsubstrat oder die gereinigte beschichtbare Oberfläche des Metallsubstrats mindestens eine Metallschicht, enthaltend oder bestehend aus einem zweiten Metall ausgewählt aus der Gruppe bestehend aus Titan, Hafnium und Zirkonium, insbesondere Zirkonium, oder aus einer zweiten Metalllegierung ausgewählt aus der Gruppe bestehend aus Titan-, Hafnium- und Zirkoniumlegierungen, mit der Applikationsanlage, insbesondere mittels Aufdampf- und/oder Sputter-Technik, aufbringt (Schritt E)). Besonders vorteilhaft ist hierbei, wenn diese Metallschicht nachfolgend einem Plasmabehandlungsschritt unterzogen wird (Schritt F)).A particularly pronounced protection against corrosion is also obtained with the metal substrate obtainable by the method described herein by applying at least one metal layer containing or consisting of a second metal selected from the group to the metal substrate cleaned according to step D) or the cleaned coatable surface of the metal substrate consisting of titanium, hafnium and zirconium, in particular zirconium, or from a second metal alloy selected from the group consisting of titanium, hafnium and zirconium alloys, applied with the application system, in particular by means of vapor deposition and/or sputtering technology (step E) ). It is particularly advantageous here if this metal layer is subsequently subjected to a plasma treatment step (step F)).

Ferner kann vorgesehen sein, für die Herstellung beschichteter Metallsubstrate neben den Verfahrensschritten A) bis C) auf die Verfahrensschritte D), G), H), M), O), Q), S), T) und U) als zwingende Verfahrensschritte zurückzugreifen.In addition to process steps A) to C), process steps D), G), H), M), O), Q), S), T) and U) can also be provided as mandatory process steps for the production of coated metal substrates to fall back.

Darüber hinaus liefert das hierin beschriebene Verfahren unter Einhaltung der Abfolge der zwingenden Verfahrensschritte D), E), G), H), M), O), Q), S), T) und U) oder unter Einhaltung der Abfolge der zwingenden Verfahrensschritte D), M), N), O), Q), S), T) und U) oder unter Einhaltung der Abfolge der zwingenden Verfahrensschritte D), G), H), O), Q), S), T) und U) sehr zufriedenstellende Resultate hinsichtlich Haftung, Glanz und Korrosionsbeständigkeit, und zwar insbesondere auch dann, wenn die Verfahrensschritte in der genannten Abfolge unmittelbar aufeinanderfolgen.In addition, the method described herein delivers by following the sequence of the mandatory method steps D), E), G), H), M), O), Q), S), T) and U) or by following the sequence of the mandatory Process steps D), M), N), O), Q), S), T) and U) or in compliance with the sequence of mandatory process steps D), G), H), O), Q), S), T) and U) very satisfactory results in terms of adhesion, gloss and corrosion resistance, particularly when the process steps follow one another directly in the order mentioned.

Auch ist die folgende Verfahrensfolge sehr zweckmäßig, bei der neben den Verfahrensschritten A) bis C) Gebrauch gemacht wird von der Abfolge D), I), K), L), O), Q), S), T) und U) oder von der Abfolge D), F), O), Q), S), T) und U) oder von der Abfolge D), G), H), O), Q), S), T) und U).The following process sequence is also very expedient, in which, in addition to process steps A) to C), use is made of the sequence D), I), K), L), O), Q), S), T) and U) or from the sequence D), F), O), Q), S), T) and U) or from the sequence D), G), H), O), Q), S), T) and U ).

In einer besonders zweckmäßigen Ausgestaltung wird die Schicht, auf die die Metallschicht gemäß Schritt Q) aufgebracht wird, vor dem Schritt Q) einer Plasmabehandlung mit dem Plasmagenerator und/oder einer Corona-Behandlung unterzogen (beispielsweise Schritte P), N), L), J), H), F) oder D)). Dies trifft insbesondere auch auf die Polysiloxanschicht zu.In a particularly useful embodiment, the layer to which the metal layer is applied according to step Q) is subjected to a plasma treatment with the plasma generator and/or a corona treatment (for example steps P), N), L) before step Q). J), H), F) or D)). This also applies in particular to the polysiloxane layer.

Auch hat es sich in einer bevorzugten Ausfiihrungsform als günstig insbesondere in Bezug auf gute Haftung und Korrosionsschutz erwiesen, wenn das metallische Substrat, insbesondere das gereinigte metallische Substrat, einer Plasmabehandlung und/oder Corona-Behandlung, insbesondere Plasmabehandlung, unterzogen wird (Schritt F)).In a preferred embodiment, it has also proven to be advantageous, in particular with regard to good adhesion and corrosion protection, if the metallic substrate, in particular the cleaned metallic substrate, is subjected to a plasma treatment and/or corona treatment, in particular plasma treatment (step F)) .

Vielfach hat es sich daher als vorteilhaft erwiesen, dass, wenn eine Polysiloxanschicht aufgetragen wird, diese Schicht anschließend einer Plasmabehandlung und/oder einer Corona-Behandlung, insbesondere einer Plasmabehandlung, unterzogen wird. Das gleiche trifft auf die Anbringung einer Grundierungsschicht zu. Auch hier hat es sich als vorteilhaft erwiesen, die erhaltene Grundierungsschicht zunächst einer Plasmabehandlung und/oder einer Corona-Behandlung zu unterziehen, insbesondere einer Plasmabehandlung.It has therefore often proven to be advantageous if, when a polysiloxane layer is applied, this layer is then subjected to a plasma treatment and/or a corona treatment, in particular a plasma treatment. The same applies to the application of a primer layer. Here, too, it has proven advantageous first subjecting the primer layer obtained to a plasma treatment and/or a corona treatment, in particular a plasma treatment.

Demgemäß hat es sich auch bei der Herstellung beschichteter Metallsubstrate nach dem hierin beschriebenen Verfahren als vorteilhaft erwiesen, die vorangehend genannten Verfahrensschritte im Wesentlichen unmittelbar aufeinanderfolgen zu lassen. Dies bedeutet insbesondere, dass nach den Plasmabehandlungsschritten eine längere Lagerung vermieden werden sollte. Vielmehr ist es von Vorteil, wenn der nachfolgende Verfahrensschritt direkt folgt. Auch hat sich gezeigt, dass neben den vorangehend genannten Verfahrensschritten es nicht erforderlich ist, weitere Verfahrensschritte zwischen zu schalten.Accordingly, it has also proven to be advantageous in the production of coated metal substrates by the method described herein to have the previously mentioned method steps essentially follow one another directly. In particular, this means that prolonged storage after the plasma treatment steps should be avoided. Rather, it is advantageous if the subsequent method step follows directly. It has also been shown that, in addition to the method steps mentioned above, it is not necessary to interpose further method steps.

Für die Metallsubstrate kann auf Metalle und Metalllegierungen zurückgegriffen werden, wobei besonders geeignete Metallsubstrate ausgewählt werden können aus der Gruppe bestehend aus Aluminium, Aluminiumlegierungen, Eisen, Eisenlegierungen, insbesondere Stahl oder Edelstahl, Kupfer, Kupferlegierungen, Titan, Titanlegierungen, Zink, Zinklegierungen, Nickel, Nicklegierungen, Molybdän, Molybdänlegierungen, Magnesium, Magnesiumlegierungen, Blei, Bleilegierungen, Wolfram, Wolframlegierungen, Mangan, Manganlegierungen, Messing, Bronze, Nickeldruckguss, Zinkdruckguss und Aluminiumdruckguss oder deren beliebige Mischungen.Metals and metal alloys can be used for the metal substrates, with particularly suitable metal substrates being able to be selected from the group consisting of aluminum, aluminum alloys, iron, iron alloys, in particular steel or stainless steel, copper, copper alloys, titanium, titanium alloys, zinc, zinc alloys, nickel, Nickle alloys, molybdenum, molybdenum alloys, magnesium, magnesium alloys, lead, lead alloys, tungsten, tungsten alloys, manganese, manganese alloys, brass, bronze, die-cast nickel, die-cast zinc and die-cast aluminum or any mixtures thereof.

Geeignete Verfahren zur Reinigung von Metallsubstraten sind dem Fachmann bekannt. Derartige Reinigungsverfahren (Schritt D)) umfassen das Entfetten, Dekapieren, Phosphatieren, insbesondere Eisen- und/oder Zinkphosphatieren, Polieren, Schleifen, insbesondere Gleitschleifen, und/oder Behandeln mit Trockeneis. Diese Verfahren können sowohl einzeln als auch in beliebiger Kombination eingesetzt werden. Für viele Anwendungen hatte sich als ausreichend erwiesen, die Metallsubstrate durch Behandlung mit Trockeneis zu reinigen. Bei der Reinigung mit Trockeneis werden im Allgemeinen Trockeneispartikeln in Form von Pellets oder in Form von Kristallen, die von einem entsprechenden Trockeneisblock abgeschabt worden sind, mit Hilfe von Druckluft beschleunigt und auf die zu reinigende Metalloberfläche geleitet. Der Reinigungseffekt soll hierbei auf thermische, kinetische und Phasenumwandlungseffekte zurückzuführen sein. Vorrichtungen und Verfahren zur Reinigung von Metalloberflächen mit Trockeneis sind zum Beispiel der DE 195 44 906 A1 und EP 2 886 250 zu entnehmen.Suitable methods for cleaning metal substrates are known to those skilled in the art. Such cleaning processes (step D)) include degreasing, pickling, phosphating, in particular iron and/or zinc phosphating, polishing, grinding, in particular vibratory grinding, and/or treating with dry ice. These methods can be used individually or in any combination. For many applications it has proved to be sufficient to clean the metal substrates by treating them with dry ice. When cleaning with dry ice, dry ice particles in the form of pellets or in the form of crystals, which have been scraped off a corresponding block of dry ice, are generally accelerated with the aid of compressed air and directed onto the metal surface to be cleaned. The cleaning effect is said to be due to thermal, kinetic and phase change effects. Devices and methods for cleaning of metal surfaces with dry ice are for example the DE 195 44 906 A1 and EP 2 886 250 refer to.

Die Oberfläche von Metallsubstrate kann beispielsweise mit alkalischen oder sauren Reagenzien entfettet werden. Kommerzielle Entfettungsschritte sind auch unter den Begriffen Abkoch- bzw. Beizentfetten bekannt. Alternativ kann eine Metalloberfläche in einem elektrolytischen Entfettungsbad anodisch entfettet werden.For example, the surface of metal substrates can be degreased with alkaline or acidic reagents. Commercial degreasing steps are also known by the terms boiling or pickling degreasing. Alternatively, a metal surface can be anodically degreased in an electrolytic degreasing bath.

Für manche Ausführungsvarianten ist es vorteilhaft, die, insbesondere entfettete, Metallsubstratoberfläche mindestens einem Dekapierschritt zu unterziehen. Für die Dekapierung der Metallsubstratoberfläche setzt man z.B. ein saures Spülbad ein. Eine geeignete Dekapierlösung stellt demgemäß z.B. verdünnte Salzsäure (1:10 vol/vol) dar. Im Ergebnis erhält man mittels Dekapierung in der Regel eine im Wesentlichen oxidfreie Metalloberfläche. Ebenso wie der Entfettungsschritt wird auch der Dekapierschritt im Allgemeinen durch einen Spülschritt abgeschlossen. Wird die Metallsubstratoberfläche poliert und/oder geschliffen bzw. gleitgeschliffen, kann häufig der Entfettungs- und/oder Dekapierschritt entfallen. Üblicherweise wird bei dieser Art der Oberflächenbearbeitung hinreichend Material von dieser Oberfläche abgetragen, womit dann auch auf der Oberfläche aufliegende bzw. anhaftende Verunreinigungen oder anderweitige Bestandteile mit entfernt werden. Wird die Oberfläche poliert bzw. geschliffen, kann überdies häufig auch auf die Auftragung einer ersten und gegebenenfalls zweiten Grundierschicht verzichtet werden. Mit dem Polieren bzw. Schleifen wird zumeist bereits eine derart ebene bzw. glatte Oberfläche erhalten, dass eine Einglättung durch Aufbringen einer Grundierschicht nicht mehr erforderlich ist. Allerdings kann es, wenn das Metallsubstrat zahlreiche Winkel und Ecken aufweist, die sich nicht ohne weiteres hinreichend polieren bzw. schleifen lassen, empfehlenswert sein, einen ersten und möglicherweise auch einen zweiten Grundierschritt nachzuschalten.For some design variants, it is advantageous to subject the, in particular degreased, metal substrate surface to at least one pickling step. An acidic rinsing bath, for example, is used to pickle the metal substrate surface. A suitable pickling solution is, for example, dilute hydrochloric acid (1:10 vol/vol). Like the degreasing step, the pickling step is generally completed by a rinsing step. If the metal substrate surface is polished and/or ground or tumbled, the degreasing and/or pickling step can often be omitted. With this type of surface treatment, sufficient material is usually removed from this surface, with the result that impurities or other components lying on or adhering to the surface are also removed. If the surface is polished or ground, it is also often possible to dispense with the application of a first and optionally a second primer layer. Such an even or smooth surface is usually obtained by polishing or grinding that smoothing by applying a primer layer is no longer necessary. However, if the metal substrate has numerous nooks and crannies that cannot be readily polished or ground sufficiently, it may be advisable to add a first and possibly a second priming step.

Anschließend an oder anstelle des Entfettungsschritts kann die metallische Substratoberfläche phosphatiert und/oder zu passiviert werden. Dies ist insbesondere bei Substraten aus oder enthaltend Aluminium bevorzugt.Subsequent to or instead of the degreasing step, the metallic substrate surface can be phosphated and/or passivated. This is particularly preferred in the case of substrates made of or containing aluminum.

In einer weiteren Ausgestaltung des hierin beschriebenen Verfahrens zur Herstellung beschichteter Metallsubstrate gelangt man dadurch zu ganz besonders korrosionsbeständigen Substraten, dass in dem Schritt der Aufbringung der Metallschicht ein erstes Metall, insbesondere Aluminium, oder eine erste Metalllegierung, insbesondere eine Aluminiumlegierung, in der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere der Vakuumaufdampfanlage oder der Sputter-Anlage, zeitlich überlappend mit einem zweiten Metall, das von dem ersten Metall verschieden ist, insbesondere ausgewählt aus der Gruppe bestehend aus Titan, Zirkonium und Hafnium, insbesondere Zirkonium, oder mit einer zweiten Metalllegierung, insbesondere einer Zirkoniumlegierung, die von der ersten Metalllegierung verschieden ist, co-verdampft wird. Dieses gelingt beispielsweise in der Weise, dass Metallpellets oder -stäbe des ersten Metalls oder der ersten Metalllegierung in ein entsprechendes erstes Aufnahmebehältnis, insbesondere erstes Schiffchen oder eine erste Wendel, gegeben werden und das Metallpellets oder -stäbe des zweiten Metalls oder der zweiten Metalllegierung in ein entsprechendes zweites Aufnahmebehältnis, zweites Schiffchen oder eine zweite Wendel, gegeben werden und dass das erste und das zweite Aufnahmebehältnis in der Weise aufgeheizt werden, dass die Schmelzpunkte von erstem und zweiten Metall bzw. erster und zweiter Metalllegierung bzw. von erstem Metall und zweiter Metalllegierung bzw. von erster Metalllegierung und zweitem Metall im Wesentlichen gleichzeitig oder innerhalb eines überlappenden Zeitraums erreicht und/oder aufrechterhalten werden.In a further embodiment of the method described here for the production of coated metal substrates, very particularly corrosion-resistant substrates are obtained in that, in the step of applying the metal layer, a first metal, in particular aluminum, or a first metal alloy, in particular an aluminum alloy, is used in the application system for the Application of a metal layer, in particular the vacuum vapor deposition system or the sputter system, overlapping in time with a second metal that is different from the first metal, in particular selected from the group consisting of titanium, zirconium and hafnium, in particular zirconium, or with a second metal alloy, in particular a zirconium alloy different from the first metal alloy is co-evaporated. This is achieved, for example, by placing metal pellets or rods of the first metal or metal alloy in a corresponding first receptacle, in particular a first boat or a first coil, and placing the metal pellets or rods of the second metal or metal alloy in a corresponding second receptacle, second boat or a second coil, and that the first and the second receptacle are heated in such a way that the melting points of the first and second metal or first and second metal alloy or of the first metal and second metal alloy or , achieved and/or maintained by the first metal alloy and the second metal substantially simultaneously or within an overlapping period of time.

Geeignete wässrige Konversionssysteme, mit deren Hilfe Konversionsschichten erhalten werden, sind dem Fachmann geläufig. Exemplarisch sei auf die Offenbarungen der US 2,825,697 und US 2,928,763 verwiesen.The person skilled in the art is familiar with suitable aqueous conversion systems with the aid of which conversion layers are obtained. As an example, refer to the revelations of U.S. 2,825,697 and U.S. 2,928,763 referred.

Zur Aufbringung der Grundierungsschicht stehen dem Fachmann allseits bekannte Verfahren zur Verfügung. Exemplarisch seien das Nasslackverfahren, das Pulverbeschichtungsverfahren oder die Auftragung mittels UV-härtender Beschichtungssysteme genannt. Demgemäß kann die Grundierungsschicht in einer bevorzugten Ausgestaltung auf, insbesondere UV-härtende, pulverförmige Polyesterharzverbindungen oder auf Epoxid/Polyester-Pulver zurückgehen. Selbstverständlich ist es auch möglich, vor der Aufbringung einer Grundierungsschicht, wie vorangehend beschrieben, eine mechanische Glättung der Metallsubstratoberfläche, beispielsweise mittels Schleifens und/oder Polierens bzw. Gleitschleifens, durchzuführen.Methods which are well known to those skilled in the art are available for applying the primer layer. Examples include the wet paint process, the powder coating process or application using UV-curing coating systems. Accordingly, in a preferred embodiment, the primer layer can be based on, in particular UV-curing, powdered polyester resin compounds or on epoxy/polyester powder. Of course it is also possible, before applying a primer layer, as described above, to mechanically smooth the metal substrate surface, for example by means of grinding and/or polishing or vibratory grinding.

Geeignete siliziumorganische Verbindungen sind dem Fachmann bekannt. In einer zweckmäßigen Ausgestaltung wird hierfür zurückgegriffen auf mindestens ein aminohaltiges Silan, insbesondere Aminopropyltriethoxysilan, Hexamethyldisiloxan, Tetramethyldisiloxan oder deren beliebige Mischungen. Besonders bevorzugt kommen Hexamethyldisiloxan und Tetramethyldisiloxan zum Einsatz, wobei Hexamethyldisiloxan regelmäßig besonders geeignet ist.Suitable organosilicon compounds are known to those skilled in the art. In an expedient embodiment, at least one amino-containing silane is used for this purpose, in particular aminopropyltriethoxysilane, hexamethyldisiloxane, tetramethyldisiloxane or any mixtures thereof. Hexamethyldisiloxane and tetramethyldisiloxane are particularly preferably used, hexamethyldisiloxane being regularly particularly suitable.

Geeignete siliziumorganische Verbindungen umfassen ebenfalls, als Monomer- oder als Comonomer-Bausteine, Verbindungen der folgenden Formel (1):

        X-R1-Si(R2)3-m(R3)m     (I),

wobei die Substituenten und Indizes die folgende Bedeutung haben:

m
0, 1, 2 oder 3, insbesondere 2 oder 3,
R1
C1- bis C10-Kohlenwasserstoffrest, insbesondere eine C1- bis C10-Kohlenwasserstoffkette, die durch Sauerstoff oder Stickstoff unterbrochen sein kann, insbesondere Methyl, Ethyl oder i- oder n-Propyl, vorzugsweise i- oder n-Propyl,
R2
gleiche oder verschiedene hydrolysierbare Gruppen, insbesondere Alkoxygruppen wie Methoxy-, Ethoxy-, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy oder t-Butoxy, insbesondere Methoxy oder Ethoxy,
R3
gleiche oder verschiedene C1 - bis C5-Alkylgruppen, insbesondere Methyl, Ethyl oder i- oder n-Propyl, vorzugsweise i- oder n-Propyl,
X
funktionelle polymerisierbare Gruppe, insbesondere ein in ω-Stellung ungesättigter organischer Rest wie eine in ω-Stellung ungesättigte Alkenylgruppe mit 1 bis 10, vorzugsweise 2 bis 4 C-Atomen oder ein in ω-Stellung ungesättigter Carbonsäureesterrest von Carbonsäuren mit bis zu 4 Kohlenstoffatomen und Alkoholen mit bis zu 6 Kohlenstoffatomen.
Suitable organosilicon compounds also include, as monomer or comonomer building blocks, compounds of the following formula (1):

XR 1 -Si(R 2 ) 3-m (R 3 ) m (I),

where the substituents and indices have the following meanings:
m
0, 1, 2 or 3, in particular 2 or 3,
R1
C1 to C10 hydrocarbon radical, in particular a C1 to C10 hydrocarbon chain which can be interrupted by oxygen or nitrogen, in particular methyl, ethyl or i- or n-propyl, preferably i- or n-propyl,
R2
identical or different hydrolyzable groups, in particular alkoxy groups such as methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy or t-butoxy, in particular methoxy or ethoxy,
R3
identical or different C1 - to C5-alkyl groups, in particular methyl, ethyl or i- or n-propyl, preferably i- or n-propyl,
X
functional polymerizable group, in particular an ω-unsaturated organic radical such as an ω-unsaturated alkenyl group having 1 to 10, preferably 2 to 4 carbon atoms or an ω-unsaturated carboxylic acid ester radical of carboxylic acids having up to 4 carbon atoms and alcohols with up to 6 carbon atoms.

Besonders geeignete Reste X umfassen z.B. Vinyl, Alkylvinyl, insbesondere Methyl-, Ethyl- oder Propylvinyl, (Meth)acryloxyalkyl, insbesondere (Meth)acryloxymethyl, (Meth)acryloxyethylen oder (Meth)acryloxypropyl, insbesondere (Meth)acryloxypropyl. In einer Weiterentwicklung der hierin beschriebenen Verfahren ist vorgesehen, dass eine erste siliziumorganische Verbindung über eine Zuführleitung aus einem außerhalb der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere außerhalb der Vakuumkammer der Vakuumaufdampfanlage, befindlichen ersten Behältnis dieser Applikationsanlage, insbesondere Vakuumkammer, zugeführt wird und dass eine zweite siliziumorganische Verbindung , die von der ersten siliziumorganische Verbindung verschieden ist, über eine Zuführleitung aus einem außerhalb der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere außerhalb der Vakuumkammer der Vakuumaufdampfanlage, befindlichen zweiten Behältnis dieser Applikationsanlage, insbesondere Vakuumkammer, zugeführt wird. Alternativ kann in dem ersten und dem zweiten Behältnis auch die gleiche siliziumorganische Verbindung vorliegen. Insbesondere ist es möglich, dass auch bei Verwendung gleicher siliziumorganischer Verbindungen eine dieser siliziumorganischen Verbindungen mit einer weiteren, anderen siliziumorganischen Verbindung und/oder mit einem Farbmittel, insbesondere Farbstoff, vermengt vorliegen kann. Demgemäß zeichnen sich die hierin beschriebenen Verfahren auch dadurch aus, dass man gemeinsam mit der mindestens einen siliziumorganischen Verbindung, insbesondere für die Plasmapolymerisation, mindestens ein Farbmittel, insbesondere einen Farbstoff, in die Applikationsanlage für die Aufbringung einer Metallschicht, vorzugsweise in Form eines Gemisches, einbringt. Letztgenannte Verfahrensvariante umfassend den Einsatz eines Farbmittels gelingt selbstverständlich ebenfalls bei Anwendung von nur einem Behälter.Particularly suitable radicals X include, for example, vinyl, alkylvinyl, especially methyl, ethyl or propylvinyl, (meth)acryloxyalkyl, especially (meth)acryloxymethyl, (meth)acryloxyethylene or (meth)acryloxypropyl, especially (meth)acryloxypropyl. In a further development of the method described here, it is provided that a first organosilicon compound is supplied via a supply line from a first container of this application system, in particular vacuum chamber, located outside the application system for the application of a metal layer, in particular outside the vacuum chamber of the vacuum vapor deposition system, and that a second organosilicon compound, which differs from the first organosilicon compound, is supplied via a feed line from a second container located outside the application system for the application of a metal layer, in particular outside the vacuum chamber of the vacuum vapor deposition system, of this application system, in particular vacuum chamber. Alternatively, the same organosilicon compound can also be present in the first and the second container. In particular, it is possible that even when the same organosilicon compounds are used, one of these organosilicon compounds can be mixed with another, different organosilicon compound and/or with a colorant, in particular a dye. Accordingly, the methods described herein are also characterized in that at least one colorant, in particular a dye, is introduced into the application system for the application of a metal layer, preferably in the form of a mixture, together with the at least one organosilicon compound, in particular for the plasma polymerization . The last-mentioned variant of the method, comprising the use of a colorant, is of course also successful when only one container is used.

Demgemäß wird mit der vorliegenden Offenbarung ebenfalls abgestellt auf eine Applikationsanlage für die Aufbringung einer Metallschicht umfassend mindestens ein erstes, insbesondere außerhalb der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere außerhalb der Vakuumkammer der Vakuumaufdampfanlage, vorliegendes Behältnis zur Aufnahme einer ersten siliziumorganischen Verbindung mit einer Zuführleitung zu der Applikationsanlage, insbesondere zur Vakuumkammer, und mindestens ein zweites, insbesondere außerhalb der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere außerhalb der Vakuumkammer der Vakuumaufdampfanlage, vorliegendes Behältnis zur Aufnahme einer zweiten siliziumorganischen Verbindung mit einer Zuführleitung zu der Applikationsanlage, insbesondere zur Vakuumkammer.Accordingly, the present disclosure also refers to an application system for the application of a metal layer comprising at least one first container, in particular outside the application system for the application of a metal layer, in particular outside the vacuum chamber of the vacuum vapor deposition system, for receiving a first silicon-organic compound with a feed line the application system, in particular to the vacuum chamber, and at least a second, in particular outside the application system for the application of a metal layer, in particular Outside the vacuum chamber of the vacuum vapor deposition system, present container for receiving a second organosilicon compound with a feed line to the application system, in particular to the vacuum chamber.

Eine besonders gute Haftung ohne Einschränkungen bei der Korrosionsbeständigkeit erhält man insbesondere auch dadurch, dass der Schritt der Behandlung mit mindestens einer siliziumorganischen Verbindung wie Hexamethyldisiloxan, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht in Gegenwart mindestens eines reaktiven Gases wie Sauerstoff, Stickstoff, Kohlendioxid, Wasserstoff, Kohlenmonoxid, Wasserstoffperoxidgas, Wasserdampf, Ozon und/oder Luft, insbesondere in Gegenwart von Sauerstoff oder Luft, durchgeführt wird. Über die Einbindung von reaktiven Gasen, insbesondere Luft oder Sauerstoff, in den, insbesondere plasmagenerierten, Polymerisationsprozess erhält man härtere Polysiloxanschichten als bei der herkömmlichen Herstellung solcher Polysiloxanschichten ohne Mitverwendung der geschilderten reaktiven Gase. Diese härteren Polysiloxanschichten zeichnen sich auch durch eine größere Diffusionsgeschlossenheit aus. Hierbei kann in einer besonders zweckmäßigen Ausfuhrungsform vorgesehen sein, dass die mindestens eine siliziumorganische Verbindung, insbesondere Hexamethyldisiloxan, und das mindestens eine reaktive Gas, insbesondere Sauerstoff oder Luft, als Mischung für den Behandlungsschritt eingesetzt werden. Die vorangehend geschilderte Ausführungsform der Mitverwendung reaktive Gase bei der, insbesondere plasmagenerierten, Herstellung der Polysiloxanschicht kommt vorzugsweise bei mindestens einem Schritt der Behandlung mit mindestens einer siliziumorganischen Verbindung, insbesondere mittels Plasmapolymerisation, unter Ausbildung einer Polysiloxanschicht oder aber auch bei jedem Schritt zur Herstellung einer Polysiloxanschicht zum Einsatz. Besonders bevorzugt wird diese Verfahrensvariante bei der Herstellung beschichteter nicht-metallischer Substrate, insbesondere von Kunststoffsubstraten, in Verfahrensschritt m) und bei der Herstellung beschichtete metallischer Substrate in Verfahrensschritt S) eingesetzt. In den den genannten Verfahrensschritten folgenden Verfahrensschritten n) bzw. T) wird die Plasmabehandlung bevorzugt mit Hilfe eines Plasmagases gebildet aus einem Inertgas, insbesondere Argon, und Sauerstoff oder Luft oder Stickstoff, insbesondere Sauerstoff, oder mit Hilfe eines Plasmagases gebildet aus Sauerstoff, Luft oder Stickstoff durchgeführt. Auch diese Vorgehensweise trägt nochmals zu einer verbesserten Haftung des Gesamtsystems, umfassend die Deckschicht bei.Particularly good adhesion without restrictions in terms of corrosion resistance is also obtained in particular by the step of treatment with at least one organosilicon compound such as hexamethyldisiloxane, in particular by means of plasma polymerisation, with the formation of a polysiloxane layer in the presence of at least one reactive gas such as oxygen, nitrogen, carbon dioxide, hydrogen , carbon monoxide, hydrogen peroxide gas, water vapor, ozone and/or air, in particular in the presence of oxygen or air. The incorporation of reactive gases, in particular air or oxygen, in the, in particular plasma-generated, polymerization process results in harder polysiloxane layers than in the conventional production of such polysiloxane layers without the use of the reactive gases described. These harder polysiloxane layers are also characterized by a greater diffusion seal. In a particularly expedient embodiment, the at least one organosilicon compound, in particular hexamethyldisiloxane, and the at least one reactive gas, in particular oxygen or air, can be used as a mixture for the treatment step. The previously described embodiment of the use of reactive gases in the, in particular plasma-generated, production of the polysiloxane layer is preferably used in at least one step of the treatment with at least one organosilicon compound, in particular by means of plasma polymerisation, with the formation of a polysiloxane layer or also in every step for the production of a polysiloxane layer Mission. This process variant is particularly preferably used in the production of coated non-metallic substrates, in particular plastic substrates, in process step m) and in the production of coated metallic substrates in process step S). In the method steps n) or T) following the method steps mentioned, the plasma treatment is preferably formed with the aid of a plasma gas from an inert gas, in particular argon, and oxygen or air or nitrogen, in particular oxygen, or with the aid of a plasma gas formed from oxygen, air or nitrogen carried out. This procedure also contributes again to improved adhesion of the overall system, including the top layer.

Für den Schritt der Plasmabehandlung mit dem Plasmagenerator stehen grundsätzlich mehrere Verfahrensvarianten zur Auswahl. Gemäß einer ersten Variante kann das Plasma unter Einsatz mindestens eines Inertgases, insbesondere Argon, gebildet werden. Alternativ kann für die Generierung eines geeigneten Plasmas auch auf Mischungen aus mindestens einem Inertgas, insbesondere Argon, und einem reaktiven Gas wie Sauerstoff, Stickstoff, Kohlendioxid, Wasserstoff, Kohlenmonoxid, Wasserstoffperoxidgas, Wasserdampf, Ozon und/oder Luft zurückgegriffen werden. Bevorzugt kommen hierbei Sauerstoff und Stickstoff, insbesondere Sauerstoff, zum Einsatz. Schließlich ist es auch möglich, unter Verzicht von Inertgasen ausschließlich reaktive Gase wie Sauerstoff, Stickstoff, Wasserstoff, Kohlendioxid, Kohlenmonoxid, Wasserstoffperoxidgas, Wasserdampf, Ozon und/oder Luft für die Erzeugung des Plasmas einzusetzen. Hierbei wird bevorzugt auf Sauerstoff zurückgegriffen. Mit Hilfe einer Plasmabehandlung mit dem Plasmagenerator wird die zu beschichtende Oberfläche des Substrats aktiviert. Bei einem Plasmaverfahren wirkt regelmäßig ein energiereiches Plasma auf die Oberfläche des Formteils ein, so dass auf dieser Oberfläche aktive Zentren gebildet werden. Hierbei kann es sich beispielsweise um Hydroxygruppen und/oder um Carbonyl-Gruppen handeln. In gleicher Weise kann eine Aktivierung der Oberfläche der zu beschichtenden Oberfläche des Substrats im Wege der Beflammung erfolgen. Hierbei kann in einer bevorzugten Ausgestaltung einer Flamme, beispielsweise einer Propangasflamme, welche in einer Luftatmosphäre brennt, ein flüchtiges Silan oder eine Verbindung, die Titan und Aluminium enthält, zugesetzt werden. Durch die Beflammung kann die Oberfläche des Substrats, insbesondere eines Kunststoffsubstrats, in ähnlicher Weise verändert werden wie beim Plasmaverfahren, zum Beispiel unter Ausbildung von Hydroxygruppen.There are basically several process variants to choose from for the step of plasma treatment with the plasma generator. According to a first variant, the plasma can be formed using at least one inert gas, in particular argon. Alternatively, mixtures of at least one inert gas, in particular argon, and a reactive gas such as oxygen, nitrogen, carbon dioxide, hydrogen, carbon monoxide, hydrogen peroxide gas, water vapor, ozone and/or air can also be used to generate a suitable plasma. Oxygen and nitrogen, in particular oxygen, are preferably used here. Finally, it is also possible to use only reactive gases such as oxygen, nitrogen, hydrogen, carbon dioxide, carbon monoxide, hydrogen peroxide gas, water vapor, ozone and/or air for generating the plasma without using inert gases. Oxygen is preferably used here. With the help of a plasma treatment with the plasma generator, the surface of the substrate to be coated is activated. In a plasma process, a high-energy plasma regularly acts on the surface of the molded part, so that active centers are formed on this surface. These can be, for example, hydroxyl groups and/or carbonyl groups. In the same way, activation of the surface of the substrate surface to be coated can take place by means of flaming. In a preferred embodiment, a volatile silane or a compound containing titanium and aluminum can be added to a flame, for example a propane gas flame, which burns in an air atmosphere. The surface of the substrate, in particular a plastic substrate, can be changed by the flame treatment in a manner similar to that in the plasma process, for example with the formation of hydroxyl groups.

Die hierin beschriebenen Verfahren bieten den großen Vorteil, dass nahezu sämtliche Verfahrensschritte in der Applikationsanlage für die Aufbringung einer Metallschicht durchgeführt werden können. Dies betrifft neben der Aufbringung der Metallschichten auch die Aktivierung von Oberflächen mittels der Plasmabehandlung mit dem Plasmagenerator ebenso wie die Aufbringung der Polysiloxanschicht, insbesondere mittels Plasmapolymerisation. Einzig die Reinigungsschritte, die Aufbringung einer Grundierungsschicht, die Aufbringung einer Konversionsschicht und die Aufbringung der Deckschicht werden regelmäßig außerhalb der genannten Applikationsanlage aufgebracht. Demgemäß kann vorgesehen sein, dass die, insbesondere jede, Plasmabehandlung mit dem Plasmagenerator und/oder die, insbesondere jede, Aufbringung der Metallschicht und/oder die, insbesondere jede, Aufbringung der Polysiloxanschicht in der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere in der Vakuumaufdampfanlage oder in der Sputter-Anlage, vorgenommen wird und/oder dass die Aufbringung der Grundierungsschicht und/oder die Aufbringung der Konversionsschicht und/oder die Aufbringung der Deckschicht außerhalb der Applikationsanlage für die Aufbringung einer Metallschicht, insbesondere der Vakuumaufdampfanlage oder der Sputter-Anlage, vorgenommen wird.The methods described here offer the great advantage that almost all method steps can be carried out in the application system for the application of a metal layer. In addition to the application of the metal layers, this also applies to the activation of surfaces by means of plasma treatment with the plasma generator and the application of the polysiloxane layer, in particular by means of plasma polymerisation. Only the cleaning steps, the application of a primer layer, the application of a conversion layer and the application of the top layer are regularly applied outside of the application system mentioned. Accordingly, it can be provided that the, in particular each, plasma treatment with the plasma generator and/or the, in particular each, application of the metal layer and/or the, in particular each, application of the polysiloxane layer in the application system for the application of a metal layer, in particular in the vacuum vapor deposition system or in the sputtering system , is carried out and/or that the application of the primer layer and/or the application of the conversion layer and/or the application of the cover layer is carried out outside of the application system for the application of a metal layer, in particular the vacuum vapor deposition system or the sputter system.

Für die Deckschicht kann z.B. auch auf wasserverdünnbare Beschichtungszusammensetzungen zurückgegriffen werden. Die Deckschicht kann gebildet werden aus Polyacrylatharzen, Polyesterharzen, Aminoplastharzen oder Polyurethanverbindungen. Bevorzugt werden bei den hierin beschriebenen Verfahren solche Deckschichten aufgetragen, die auf ein UV-härtendes Beschichtungsmaterial zurückgehen. Demgemäß stellt eine bevorzugte Deckschicht eine UV-gehärtete Deckschicht dar. Die Deckschicht kann z.B. über einen Klarlack oder ein transparentes Pulver erhalten werden. Vorzugsweise wird die Deckschicht über ein Nasslackverfahren bzw. ein Pulverbeschichtungsverfahren aufgetragen. Bei der Deckschicht kann es sich demgemäß zum Beispiel um ein-, zwei- oder mehrkomponentige Lacke handeln, wobei Klarlacke bevorzugt sind. Bei diesen Klarlacken kann es sich z.B. um chemisch vernetzende zweikomponentige, um einkomponentige wärmehärtende oder um UV-härtende Lacke handeln. Des Weiteren kann für die Deckschicht auf 1K- oder 2K-Einbrennlack zurückgegriffen werden.Water-dilutable coating compositions can also be used for the top layer, for example. The top layer can be formed from polyacrylate resins, polyester resins, amino resins or polyurethane compounds. In the methods described herein, top layers which are based on a UV-curing coating material are preferably applied. Accordingly, a preferred topcoat is a UV-cured topcoat. The topcoat can be obtained, for example, via a clear coat or a transparent powder. The top layer is preferably applied using a wet paint process or a powder coating process. Accordingly, the top coat can be, for example, one-, two- or multi-component paints, with clear paints being preferred. These clear coats can be, for example, chemically crosslinking two-component, one-component, heat-curing or UV-curing coatings. Furthermore, 1K or 2K stove enamel can be used for the top layer.

Die Deckschicht verfügt in der Regel über eine Dicke im Bereich von 10 bis 50 µm, vorzugsweise im Bereich von 20 bis 30 µm. Wesentlich für die hierin beschriebenen Verfahren ist, dass das die Deckschicht bildende Material auf eine zuvor mittels Plasmabehandlung und/oder Corona-Behandlung aktivierte Polysiloxanschicht, welche wiederum bevorzugt im Wege einer Plasmapolymerisation erhalten wurde, aufgetragen wird, und zwar vorzugsweise im Wesentlichen ohne zeitliche Verzögerung.The cover layer generally has a thickness in the range from 10 to 50 μm, preferably in the range from 20 to 30 μm. It is essential for the methods described herein that the material forming the cover layer is applied to a polysiloxane layer previously activated by means of plasma treatment and/or corona treatment, which in turn was preferably obtained by means of plasma polymerisation, preferably essentially without a time delay.

Die Plasmabehandlung mit dem Plasmagenerator wird mitunter auch mit dem Begriff Glimmen beschrieben.The plasma treatment with the plasma generator is sometimes also described with the term smoldering.

Für die Auftragung der Metallschichten kann zum Beispiel zurückgegriffen werden auf die Techniken der Physical Vapour Deposition (PVD), Chemical Vapour Deposition (CVD), des Aufdampfens mittels eines Elektronenstahl-Verdampfers, des Aufdampfens mittels eines Widerstandsverdampfers, der Induktionsverdampfung, der ARC-Verdampfung oder der Kathoden- bzw. Anodenzerstäubung (Sputter-Beschichtung). Demgemäß kommen als Applikationsanlagen für die Aufbringung einer Metallschicht zum Beispiel vorzugsweise Vakuumaufdampfanlagen oder Sputter-Anlagen in Frage. Geeignete Vakuumaufdampfanlagen umfassen zweckmäßigerweise PVD-Anlagen (Physical Vapour Deposition), CVD-Anlagen (Chemical Vapour Deposition), Elektronenstahl-Verdampfer, Widerstandsverdampfer, Induktionsverdampfer und ARC-Verdampfer. Geeignete Sputter-Anlagen umfassen zum Beispiel Kathodenzerstäuber und Anodenzerstäuber. Wie dem Fachmann bekannt ist, besteht eine Metallschicht vorwiegend aus Metall. Dies schließt Zusätze, wie sie beispielsweise bei rostfreiem Stahl in Form von Kohlenstoff zum Einsatz kommen, nicht gänzlich aus. Vorzugsweise ist der Metallanteil der vorliegenden Metallschicht größer 90 Gew%, insbesondere 95 Gew% und ganz besonders bevorzugt ≥ 98 Gew%.For the application of the metal layers, for example, the techniques of physical vapor deposition (PVD), chemical vapor deposition (CVD), evaporation using an electron beam evaporator, evaporation using a resistance evaporator, induction evaporation, ARC evaporation or the cathode or anode sputtering (sputter coating). Accordingly, suitable application systems for the application of a metal layer are, for example, preferably vacuum vapor deposition systems or sputter systems. Suitable vacuum evaporation systems suitably include PVD systems (Physical Vapor Deposition), CVD systems (Chemical Vapor Deposition), electron beam evaporators, resistance evaporators, induction evaporators and ARC evaporators. Suitable sputtering equipment includes, for example, cathode atomizers and anode atomizers. As is known to those skilled in the art, a metal layer consists primarily of metal. This does not completely rule out additives such as those used in stainless steel in the form of carbon. The metal content of the present metal layer is preferably greater than 90% by weight, in particular 95% by weight and very particularly preferably ≧98% by weight.

Vorzugsweise ist die Metallschicht eine aufgedampfte oder aufgesputterte Metallschicht, insbesondere ein PVD-Metallschicht. Beim PVD-Verfahren kommen im Allgemeinen widerstandsbeheizte Metallwendel- oder Metallschiffchenverdampfer zum Einsatz, wobei Wolframwendeln der verschiedensten Form bevorzugt sind. Beim PVD-Verfahren wird im Allgemeinen ein Verdampfer mit Wendeln bestückt, die auf voneinander isolierten Verdampferschienen geklemmt werden können. In jede Wendel wird vorzugsweise eine genau bestimmte Menge an aufzudampfendem Metall gegeben. Nach dem Schließen und Evakuieren der PVD-Anlage kann die Verdampfung durch Einschalten der Stromversorgung, wodurch man die Verdampferschienen die Wendel zum Glühen bringt, gestartet werden. Das feste Metall beginnt zu schmelzen und benetzt die meist verdrillten Wendeln vollständig. Durch weitere Energiezufuhr wird das flüssige Metall in die Gasphase überführt, so dass es sich auf dem zu beschichtenden Substrat abscheiden kann. Über die Menge an in die Gasphase überführtem Metall und/oder die Dauer der Beschichtungsphase kann die Dicke der Metallschicht, und damit auch das Erscheinungsbild derselben gezielt eingestellt werden.The metal layer is preferably a vapor-deposited or sputtered-on metal layer, in particular a PVD metal layer. Resistance-heated metal coil or metal boat evaporators are generally used in the PVD process, with tungsten coils of various shapes being preferred. In the PVD process, an evaporator is generally equipped with coils that can be clamped onto evaporator rails that are insulated from one another. A precisely determined quantity of metal to be vapor-deposited is preferably placed in each coil. After closing and evacuating the PVD system, the evaporation can be started by switching on the power supply, which causes the evaporator bars to glow the coils. The solid metal begins to melt and completely wets the mostly twisted coils. By adding more energy, the liquid metal is converted into the gas phase so that it can be deposited on the substrate to be coated. The thickness of the metal layer and thus also the appearance of the same can be adjusted in a targeted manner via the amount of metal transferred into the gas phase and/or the duration of the coating phase.

Ein weiteres bevorzugtes Verfahren zur Abscheidung der Metallschicht auf dem Substrat ist die Kathodenzerstäubung (Sputter-Verfahren). Dabei wird in einem evakuierten Behälter eine Kathode angeordnet, die mit dem negativen Pol einer Stromversorgung verbunden ist. Das Beschichtungsmaterial, das zerstäubt wird, wird unmittelbar vor der Kathode montiert und die zu beschichtenden Substrate werden gegenüber dem zu zerstäubenden Beschichtungsmaterial angeordnet. Ferner kann Argon als Prozessgas durch den Behälter geleitet werden, der schließlich noch eine Anode aufweist, die mit dem positiven Pol einer Stromversorgung verbunden ist. Nachdem der Behälter vorevakuiert worden ist, werden Kathode und Anode mit der Stromversorgung verbunden. Durch den gezielten und gesteuerten Einlass von Argon wird die mittlere freie Weglänge der Ladungsträger deutlich gesenkt. Im elektrischen Feld zwischen Kathode und Anode werden Argonatome ionisiert. Die positiv geladenen Teilchen werden mit hoher Energie zur negativ geladenen Kathode beschleunigt. Beim Auftreffen und durch Teilchenstöße im Beschichtungsmaterial wird dieses in die Dampfphase überführt, mit hoher Energie in den freien Raum beschleunigt und kondensiert dann auf den zu beschichtenden Substraten. Mit dem Sputter-Verfahren lassen sich unterschiedliche Metallschichtdicken gezielt einstellen.Another preferred method for depositing the metal layer on the substrate is cathode sputtering (sputtering method). A cathode is placed in an evacuated container and is connected to the negative pole of a power supply. The coating material to be sputtered is mounted immediately in front of the cathode and the substrates to be coated are placed opposite the coating material to be sputtered. Furthermore, argon can be passed through the container as a process gas, which finally also has an anode which is connected to the positive pole of a power supply. After the container has been pre-evacuated, the cathode and anode are connected to the power supply. The mean free path length of the charge carriers is significantly reduced by the targeted and controlled admission of argon. Argon atoms are ionized in the electric field between cathode and anode. The positively charged particles are accelerated towards the negatively charged cathode with high energy. Upon impact and particle collisions in the coating material, this is converted into the vapor phase, accelerated into free space with high energy and then condenses on the substrates to be coated. Different metal layer thicknesses can be specifically adjusted with the sputtering process.

Die mit den genannten Verfahren und Anlagen erhältlichen Metallschichten verfügen vorzugsweise über eine durchschnittliche, insbesondere absolute, Dicke im Bereich von 1 nm bis 150 nm insbesondere im Bereich von 5 nm bis 120 nm. In einer sehr zweckmäßigen Ausgestaltung des erfindungsgemäßen beschichteten Substrats wird die Metallschicht zum Beispiel mit einer Dicke im Bereich von 60 nm bis 120 nm, vorzugsweise mit einer Dicke im Bereich von 75 nm bis 110 nm eingestellt. Bei diesen Dicken liegen die Metallschicht, insbesondere der Aluminiumschicht, deckend, d.h. im Wesentlichen nicht transparent oder transluzent auf der Oberfläche auf. Hierdurch können hochglänzende Schichten erhalten werden.The metal layers obtainable with the methods and systems mentioned preferably have an average, in particular absolute, thickness in the range from 1 nm to 150 nm, in particular in the range from 5 nm to 120 nm Example with a thickness in the range of 60 nm to 120 nm, preferably set with a thickness in the range of 75 nm to 110 nm. With these thicknesses, the metal layer, in particular the aluminum layer, is covering, i.e. essentially not transparent or translucent on the surface. In this way, high-gloss layers can be obtained.

Eine Einfärbung der auf den nicht-metallischen und metallischen Substraten vorliegenden Beschichtung kann mit den hierin beschriebenen Verfahren auch dadurch bewerkstelligt werden, dass für das Auftragen der Deckschicht ein Beschichtungsmaterial enthaltend mindestens ein Farbmittel, z.B. mindestens ein Pigment und/oder mindestens einen Farbstoff, eingesetzt wird. Auch lassen sich dem Fachmann bekannte Lasuren verwenden, um die Deckschicht einzufärben, beispielsweise um Messing-, Titan- und Goldtöne oder individuelle Farbtöne wie rot, blau, gelb, grün, etc. oder Eloxalfarbtöne zu erhalten. Zum Beispiel können in die Deckschicht auch Effektpigmente wie Perlglanzpigmente, LCP-Pigmente (liquid crystal polymer) oder OV-Pigmente (optical variable) eingearbeitet werden.Coloring of the coating present on the non-metallic and metallic substrates can also be accomplished using the methods described herein by using a coating material containing at least one colorant, for example at least one pigment and/or at least one dye, for the application of the top layer. is used. Glazes known to those skilled in the art can also be used to color the top layer, for example to obtain brass, titanium and gold tones or individual color tones such as red, blue, yellow, green, etc. or anodized color tones. For example, effect pigments such as pearlescent pigments, LCP pigments (liquid crystal polymer) or OV pigments (optically variable) can also be incorporated into the top layer.

Für die Herstellung der erfindungsgemäßen beschichteten nicht-metallischen und metallischen Substrate kann eine Applikationsanlage für die Aufbringung einer Metallschicht eingesetzt werden, umfassend oder darstellend eine Vakuumaufdampfanlage mit einer Vakuumkammer, und mindestens eine, insbesondere eine Vielzahl an ersten beheizbaren Aufnahmeeinheiten, insbesondere Schalen, Schiffchen oder Wendeln, jeweils in Wirkverbindung mit einer ersten Heizeinrichtung oder eine erste Heizeinrichtung umfassend oder darstellend, jeweils ausgelegt und geeignet für die Aufnahme eines ersten Metalls oder einer ersten Metalllegierung mit einem ersten Schmelzpunkt oder Schmelzbereich, und mindestens eine, insbesondere eine Vielzahl an zweiten beheizbaren Aufnahmeeinheiten, insbesondere Schalen, Schiffchen oder Wendeln, jeweils in Wirkverbindung mit einer zweiten Heizeinrichtung oder eine zweite Heizeinrichtung umfassend oder darstellend, jeweils ausgelegt und geeignet für die Aufnahme eines zweiten Metalls oder zweiten Metalllegierung mit einem zweiten Schmelzpunkt oder Schmelzbereich, wobei der erste Schmelzpunkt oder der erste Schmelzbereich von dem zweiten Schmelzpunkt bzw. zweiten Schmelzbereich verschieden sind, und ferner eine Steuereinrichtung für die Einstellung von erster und zweiter Temperatur in der Weise, dass das erste und das zweite Metall oder die erste und zweite Metalllegierung im Wesentlichen zeitgleich oder zeitlich überlappend verdampfen (co-verdampfen).For the production of the coated non-metallic and metallic substrates according to the invention, an application system for the application of a metal layer can be used, comprising or representing a vacuum vapor deposition system with a vacuum chamber, and at least one, in particular a large number of first heatable receiving units, in particular shells, boats or coils , each in operative connection with a first heating device or comprising or representing a first heating device, each designed and suitable for receiving a first metal or a first metal alloy with a first melting point or melting range, and at least one, in particular a large number of second heatable receiving units, in particular Shells, boats or coils, each in operative connection with a second heating device or comprising or representing a second heating device, each designed and suitable for receiving a second meta lls or second metal alloy with a second melting point or melting range, the first melting point or the first melting range being different from the second melting point or second melting range, and also a control device for setting the first and second temperatures in such a way that the first and evaporate (co-evaporate) the second metal or the first and second metal alloy essentially at the same time or with a temporal overlap.

Dabei kann in einer Ausführungsvariante vorgesehen sein, dass die Applikationsanlage für die Aufbringung einer Metallschicht mindestens ein erstes, insbesondere außerhalb der Vakuumkammer der Vakuumaufdampfanlage vorliegendes Behältnis zur Aufnahme einer ersten siliziumorganischen Verbindung mit einer Zuführleitung zur Vakuumkammer und mindestens ein zweites, insbesondere außerhalb der Vakuumkammer der Vakuumaufdampfanlage vorliegendes Behältnis zur Aufnahme einer zweiten siliziumorganischen Verbindung mit einer zu für Leitung zur Vakuumkammer umfasst.In one embodiment variant, it can be provided that the application system for the application of a metal layer has at least a first container, in particular outside the vacuum chamber of the vacuum vapor deposition system, for receiving a first organosilicon compound with a feed line to the vacuum chamber and at least a second container, in particular outside the vacuum chamber of the vacuum vapor deposition system present container for receiving a second organosilicon compound with a line to the vacuum chamber.

Als besonders zweckdienlich hat es sich erwiesen, die offenbarte Applikationsanlage für die Aufbringung einer Metallschicht ebenfalls auszustatten mit mindestens einem, insbesondere in der Vakuumkammer vorliegenden, Gestell mit einer Längsorientierung und mit mindestens einem Träger, insbesondere in Form einer Welle, der im Wesentlichen entlang der Längsorientierung des Gestells ausgerichtet ist, ausgelegt und eingerichtet zur Aufnahme mindestens eines, insbesondere einer Vielzahl an nicht-metallischen und/oder metallischen Substraten, wobei das Gestell und/oder der mindestens eine Träger um eine, insbesondere im Wesentlichen horizontal ausgerichtete, Achse rotiert wahr sind. Geeignete Gestelle, die mit der erfindungsgemäßen Applikationsanlage verwendet werden können, sind zum Beispiel der EP 2 412 445 und der DE 20 2007 016 072 zu entnehmen.It has proven to be particularly expedient to also equip the disclosed application system for the application of a metal layer with at least one frame, in particular in the vacuum chamber, with a longitudinal orientation and with at least one carrier, in particular in the form of a shaft, which is essentially along the longitudinal orientation of the frame, designed and set up to receive at least one, in particular a multiplicity of non-metallic and/or metallic substrates, wherein the frame and/or the at least one carrier rotates about an axis, in particular a substantially horizontally aligned axis. Suitable frames that can be used with the application system according to the invention are, for example EP 2 412 445 and the DE 20 2007 016 072 refer to.

Die nach dem erfindungsgemäßen Verfahren erhältlichen nicht-metallischen und metallischen Substrate können zum Beispiel eingesetzt werden als Zubehörteil für den Automobilbau, Motorradbau, Fahrradbau oder Schiffbau, für Felgen, insbesondere Leichtmetallfelgen, Räder, insbesondere Leichtmetallräder oder als Bestandteil hiervon, für Sanitäreinrichtungsgegenstände, insbesondere als Annatur, oder als Bestandteil hiervon, für Karosserieinnen- oder Außenbauteile oder als Bestandteil hiervon, für Griffe oder Griffkomponenten, insbesondere Türgriffe oder als Bestandteil hiervon, für Profile oder Rahmen, insbesondere Fensterrahmen oder als Bestandteil hiervon, für Beschlagsysteme oder als Bestandteil hiervon, insbesondere Schilder und Türschilder, für Gehäuse oder als Verpackung oder als Bestandteil hiervon, für Innen- oder Außenbauteile von Schiffen oder als Bestandteil hiervon, für Schmuckgegenstände oder als Bestandteil hiervon, für Edelbauteile oder als Bestandteil hiervon, für Innen- oder Außenmöbel oder für Bestandteile hiervon, für Haushaltsgeräte, insbesondere Kaffeemaschinen, oder Bestandteile hiervon, für Innen- oder Außenbauteile von Flugzeugen oder als Bestandteil hiervon, für Innen- oder Außenbauteile von Gebäuden oder als Bestandteil hiervon, für Heizkörper oder Rohre oder als Bestandteil hiervon, für Bauteile von Aufzügen oder als Bestandteil hiervon, für Bauteile von Elektronikkomponenten oder -Geräten oder als Bestandteil hiervon, für Bauteile von Küchengeräten, beispielsweise Kaffeemaschinen, oder als Bauteil von Kommunikationskomponenten oder -Geräten, insbesondere Handys, oder als Bestandteil hiervon.The non-metallic and metallic substrates obtainable by the process according to the invention can be used, for example, as accessories for automobile construction, motorcycle construction, bicycle construction or shipbuilding, for rims, in particular light metal rims, wheels, in particular light metal wheels, or as a component thereof, for sanitary fittings, in particular as Annatur , or as a component thereof, for interior or exterior body parts or as a component thereof, for handles or handle components, in particular door handles or as a component thereof, for profiles or frames, in particular window frames or as a component thereof, for fitting systems or as a component thereof, in particular signs and doorplates, for casings or as packaging or as a component thereof, for interior or exterior components of ships or as a component thereof, for ornaments or as a component thereof, for precious components or as a component thereof, for interior or outdoor furniture or components thereof, for household appliances, in particular coffee machines, or components thereof, for internal or external components of aircraft or as a component thereof, for internal or external components of buildings or as a component thereof, for radiators or pipes or as a component thereof, for elevator components or as a component thereof, for Components of electronic components or devices or as a part thereof, for components of kitchen appliances, for example coffee machines, or as a component of communication components or devices, in particular mobile phones, or as a part thereof.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass mit den nach den hierin beschriebenen Verfahren erhältlichen Substraten eine hochwertige Glanzbeschichtung zur Verfügung gestellt wird, die dauerhaft ihren Glanz behält. Außerdem wurde überraschend gefunden, dass die nach dem hierin beschriebenen Verfahren erhältlichen beschichteten nicht-metallischen und metallischen Substrate mit einer hervorragenden Korrosionsbeständigkeit ausgestattet sind. Die nach den hierin beschriebenen Verfahren erhältlichen beschichteten Substrate zeichnen sich zudem durch eine ausgeprägte Haftung aus. Demgemäß zeigen diese beschichteten Substrate selbst dann überragende Korrosionsbeständigkeiten, wenn die Oberflächen mechanische Beschädigungen erfahren haben, beispielsweise mittels Steinschlag oder durch Anritzen. Ein weiterer Vorteil, der mit den hierin beschriebenen Verfahren sowie mit der hierin beschriebenen Applikationsanlage einhergeht, ist, dass nur noch sehr geringe Umrüstzeiten erforderlich sind, um neue Substratschargen zu beschichten. Darüber hinaus ermöglicht das hierin beschriebene Verfahren, den Umfang der Gesamtanlage zur Herstellung beschichteter Substrate ausgehend von dem noch nicht gereinigten, zu beschichtenden Substrat erheblich zu verringern, so dass ein signifikant reduzierter Platzbedarf gegenüber herkömmlichen Anlagen besteht. Darüber hinaus gelingt es mit den hierin beschriebenen Verfahren, die Bearbeitungszeit bis zur Fertigstellung des beschichteten verkaufsfertigen Substrats erheblich zu verringern. Hiermit gehen zwangsläufig verringerte Zykluszeiten einher.The invention is based on the surprising finding that the substrates obtainable by the processes described herein provide a high-quality gloss coating which permanently retains its gloss. In addition, it was surprisingly found that the coated non-metallic and metallic substrates obtainable by the process described herein are endowed with outstanding corrosion resistance. The coated substrates obtainable by the processes described herein are also distinguished by pronounced adhesion. Accordingly, these coated substrates show outstanding resistance to corrosion even when the surfaces have suffered mechanical damage, for example from stone chipping or scratching. A further advantage associated with the methods described here and with the application system described here is that only very short changeover times are required to coat new substrate batches. In addition, the method described here makes it possible to significantly reduce the scope of the overall system for producing coated substrates, starting from the substrate to be coated that has not yet been cleaned, so that there is a significantly reduced space requirement compared to conventional systems. In addition, it is possible with the methods described here to reduce the processing time up to the completion of the coated, ready-to-sell substrate considerably. This is inevitably accompanied by reduced cycle times.

Die in der vorstehenden Beschreibung und in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln aus auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausfiihrungsformen wesentlich sein.The features of the invention disclosed in the above description and in the claims can be essential both individually and in any combination for the realization of the invention in its various embodiments.

Claims (15)

  1. Coated non-metal substrate obtained or obtainable according to a method comprising the steps
    a) providing a non-metal substrate with at least one surface which can be coated at least in certain areas,
    b) providing an application system for applying a metal layer,
    c) providing at least one plasma generator and/or at least one corona system,
    d) optionally, plasma treatment using the plasma generator and/or corona treatment of the non-metal substrate or the coatable surface of the non-metal substrate,
    e) optionally, treating the non-metal substrate obtained according to step a) or d) or the coatable surface of the non-metal substrate with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    f) optionally, plasma treatment using the plasma generator and/or corona treatment of the polysiloxane layer according to step e),
    g) optionally, applying at least one priming coat to the non-metal substrate or the coatable surface of the non-metal substrate according to step a) or d) or to the polysiloxane layer according to step e) or f),
    h) optionally, plasma treatment using the plasma generator and/or corona treatment of the priming coat according to step g),
    i) treating the non-metal substrate or the coatable surface of the non-metal substrate according to step a) or d) or the priming coat obtained according to step g) or h) with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    j) optionally, plasma treatment using the plasma generator and/or corona treatment of the polysiloxane layer according to step i),
    k) applying at least one metal layer containing or consisting of a first metal selected from the group consisting of aluminium, silver, gold, lead, vanadium, manganese, magnesium, iron, cobalt, nickel, copper, chrome, palladium, molybdenum, tungsten, platinum, titanium, zirconium and zinc or containing or consisting of a first metal alloy selected from the group consisting of brass, bronze, steel, or aluminium, magnesium and titanium alloys, using the application system, in particular by means of vapour deposition and/or sputter technology, to the non-metal substrate or to the coatable surface of the non-metal substrate according to step a) or d) or to the polysiloxane layer according to step e) or f) or to the priming coat according to step g) or h) or to the polysiloxane layer according to step i) or j),
    l) optionally, plasma treatment using the plasma generator and/or corona treatment of the metal layer according to step k),
    m) treating the metal layer obtained according to step k) or 1) with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    n) plasma treatment using the plasma generator and/or corona treatment of the polysiloxane layer according to step m), and
    o) applying a cover layer to the treated polysiloxane layer according to step n).
  2. Non-metal substrate according to Claim 1, characterized in that
    steps g), h), k), m), n) and o) each follow one another, in particular omitting steps d), e) and/or f) or using step d) and omitting step e) and f), or
    that steps g), h), i), k), m), n) and o) each follow one another, in particular omitting steps d), e) and/or f) or using step d) and omitting step e) and f), or
    that steps d), e), f), k), m), n) and o) each follow one another or
    that steps d), e), f), i), k), m), n) and o) each follow one another or
    that steps d), e), f), g), k), m), n) and o) each follow one another or
    that steps d), e), f), g), i), k), m), n) and o) each follow one another.
  3. Coated metal substrate obtained or obtainable according to a method comprising the steps
    A) providing a metal substrate with at least one surface which can be coated at least in certain areas,
    B) providing an application system for applying a metal layer,
    C) providing at least one plasma generator and/or at least one corona system,
    D) optionally, cleaning the metal substrate or the coatable surface of the metal substrate,
    E) optionally, applying at least one metal layer containing or consisting of a second metal selected from the group consisting of titanium, hafnium and zirconium, or a second metal alloy selected from the group consisting of titanium, hafnium and zirconium alloys, using the application system, to the metal substrate or the coatable surface of the metal substrate according to step A) or D),
    F) optionally, plasma treatment using the plasma generator and/or corona treatment of the metal substrate or the coatable surface of the metal substrate according to step A) or D) or of the metal layer according to step E),
    G) optionally, treating the metal substrate obtained according to step A) or D) or treating the coatable surface of the metal substrate obtained according to step A) or D) or the metal layer obtained according to step E) or F) with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    H) optionally, plasma treatment using the plasma generator and/or corona treatment of the polysiloxane layer according to step G),
    I) optionally, applying a conversion layer to the metal substrate or the coatable surface of the metal substrate according to step A) or D) or to the metal layer according to step E) or F) or to the polysiloxane layer according to step G) or H),
    J) optionally, plasma treatment using the plasma generator and/or corona treatment of the conversion layer according to step 1),
    K) optionally, treating the conversion layer obtained according to step I) or J) with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    L) optionally, plasma treatment using the plasma generator and/or corona treatment of the treated polysiloxane layer obtained according to step K),
    M) optionally, applying at least one priming coat to the metal substrate or the coatable surface of the metal substrate according to step A) or D) or to the metal layer according to step E) or F) or to the polysiloxane layer according to step G) or H) or to the conversion layer according to step I) or J) or to the polysiloxane layer according to step K) or L),
    N) optionally, plasma treatment using the plasma generator and/or corona treatment of the priming coat according to step M),
    O) treating the metal substrate or the coatable surface of the metal substrate according to step A) or D) or the metal layer obtained according to step E) or F) or the conversion layer according to step I) or J) or the priming coat obtained according to step M) or N) with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    P) optionally, plasma treatment using the plasma generator and/or corona treatment of the treated polysiloxane layer obtained according to step O),
    Q) applying at least one metal layer containing or consisting of a first metal selected from the group consisting of aluminium, silver, gold, lead, vanadium, manganese, magnesium, iron, cobalt, molybdenum, tungsten, nickel, copper, chrome, palladium, platinum, titanium, zirconium and zinc or containing or consisting of a first metal alloy selected from the group consisting of brass, bronze, steel or aluminium, magnesium and titanium alloys, using the application system, to the metal substrate or the coatable surface of the metal substrate according to step A) or D) or to the metal layer according to step E) or F) or to the polysiloxane layer according to step G) or H) or to the conversion layer according to step I) or J) or to the polysiloxane layer according to step K) or L) or to the priming coat according to step M) or N) or to the polysiloxane layer according to step O) or P),
    R) optionally, plasma treatment using the plasma generator and/or corona treatment of the metal layer according to step Q),
    S) treating the metal layer obtained according to step Q) or R) with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed,
    T) plasma treatment using the plasma generator and/or corona treatment of the polysiloxane layer according to step S), and
    U) applying an cover layer to the treated polysiloxane layer according to step T).
  4. Metal substrate according to Claim 3, characterized in that
    steps D), M), N), Q), S), T) and U) each follow one another or
    that steps D), M), N), O), Q), S), T) and U) each follow one another or
    that steps D), E), F,), M), Q), S), T) and U) each follow one another or
    that steps D), E), F,), M), O), Q), S), T) and U) each follow one another or
    that steps D), G), H), M), Q), S), T) and U) each follow one another or
    that steps D), G), H), M), O), Q), S), T) and U) each follow one another or
    that steps D), E), G), H), M), Q), S), T) and U) each follow one another or
    that steps D), E), G), H), M), O), Q), S), T) and U) each follow one another or
    that steps D), M), Q), S), T) and U) each follow one another or
    that steps D), M), O), Q), S), T) and U) each follow one another or
    that steps D), G), H), Q), S), T) and U) each follow one another or
    that steps D), G), H), O), Q), S), T) and U) each follow one another.
  5. Non-metal substrate according to Claim 1 or 2 or metal substrate according to Claim 3 or 4, characterized in that the non-metal substrate comprises glass, ceramic, composite fibre materials, carbon materials, plastic or wood or consists thereof, or that the metal substrate comprises metals or metal alloys or consists thereof.
  6. Metal substrate according to Claim 3 or 4 or according to Claim 5, if and when reference is made back directly or indirectly to Claim 3 or 4,
    characterized in that
    the metal substrate is selected from the group consisting of aluminium, aluminium alloys, iron, iron alloys, in particular steel or stainless steel, copper, copper alloys, titanium, titanium alloys, zinc, zinc alloys, nickel, nickel alloys, molybdenum, molybdenum alloys, magnesium, magnesium alloys, lead, lead alloys, tungsten, tungsten alloys, manganese, manganese alloys, brass, bronze, die-cast nickel, die-cast zinc and die-cast aluminium or any mixtures thereof.
  7. Non-metal substrate according to Claim 1 or 2 or according to Claim 5, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to Claim 5 or 6, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that the organosilicon compound comprises at least one amino-containing silane, in particular aminopropyltriethoxysilane, hexamethyldisiloxane, tetramethyldisiloxane or any mixtures thereof.
  8. Non-metal substrate according to Claim 1 or 2 or according to Claim 5 or 7, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 7, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that the cover layer comprises polyacrylate resins, polyester resins, aminoplast resins or polyurethane compounds or consists thereof, and/or that the cover layer is formed from a UV-curable coating material or from a 1K or 2K stove enamel, in particular constitutes a UV-curable cover layer or a 1K or 2K stove enamel cover layer.
  9. Non-metal substrate according to Claim 1 or 2 or according to any one of Claims 5, 7 or 8, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 8, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that
    the metal layer is applied by means of physical vapour deposition (PVD), chemical vapour deposition (CVD), vapour deposition using an electron beam vaporizer, vapour deposition using a resistance vaporizer, induction vaporization, ARC vaporization or cathode or anode spraying (sputter coating).
  10. Non-metal substrate according to Claim 1 or 2 or according to any one of Claims 5 or 7 to 9, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 9, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that
    during the step of applying the metal layer a first metal, in particular aluminium, or a first metal alloy, in particular aluminium alloy, is coevaporated in the application system, in particular the vacuum vapour deposition system or sputter system, for applying a metal layer with a second metal, in particular selected from the group consisting of titanium, zirconium and hafnium, in particular zirconium or with a second metal alloy, in particular selected from the group consisting of titanium, zirconium and hafnium alloys, such that these overlap in time.
  11. Non-metal substrate according to Claim 1 or 2 or according to any one of Claims 5 or 7 to 10, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 10, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that
    at least one colorant, in particular pigment, is introduced into the application system, in particular in form of a mixture, for applying a metal layer together with the at least one organosilicon compound, in particular for the plasma polymerization, and/or that a coating material containing at least one colorant, in particular one pigment, is used for applying the cover layer.
  12. Non-metal substrate according to Claim 1 or 2 or according to any one of Claims 5 or 7 to 11, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 11, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that
    the step involving treatment with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed is performed in the presence of at least one reactive gas such as oxygen, nitrogen, carbon dioxide, hydrogen, carbon monoxide, hydrogen peroxide gas, water vapour, ozone and/or air, in particular in the presence of oxygen or air.
  13. Non-metal substrate or metal substrate according to Claim 12, characterized in that the at least one organosilicon compound, in particular hexamethyldisiloxane, and the at least one reactive gas, in particular oxygen or air, are used as a mixture for the treatment step.
  14. Non-metal substrate according to Claim 1 or 2 or according to any one of Claims 5 or 7 to 13, if and when reference is made back directly or indirectly to Claim 1 or 2, or metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 13, if and when reference is made back directly or indirectly to Claim 3 or 4, characterized in that
    the step involving treatment with at least one organosilicon compound by means of plasma polymerization such that a polysiloxane layer is formed in the presence of at least one reactive gas is used at least for one step for manufacturing a polysiloxane layer or for each step for manufacturing a polysiloxane layer, in particular for step m) or for step S).
  15. Use of the non-metal substrate according to Claim 1 or 2 or according to any one of Claims 5 or 7 to 14, if and when reference is made back directly or indirectly to Claim 1 or 2, or of the metal substrate according to Claim 3 or 4 or according to any one of Claims 5 to 14, if and when reference is made back directly or indirectly to Claim 3 or 4, as as accessories for automobile manufacture, motorcycle manufacture, bicycle manufacture or shipbuilding, for rims, in particular light metal alloy rims, wheels, in particular light metal alloy wheels, or as a constituent part thereof, for sanitary installation objects, in particular as a tap or mixer, or as a constituent part thereof, for automobile body internal or external components or as a constituent part thereof, for handles or handle components, in particular door handles, or as a constituent part thereof, for profiles or frames, in particular window frames, or as a constituent part thereof, for fittings systems or as a constituent part thereof, in particular signs and door signs, for housings or as packing, or as a constituent part thereof, for internal or external components of ships, or as a constituent part thereof, for domestic appliances, in particular coffee-making machines, or as a constituent part thereof, for j ewelry items, or as a constituent part thereof, for high-quality structural components or as a constituent part thereof, for indoor or outdoor furniture items, or for constituent parts thereof, for internal or external components of aircraft or as a constituent part thereof, for internal or external components of buildings or as a constituent part thereof, for heating elements or pipes, or as a constituent part thereof, for elevator components or as a constituent part thereof, for parts of electronic components or devices, or as a constituent part thereof, for components of kitchen appliances, for example coffee-making machines, or as a part of communications components or devices, in particular mobile telephones, or as a constituent part thereof.
EP16160981.3A 2015-07-13 2015-07-13 Coated substrates, and their use and systems for the production of coated substrates Active EP3120939B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16160981.3A EP3120939B1 (en) 2015-07-13 2015-07-13 Coated substrates, and their use and systems for the production of coated substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16160981.3A EP3120939B1 (en) 2015-07-13 2015-07-13 Coated substrates, and their use and systems for the production of coated substrates
EP15176519.5A EP3117907B1 (en) 2015-07-13 2015-07-13 Method for the production of coated substrates

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP15176519.5A Division-Into EP3117907B1 (en) 2015-07-13 2015-07-13 Method for the production of coated substrates
EP15176519.5A Division EP3117907B1 (en) 2015-07-13 2015-07-13 Method for the production of coated substrates

Publications (2)

Publication Number Publication Date
EP3120939A1 EP3120939A1 (en) 2017-01-25
EP3120939B1 true EP3120939B1 (en) 2023-01-25

Family

ID=53879297

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16160981.3A Active EP3120939B1 (en) 2015-07-13 2015-07-13 Coated substrates, and their use and systems for the production of coated substrates
EP15176519.5A Active EP3117907B1 (en) 2015-07-13 2015-07-13 Method for the production of coated substrates

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15176519.5A Active EP3117907B1 (en) 2015-07-13 2015-07-13 Method for the production of coated substrates

Country Status (6)

Country Link
US (1) US20180291499A1 (en)
EP (2) EP3120939B1 (en)
CN (1) CN108367310A (en)
ES (1) ES2663507T3 (en)
PT (1) PT3117907T (en)
WO (1) WO2017009362A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108657915A (en) * 2017-03-28 2018-10-16 杭州沪宁电梯部件股份有限公司 A kind of traction wheel construction
CN110628280B (en) * 2019-09-16 2021-09-21 西安石油大学 Preparation method of graphene ceramic circuit substrate
WO2021211106A1 (en) * 2020-04-15 2021-10-21 Hewlett-Packard Development Company, L.P. Coated substrates for electronic devices
EP3915955A1 (en) * 2020-05-28 2021-12-01 D. Swarovski KG Method of providing a colour coating on a decorative element
CN114507841A (en) * 2021-12-29 2022-05-17 马鞍山市鑫龙特钢有限公司 Multicomponent alloy co-cementation process for carbon steel parts
EP4261246A1 (en) 2022-04-12 2023-10-18 WEIDPLAS GmbH Improvement of the corrosion resistance of copper-based metallization layers and production of components with such layers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859695A1 (en) * 1998-12-23 2000-06-29 Leybold Systems Gmbh Coating plastic substrates with light reflective layer, e.g. in headlight reflector manufacture by precoating with low carbon content thin crosslinked hydrocarbon, silicon oxide, silicon nitride or silicon oxynitride barrier layer
WO2011074551A1 (en) * 2009-12-18 2011-06-23 平田機工株式会社 Vacuum deposition method and vacuum deposition apparatus

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE123765C (en) 1900-09-25 1901-09-20 REEL FOR IMPREGNATING, DYING, WASHING AND WASHING YARNS WITH CHANGING PLACES FOR THE YARN
BE538540A (en) 1954-08-05
NL248160A (en) 1959-02-09
ATE65265T1 (en) * 1987-08-26 1991-08-15 Balzers Hochvakuum PROCESS FOR DEPOSITIONING COATINGS ON SUBSTRATES AND VACUUM COATING EQUIPMENT FOR CARRYING OUT THE PROCESS.
DE3822482A1 (en) * 1988-07-02 1990-01-04 Audi Ag USE OF A PLASMA TREATMENT
DE3833119A1 (en) 1988-09-29 1990-04-12 Sep Tech Studien METHOD FOR CHROMING AND LACQUERING METAL SURFACES WITH WATER-DETUMABLE VARNISHES
DE19544906A1 (en) 1995-10-30 1997-05-07 Birgit Papcke Method for treating, especially cleaning, surfaces with solid carbon dioxide granules
US6268060B1 (en) * 1997-08-01 2001-07-31 Mascotech Coatings, Inc. Chrome coating having a silicone top layer thereon
EP1174526A1 (en) * 2000-07-17 2002-01-23 Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO Continuous vapour deposition
US20020142104A1 (en) * 2001-03-28 2002-10-03 Applied Materials, Inc. Plasma treatment of organosilicate layers
GB0423685D0 (en) * 2004-10-26 2004-11-24 Dow Corning Ireland Ltd Improved method for coating a substrate
EP1807548A2 (en) * 2004-10-29 2007-07-18 Dow Gloval Technologies Inc. Abrasion resistant coatings by plasma enhanced chemical vapor deposition
ES2309855T5 (en) * 2006-04-19 2013-03-11 Ropal Ag Procedure for the manufacture of a substrate protected against corrosion, of intense brightness
DE202007016072U1 (en) 2007-11-17 2008-01-17 Rippert Besitzgesellschaft Mbh & Co. Kg Frame for holding workpieces to be painted
DE202010017507U1 (en) * 2010-04-01 2012-01-18 Alanod Aluminium-Veredlung Gmbh & Co. Kg Reflector with high resistance to weathering and corrosion
EP2412445A1 (en) 2010-07-29 2012-02-01 Matthias Koch Frame for holding workpieces to be coated
CN103391842B (en) * 2011-03-02 2015-09-09 富士胶片株式会社 The manufacture method of functional membrane
CN102650046B (en) * 2012-05-23 2013-08-21 徐明生 Device for largely and continuously preparing two-dimensional nanometer films in large
US9730097B2 (en) * 2012-07-25 2017-08-08 Mediatek Inc. Method of efficient blind SCell activation
PL2752504T3 (en) * 2013-01-08 2017-01-31 Ropal Europe Ag Method for producing a corrosion resistant, glossy, metallic coated substrate, the metallic coated substrate, and its use
US20140295141A1 (en) * 2013-03-27 2014-10-02 E I Du Pont De Nemours And Company Making the Surface of an Article Visibly Line Free
EP2886250A1 (en) 2013-12-20 2015-06-24 Linde Aktiengesellschaft Device and method for generating dry ice snow, for the cleaning of surfaces
CN106164334B (en) * 2014-04-15 2019-11-29 住友金属矿山株式会社 The forming method of coating film and the manufacturing method of LED device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859695A1 (en) * 1998-12-23 2000-06-29 Leybold Systems Gmbh Coating plastic substrates with light reflective layer, e.g. in headlight reflector manufacture by precoating with low carbon content thin crosslinked hydrocarbon, silicon oxide, silicon nitride or silicon oxynitride barrier layer
WO2011074551A1 (en) * 2009-12-18 2011-06-23 平田機工株式会社 Vacuum deposition method and vacuum deposition apparatus

Also Published As

Publication number Publication date
WO2017009362A2 (en) 2017-01-19
PT3117907T (en) 2018-01-31
WO2017009362A3 (en) 2018-04-26
EP3117907B1 (en) 2017-10-25
US20180291499A1 (en) 2018-10-11
EP3117907A1 (en) 2017-01-18
ES2663507T3 (en) 2018-04-13
CN108367310A (en) 2018-08-03
EP3120939A1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
EP3120939B1 (en) Coated substrates, and their use and systems for the production of coated substrates
EP3228727A2 (en) Method for the production of coated substrates, coated substrates, and their use
EP1870489B2 (en) Method to obtain a corrosion-resistant and shiny substrate
EP2752504B1 (en) Method for producing a corrosion resistant, glossy, metallic coated substrate, the metallic coated substrate, and its use
EP0822010B1 (en) Process for making glossy coatings on parts for example of vehicles especially of wheels and pieces coated with that process
DE3913014C2 (en)
EP3498879B1 (en) Coated substrates and method for the production of coated substrates and their use
DE10337456A1 (en) Material or component for vehicles, telecommunications, household appliances, bathroom fittings, kitchen fittings, medical appliances, and jewelry has a metal coating applied by direct metallization on the surface
CN106319446A (en) Preparation method for decorative film bottoming vacuum coating
EP2424683A1 (en) Metal substrates having a scratch-proof and extensible corrosion protection layer and method for the production thereof
EP2912204B1 (en) Plastic component coated with an embedded pvd layer
US20070020396A1 (en) Process for applying coatings with metallic or ceramic finish
DE202014009707U1 (en) Coated substrates
DE102004049111A1 (en) Forming high-gloss coatings on substrates, especially car wheels, by plasma pretreatment, plasma polymerization and sputtering with metal (compound) under vacuum, then applying covering layer of lacquer
EP3498883A1 (en) Coated substrates and method for the production of coated substrates and their use
EP1454999A1 (en) Material or article having a metal coating
EP2985363A1 (en) Coated substrates
WO2007054256A1 (en) Coated sanitaryware item
DE102007046925A1 (en) Method for producing a metallic and/or non-metallic substrate, which is protected against corrosion in regions and/or is shiny, comprises provisioning a substrate or a carrier layer having a surface, which is coated in regions
WO2004069948A2 (en) Method for adhesively coating a substrate with a metal layer
DE20321522U1 (en) Material or component for vehicles, telecommunications, household appliances, bathroom fittings, kitchen fittings, medical appliances, and jewelry has a metal coating applied by direct metallization on the surface
WO2009039842A2 (en) Plastic substrate comprising metal pigments and method for the production thereof and corrosion-protected metal pigments and method for the production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3117907

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEC HIGH END COATING GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1234002

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015016254

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05D0001000000

Ipc: C23C0014200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C09D 183/08 20060101ALI20220131BHEP

Ipc: C09D 183/04 20060101ALI20220131BHEP

Ipc: B05D 7/02 20060101ALI20220131BHEP

Ipc: B05D 1/00 20060101ALI20220131BHEP

Ipc: C09D 1/00 20060101ALI20220131BHEP

Ipc: B05D 3/14 20060101ALI20220131BHEP

Ipc: B05D 3/00 20060101ALI20220131BHEP

Ipc: C23C 28/00 20060101ALI20220131BHEP

Ipc: C23C 16/50 20060101ALI20220131BHEP

Ipc: C23C 14/02 20060101ALI20220131BHEP

Ipc: C23C 14/58 20060101ALI20220131BHEP

Ipc: C23C 14/16 20060101ALI20220131BHEP

Ipc: C23C 14/20 20060101AFI20220131BHEP

INTG Intention to grant announced

Effective date: 20220217

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20220831

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3117907

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1545960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016254

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230125

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230525

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015016254

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230608

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230728

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230713