EP3120201B1 - Verfahren und vorrichtung zur druckregelung in einem versorgungsnetz - Google Patents

Verfahren und vorrichtung zur druckregelung in einem versorgungsnetz Download PDF

Info

Publication number
EP3120201B1
EP3120201B1 EP15700671.9A EP15700671A EP3120201B1 EP 3120201 B1 EP3120201 B1 EP 3120201B1 EP 15700671 A EP15700671 A EP 15700671A EP 3120201 B1 EP3120201 B1 EP 3120201B1
Authority
EP
European Patent Office
Prior art keywords
pressure
supply network
flow
data
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15700671.9A
Other languages
English (en)
French (fr)
Other versions
EP3120201A1 (de
Inventor
Moritz Allmaras
Jan Christoph Wehrstedt
Utz Wever
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3120201A1 publication Critical patent/EP3120201A1/de
Application granted granted Critical
Publication of EP3120201B1 publication Critical patent/EP3120201B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/02Public or like main pipe systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Definitions

  • the present invention relates to a method for regulating pressure in a supply network for supplying consumers with a medium. Furthermore, the present invention relates to a device for pressure control in a supply network and a supply network.
  • a high pressure ensures that a large amount of water can be removed from the supply network in a short time.
  • a sufficiently high water pressure allows complete buildings up to the top floor to be reliably supplied with drinking water without additional pumping equipment.
  • the document EP 0 574 241 A1 is concerned with a device for controlling a pressure of a supply liquid in connection with a valve for pressure control of a supply liquid system.
  • an object of the present invention is to provide an improved method of pressure regulation in a utility grid. Furthermore, an improved device for pressure regulation in a supply network and an improved supply network are to be provided.
  • a method for regulating the pressure in the supply network for supplying consumers with a medium is provided.
  • the supply network has at least one pump for pumping the medium and / or at least one valve for controlling a medium flow.
  • the method comprises the following steps: a) determining at least one consumption profile for a respective consumer, b) determining pressure and / or flow profiles in the supply network descriptive data based on the consumption profiles, c) reducing the data to reduced data, d) Detecting at least a first pressure and / or flow value at at least a first location in the utility grid; e) reconstructing at least a second pressure and / or flow value at at least a second location in the utility network from the reduced data using the at least one first pressure and / or flow value, and f) driving the at least one pump and / or the at least one valve based on the at least one first pressure and / or flow value and the at least one second pressure and / or flow value.
  • a simulation model of the supply network is thus created.
  • the simulation model simulates pressure and / or flow profiles as a function of consumption profiles.
  • the data describing the pressure and / or flow profiles are then reduced. All this can be done “offline", ie outside the actual operation, especially before commissioning of the supply network.
  • a first pressure and / or flow value is now measured at least at a first point in the supply network by means of at least one first sensor.
  • it is reconstructed from the reduced data and using the at least one first pressure and / or flow value.
  • the reduced data has less data and / or less data complexity than the (non-reduced) data.
  • the use of the reduced data for determining the second pressure and / or flow values has the advantage that less computing power is required and, correspondingly, rapid activation of the at least one pump or of the at least one valve, in particular in real time, is made possible.
  • "Reconstructing" means that the at least one second pressure and / or flow value was contained in the (non-reduced) data or approximately contained and on the basis of the reduced data with the aid of the at least one first pressure and / or flow value is recalculated to this at least a second pressure and / or flow value.
  • the respective current pressure and / or flow values at each point in the supply network can either be measured directly or reconstructed and are thus known. Consequently, the control of the at least one pump and / or the at least one valve can be carried out with knowledge of the states in the entire supply network.
  • the At least one pump and / or the at least one valve can therefore be controlled so that the pressure at each point in the supply network just reaches a prescribed desired value (for example, a statutory minimum pressure). Due to the correspondingly low pressure in the supply network, the network components therein are spared. Thus, leakage losses are minimized.
  • d) to f) are regularly repeated during operation of the supply network.
  • the pressure generated by the at least one pump or the media flow controlled by the at least one valve can be adapted to the dynamic load fluctuations occurring during operation, so that harmful pressure peaks are avoided, which in turn is advantageous with regard to the service life of the network components.
  • Determining the consumer profiles for each of the consumers can be done either on the basis of actually known consumption values or on the basis of a typical analysis, possibly in conjunction with a statistical approach.
  • the actual consumption profiles are regularly not known because of the high technical effort for the measurement and data protection framework conditions, so that often the typifying consideration will be preferable.
  • the typifying consideration is based on a classification of consumers in, for example, office buildings, schools, residential buildings or industrial enterprises and assigns them each a consumption profile.
  • the data describing the pressure and / or flow profiles is calculated, for example, by forming a simulation model of the actual supply network.
  • a simulation model for example, pipe cross sections, an applied pressure, the specific consumption profiles, ie the respective decreases of the consumers, the friction losses occurring during the pipe flow and other factors can be taken into account.
  • a supply network means a network in which a medium is transported from at least one source or at least one inflow to a plurality of consumers.
  • the medium may be a fluid, for example water or gas.
  • the supply network may also be only a part or a zone of a larger superordinate supply network.
  • a supply network can be, for example, a subnet, a PMZ or a district metering area (DMA).
  • a consumer is understood to mean every customer who decreases the media transported in the supply network.
  • a consumer may be a single-family house, an apartment building, an office building, a school house, an industrial plant, or an urban facility. The same applies to district heating networks.
  • a consumption profile is to be understood as meaning a profile which characterizes the consumption of a respective consumer for a predetermined period of time.
  • second place is meant a location other than the “first location” in the supply network.
  • step c) the data is reduced based on a series expansion. This advantageously makes it possible to transform the data into a smaller mathematical space, which allows easier analysis of the same. As a result, the step c) can be fast and be executed by a processor with low complexity.
  • the data is reduced based on a POD method.
  • POD Proper Orthogonal Decomposition, which is referred to in German as the principal component analysis. Accordingly, the data is approximated by linear combinations of a small number of meaningful basis vectors. This allows step c) to be performed quickly and with low complexity by a processor.
  • step e) comprises reconstructing the at least one second pressure and / or flow value using a gappy POD method.
  • a gappy POD method uses a POD base to backtrack existing data of at least one pressure and / or flow value to the missing data, such as at least a second pressure and / or flow value. This allows step e) to be performed quickly and with low complexity by a processor.
  • second pressure or flow values are generated at different times based on the same row approach M.
  • the series approach M is time-independent.
  • the series approach M can therefore be determined "offline", cf. the matrix M in [KW].
  • the reconstruction of the data, here for example the second pressure and / or flow values at different times finally requires only the coefficients of the series development for the pressure and / or flow values currently recorded or measured in the supply network. With the aid of the calculated coefficients, the "missing" pressure and / or flow values can then be simply summed up by a small number of series elements to calculate. This allows step c) to be performed quickly and with low complexity by a processor.
  • step a) comprises the steps of determining a total consumption of all consumers, determining a proportion of a respective consumer in the total consumption, assigning a consumption value of zero for the respective consumer, setting a quantity Q of the medium which is less than the determined total consumption, selecting a consumer, wherein a probability that a consumer is selected corresponds to its share of the total consumption, increasing the consumption value of the selected consumer by the amount Q, and repeating the steps of selecting a consumer and increasing the consumption value so long the sum of the consumption values of all consumers is less than the specific total consumption.
  • the time span is for example between 1 and 3 minutes.
  • the amount Q may be, for example, 3 liters in a water supply network.
  • the step b) comprises determining the data describing the pressure and / or flow profiles, while a respective consumer consumes the amount of the medium. For each period, due to the outflow of the quantity Q, there is a very specific situation with regard to the flows and pressures in nodes and pipes of the supply network. Accordingly, a "data point" comprising a pressure and / or flow value for a respective point in the supply network results per period of time.
  • the calculation of the pressure and / or flow profiles descriptive data for the respective time period takes place according to the Monte Carlo method.
  • the Monte Carlo method also called Monte Carlo simulation
  • the at least one first pressure and / or flow value is detected at the at least one first point in the supply network by means of at least one first sensor, the at least one first point being based on the POD method, in particular the gappy POD method , is selected.
  • the at least one first point being based on the POD method, in particular the gappy POD method .
  • This allows for the reconstruction of the data, in particular of the at least one second pressure and / or flow value, optimized placement of the first sensor.
  • existing or installed sensors for detecting the pressure or flow values, in particular of the at least one first pressure and / or flow value can also be used.
  • a minimum pressure is determined from the at least one first pressure value and the at least one second pressure value.
  • the at least one pump and / or the at least one valve is controlled as a function of the difference between a desired value and the determined minimum pressure.
  • the pressure setpoint corresponds, for example, to a legally prescribed minimum pressure. Accordingly, therefore, the at least one pump and / or the at least one valve is controlled such that the pressure at any point in the supply network is below the pressure setpoint.
  • a control is sought in such a way that the minimum pressure in the entire supply network is equal to or only slightly above the desired pressure value. As a result, the network components can be spared in the supply network.
  • the data in step b) describe pressure and / or flow profiles in nodes and / or pipes of the supply network.
  • the supply network is a water supply network.
  • a device for pressure regulation in a supply network for supplying consumers with a medium has at least one pump for pumping the medium and / or at least one valve for controlling a medium flow.
  • the apparatus further comprises: a determination unit for determining at least one consumption profile for each of the consumers, a determination unit for determining pressure and / or flow profiles in the supply network describing data based on the consumption profiles, a reduction unit for reducing the data into reduced data, a detection unit for detecting at least a first pressure and / or flow value at at least a first location in the supply network; a reconstruction unit for reconstructing at least a second pressure and / or flow value at at least a second location in the supply network from the reduced data the at least one first pressure and / or flow value and a drive unit for controlling the at least one pump and / or the at least one valve based on the at least one first pressure and / or flow value and the at least one second pressure and / or major ch puzzlewert.
  • the respective units may also be designed to implement and execute further developments of the method.
  • a respective unit for example the determination units, reduction unit, detection unit, reduction unit or drive unit, can be hardware-related and / or also be implemented by software.
  • the respective unit may be designed as a device or as part of a device, for example as a computer or as a microprocessor.
  • the respective unit may be designed as a computer program product, as a function, as a routine, as part of a program code or as an executable object.
  • the supply network for supplying consumers with a medium.
  • the supply network comprises nodes and / or pipes, at least one pump for pumping the medium through the nodes and / or pipes and / or at least one valve for controlling a medium flow through the nodes and / or pipes, and at least one device as described above, which drives the at least one pump and / or the at least one valve.
  • Fig. 1 shows a supply network 100.
  • the shown supply network 100 is, for example, a so-called DMA (DMA - District Metering Area, ie measurement district) in a larger, higher-level supply network, which is otherwise not shown.
  • DMA DMA - District Metering Area, ie measurement district
  • the supply network 100 is for example a water supply network and is composed of pipes or lines 102, which converge in node 104. Via the tubes 102 and node 104, water 106 is distributed from a reservoir 108 to consumer 112 by means of a pump 110. In addition to the pump 110, an unillustrated valve could also be provided which controls a flow of water through the supply network 100.
  • a device 114 which controls the pump 110, in particular an electric motor thereof, so as to set a pressure with which the pump 110 acts on the water.
  • the pump 110 or its motor may have a variable speed, wherein the rotational speed is controlled by the device 114.
  • the device 114 is signal-technically connected to pressure sensors 116 and flow sensors 118 of the supply network 100.
  • the device 114 is designed, for example, as a computer device, in particular a microprocessor.
  • the device 114 comprises the following units, which may be designed on the hardware and / or software technology.
  • the device may have one or more memories described in more detail below.
  • the memories may be provided as separate memory devices. Alternatively, the memories may be provided as separate logical memories on a single memory device.
  • the device 114 comprises a first determination unit 120 for determining consumption profiles for the consumers 112.
  • Fig. 4 shows exemplary consumption profiles 400 of the consumer 112.
  • the respective consumption profile 400 shows a consumption of the medium over time.
  • Fig. 4 shows a section Fig. 1 with the pipes 102 and consumers 112.
  • the first determination unit 120 may be connected to a memory 122 of the device 114.
  • a total consumption of all consumers 112 may be stored. This total consumption results, for example, from a corresponding consumption billing of municipal utilities and can be read in via an interface or entered by a user.
  • the device 114 has a second determination unit 124, which is likewise connected to a memory 126 can be.
  • the determination unit 124 determines pressure and / or flow profiles of the supply network 100 describing data D based on the consumption profiles 400 determined by the first determination unit 120 or the consumption profile data V transferred accordingly from the first determination unit 120 to the second determination unit 124.
  • the consumption profile data V can become differ from the consumption profiles 400 in that, for example, they contain less or less complex data.
  • Fig. 5 shows a section of the supply network 100 together with lines 102 and nodes 104 and exemplary pressure profiles 500 and flow profiles 502, which are determined at any point in the tubes 102 and the node 104.
  • a respective pressure profile 500 describes, for example, a water pressure which is between approximately 3 and 7 bar and varies as a function of time.
  • On the memory 126 for example, information on the length of the tubes 102, friction losses within the tubes 102, the number of tubes 102 and nodes 104 and their arrangement, the topography of the terrain or the supply network 102, etc. may be stored. From these data, the determination unit 124 determines the data D describing the pressure and / or flow profiles 500, 502 as a function of the consumer profiles 400.
  • the device 114 has a reduction unit 128.
  • the reduction unit 128 reduces the data D determined by the determination unit 124 into reduced data R.
  • the reduction unit 128 can make use of a series development, in particular a POD method.
  • the device 114 has a detection device 130 in the form of a sensor interface.
  • the sensor interface 130 is signal-connected to the pressure and flow sensors 116, 118. Determine the pressure sensors 116 In this case, first pressure values p 1 1 -p 1 n , the flow sensors 118 first flow values q 1 1 -q 1 n .
  • a reconstruction unit 132 of device 114 reconstructs second pressure and flow values p 2 1 -p 2 n , q 2 1 -q 2 n at second locations different from the first locations.
  • the second digits are each with a cross in Fig. 1 indicated. This reconstruction is performed on the basis of the reduced data provided by the reduction unit 128 using the first pressure and flow values p 1 1 -p 1 n , q 1 1 -q 1 n .
  • a drive unit 134 controls the pump 110 based on the first pressure and / or flow values p 1 1 -p 1 n , q 1 1 -q 1 n and the second pressure and / or flow values p 2 1 -p 2 n , q 2 1 -q 2 n . Furthermore, the control can be based on a pressure setpoint p soll stored on a memory 136.
  • the desired pressure value p soll may be a minimum pressure that is prescribed by law in particular, which may not be exceeded at any point in the supply network 100.
  • the drive unit 134 controls the pump 110 accordingly.
  • Fig. 2 shows a flowchart of a method according to an embodiment of the invention.
  • the method is suitable for pressure regulation in the supply network 100 and is executed in particular on the device 114.
  • Fig. 1 described embodiments, which are nevertheless implementable on the device 114.
  • a step S1 the consumption profiles 400 for each of the consumers 112 are determined.
  • a total consumption of all consumers 112 in the supply network 100 is determined. For example, this total consumption can be calculated by summing up the year-end bills of the respective consumers and dividing them by the number of days of the year.
  • the proportion of a respective consumer 112 in the total consumption is determined. This proportion can be calculated, for example, by setting the year-end bills of the respective consumers 112 in relation to one another. Both the information about the total consumption and the information about the share of a respective consumer 112 may be stored on the memory 122, for example.
  • a value of zero is now assigned to each of the consumers 112.
  • the determination unit 120 software simulated consumer 112th
  • an amount Q of the medium, here water is set, which is smaller than the specific total consumption.
  • the amount Q should be significantly smaller than the specific total consumption.
  • the amount Q according to the present embodiment of a water supply network could be 3 liters.
  • a (virtual) consumer 112 is selected.
  • the selection is random, with the likelihood that a consumer 112 will be selected corresponding to its share of the total consumption. For example, if the consumer's share of total consumption is 10%, then the probability that it will be selected is also 10%.
  • the selected consumer 112 takes the amount Q over a period t of, for example, 1 to 3 minutes from the supply network 100 from, ie he consumes them. In a step S1-6, therefore, a consumption value of the selected consumer 112 is increased by the amount Q.
  • step S1-7 the sum of the consumption values of all consumers 112 is compared with the determined total consumption. If this buzzer is smaller than the certain total consumption, steps S1-5 to S1-7 are repeated.
  • the in Fig. 4 shown consumption profiles 400 for a respective consumer 112 generated.
  • a classification of the consumers 112 has only been made on the basis of their share of the total consumption.
  • the classification can also provide that consumers are assigned a specific consumption profile depending on the type of building, for example a single-family house, multiple dwelling, terraced house, office building, school, municipal facility or factory building.
  • step S2 which follows the step S1.
  • step S2 the pressure and / or flow profiles 500, 502 or the data describing them are determined, as in FIG Fig. 5 shown. Knowing the outflows (corresponding to the consumption profiles 400) as well as potential inflows via the pump 110, calculations are carried out on the determination unit 124. These calculations include, for example, the length of the tubes 102, the topology of the utility grid 100, and other information stored in particular on the memory 126.
  • the pressure and flow values are calculated at each location in the utility network 100, or at suitably many locations to achieve a desired high resolution.
  • the pressure and flow values are calculated for each of the time periods t mentioned in connection with step S1-6.
  • the calculation of the pressure and flow profiles descriptive data D can be done multiple times for a respective period of time t in the sense of the Monte Carlo method.
  • the data D and the simulation data on the reduction unit 128 are reduced.
  • the data reduction can be carried out in particular based on a series development, in particular based on a POD method. In other words, a combination of a few basis vectors is found, which approximate the data D or the simulation model sufficiently well.
  • the POD method is described, for example, in [KW].
  • the pressure and flow sensors 116, 118 in the utility network 100 may be arranged based on the gappy POD method, also described by [KW].
  • the pressure and flow sensors 116, 118 are first placed in a heuristic method to the local local Optima for the individual POD modes.
  • the placement of the pressure and flow sensors 116, 118 can be further improved.
  • the pressure and flow sensors 116, 118 may also be provided at arbitrary positions, for example in the case that they are already permanently installed.
  • steps S1-S3 can be carried out "offline", in particular before commissioning of the supply network 100.
  • step S4 the pressure and flow values p 1 1 -p 1 n , q 1 1 -q 1 n are now detected by means of the pressure and flow sensors 116, 118 at the positions respectively assigned to them.
  • step S5 the pressure and flow values p 2 1 -p 2 n , q 2 1 -q 2 n are reconstructed or extrapolated with a suitable resolution.
  • This reconstruction or extrapolation takes place on the reconstruction unit 132, wherein the reduced Data R and the already measured pressure and flow rates p 1 1 - p 1 n , q 1 1 - q 1 n are used.
  • the reconstruction is preferably done using a Gappy POD method as described in [KW].
  • the gappy POD method involves the determination of a series approach, designated as matrix M in [KW].
  • the matrix M can also be generated “offline” by the reduction unit 132, that is to say in particular before the supply network 500 is put into operation.
  • the coefficients, referred to as b i at [KW] of the series development for the current pressure and flow values p 1 1 -p 1 n , q 1 1 -q 1 n can then be calculated. Since the positions of the pressure and flow sensors 116, 118 do not change during operation, the corresponding mask vector, denoted by n k at [KW], also does not change, so that the series projection M does not change correspondingly over time, ie is time independent.
  • the reconstruction of the pressure and flow values p 2 1 to p 2 n , q 2 1 to q 2 n is limited to the summation of a small number of series members.
  • the calculations can take place correspondingly fast, so that a delay-free control, in particular a real-time control, of the pump 110 is possible.
  • Fig. 6 Based on Fig. 6 the implemented data reduction is graphically illustrated.
  • the data sets are approximated by means of row approaches, whereby each measurement series can be represented as a "smooth approximation" and a high-frequency small disturbance.
  • the reduced data R then only contains the smooth approximation.
  • step S5 the pump 110 is actuated in particular by means of the drive unit 134.
  • the control is based on all measured and calculated pressure and flow values p 1 1 - p 1 n , q 1 1 - q 1 n , p 2 1 - p 2 n , q 2 1 - q 2 n .
  • the control unit 134 determines from all pressure values p 1 1 - p 1 n, p 2 1 - p 2 n the minimum pressure and compares it to the desired pressure value p. As long as the minimum pressure determined via the desired pressure value P desired is, it reduces the pressure generated by the pump 110, for example by a corresponding control of the pump 110 driving the electric motor.
  • the minimum pressure can be adjusted to the fact that he is in a smallest possible tolerance window around the nominal pressure value p (eg. Pressure value p to +/- 5%) is located.
  • one or more valves 138 may be disposed in the utility network 100.
  • the valves 138 are configured to control a pressure and / or a flow rate in the tubes 102 of the supply network 100.
  • the drive unit 134 may be configured to actuate the valves 138 or actuators thereof analogously to the pump 110. That is, the valves 138 are also controlled such that the determined minimum pressure is within the mentioned tolerance window.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Druckregelung in einem Versorgungsnetz für eine Versorgung von Verbrauchern mit einem Medium. Des Weiteren betrifft die vorliegende Erfindung eine Vorrichtung zur Druckregelung in einem Versorgungsnetz sowie ein Versorgungsnetz.
  • Obwohl die vorliegende Erfindung nachfolgend mit Bezug auf Wasserversorgungsnetze beschrieben wird, ist sie genauso auf andere Versorgungsnetze, beispielsweise Gasnetze oder Fernwärmenetze, anwendbar.
  • Der in einem Wasserversorgungsnetz herrschende hydraulische Druck ist ein wichtiges Qualitätsmerkmal. Für industrielle Großverbraucher und Feuerhydranten garantiert ein hoher Druck, dass eine große Wassermenge in kurzer Zeit aus dem Versorgungsnetz entnommen werden kann. An den Hausanschlüssen erlaubt ein ausreichend hoher Wasserdruck komplette Gebäude bis zur obersten Etage ohne zusätzliche Pumpeinrichtungen zuverlässig mit Trinkwasser zu versorgen.
  • Auf der anderen Seite führt ein zu hoher Druck im Versorgungsnetz zu vorzeitiger Alterung und Versagen von Komponenten, beispielsweise durch Rohrleitungsbruch. Die dadurch verursachten Leckagen führen zu hohen Reparaturkosten, Wasserverlusten und in einigen Fällen zu weiteren Schäden an umliegenden Strukturen. Des Weiteren führt ein Überdruck zu einem erhöhten Wasserverlust durch Hintergrundleckagen. Solche Hintergrundleckagen sind in jedem Wassernetz in gewissem Ausmaß vorhanden und haben einen kontinuierlichen Verlust von Trinkwasser zur Folge. Ein zu hoher Fließdruck erhöht außerdem die bei der Rohrströmung auftretenden Reibungsverluste. In Versorgungsnetzen, in denen der Druck durch Pumpen aufgebaut wird, führt eine Erhöhung des bereitgestellten Drucks unmittelbar zu einem erhöhten Energiebedarf der Pumpen.
  • Betreiber von Versorgungsnetzen stehen daher vor der Herausforderung, zwischen diesen beiden entgegenlaufenden Anforderungen einen Kompromiss bezüglich des bereitgestellten hydraulischen Drucks in dem Versorgungsnetz zu finden. Diese Entscheidung wird zusätzlich dadurch erschwert, dass der im Betrieb herrschende Druck stark durch die Abnahmelast beeinflusst wird, die starken Schwankungen ausgesetzt sein und oft nicht zuverlässig gemessen oder vorhergesagt werden kann. Diese Abnahmeschwankungen sowie Schaltvorgänge von Pumpen und Ventilen können weiterhin zu kurzzeitigen Druckspitzen im Versorgungsnetz führen, die eine schädliche Wirkung auf Netzkomponenten haben können und häufig die Ursache von plötzlich auftretenden Leckagen darstellen.
  • In vielen Wasserversorgungsnetzen wird heutzutage durch Hochbehälter oder ständig laufende Pumpen gezielt ein kontinuierlich hoher Druck bereitgestellt. Die Auslegung der Netzkomponenten wird schon bei der Planung bewusst überdimensioniert. Der Überdruck im Versorgungsnetz wird an den Verbrauchsstellen durch Druckreduzierungseinrichtungen auf ein für die Verbraucher sinnvolles Maß reduziert. Die durch den langfristigen Betrieb mit hohem Druck vorstehend aufgeführten Nachteile werden vielfach in Kauf genommen.
  • Erst in der jüngeren Vergangenheit wurden unter dem Schlagwort Pressure Management [TL] Ansätze entwickelt, um den im Wasserverteilnetz herrschenden Druck gezielt an die Anforderungen der Verbraucher anzupassen und damit zu hohe Drücke samt den damit einhergehenden Nachteilen zu vermeiden. Zu den dabei entwickelten Techniken gehört die Unterteilung des Versorgungsnetzes in Druckzonen (pressure management zones, PMZ), in denen der Druck an den Zuflüssen durch gezielte Steuerung von Ventilen oder Pumpen auf ein Mindestmaß reduziert wird. Zur Auslegung der Drucksteuerung werden dabei Kenntnisse über die Netzstruktur, die topographischen Gegebenheiten der Druckzone sowie über Anzahl und Art der angeschlossenen Verbraucher herangezogen. Um auf die durch wechselnden Verbrauch verursachten dynamischen Druckschwankungen reagieren zu können, werden inzwischen auch Online gemessene Druckwerte in der Zone für die Drucksteuerung verwendet [UBRR].
  • Das Dokument EP 0 574 241 A1 beschäftigt sich mit einer Vorrichtung zum Steuern eines Drucks einer Versorgungsflüssigkeit in Verbindung mit einem Ventil zur Drucksteuerung eines Versorgungsflüssigkeitsssystems.
  • Vor diesem Hintergrund besteht eine Aufgabe der vorliegenden Erfindung darin, ein verbessertes Verfahren zur Druckregelung in einem Versorgungsnetz bereitzustellen. Des Weiteren soll eine verbesserte Vorrichtung zur Druckregelung in einem Versorgungsnetz sowie ein verbessertes Versorgungsnetz bereitgestellt werden.
  • Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen sind den abhängigen Ansprüchen zu entnehmen.
  • Demgemäß wird ein Verfahren zur Druckregelung im Versorgungsnetz für eine Versorgung von Verbrauchern mit einem Medium bereitgestellt. Das Versorgungsnetz weist zumindest eine Pumpe zum Pumpen des Mediums und/oder zumindest ein Ventil zum Steuern eines Mediumflusses auf. Das Verfahren umfasst die folgenden Schritte: a) Bestimmen von zumindest einem Verbrauchsprofil für einen jeweiligen Verbraucher, b) Bestimmen von Druck- und/oder Durchflussprofile in dem Versorgungsnetz beschreibenden Daten basierend auf den Verbrauchsprofilen, c) Reduzieren der Daten in reduzierte Daten, d) Erfassen von zumindest einem ersten Druck- und/oder Durchflusswert an zumindest einer ersten Stelle in dem Versorgungsnetz, e) Rekonstruieren von zumindest einem zweiten Druck- und/oder Durchflusswert an zumindest einer zweiten Stelle in dem Versorgungsnetz aus den reduzierten Daten mittels des zumindest einen ersten Druck- und/oder Durchflusswerts, und f) Ansteuern der zumindest einen Pumpe und/oder des zumindest einen Ventils basierend auf dem zumindest einen ersten Druck- und/oder Durchflusswert und dem zumindest einen zweiten Druck-und/oder Durchflusswert.
  • Mit anderen Worten wird also ein Simulationsmodell des Versorgungsnetzes erstellt. Das Simulationsmodell simuliert Druck- und/oder Durchflussprofile in Abhängigkeit von Verbrauchsprofilen. Die die Druck- und/oder Durchflussprofile beschreibenden Daten werden anschließend reduziert. All dies kann "offline" erfolgen, also außerhalb des eigentlichen Betriebs, insbesondere vor Inbetriebnahme des Versorgungsnetzes. In einem "online" Teil des Verfahrens, also im Betrieb des Versorgungsnetzes, wird nun mittels zumindest eines ersten Sensors ein erster Druck- und/oder Durchflusswert an zumindest einer ersten Stelle in dem Versorgungsnetz gemessen. Um nun jedoch auch einen zweiten Druck- und/oder Durchflusswert an zumindest einer zweiten Stelle in dem Versorgungsnetz zu bestimmen, wird dieser aus den reduzierten Daten und unter Verwendung des zumindest eines ersten Druck- und/oder Durchflusswerts rekonstruiert. Ganz allgemein weisen die reduzierten Daten weniger Daten und/oder eine geringere Datenkomplexität als die (nicht-reduzierten) Daten auf. Die Verwendung der reduzierten Daten zur Bestimmung der zweiten Druck-und/oder Durchflusswerte hat den Vorteil, dass weniger Rechenleistung benötigt und entsprechend eine schnelle Ansteuerung der zumindest einen Pumpe oder des zumindest einen Ventils, insbesondere in Echtzeit, ermöglicht wird. Unter "Rekonstruieren" ist zu verstehen, dass der zumindest eine zweite Druck- und/oder Durchflusswert in den (nicht-reduzierten) Daten enthalten oder annähernd enthalten war und auf Basis der reduzierten Daten unter Zuhilfenahme des zumindest einen ersten Druck- und/oder Durchflusswerts auf diesen zumindest einen zweiten Druck- und/oder Durchflusswert rückgerechnet wird.
  • Entsprechend können die jeweils aktuellen Druck- und/oder Durchflusswerte an jeder Stelle in dem Versorgungsnetz entweder direkt gemessen oder rekonstruiert werden und sind damit bekannt. Folglich kann auch die Ansteuerung der zumindest einen Pumpe und/oder des zumindest einen Ventils in Kenntnis der Zustände in dem gesamten Versorgungsnetz erfolgen. Die zumindest eine Pumpe und/oder das zumindest eine Ventil kann daher so angesteuert werden, dass der Druck an jeder Stelle in dem Versorgungsnetz einen vorgeschriebenen Sollwert (beispielsweise ein gesetzlich vorgeschriebener Mindestdruck) gerade erreicht. Aufgrund des entsprechend niedrigen Drucks in dem Versorgungsnetz werden die darin befindlichen Netzkomponenten geschont. Somit werden Leckageverluste minimiert.
  • Bevorzugt werden die d) bis f) im Betrieb des Versorgungsnetzes regelmäßig wiederholt. Dadurch kann der von der zumindest einen Pumpe erzeugte Druck bzw. der von dem zumindest einen Ventil gesteuerte Medienfluss an die im Betrieb auftretenden dynamischen Lastschwankungen angepasst werden, so dass schädliche Druckspitzen vermieden werden, was wiederum im Hinblick auf die Lebensdauer der Netzkomponenten vorteilhaft ist.
  • Das Bestimmen der Verbraucherprofile für jeden der Verbraucher kann entweder aufgrund tatsächlich bekannter Verbrauchswerte oder aufgrund einer typisierenden Betrachtung gegebenenfalls in Verbindung mit einem statistischen Ansatz erfolgen. Die tatsächlichen Verbrauchsprofile sind regelmäßig wegen des hohen technischen Aufwandes für die Messung und datenschutzrechtlicher Rahmenbedingungen nicht bekannt, so dass oftmals die typisierende Betrachtung zu bevorzugen sein wird. Die typisierende Betrachtung geht von einer Klassifizierung der Verbraucher in beispielsweise Bürogebäude, Schule, Wohngebäude oder Industriebetrieb aus und ordnet diesen jeweils ein Verbrauchsprofil zu.
  • Die die Druck- und/oder Durchflussprofile beschreibenden Daten werden beispielsweise berechnet, indem ein Simulationsmodell des tatsächlichen Versorgungsnetzes gebildet wird. In dem Simulationsmodell können beispielsweise Rohrleitungsquerschnitte, ein anliegender Druck, die bestimmten Verbrauchsprofile, d. h. die jeweiligen Abnahmen der Verbraucher, die bei der Rohrströmung auftretenden Reibungsverluste und weitere Faktoren berücksichtigt werden.
  • Unter einem Versorgungsnetz ist vorliegend ein Netz zu verstehen, in welchem ein Medium von zumindest einer Quelle oder von zumindest einem Zufluss zu mehreren Verbrauchern transportiert wird. Dabei kann das Medium ein Fluid, zum Beispiel Wasser oder Gas, sein. Das Versorgungsnetz kann auch nur ein Teil oder eine Zone eines größeren übergeordneten Versorgungsnetzes sein. Ein Versorgungsnetz kann vorliegend zum Beispiel ein Subnetz, eine PMZ oder ein Messbezirk (engl. District Metering Area, DMA) sein.
  • Unter einem Verbraucher ist vorliegend jeder Abnehmer zu verstehen, welcher in das Versorgungsnetz transportierte Medien abnimmt. Bei einem Wasserversorgungsnetz kann ein Verbraucher zum Beispiel ein Einfamilienhaus, ein Mehrfamilienhaus, ein Bürogebäude, ein Schulhaus, ein Industriebetrieb oder eine städtische Einrichtung sein. Entsprechendes gilt bei Fernwärmenetzen.
  • Unter einem Verbrauchsprofil ist vorliegend ein Profil zu verstehen, welches den Verbrauch eines jeweiligen Verbrauchers für einen vorgegebenen Zeitabschnitt kennzeichnet.
  • Unter Druckprofilen bzw. Durchflussprofilen sind vorliegend Profile zu verstehen, welche den zeitlichen Verlauf des Drucks in dem Versorgungsnetz, insbesondere an Knoten oder in Rohren bzw. Leitungen desselben bzw. den zeitlichen Verlauf des Durchflusses durch das Versorgungsnetz, insbesondere durch Knoten oder Rohre bzw. Leitungen desselben, angeben.
  • Mit "zweiter Stelle" ist eine von der "ersten Stelle" unterschiedliche Stelle in dem Versorgungsnetz gemeint.
  • Gemäß einer Ausführungsform werden in dem Schritt c) die Daten basierend auf einer Reihenentwicklung reduziert. Dies erlaubt es vorteilhaft, die Daten in einen kleineren mathematischen Raum zu transformieren, der eine einfachere Analyse derselben zulässt. Hierdurch kann der Schritt c) schnell und mit geringer Komplexität durch einen Prozessor ausgeführt werden.
  • Gemäß einer weiteren Ausführungsform werden die Daten basierend auf einem POD-Verfahren reduziert. POD steht für Proper Orthogonal Decomposition, was im Deutschen auch als Hauptkomponentenanalyse bezeichnet wird. Entsprechend werden die Daten durch Linearkombinationen einer geringen Anzahl aussagekräftiger Basisvektoren angenähert. Hierdurch kann der Schritt c) schnell und mit geringer Komplexität durch einen Prozessor ausgeführt werden.
  • Gemäß einer weiteren Ausführungsform umfasst der Schritt e) das Rekonstruieren des zumindest einen zweiten Druck-und/oder Durchflusswerts unter Verwendung eines Gappy-POD-Verfahrens. Dieses Verfahren wird beispielsweise in [KW] näher beschrieben. Das Gappy-POD-Verfahren benutzt eine POD-Basis, um von vorhandenen Daten zumindest eines Druck-und/oder Durchflusswerts auf die fehlenden Daten, wie beispielsweise zumindest einen zweiten Druck- und/oder Durchflusswert, rückzurechnen. Hierdurch kann der Schritt e) schnell und mit geringer Komplexität durch einen Prozessor ausgeführt werden.
  • Gemäß einer weiteren Ausführungsform werden zweite Druck-oder Durchflusswerte zu unterschiedlichen Zeitpunkten basierend auf demselben Reihenansatz M generiert. Mit anderen Worten ist der Reihenansatz M zeitunabhängig. Der Reihenansatz M kann also "offline" ermittelt werden, vgl. die Matrix M in [KW]. Die Rekonstruktion der Daten, hier beispielsweise der zweiten Druck- und/oder Durchflusswerte zu unterschiedlichen Zeitpunkten, erfordert schließlich nur die Koeffizienten der Reihenentwicklung für die aktuell im Versorgungsnetz erfassten bzw. gemessenen Druck- und/oder Durchflusswerte zu berechnen. Mit Hilfe der berechneten Koeffizienten lassen sich dann durch einfaches Aufsummieren einer geringen Anzahl von Reihengliedern die "fehlenden" Druck- und/oder Durchflusswerte berechnen. Hierdurch kann der Schritt c) schnell und mit geringer Komplexität durch einen Prozessor ausgeführt werden.
  • Gemäß einer weiteren Ausführungsform weist der Schritt a) folgende Schritte auf: Bestimmen eines Gesamtverbrauchs aller Verbraucher, Bestimmen eines Anteils eines jeweiligen Verbrauchers an dem Gesamtverbrauch, Zuweisen eines Verbrauchswerts von Null für den jeweiligen Verbraucher, Festlegen einer Menge Q des Mediums, welche kleiner ist als der bestimmte Gesamtverbrauch, Auswählen eines Verbrauchers, wobei eine Wahrscheinlichkeit, dass ein Verbraucher ausgewählt wird, seinem Anteil an dem Gesamtverbrauch entspricht, Erhöhen des Verbrauchswerts des ausgewählten Verbrauchers um die Menge Q, und Wiederholen der Schritte des Auswählens eines Verbrauchers und des Erhöhens des Verbrauchswerts solange die Summe der Verbrauchswerte aller Verbraucher kleiner als der bestimmte Gesamtverbrauch ist. Die Zeitspanne beträgt beispielsweise zwischen 1 und 3 Minuten. Die Menge Q kann bei einem Wasserversorgungsnetz zum Beispiel 3 Liter betragen. Indem die Menge Q auf diese Weise auf die einzelnen Verbraucher verteilt wird, kann deren Verbrauchsverhalten einfach simuliert werden. In Abhängigkeit von dem Verbrauchsverhalten bzw. den ermittelten Verbrauchsprofilen können dann die Druck- und/oder Durchflussprofile beschreibenden Daten für die Rohre und Knoten des Versorgungsnetzes einfach ermittelt werden.
  • Gemäß einer weiteren Ausführungsform umfasst der Schritt b) ein Bestimmen der die Druck- und/oder Durchflussprofile beschreibenden Daten, während ein jeweiliger Verbraucher die Menge des Mediums verbraucht. Für jede Zeitspanne ergibt sich aufgrund des Abflusses der Menge Q eine ganz bestimmte Situation hinsichtlich der Durchflüsse und Drücke in Knoten und Rohren des Versorgungsnetzes. Entsprechend ergibt sich pro Zeitspanne ein "Datenpunkt" umfassend einen Druck- und/oder Durchflusswert für eine jeweilige Stelle in dem Versorgungsnetz.
  • Gemäß einer weiteren Ausführungsform erfolgt das Berechnen der Druck- und/oder Durchflussprofile beschreibenden Daten für die jeweilige Zeitspanne nach dem Monte-Carlo-Verfahren. Durch das Monte-Carlo-Verfahren (auch Monte-Carlo-Simulation genannt) wird anhand einzelner statistischer Zufallsexperimente die Gesamtheit der auftretenden Druck- und/oder Durchflussprofile beschrieben. Entsprechend werden die Daten für eine jeweilige Zeitspanne mehrmals berechnet. Hierdurch wird die Qualität der Daten verbessert.
  • Gemäß einer weiteren Ausführungsform wird der zumindest eine erste Druck- und/oder Durchflusswert an der zumindest einen ersten Stelle im Versorgungsnetz mittels zumindest eines ersten Sensors erfasst, wobei die zumindest eine erste Stelle basierend auf dem POD-Verfahren, insbesondere dem Gappy-POD-Verfahren, ausgewählt wird. Dies ermöglicht eine für die Rekonstruktion der Daten, insbesondere des zumindest einen zweiten Druck- und/oder Durchflusswerts, optimierte Platzierung des ersten Sensors. Alternativ können auch bereits vorhandene bzw. installierte Sensoren zur Erfassung der Druck- bzw. Durchflusswerte, insbesondere des zumindest einen ersten Druck- und/oder Durchflusswerts, verwendet werden.
  • Gemäß einer weiteren Ausführungsform wird ein Minimaldruck aus dem zumindest einen ersten Druckwert und dem zumindest einen zweiten Druckwert ermittelt. Die zumindest eine Pumpe und/oder das zumindest eine Ventil wird in Abhängigkeit von der Differenz zwischen einem Sollwert und dem ermittelten Minimaldruck angesteuert. Der Drucksollwert entspricht beispielsweise einem gesetzlich vorgeschriebenen Mindestdruck. Entsprechend wird also die zumindest eine Pumpe und/oder das zumindest eine Ventil derart angesteuert, dass der Druck an keiner Stelle in dem Versorgungsnetz unterhalb dem Drucksollwert liegt. Gleichzeitig wird jedoch eine Steuerung derart angestrebt, dass der Minimaldruck im gesamten Versorgungsnetz gleich oder nur geringfügig oberhalb des Drucksollwerts liegt. Dadurch können die Netzkomponenten in dem Versorgungsnetz geschont werden.
  • Gemäß einer weiteren Ausführungsform beschreiben die Daten in dem Schritt b) Druck- und/oder Durchflussprofile in Knoten und/oder Rohren des Versorgungsnetzes.
  • Gemäß einer weiteren Ausführungsform ist das Versorgungsnetz ein Wasserversorgungsnetz.
  • Weiterhin wird eine Vorrichtung zur Druckregelung in einem Versorgungsnetz für eine Versorgung von Verbrauchern mit einem Medium bereitgestellt. Das Versorgungsnetz weist zumindest eine Pumpe zum Pumpen des Mediums und/oder zumindest ein Ventil zum Steuern eines Mediumflusses auf. Die Vorrichtung weist ferner auf: eine Bestimmungseinheit zum Bestimmen von zumindest einem Verbrauchsprofile für jeden der Verbraucher, eine Bestimmungseinheit zum Bestimmen von Druck- und/oder Durchflussprofile in dem Versorgungsnetzes beschreibenden Daten basierend auf den Verbrauchsprofilen, eine Reduzierungseinheit zum Reduzieren der Daten in reduzierte Daten, eine Erfassungseinheit zum Erfassen von zumindest einem ersten Druck- und/oder Durchflusswert an zumindest einer ersten Stelle in dem Versorgungsnetz, eine Rekonstruktionseinheit zum Rekonstruieren von zumindest einem zweiten Druck-und/oder Durchflusswert an zumindest einer zweiten Stelle in dem Versorgungsnetz aus den reduzierten Daten mittels des zumindest einen ersten Druck- und/oder Durchflusswerts und eine Ansteuereinheit zum Ansteuern der zumindest einen Pumpe und/oder des zumindest einen Ventils basierend auf dem zumindest einen ersten Druck- und/oder Durchflusswert und dem zumindest einen zweiten Druck- und/oder Durchflusswert.
  • Die jeweiligen Einheiten können ferner ausgebildet sein, Weiterbildungen des Verfahrens zu implementieren und auszuführen.
  • Eine jeweilige Einheit, beispielsweise die Bestimmungseinheiten, Reduzierungseinheit, Erfassungseinheit, Reduktionseinheit oder Ansteuereinheit, kann hardwaretechnisch und/oder auch softwaretechnisch implementiert sein. Bei einer hardwaretechnischen Implementierung kann die jeweilige Einheit als Vorrichtung oder als Teil einer Vorrichtung zum Beispiel als Computer oder als Mikroprozessor ausgebildet sein. Bei einer softwaretechnischen Implementierung kann die jeweilige Einheit als Computerprogrammprodukt, als eine Funktion, als eine Routine, als Teil eines Programmcodes oder als ausführbares Objekt ausgebildet sein.
  • Weiterhin wird ein Versorgungsnetz zur Versorgung von Verbrauchern mit einem Medium bereitgestellt. Das Versorgungsnetz umfasst Knoten und/oder Rohre, zumindest eine Pumpe zum Pumpen des Mediums durch die Knoten und/oder Rohre und/oder zumindest ein Ventil zum Steuern eines Mediumflusses durch die Knoten und/oder Rohre, und zumindest eine Vorrichtung, wie vorstehend beschrieben, welche die zumindest eine Pumpe und/oder das zumindest eine Ventil ansteuert.
  • Die für das Verfahren beschriebenen Ausführungsformen und Merkmale gelten entsprechend für die Vorrichtung sowie das Versorgungsnetz.
  • Weitere mögliche Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmalen oder Ausführungsformen. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der Erfindung hinzufügen.
  • Weitere vorteilhafte Ausgestaltungen und Aspekte der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele der Erfindung. Im Weiteren wird die Erfindung von bevorzugten Ausführungsformen unter Bezugnahme auf die beigelegten Figuren näher erläutert.
  • Fig. 1
    zeigt ein Versorgungsnetz gemäß einer Ausführungsform der Erfindung;
    Fig. 2
    zeigt ein Ablaufdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens;
    Fig. 3
    zeigt ein Ablaufdiagramm einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens;
    Fig. 4
    zeigt einen Ausschnitt aus dem Versorgungsnetz gemäß Fig. 1 samt beispielhaften Verbrauchsprofilen gemäß einer Ausführungsform der vorliegenden Erfindung;
    Fig. 5
    zeigt einen Ausschnitt aus dem Versorgungsnetz gemäß Fig. 1 samt Druck- und/oder Durchflussprofilen gemäß einer Ausführungsform der vorliegenden Erfindung; und
    Fig. 6
    zeigt ein Diagramm eines Druckverlaufs gemäß einer Ausführungsform der vorliegenden Erfindung.
  • In den Figuren sind gleiche oder funktionsgleiche Elemente mit denselben Bezugszeichen versehen worden, sofern nichts anderes angegeben ist.
  • Fig. 1 zeigt ein Versorgungsnetz 100. Das gezeigte Versorgungsnetz 100 ist beispielsweise ein sogenanntes DMA (DMA - District Metering Area, d.h. Messbezirk) in einem größeren, übergeordneten Versorgungsnetz, welches im Übrigen nicht dargestellt ist.
  • Das Versorgungsnetz 100 ist beispielsweise ein Wasserversorgungsnetz und setzt sich aus Rohren bzw. Leitungen 102 zusammen, welche in Knoten 104 zusammenlaufen. Über die Rohre 102 und Knoten 104 wird Wasser 106 aus einem Speicher 108 mittels einer Pumpe 110 auf Verbraucher 112 verteilt. Zusätzlich zu der Pumpe 110 könnte auch ein nicht dargestelltes Ventil vorgesehen sein, welches einen Wasserfluss durch das Versorgungsnetz 100 steuert.
  • Ferner ist eine Vorrichtung 114 vorgesehen, welche die Pumpe 110, insbesondere einen elektrischen Motor derselben, ansteuert, um so einen Druck einzustellen, mit welchem die Pumpe 110 das Wasser beaufschlagt. Die Pumpe 110 bzw. deren Motor kann eine variable Drehzahl aufweisen, wobei die Drehzahl von der Vorrichtung 114 gesteuert wird. Die Vorrichtung 114 ist mit Drucksensoren 116 sowie Durchflusssensoren 118 des Versorgungsnetzes 100 signaltechnisch verbunden.
  • Die Vorrichtung 114 ist beispielsweise als Rechnereinrichtung, insbesondere Mikroprozessor ausgebildet. Die Vorrichtung 114 umfasst nachfolgend genannte Einheiten, welche hardware- und/oder softwaretechnisch auf dieser ausgebildet sein können. Weiterhin kann die Vorrichtung einen oder mehrere nachfolgend näher beschriebene Speicher aufweisen. Die Speicher können als getrennte Speichereinrichtungen vorgesehen sein. Alternativ können die Speicher als getrennte logische Speicher auf einer einzigen Speichereinrichtung vorgesehen sein.
  • Zunächst umfasst die Vorrichtung 114 eine erste Bestimmungseinheit 120 zum Bestimmen von Verbrauchsprofilen für die Verbraucher 112. Fig. 4 zeigt beispielhaft Verbrauchsprofile 400 der Verbraucher 112. Das jeweilige Verbrauchsprofil 400 zeigt einen Verbrauch des Mediums über der Zeit. Fig. 4 zeigt dabei einen Ausschnitt aus Fig. 1 mit den Rohren bzw. Leitungen 102 und Verbrauchern 112. Die erste Bestimmungseinheit 120 kann mit einem Speicher 122 der Vorrichtung 114 verbunden sein. Auf dem Speicher 122 kann beispielsweise ein Gesamtverbrauch aller Verbraucher 112 gespeichert sein. Dieser Gesamtverbrauch ergibt sich beispielsweise aus einer entsprechenden Verbrauchsabrechnung der Stadtwerke und kann über eine Schnittstelle eingelesen oder von einem Benutzer eingegeben werden.
  • Weiterhin weist die Vorrichtung 114 eine zweite Bestimmungseinheit 124 auf, welche ebenfalls mit einem Speicher 126 verbunden sein kann. Die Bestimmungseinheit 124 bestimmt Druck-und/oder Durchflussprofile des Versorgungsnetzes 100 beschreibende Daten D basierend auf den von der ersten Bestimmungseinheit 120 bestimmten Verbrauchsprofilen 400 bzw. den entsprechend von der ersten Bestimmungseinheit 120 an die zweite Bestimmungseinheit 124 übergebenen Verbrauchsprofildaten V. Die Verbrauchsprofildaten V können sich von den Verbrauchsprofilen 400 dahingehend unterscheiden, dass diese beispielsweise weniger oder weniger komplexe Daten enthalten.
  • Fig. 5 zeigt einen Ausschnitt aus dem Versorgungsnetz 100 samt Leitungen 102 und Knoten 104 sowie beispielhafte Druckprofile 500 und Durchflussprofile 502, welche an beliebigen stellen in den Rohren 102 bzw. den Knoten 104 bestimmt werden. Ein jeweiliges Druckprofil 500 beschreibt beispielsweise einen Wasserdruck, welcher zwischen in etwa 3 und 7 bar liegt und als Funktion der Zeit variiert. Auf dem Speicher 126 können beispielsweise Informationen zur Länge der Rohre 102, zu Reibungsverlusten innerhalb der Rohre 102, zur Anzahl der Rohre 102 und Knotenpunkte 104 sowie deren Anordnung, der Topographie des Geländes bzw. des Versorgungsnetzes 102 usw. abgelegt sein. Aus diesen Daten bestimmt die Bestimmungseinheit 124 die die Druck- und/oder Durchflussprofile 500, 502 beschreibenden Daten D in Abhängigkeit von den Verbraucherprofilen 400.
  • Weiterhin weist die Vorrichtung 114 eine Reduzierungseinheit 128 auf. Die Reduzierungseinheit 128 reduziert die von der Bestimmungseinheit 124 bestimmten Daten D in reduzierte Daten R. Hierzu kann die Reduzierungseinheit 128 von einer Reihenentwicklung, insbesondere einem POD-Verfahren, Gebrauch machen.
  • Ferner weist die Vorrichtung 114 eine Erfassungseinrichtung 130 in Form einer Sensorschnittstelle auf. Die Sensorschnittstelle 130 ist mit den Druck- und Durchflusssensoren 116, 118 signaltechnisch verbunden. Die Drucksensoren 116 ermitteln dabei erste Druckwerte p1 1-p1 n, die Durchflusssensoren 118 erste Durchflusswerte q1 1-q1 n.
  • Eine Rekonstruktionseinheit 132 der Vorrichtung 114 rekonstruiert zweite Druck- und Durchflusswerte p2 1-p2 n, q2 1-q2 n an von den ersten Stellen unterschiedlichen zweiten Stellen. Die zweiten Stellen sind jeweils mit einem Kreuz in Fig. 1 angedeutet. Diese Rekonstruktion erfolgt auf Basis der von der Reduzierungseinheit 128 bereitgestellten reduzierten Daten unter Verwendung der ersten Druck- und Durchflusswerte p1 1-p1 n, q1 1-q1 n.
  • Schließlich steuert eine Ansteuereinheit 134 die Pumpe 110 basierend auf den ersten Druck- und/oder Durchflusswerten p1 1-p1 n, q1 1-q1 n sowie den zweiten Druck- und/oder Durchflusswerten p2 1-p2 n, q2 1-q2 n an. Weiterhin kann die Ansteuerung auf Basis eines auf einem Speicher 136 gespeicherten Drucksollwerts psoll erfolgen. Bei dem Drucksollwert psoll kann es sich um einen insbesondere gesetzlich vorgegebenen Mindestdruck handeln, welcher an keiner Stelle in dem Versorgungsnetz 100 unterschritten werden darf. Die Ansteuereinheit 134 steuert die Pumpe 110 entsprechend an.
  • Fig. 2 zeigt ein Ablaufdiagramm eines Verfahrens gemäß einer Ausführungsform der Erfindung. Das Verfahren ist zur Druckregelung in dem Versorgungsnetz 100 geeignet und wird insbesondere auf der Vorrichtung 114 ausgeführt. Dabei werden nachfolgend noch weitere, nicht im Zusammenhang mit Fig. 1 erläuterte Ausführungsformen beschrieben, die gleichwohl auf der Vorrichtung 114 implementierbar sind.
  • In einem Schritt S1 werden die Verbrauchsprofile 400 für jeden der Verbraucher 112 bestimmt.
  • Dies kann beispielsweise in einem Verfahren geschehen, wie nachfolgend mit Bezug auf Fig. 3 näher erläutert.
  • Gemäß einem Schritt S1-1 wird ein Gesamtverbrauch aller Verbraucher 112 in dem Versorgungsnetz 100 bestimmt. Dieser Gesamtverbrauch kann beispielsweise berechnet werden, indem die Jahresendabrechnungen der jeweiligen Verbraucher aufsummiert und durch die Anzahl der Tage des Jahres geteilt werden.
  • In einem weiteren Schritt S1-2 wird der Anteil eines jeweiligen Verbrauchers 112 an dem Gesamtverbrauch bestimmt. Dieser Anteil kann beispielsweise dadurch berechnet werden, dass die Jahresendabrechnungen der jeweiligen Verbraucher 112 in ein Verhältnis zueinander gesetzt werden. Sowohl die Information über den Gesamtverbrauch wie auch die Information über den Anteil eines jeweiligen Verbrauchers 112 kann beispielsweise auf dem Speicher 122 gespeichert sein.
  • In einem weiteren Schritt S1-3 wird nun ein Wert von Null jedem der Verbraucher 112 zugewiesen. Insoweit handelt es sich um einen auf beispielsweise der Bestimmungseinheit 120 softwaretechnisch simulierten Verbraucher 112.
  • In einem Schritt S1-4 wird eine Menge Q des Mediums, hier Wasser, festgelegt, welche kleiner ist als der bestimmte Gesamtverbrauch. Insbesondere sollte die Menge Q deutlich kleiner sein als der bestimmte Gesamtverbrauch. Beispielsweise könnte die Menge Q gemäß dem vorliegenden Ausführungsbeispiel eines Wasserversorgungsnetzes 3 Liter betragen.
  • In einem Schritt S1-5 wird nun ein (virtueller) Verbraucher 112 ausgewählt. Die Auswahl erfolgt zufällig, wobei die Wahrscheinlichkeit, dass ein Verbraucher 112 ausgewählt wird, seinem Anteil an dem Gesamtverbrauch entspricht. Beträgt der Anteil eines Verbrauchers 112 am Gesamtverbrauch beispielsweise 10%, so beträgt die Wahrscheinlichkeit, dass dieser ausgewählt wird, ebenfalls 10%.
  • In der Folge nimmt der ausgewählte Verbraucher 112 über eine Zeitspanne t von beispielsweise 1 bis 3 Minuten die Menge Q aus dem Versorgungsnetz 100 ab, d.h. er verbraucht diese. In einem Schritt S1-6 wird daher ein Verbrauchswert des ausgewählten Verbrauchers 112 um die Menge Q erhöht.
  • In einem Schritt S1-7 wird die Summe der Verbrauchswerte aller Verbraucher 112 mit dem bestimmten Gesamtverbrauch verglichen. Ist diese Summer kleiner als der bestimmte Gesamtverbrauch, so werden die Schritte S1-5 bis S1-7 wiederholt.
  • Somit werden die in Fig. 4 gezeigten Verbrauchsprofile 400 für einen jeweiligen Verbraucher 112 generiert. Bei dem beschriebenen Ausführungsbeispiel wurde eine Klassifikation der Verbraucher 112 lediglich auf Basis ihres Anteils am Gesamtverbrauch vorgenommen. Dagegen kann die Klassifikation auch vorsehen, dass den Verbrauchern je nach Gebäudetyp, beispielsweise Einfamilienhaus, Mehrfamilienhaus, Reihenhaus, Bürogebäude, Schule, Städtische Einrichtung oder Fabrikgebäude ein bestimmtes Verbrauchsprofil zugewiesen wird.
  • Nun zurückkehrend zu Fig. 2 ist dort ein Schritt S2 gezeigt, welcher sich an den Schritt S1 anschließt. In dem Schritt S2 werden die Druck- und/oder Durchflussprofile 500, 502 bzw. die diese beschreibenden Daten bestimmt, wie in Fig. 5 gezeigt. In Kenntnis der Abflüsse (entsprechend den Verbrauchsprofilen 400) sowie potentieller Zuflüssen über die Pumpe 110 werden auf der Bestimmungseinheit 124 Berechnungen ausgeführt. Diese Berechnungen beziehen beispielsweise die Länge der Rohre 102, die Topologie des Versorgungsnetzes 100 und weitere insbesondere auf dem Speicher 126 gespeicherte Informationen mit ein. Die Druck- und Durchflusswerte werden an jeder Stelle in dem Versorgungsnetz 100 bzw. an geeignet vielen Stellen, um eine gewünschte hohe Auflösung zu erzielen, berechnet. Die Druck- und Durchflusswerte werden dabei für jede der im Zusammenhang mit dem Schritt S1-6 genannten Zeitspannen t berechnet. Das Berechnen der Druck- und Durchflussprofile beschreibenden Daten D kann für eine jeweilige Zeitspanne t im Sinne des Monte-Carlo-Verfahrens mehrfach erfolgen.
  • In dem Schritt S3 werden die Daten D bzw. die Simulationsdaten auf der Reduzierungseinheit 128 reduziert. Die Datenreduzierung kann insbesondere basierend auf einer Reihenentwicklung, insbesondere auf Basis eines POD-Verfahrens, erfolgen. Mit anderen Worten wird eine Kombination von wenigen Basisvektoren gefunden, welche die Daten D bzw. das Simulationsmodell ausreichend gut annähern. Das POD-Verfahren ist beispielsweise in [KW] beschrieben.
  • Bevor nun der Schritt S4 erfolgt, können die Druck- und Durchflusssensoren 116, 118 in dem Versorgungsnetz 100 basierend auf dem Gappy-POD-Verfahren, ebenfalls beschrieben von [KW], angeordnet werden. Dabei werden die Druck- und Durchflusssensoren 116, 118 in einem heuristischen Verfahren zunächst an den lokalen örtlichen Optima für die einzelnen POD-Moden platziert. Durch die Minimierung der Kondition (condition number) der Matrix M des Gappy-POD-Verfahrens kann die Platzierung der Druck- und Durchflusssensoren 116, 118 weiter verbessert werden. Alternativ können die Druck- und Durchflusssensoren 116, 118 auch, beispielsweise in dem Fall, dass diese bereits fest installiert sind - an beliebigen Positionen vorgesehen sein.
  • Die vorstehenden Schritte S1-S3 können "offline", insbesondere vor Inbetriebnahme des Versorgungsnetzes 100 durchgeführt werden.
  • In dem Schritt S4 werden nun die Druck- und Durchflusswerte p1 1 - p1 n, q1 1 - q1 n mittels der Druck- und Durchflusssensoren 116, 118 an den diesen jeweils zugeordneten Stellen erfasst.
  • In dem Schritt S5 werden die Druck- und Durchflusswerte p2 1 - p2 n, q2 1 - q2 n mit einer geeigneten Auflösung rekonstruiert bzw. hochgerechnet. Diese Rekonstruktions- bzw. Hochrechnung erfolgt auf der Rekonstruktionseinheit 132, wobei die reduzierten Daten R sowie die bereits gemessenen Druck- und Durchflusswerte p1 1 - p1 n, q1 1 - q1 n verwendet werden. Die Rekonstruktion erfolgt bevorzugt unter Verwendung eines Gappy-POD-Verfahrens, wie in [KW] beschrieben.
  • Das Gappy-POD-Verfahren umfasst die Ermittlung eines Reihenansatzes, bei [KW] als Matrix M bezeichnet. Auch die Matrix M kann insbesondere von der Reduzierungseinheit 132 "offline", das heißt insbesondere vor Inbetriebnahme des Versorgungsnetzes 500, erzeugt werden. Im "online"-Teil können dann die Koeffizienten, bei [KW] als bi bezeichnet, der Reihenentwicklung für die aktuellen Druck- und Durchflusswerte p1 1 - p1 n, q1 1 - q1 n berechnet werden. Da sich die Positionen der Druck-und Durchflusssensoren 116, 118 im Betrieb nicht ändern, ändert sich auch der entsprechende Maskenvektor, bei [KW] bei nk bezeichnet, nicht, so dass sich entsprechend auch der Reihenansatz M über die Zeit nicht ändert, also zeitunabhängig ist. Mithin beschränkt sich die Rekonstruktion der Druck- und Durchflusswerte p2 1 bis p2 n, q2 1 bis q2 n auf das Aufsummieren von einer geringen Anzahl von Reihengliedern. Entsprechend schnell können die Berechnungen erfolgen, so dass eine verzögerungsfreie Steuerung, insbesondere eine Echtzeitsteuerung, der Pumpe 110 möglich ist.
  • Anhand von Fig. 6 wird die durchgeführte Datenreduktion graphisch illustriert. Mittels Reihenansätzen werden die Datensätze approximiert, wobei jede Messreihe als "glatte Approximation" und eine hochfrequente kleine Störung dargestellt werden kann. Die reduzierten Daten R enthalten dann nur mehr die glatte Approximation.
  • In dem Schritt S5 wird die Pumpe 110 insbesondere mittels der Ansteuereinheit 134 angesteuert. Die Ansteuerung erfolgt auf Basis sämtlicher gemessener und berechneter Druck- und Durchflusswerte p1 1 - p1 n, q1 1 - q1 n, p2 1 - p2 n, q2 1 - q2 n.
  • Insbesondere kann folgendes Ansteuerverfahren vorgesehen sein: Die Ansteuereinheit 134 ermittelt aus sämtlichen Druckwerten p1 1 - p1 n, p2 1 - p2 n den Minimaldruck und vergleicht diesen mit dem Drucksollwert psoll. Solange der ermittelte Minimaldruck über dem Drucksollwert psoll liegt, reduziert sie den von der Pumpe 110 erzeugten Druck, beispielsweise durch eine entsprechende Ansteuerung des die Pumpe 110 antreibenden Elektromotors. Der Minimaldruck kann dadurch so eingestellt werden, dass er in einem möglichst kleinen Toleranzfenster um den Drucksollwert psoll (bspw. Drucksollwert psoll +/- 5%)liegt.
  • Anstelle oder zusätzlich zu der Pumpe 110 können ein oder mehrere (nicht gezeigte) Ventile 138 in dem Versorgungsnetz 100 angeordnet sein. Die Ventile 138 sind dazu eingerichtet, einen Druck und/oder eine Durchflussmenge in den Rohren 102 des Versorgungsnetzes 100 zu steuern. Die Ansteuereinheit 134 kann dazu eingerichtet sein, die Ventile 138 bzw. Stellmotoren derselben analog der Pumpe 110 anzusteuern. D.h., die Ventile 138 werden ebenfalls derart angesteuert, dass der ermittelte Minimaldruck in dem erwähnten Toleranzfenster liegt.
  • Obwohl die Erfindung vorliegend anhand konkreter Ausführungsbeispiele beschrieben wurde, ist sie nicht auf diese Ausführungsbeispiele beschränkt und kann auf verwandte Gebiete und Anwendungen übertragen werden. Daher ist sie vielfältig modifizierbar.
    • [TL]: Thornton, J., Lambert, A.: Progress in Practical Prediction of Pressure: Leakage, Pressure:Brust Frequency and Pressure:Consumption Relationships. Proceedings of IWA Special Conferences 'Leakage 2005', Halifax, Nova Scotia, Canada, September 12-14, 2005.
    • [UBRR]: Ulanicki, B., Bounds, P.L.M., Rance, J.P. Reynolds, L.: Open and closed loop pressure control for leakage reduction. Urban Water 2, 2000, Elsevier.
    • [KW]: Willcox, Karen: Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition. MIT, 2004.

Claims (14)

  1. Verfahren zur Druckregelung in einem Versorgungsnetz (100) für eine Versorgung von Verbrauchern (112) mit einem Medium (106), wobei das Versorgungsnetz (100) zumindest eine Pumpe (110) zum Pumpen des Mediums und/oder zumindest ein Ventil (138) zum Steuern eines Mediumflusses aufweist, mit den Schritten:
    a) Bestimmen (S1) von zumindest einem Verbrauchsprofil (400) für den jeweiligen Verbraucher (112),
    b) Bestimmen (S2) von Druck- und/oder Durchflussprofile (500, 502) in dem Versorgungsnetz (100) beschreibenden Daten (D) basierend auf den Verbrauchsprofilen (400),
    c) Reduzieren (S3) der Daten (D) in reduzierte Daten (R),
    d) Erfassen (S4) von zumindest einem ersten Druck- und/oder Durchflusswert (p1 1 - p1 n, q1 1 - q1 n) an zumindest einer ersten Stelle in dem Versorgungsnetz (100),
    e) Rekonstruieren (S5) von zumindest einem zweiten Druck-und/oder Durchflusswert (p2 1 - p2 n, q2 1 - q2 n) an zumindest einer zweiten Stelle in dem Versorgungsnetz (100) aus den reduzierten Daten (R) mittels des zumindest einen ersten Druck- und/oder Durchflusswerts (p1 1 - p1 n, q1 1 - q1 n), und
    f) Ansteuern (S6) der zumindest einen Pumpe (110) und/oder des zumindest einen Ventils (138) basierend auf dem zumindest einen ersten Druck- und/oder Durchflusswert (p1 1 - p1 n, q1 1 - q1 n) und dem zumindest einen zweiten Druck-und/oder Durchflusswert (p2 1 - p2 n, q2 1 - q2 n).
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass in dem Schritt c) die Daten (D) basierend auf einer Reihenentwicklung reduziert werden.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Daten (D) basierend auf einer Hauptkomponentenanalyse, auch als POD-Verfahren bzw. Proper Orthogonal Decomposition Verfahren bezeichnet, reduziert werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass der Schritt e) das Rekonstruieren des zumindest einen zweiten Druck- und/oder Durchflusswerts (p2 1 - p2 n, q2 1 - q2 n) unter Verwendung eines Gappy-POD-Verfahrens umfasst.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    dass zweite Druck- oder Durchflusswerte (p2 1 - p2 n, q2 1 - q2 n) zu unterschiedlichen Zeitpunkten basierend auf demselben Reihenansatz (M) generiert werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Schritt a) folgende Schritte aufweist:
    - Bestimmen (S1-1) eines Gesamtverbrauchs aller Verbraucher (112),
    - Bestimmen (S1-2) eines Anteils eines jeweiligen Verbrauchers (112) an dem Gesamtverbrauch,
    - Zuweisen (S1-3) eines Verbrauchswerts von Null für den jeweiligen Verbraucher (112),
    - Festlegen (S1-4) einer Menge (Q) des Mediums (106), welche kleiner ist als der Gesamtverbrauch,
    - Auswählen (S1-5) eines Verbrauchers (112), wobei eine Wahrscheinlichkeit, dass ein Verbraucher ausgewählt wird, seinem Anteil an dem Gesamtverbrauch entspricht,
    - Erhöhen (S1-6) des Verbrauchswerts des ausgewählten Verbrauchers (112) um die Menge (Q), und
    - Wiederholen (S1-7) der Schritte des Auswählen (S1-5) eines Verbrauchers (112) und des Erhöhens (S1-6) des Verbrauchswerts solange die Summe der Verbrauchswerte aller Verbraucher (112) kleiner als der Gesamtverbrauch ist.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    dass der Schritt b) ein Bestimmen der die Druck- und/oder Durchflussprofile (500, 502) beschreibenden Daten (D), während ein jeweiliger Verbraucher (112) die Menge (Q) des Mediums verbraucht, umfasst.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet,
    dass das Berechnen der Druck- und/oder Durchflussprofile (500, 502) beschreibenden Daten nach dem Monte-Carlo-Verfahren erfolgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass der zumindest eine erste Druck- und/oder Durchflusswert (p1 1 - p1 n, q1 1 - q1 n) an der zumindest einen ersten Stelle in dem Versorgungsnetz (100) mittels zumindest eines ersten Sensors (116, 118) erfasst wird, wobei die zumindest eine erste Stelle basierend auf dem POD-Verfahren, insbesondere dem Gappy-POD-Verfahren, ausgewählt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass ein Minimaldruck aus dem zumindest einen ersten Druckwert (p1 1 - p1 n) und dem zumindest einen zweiten Druckwert (p2 1 - p2 n) ermittelt wird und ferner die zumindest eine Pumpe (110) und/oder das zumindest eine Ventil (138) in Abhängigkeit von einer Differenz zwischen einem Drucksollwert (psoll) und dem ermittelten Minimaldruck angesteuert wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass in dem Schritt b) die Daten (D) Druck- und/oder Durchflussprofile (500, 502) in Knoten (104) und/oder Rohren (102) des Versorgungsnetzes (100) beschreiben.
  12. Verfahren nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass das Versorgungsnetz (100) ein Wasserversorgungsnetz ist.
  13. Vorrichtung (114) zur Druckregelung in einem Versorgungsnetz (100) für eine Versorgung von Verbrauchern (112) mit einem Medium (106), wobei das Versorgungsnetz (100) zumindest eine Pumpe (110) zum Pumpen des Mediums (106) und/oder zumindest einem Ventil (138) zum Steuern eines Mediumflusses aufweist, mit:
    - einer Bestimmungseinheit (120) zum Bestimmen zumindest eines Verbrauchsprofils (400) für einen jeweiligen Verbraucher (112),
    - einer Bestimmungseinheit (124) zum Bestimmen von Druck-und/oder Durchflussprofile (500, 502) in dem Versorgungsnetz (100) beschreibenden Daten (D) basierend auf den bestimmten Verbrauchsprofilen (400),
    - einer Reduzierungseinheit (128) zum Reduzieren der Daten (D) in reduzierte Daten (R),
    - einer Erfassungseinheit (130) zum Erfassen von zumindest einem ersten Druck- und/oder Durchflusswert (p1 1 bis p1 n, q1 1 bis q1 n) an zumindest einer ersten Stelle in dem Versorgungsnetz (100),
    - einer Rekonstruktionseinheit (132) zum Rekonstruieren von zumindest einem zweiten Druck- und/oder Durchflusswert (p2 1 - p2 n, q2 1 - q2 n) an zumindest einer zweiten Stelle in dem Versorgungsnetz (100) aus den reduzierten Daten (R) mittels des zumindest einen ersten Druck- und/oder Durchflusswerts (p1 1 - p1 n, q1 1 - q1 n), und
    - einer Ansteuereinheit (134) zum Ansteuern der zumindest einen Pumpe (110) und/oder des zumindest einen Ventils (138) basierend auf dem zumindest einen ersten Druck- und/oder Durchflusswert (p1 1 - p1 n, q1 1 - q1 n) und dem zumindest einen zweiten Druck- und/oder Durchflusswert (p2 1 - p2 n, q2 1 - q2 n).
  14. Versorgungsnetz (100) zur Versorgung von Verbrauchern (112) mit einem Medium (106), mit:
    - Knoten (104) und/oder Rohren (102),
    - zumindest einer Pumpe (110) zum Pumpen des Mediums (106) durch die Knoten (104) und/oder Rohre (102) und/oder zumindest einem Ventil (138) zum Steuern eines Mediumflusses durch die Knoten (104) und/oder Rohre (102), und
    - zumindest einer Vorrichtung (114) nach Anspruch 13, welche die zumindest eine Pumpe (110) und/oder das zumindest eine Ventil (138) ansteuert.
EP15700671.9A 2014-03-21 2015-01-15 Verfahren und vorrichtung zur druckregelung in einem versorgungsnetz Active EP3120201B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014205332.3A DE102014205332A1 (de) 2014-03-21 2014-03-21 Verfahren zur Druckregelung in einem Versorgungsnetz, Vorrichtung sowie Versorgungsnetz
PCT/EP2015/050668 WO2015139853A1 (de) 2014-03-21 2015-01-15 Verfahren zur druckregelung in einem versorgungsnetz, vorrichtung sowie versorgungsnetz

Publications (2)

Publication Number Publication Date
EP3120201A1 EP3120201A1 (de) 2017-01-25
EP3120201B1 true EP3120201B1 (de) 2017-11-29

Family

ID=52391937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15700671.9A Active EP3120201B1 (de) 2014-03-21 2015-01-15 Verfahren und vorrichtung zur druckregelung in einem versorgungsnetz

Country Status (5)

Country Link
US (1) US10443217B2 (de)
EP (1) EP3120201B1 (de)
CN (1) CN106462129B (de)
DE (1) DE102014205332A1 (de)
WO (1) WO2015139853A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545899B (en) * 2015-12-21 2018-07-25 Imperial Innovations Ltd Management of liquid conduit systems
US11340134B2 (en) 2016-06-20 2022-05-24 Siemens Aktiengesellschaft Method for fluid measurement for a discrete area of a fluid supply network
EP3422122B1 (de) * 2017-06-29 2022-09-28 Grundfos Holding A/S Modellbildungsmodul zur erzeugung eines modells zur steuerung eines druckregulierungssystems eines wasserversorgungsnetzes
DE102017116079A1 (de) * 2017-07-18 2019-01-24 Eisenmann Se Versorgungskreis für ein Wärmeträgermedium für einen Verbraucher, Industrieanlage und Verfahren zum Betreiben von solchen
SE543008C2 (sv) 2018-11-22 2020-09-22 Stockholm Exergi Ab Förfarande och system för balansering av massflöde under produktionsstörning eller -brist i ett fjärrvärmenät
EP3699569A1 (de) * 2019-02-25 2020-08-26 Siemens Aktiengesellschaft Detektion einer leckage in einem versorgungsnetz
EP3699700A1 (de) 2019-02-25 2020-08-26 Siemens Aktiengesellschaft Druckregelung in einem versorgungsnetz
CN110158700B (zh) * 2019-05-22 2020-12-29 中国铁路设计集团有限公司 一种优质饮用水工程和二次供水改造工程结合的改造方法
US11439856B2 (en) * 2019-08-14 2022-09-13 Akron Brass Company Fire-fighting control system
DE102019213530A1 (de) * 2019-09-05 2021-03-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Wasserverteilungssystems
KR102048243B1 (ko) * 2019-09-09 2019-11-25 주식회사 페이스 연관-pod를 통하여 현장 측정 데이터와 cae 해석을 결합한 차수 감축 모델 구축 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422561C2 (de) 1974-05-09 1983-11-03 Hoechst Ag, 6230 Frankfurt Vorrichtung zur Lecküberwachung einer Rohrleitung
GB9212122D0 (en) * 1992-06-09 1992-07-22 Technolog Ltd Water supply pressure control apparatus
US6789620B2 (en) * 2001-02-16 2004-09-14 Halliburton Energy Services, Inc. Downhole sensing and flow control utilizing neural networks
AUPR353801A0 (en) 2001-03-02 2001-03-29 Rubicon Systems Australia Pty Ltd Fluid regulation
US6648077B2 (en) * 2001-07-12 2003-11-18 Bryan K. Hoffman Fire extinguishing system
US6786245B1 (en) * 2003-02-21 2004-09-07 Air Products And Chemicals, Inc. Self-contained mobile fueling station
CA2546585A1 (en) * 2003-11-24 2005-06-09 Alumina Micro Llc Microvalve device suitable for controlling a variable displacement compressor
US7539570B2 (en) * 2004-06-22 2009-05-26 Caterpillar S.A.R.L. Machine operating system and method
US7658598B2 (en) * 2005-10-24 2010-02-09 Proportionair, Incorporated Method and control system for a pump
US20080295568A1 (en) * 2007-06-01 2008-12-04 Gilbarco Inc. System and method for automated calibration of a fuel flow meter in a fuel dispenser
JP4564594B2 (ja) * 2008-04-17 2010-10-20 株式会社E.I.エンジニアリング 熱電設備のシミュレーションシステム
GB0811942D0 (en) * 2008-07-01 2008-07-30 Airbus Uk Ltd Method of designing a structure
DE102008064491A1 (de) * 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Simulationsgestütztes Verfahren zur Steuerung bzw. Regelung von Druckluftstationen
US8457908B2 (en) 2009-06-11 2013-06-04 University Of Washington Sensing events affecting liquid flow in a liquid distribution system
DE102011078240A1 (de) * 2011-06-28 2013-01-03 Siemens Aktiengesellschaft Leckageerkennung mittels stochastischer Massenbilanz
US20130085619A1 (en) 2011-10-04 2013-04-04 Cory Howard Methods and systems for remote controlling of irrigation systems
EP2906280B1 (de) * 2012-10-12 2018-09-26 Inova Labs, Inc. Sauerstoffkonzentratorsysteme und verfahren
US10437210B2 (en) * 2013-10-14 2019-10-08 Aveva Software, Llc Interactive feedback for variable equation specifications

Also Published As

Publication number Publication date
CN106462129B (zh) 2019-02-19
US20170037604A1 (en) 2017-02-09
CN106462129A (zh) 2017-02-22
DE102014205332A1 (de) 2015-09-24
EP3120201A1 (de) 2017-01-25
US10443217B2 (en) 2019-10-15
WO2015139853A1 (de) 2015-09-24

Similar Documents

Publication Publication Date Title
EP3120201B1 (de) Verfahren und vorrichtung zur druckregelung in einem versorgungsnetz
EP2936003B1 (de) Verfahren und vorrichtungen zum abgleichen einer gruppe von verbrauchern in einem fluidtransportsystem
DE102018212140A1 (de) Anlagensteuervorrichtung und Steuerverfahren dafür, Walzwerksteuervorrichtung und Steuerverfahren und Programm dafür
DE102008057730A1 (de) Verfahren zum Betreiben eines Systems zum Transport thermischer Energie über ein flüssiges Medium
WO2020216530A1 (de) Verfahren zum bestimmen von restnutzungszyklen, restnutzungszyklusbestimmungsschaltung, restnutzungszyklusbestimmungsvorrichtung
EP2217983A2 (de) Verfahren zum betrieb eines strömungstechnischen leitungssystems
DE102014223810A1 (de) Verfahren und Assistenzsystem zur Erkennung einer Störung in einer Anlage
EP3699700A1 (de) Druckregelung in einem versorgungsnetz
EP2057419A1 (de) Verfahren zum betrieb eines rohrnetzes
EP3599583A1 (de) Bestimmung des verbrauchs an heiz- oder kühlenergie einer baulichen untereinheit
WO2020078806A1 (de) Verfahren zum bestimmen eines schaltzustands eines ventils und elektromagnetventilanordnung
DE102014016791B4 (de) Verfahren zur hydraulischen Regelung mehrerer Heizkreisläufe am Verteilerbalken
EP1074795A2 (de) Verfahren zum hydraulischen Abgleichen einer Heizungsanlage
EP2057420B1 (de) Verfahren zur durchführung einer rohrnetzanalyse eines rohrnetzes
EP1906273A1 (de) Verfahren zum Betreiben einer grosstechnischen Anlage sowie Leitsystem für eine grosstechnische Anlage
EP3425291B1 (de) Verfahren zur zuordnung eines heizkreis-temperaturfühlers eines heiz- und/oder kühlsystems zum betreffenden heizkreis oder zur überprüfung der zuordnung eines heizkreis-temperaturfühlers eines heiz- und/oder kühlsystems zum betreffenden heizkreis
EP3065015B1 (de) Diagnoseeinrichtung und -verfahren zur überwachung des betriebs von regelkreisen
EP1462901A2 (de) Verfahren und Vorrichtung zur Prozessregelung oder -steuerung von thermischen Lastwechseln von einem Medium durchströmten krümmungsbehinderten und/oder dickwandigen Bauteil in einem thermischen System
EP3961067B1 (de) Kühlverfahren für ein hydraulisches element eines kühlölkreislaufs, steuergerät, kraftfahrzeug
EP3320216B1 (de) Simulationsvorrichtung und simulationsverfahren
EP3168540A1 (de) Verfahren zum durchführen eines automatisierten hydraulischen abgleichs, ventil und heizungsanlage hierzu
EP3323025A1 (de) Verfahren und vorrichtung zum betreiben eines technischen systems
Fuchs et al. Numerical Calculation of the Irreversible Entropy Production in Heat Transferring Structures
WO2016050599A1 (de) Verfahren zum ermitteln des energiebedarfs einer produktionsmaschine oder eines aus mehreren produktionsmaschinen bestehenden produktionssystems sowie zur durchführung des verfahrens geeignetes messgerät
DE102020210976B4 (de) Steuerverfahren, Kühlölkreislauf, Steuergerät, Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170523

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 950945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002449

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002449

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180830

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 950945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230113

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230126

Year of fee payment: 9

Ref country code: GB

Payment date: 20230202

Year of fee payment: 9

Ref country code: DE

Payment date: 20220620

Year of fee payment: 9