EP3120036A1 - Bearing element for a sliding or rolling bearing - Google Patents

Bearing element for a sliding or rolling bearing

Info

Publication number
EP3120036A1
EP3120036A1 EP15714171.4A EP15714171A EP3120036A1 EP 3120036 A1 EP3120036 A1 EP 3120036A1 EP 15714171 A EP15714171 A EP 15714171A EP 3120036 A1 EP3120036 A1 EP 3120036A1
Authority
EP
European Patent Office
Prior art keywords
bearing element
phase
bearing
hard material
metallic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP15714171.4A
Other languages
German (de)
French (fr)
Inventor
Christian SCHULTE-NÖLLE
Claus Müller
Rudnik YEGOR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP3120036A1 publication Critical patent/EP3120036A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/80Cermets, i.e. composites of ceramics and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/42Application independent of particular apparatuses related to environment, i.e. operating conditions corrosive, i.e. with aggressive media or harsh conditions

Definitions

  • the invention relates to a bearing element for a sliding or roller bearing, which bearing element is formed at least in sections from a powder metallurgical composite material which contains a metallic binder phase and a hard material phase, or comprises such a composite material.
  • Bearing elements for sliding or roller bearings in particular in the form of bearing rings are well known and are usually made of mechanically particularly durable materials, d. H. in particular classical Wälzlagerstäh- len, formed.
  • mechanically particularly durable materials d. H. in particular classical Wälzlagerstäh- len, formed.
  • powder metallurgical composite materials and plastic and ceramic materials for the formation of corresponding bearing elements known.
  • the invention has for its object to provide a, in particular mechanically as well as corrosive, highly stressed bearing element.
  • the object is achieved by a bearing element of the type mentioned, which is characterized in that the metallic binder phase is based on at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium.
  • a bearing element is proposed for a sliding or roller bearing, which bearing element is at least partially formed or made from a powder metallurgical composite material containing a metallic binder phase and a hard material phase, or at least partially comprises such a powder metallurgical composite material.
  • the special feature of the bearing element according to the invention lies in particular in the (chemical) composition of the metallic binder phase.
  • the metallic binder phase is based on at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium.
  • the metallic binder phase is formed from at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium or at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium as the main constituent.
  • the metallic binder phase is formed from or comprises at least one metallic compound containing chromium and / or cobalt and / or molybdenum and / or nickel and / or titanium. The elements mentioned can therefore be elemental or (chemically) bound.
  • the powder metallurgical composite material is generally characterized by a comparatively tough metallic binder phase and a comparatively hard hard material phase.
  • the toughness of the metallic binder phase compensates for the brittleness of the hard material phase and leads to a sufficient (total) impact strength of the composite material.
  • the hardness of the hard material phase gives the composite a high hardness.
  • Both the metallic binder phase and the hard material phase are extremely resistant to corrosion.
  • the powder metallurgical composite material therefore has a high strength, toughness, hardness, rollover and wear resistance, in particular to abrasion, adhesion and cavitation, and a high corrosion resistance. The same applies to the bearing element made or produced according to this invention.
  • the comparatively high toughness of the composite material makes it possible, even mechanically as well as corrosive high-loadable larger bearing elements, d. H. especially larger bearing rings, namely bearing rings up to a diameter of up to about 1000 mm to realize.
  • the toughness of the composite reduces equally the formation of viable cracks due to the overrolling of foreign particles and the possibility of high dynamic stress failure.
  • bearing elements with the following physical or mechanical characteristics can be realized in particular: density 5 - 15 g / cm 3 , compressive strength 2000 - 8000 MPa, modulus of elasticity 400 - 700 GPa, hardness 1000 - 2000 HV.
  • the numerical values mentioned are purely exemplary and may, as mentioned, vary depending on the respective chemical as well as proportionate composition of the composite material, ie in particular also be higher or lower.
  • the special chemical as well as proportionate composition of the powder metallurgical composite material is thus the basis for the special Property profile of the bearing element according to the invention, which predestines the bearing element, in particular also without conventional lubrication, for use in areas of mechanical and corrosive stress.
  • Corresponding applications can z. B. in corrosive environments, ie, for example, in non-aqueous or aqueous, especially chlorine-containing, and acidic or basic environments such.
  • corrosive environments ie, for example, in non-aqueous or aqueous, especially chlorine-containing, and acidic or basic environments such.
  • offshore conveyors generally hydraulic structures, or other marine applications such.
  • ships ie in particular marine propulsion, or in the range of pumps and compressors.
  • Even dry running applications or minimally lubricated application areas are relevant, eg. B. in the field of food and pharmaceutical technology.
  • the bearing element according to the invention or the composite material forming this is known by powder metallurgical processes, d. H. based on a powdered starting material or a powdery starting material mixture prepared.
  • powder metallurgical methods is particularly advantageous because it allows the formation of microstructures with (nearly) isotropic properties.
  • the use of powder metallurgical methods generally permits a near net shape production or primary shaping of the bearing element, which reduces the need for mechanical, ie. H. In particular cutting, post-processing steps largely reduced and therefore advantageous in manufacturing technology and thus also economically.
  • Such a powder metallurgical process for producing the bearing element may be, for example, hot isostatic pressing, HIP for short; Consequently, it is a powder metallurgical production technology principle from the field of primary shaping, according to which a powdered starting material or a pulverulent starting material mixture is compacted or pressed and sintered under pressure and temperature.
  • Another conceivable powder metallurgical method for producing a bearing element according to the invention is the spray compacting method, which is also a powder metallurgical production engineering principle in the field of primary shaping, according to which a pulverulent starting material or a pulverulent starting material mixture is sprayed onto a carrier material and layered
  • An advantage of the spray-compacting process over other powder-metallurgical processes is that it does not necessarily require complete compaction of the powdery starting materials Composite material, which can be formed with spatially or spatially distributed substance or concentration gradient ,
  • the metallic binder phase may additionally contain fractions of iron and / or carbon and / or nitrogen and / or at least one iron and / or carbon and / or nitrogen-containing compound.
  • the property spectrum of the metallic binder phase can be specifically influenced with regard to a specific field of application of the bearing element according to the invention.
  • the connection between the metallic binder phase and the hard material phase which is typically formed from individual hard material phase grains, can also be improved in this way.
  • the metallic binder phase may also be formed from or comprise at least one metallic compound containing chromium and / or molybdenum and / or nickel and / or cobalt and / or titanium. So it is so z. B.
  • the elements chromium, molybdenum, titanium, if present, are present in bonded form and therefore with other constituents of the metallic binder phase, such as. As iron and / or carbon and / or nitrogen are chemically bonded. It is thus conceivable, for example, for the metallic binder phase to contain as the carbon-containing compound chromium and / or molybdenum and / or titanium carbide.
  • the hard material phase associated with the powder metallurgical composite material can be formed from at least one of the following hard material compounds or comprise at least one of the following hard material compounds: borides, carbides, in particular titanium carbide and / or tungsten carbide, carbonitrides, in particular titanium carbonitride, nitrides, in particular titanium nitride, silicides.
  • the hard material phase can therefore particularly hard metals, ie in particular sintered carbide carbides such.
  • titanium carbide, titanium carbonitride or titanium nitride particles be formed or include such.
  • the hard material phase can also positively influence the thermal conductivity of the composite material, which is advantageous in particular with regard to the possibility of heat removal from the bearing element according to the invention and thus the cooling capacity of the bearing element according to the invention.
  • the hard material phase is typically formed of or comprises individual hard material phase grains.
  • the powder metallurgical composite material may also contain an intermediate phase, which is formed around the hard material phase grains and via which a bonding of the hard material phase grains to the metallic binder phase is realized.
  • an intermediate phase which is formed around the hard material phase grains and via which a bonding of the hard material phase grains to the metallic binder phase is realized.
  • cermets formed from cermets, ie in particular titanium carbonitride or titanium carbide
  • a ⁇ -phase, ie a complex carbide structure was detected, which lays around the hard material phase grains and ensures a firm connection of these to the metallic binder phase.
  • the volume fraction of the hard material phase in the powder metallurgical composite material is in particular in a range between 50 and 99% by volume, preferably in a range between 85 and 95% by volume. Accordingly, the volume fraction of the metallic binder phase in the powder metallurgical composite material is in particular in a range between 1 and 50% by volume, preferably in a range between 15 and 5% by volume. It must be ensured that the volume fraction of the hard material phase does not fall below 50% by volume in order to ensure a high hardness of the composite material and, consequently, of the bearing element. Nevertheless, in exceptional cases, the volume fraction of the hard material phase may also be below 50% by volume or, in exceptional cases, the proportion of the metallic binder phase may also be above 50% by volume.
  • the hardness of the bearing element is at least in the region of its surface or boundary layer or in near-surface or near-edge regions, in particular between 1000-2000 HV (Vickers hardness), typically above 1100 HV.
  • the surface or boundary layer of the bearing element can have a certain structural area, which differs from further internal structural areas in its properties, ie in particular the hardness, and can therefore be delimited from further internal structural areas.
  • Such surface or boundary layer areas are typically sliding or rolling surfaces provided on the bearing element side, ie in particular raceway surfaces for sliding or rolling bodies or corresponding sliding surfaces. or rolling elements surfaces.
  • the bearing element can also have a consistent overall hardness. In exceptional cases, the hardness of the bearing element, possibly even in sections, below 1000 HV or above 2000 HV.
  • the volume-wise proportion of the metallic binder phase and the hard material phase in particular also the shape, size and distribution of the hard material phase forming hard material phase grains in the serving as a matrix metallic binder phase of importance.
  • the hard-phase grains may generally be of coarse to fine grained.
  • the hard material phase grains are preferably round or round shape. In the context of the production of the composite material should on a coherent as possible distribution of the hard material phase forming. Hard material phase grains are taken in the serving as a matrix metallic binder phase.
  • a characteristic of the shape, size and distribution of the hard material phase forming hard material phase grains is the surface quality and thus the roughness of the bearing element in a finished state, ie after finishing, represents.
  • the roughness of the bearing element in a finished state ie after finishing.
  • the roughness of corresponding bearing elements that larger outer diameter of Have bearing elements in technical-economic terms higher roughness of the bearing elements.
  • Investigations of the roughness showed that for bearing elements with outer diameters above about 200 mm mean roughness R a in the range 0.1 - 1.
  • the bearing element may be, for. B. a bearing ring, ie an outer or an inner ring, a sliding or rolling bearing act.
  • the bearing element may also be a sliding or rolling element or a rolling element cage for receiving rolling elements.
  • the invention further relates to a bearing, d. H. a sliding or rolling bearing, which comprises at least one as described above, inventive bearing element.
  • the bearing element (s) may be, in particular, bearing rings and / or sliding or rolling elements and / or a rolling element cage for accommodating rolling elements.
  • all statements relating to the bearing element according to the invention apply analogously.
  • Figure 1 is a schematic diagram of a rolling bearing comprising a bearing element according to an embodiment of the invention
  • Figure 2 shows a detail of a microstructure of a powder metallurgical composite material for forming a bearing element according to an embodiment of the invention
  • FIG. 3 shows a diagram for illustrating the corrosion resistance of a bearing element according to the invention in comparison to a bearing element formed from a conventional corrosion-resistant bearing steel.
  • Figure 1 shows a schematic diagram of a bearing element 1 according to an embodiment of the invention.
  • the bearing element 1 is part of a roller bearing 2.
  • the bearing element 1 is the outer ring 3 of the rolling bearing. gers 2.
  • the inner ring 4 of the rolling bearing 2 could equally be formed as a corresponding bearing element 1 according to an embodiment of the invention.
  • the bearing element 1 could also be corresponding components of a plain bearing.
  • the bearing element 1 is made of a powder metallurgical, d. H. powder metallurgically produced, composite material formed.
  • the powder metallurgical composite material comprises a metallic binder phase and a hard material phase formed from at least one hard material.
  • the powder metallurgical composite material may accordingly be referred to as "metal matrix composite”.
  • the metallic binder phase is generally based on at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium.
  • the metallic binder phase is formed from at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium or at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium as the main constituent.
  • the metallic binder phase is formed from or comprises at least one metallic compound containing chromium and / or cobalt and / or molybdenum and / or nickel and / or titanium.
  • the said elements can therefore be present elementary or (chemically) bound.
  • the metallic binder phase may additionally contain fractions of iron and / or carbon and / or nitrogen and / or at least one iron and / or carbon and / or nitrogen-containing compound. Chromium and / or molybdenum and / or titanium carbide is particularly suitable as the carbon-containing compound.
  • the hard material phase is generally formed from at least one of the following hard material compounds or comprises at least one of the following hard material compounds: borides, carbides, in particular titanium carbide and / or tungsten carbide, carbonitrides, in particular titanium carbonitride, nitrides, in particular titanium nitride, silicides.
  • the hard material phase is typically present in the form of single or multiple bonded hard material phase grains.
  • the hard material phase grains typically have a particle size of about 0.5 to 10 ⁇ , in particular 0.9 to 6 ⁇ on.
  • the structure of the composite material therefore consists in particular of individual or several interconnected hard material phase grains, which are surrounded by the metallic binder phase.
  • the metallic binding phase thus extends between the hard material phases and binds them in the structure.
  • the microstructure of the composite material can be compared with a masonry comprising several bricks connected by a mortar, the hard material phases representing the bricks and the metallic binder phase representing the mortar.
  • the hard material phase has a proportion of 50 to 99% by volume, in particular a proportion of between 85 and 95% by volume, in the composite material.
  • the metallic binder phase has a proportion of 1-50% by volume, in particular a proportion of between 15 and 5% by volume.
  • the composite material may contain nickel and bound chromium as a metallic binder phase.
  • the hard material phase consists in this specific embodiment of tungsten carbide.
  • the proportion of hard material phase is between 85 and 95 vol .-%.
  • the high content of the hard material phase ensures a very high hardness, typically 1 150 - 1750 HV1, of the composite material and thus of the bearing element 1.
  • the toughness of the metallic binder phase compensates for the brittleness of the hard material phase and ensures good impact resistance, typically K c 7 - 19
  • the compressive strength of the composite material and thus of the bearing element 1 lies between 3500 and 6300 MPa
  • the modulus of elasticity lies in a range between 500 and 650 GPa
  • the Poisson number is between 0.21 and 0.22
  • the density between in a range of 13.0 and 15.0 g / cm 3 .
  • the grain size of the hard material phase grains is between 0.5 and 5 ⁇ .
  • this may contain, as the metallic binder phase, mainly nickel and cobalt.
  • the metallic binder phase here additionally contains carbon or carbide compounds, in particular nickel carbide or cobalt carbide compounds.
  • the hard material phase is formed here from titanium carbide or titanium carbonitride.
  • an intermediate phase is formed around the hard material phase, via which a firm connection of the hard material phase grains is realized to the metallic binder phase.
  • the intermediate phase is a so-called ⁇ phase, ie a complex carbide structure.
  • the hardness of the composite material and thus of the bearing element 1 is between 1 100 and 1650 HV, the impact strength is about K 1c 8 - 14 MN / mm 3 ' 2 , the modulus of elasticity is between 370 and 450 GPa, the density is between 5.8 and 6.9 g / cm 3 . It should be emphasized that the comparatively low density of the composite material leads to a comparatively low component weight.
  • FIG. 2 shows a detail of a microstructure of a powder metallurgical composite material similar to the exemplary embodiment described above for forming a bearing element 1 according to one exemplary embodiment of the invention.
  • the metallic binder phase containing mainly nickel and molybdenum here is indicated by reference numeral 7, the hard material phase grains consisting of titanium carbonitride hereby referenced 8, and the ⁇ phase by reference numeral 9.
  • the connection of the hard material phase Countersurfers 8 to the metallic binding phase 7 takes place via the intermediate phase 9 immediately surrounding the hard-material phase grains 8.
  • bearing elements 1 with mean roughness values R a are interposed
  • the bearing element 1 forming composite material and thus also the bearing element 1 characterized by a high strength, high toughness, high hardness, high rollover and wear resistance, high thermal conductivity and high corrosion resistance.
  • FIG. 3 shows a diagram for illustrating the corrosion resistance of a bearing element 1 according to the invention in comparison to a bearing element formed from a conventional corrosion-resistant bearing steel.
  • the corrosion resistance of the composite material forming the bearing element 1 according to the invention can be illustrated with reference to FIG. 3 in comparison to a corrosion resistance improved from a conventional rolling bearing steel.
  • the electrical current (y-axis) is plotted against the electrical potential (x-axis). Shown are test results from electrochemical investigations of the pitting corrosion potential or the repassivation potential (Ag / AgCl, 3.5% NaCl, 20 ° C.).
  • the curve 10 represents the measurement results for a bearing element according to the invention
  • the curve 1 1 represents the measurement results for a non-inventive bearing element formed from a conventional bearing steel.
  • the material dissolution indexed by the rise of the curve 10 starts significantly later in the bearing element 1 according to the invention than in the bearing element not according to the invention.
  • the repatriation potential ie the potential at which the curves hit the x-axis again after the rise is significantly higher in the case of the bearing element 1 according to the invention compared to the bearing element not according to the invention.
  • the investigations prove the very good corrosion resistance of the bearing element 1 according to the invention.

Abstract

The invention relates to a bearing element (1) for a sliding or rolling bearing, said bearing element (1) being made of, at least in sections, powder metallurgical composite material which contains a metallic binding phase and a hard phase, or comprises one composite material of said type. The metallic binding phase is based on at least one element from the group: chromium, cobalt, molybdenum, nickel, titanium.

Description

Bezeichnung der Erfindung  Name of the invention
Lagerelement für ein Gleit- oder Wälzlager Bearing element for a plain or roller bearing
Beschreibung description
Gebiet der Erfindung Die Erfindung betrifft ein Lagerelement für ein Gleit- oder Wälzlager, welches Lagerelement zumindest abschnittsweise aus einem pulvermetallurgischen Verbundmaterial, welches eine metallische Bindephase und eine Hartstoffpha- se enthält, gebildet ist oder ein solches Verbundmaterial umfasst. Hintergrund der Erfindung FIELD OF THE INVENTION The invention relates to a bearing element for a sliding or roller bearing, which bearing element is formed at least in sections from a powder metallurgical composite material which contains a metallic binder phase and a hard material phase, or comprises such a composite material. Background of the invention
Lagerelemente für Gleit- oder Wälzlager, insbesondere in Form von Lagerringen, sind weithin bekannt und werden in der Regel aus mechanisch besonders beanspruchbaren Materialien, d. h. insbesondere klassischen Wälzlagerstäh- len, gebildet. Für korrosiv besonders beanspruchende Anwendungen sind zudem pulvermetallurgische Verbundmaterialien sowie Kunststoff- und Keramikmaterialen zur Ausbildung entsprechender Lagerelemente bekannt. Bearing elements for sliding or roller bearings, in particular in the form of bearing rings are well known and are usually made of mechanically particularly durable materials, d. H. in particular classical Wälzlagerstäh- len, formed. For corrosive particularly demanding applications are also powder metallurgical composite materials and plastic and ceramic materials for the formation of corresponding bearing elements known.
Insbesondere im Hinblick auf den Einsatz entsprechender Lagerelemente in nicht konventionell geschmierten Betriebssituationen, d. h. vornehmlich in korrosiv wirkenden (dünn)flüssigen, insbesondere wässrigen, Medien, in welchen entsprechende Lagerelemente dauerhaft ausgelagert und von welchen die Lagerelemente durchspült werden, besteht ein Entwicklungsbedarf an mechanisch wie auch korrosiv hoch beanspruchbaren Materialien zur Ausbildung entsprechender Lagerelemente. Derartige, insbesondere aufgrund einer nicht wirkungsvoll realisierbaren Schmierung der Lagerelemente, mechanisch wie auch korrosiv hoch beanspruchende Betriebssituationen sind insbesondere bei Anwendungen in Wasserbauwerken, wie z. B. Meereskraftwerken, Schleusen- toren, oder in Salz- oder Süßwasserturbinen, oder in Bohrkopf-, Kompressor- oder Pumpenlagern gegeben. In diesen Anwendungen besteht zudem die Gefahr der Aushöhlung (Kavitation). Zusammenfassung der Erfindung In particular with regard to the use of corresponding bearing elements in non-conventionally lubricated operating situations, ie primarily in corrosive (thin) liquid, in particular aqueous, media in which corresponding bearing elements permanently outsourced and from which the bearing elements are flushed, there is a need for development of mechanical as well corrosive highly stressable materials to form corresponding bearing elements. Such, in particular due to a not effectively realizable lubrication of the bearing elements, mechanically as well as corrosive highly demanding operating situations are particularly in applications in hydraulic structures, such. Marine power plants, locks or in salt or fresh water turbines, or in drill head, compressor or pump bearings. In these applications, there is also the risk of cavitation. Summary of the invention
Der Erfindung liegt die Aufgabe zugrunde, ein, insbesondere mechanisch wie auch korrosiv, hoch beanspruchbares Lagerelement anzugeben. Die Aufgabe wird erfindungsgemäß durch ein Lagerelement der eingangs genannten Art gelöst, welches sich dadurch auszeichnet, dass die metallische Bindephase auf wenigstens einem Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan basiert. Erfindungsgemäß wird ein Lagerelement für ein Gleit- oder Wälzlager vorgeschlagen, welches Lagerelement zumindest abschnittsweise aus einem eine metallische Bindephase und eine Hartstoffphase enthaltenden pulvermetallurgischen Verbundmaterial gebildet respektive hergestellt ist oder zumindest abschnittsweise ein solches pulvermetallurgisches Verbundmaterial umfasst. Das Besondere an dem erfindungsgemäßen Lagerelement liegt insbesondere in der (chemischen) Zusammensetzung der metallischen Bindephase. The invention has for its object to provide a, in particular mechanically as well as corrosive, highly stressed bearing element. The object is achieved by a bearing element of the type mentioned, which is characterized in that the metallic binder phase is based on at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium. According to the invention, a bearing element is proposed for a sliding or roller bearing, which bearing element is at least partially formed or made from a powder metallurgical composite material containing a metallic binder phase and a hard material phase, or at least partially comprises such a powder metallurgical composite material. The special feature of the bearing element according to the invention lies in particular in the (chemical) composition of the metallic binder phase.
Die metallische Bindephase basiert erfindungsgemäß auf wenigstens einem Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan. Hierunter ist zu verstehen, dass die metallische Bindephase aus wenigstens einem Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan gebildet ist oder wenigstens ein Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan als Hauptbestandteil umfasst. Hierunter ist jedoch auch zu verstehen, dass die metallische Bindephase aus einer metallischen Verbindung enthaltend Chrom und/oder Kobalt und/oder Molybdän und/oder Nickel und/oder Titan gebildet ist oder wenigstens eine solche umfasst. Die genannten Elemente können sonach elementar oder (chemisch) gebunden vorliegen. Das pulvermetallurgische Verbundmaterial zeichnet sich im Allgemeinen durch eine vergleichsweise zähe metallische Bindephase und eine vergleichsweise harte Hartstoffphase aus. Die Zähigkeit der metallischen Bindephase kompensiert die Sprödigkeit der Hartstoffphase und führt zu einer ausreichenden (Ge- samt-)Schlagzähigkeit des Verbundmaterials. Die Härte der Hartstoffphase verleiht dem Verbundmaterial eine hohe Härte. Sowohl die metallische Bindephase als auch die Hartstoffphase ist äußerst korrosionsbeständig. Das pulvermetallurgische Verbundmaterial weist sonach eine hohe Festigkeit, Zähigkeit, Härte, Überroll- und Verschleißfestigkeit, insbesondere gegenüber Abrasion, Adhäsion und Kavitation, sowie eine hohe Korrosionsbeständigkeit auf. Gleiches gilt für das aus diesem gefertigte bzw. hergestellte erfindungsgemäße Lagerelement. According to the invention, the metallic binder phase is based on at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium. By this is meant that the metallic binder phase is formed from at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium or at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium as the main constituent. However, this also means that the metallic binder phase is formed from or comprises at least one metallic compound containing chromium and / or cobalt and / or molybdenum and / or nickel and / or titanium. The elements mentioned can therefore be elemental or (chemically) bound. The powder metallurgical composite material is generally characterized by a comparatively tough metallic binder phase and a comparatively hard hard material phase. The toughness of the metallic binder phase compensates for the brittleness of the hard material phase and leads to a sufficient (total) impact strength of the composite material. The hardness of the hard material phase gives the composite a high hardness. Both the metallic binder phase and the hard material phase are extremely resistant to corrosion. The powder metallurgical composite material therefore has a high strength, toughness, hardness, rollover and wear resistance, in particular to abrasion, adhesion and cavitation, and a high corrosion resistance. The same applies to the bearing element made or produced according to this invention.
Die vergleichsweise hohe Zähigkeit des Verbundmaterials ermöglicht es, auch mechanisch wie auch korrosiv hoch beanspruchbare größere Lagerelemente, d. h. insbesondere größere Lagerringe, nämlich Lagerringe bis zu einem Durchmesser von bis zu ca. 1000 mm, zu realisieren. Bezogen auf den Einsatz in einem bzw. als Gleit- oder Wälzlager reduziert die Zähigkeit des Verbundmaterials gleichermaßen die Bildung wachstumsfähiger Risse, bedingt durch die Überrollung von Fremdpartikeln, und die Möglichkeit eines Versagens durch hohe dynamische Beanspruchung. The comparatively high toughness of the composite material makes it possible, even mechanically as well as corrosive high-loadable larger bearing elements, d. H. especially larger bearing rings, namely bearing rings up to a diameter of up to about 1000 mm to realize. Related to use in a sliding or rolling bearing, the toughness of the composite reduces equally the formation of viable cracks due to the overrolling of foreign particles and the possibility of high dynamic stress failure.
Je nach konkreter chemischer und anteilsmäßiger Zusammensetzung des Verbundmaterials lassen sich insbesondere Lagerelemente mit folgenden physika- lischen bzw. mechanischen Kennwerten realisieren: Dichte 5 - 15 g/cm3, Druckfestigkeit 2000 - 8000 MPa, E-Modul 400 - 700 GPa, Härte 1000 - 2000 HV. Die genannten Zahlenwerte sind rein beispielhaft und können, wie erwähnt, in Abhängigkeit der jeweiligen chemischen wie auch anteilsmäßigen Zusammensetzung des Verbundmaterials variieren, d. h. insbesondere auch höher oder niedriger liegen. Depending on the specific chemical and proportionate composition of the composite material, bearing elements with the following physical or mechanical characteristics can be realized in particular: density 5 - 15 g / cm 3 , compressive strength 2000 - 8000 MPa, modulus of elasticity 400 - 700 GPa, hardness 1000 - 2000 HV. The numerical values mentioned are purely exemplary and may, as mentioned, vary depending on the respective chemical as well as proportionate composition of the composite material, ie in particular also be higher or lower.
Die besondere chemische wie auch anteilsmäßige Zusammensetzung des pulvermetallurgischen Verbundmaterials ist somit Grundlage für das besondere Eigenschaftsprofil des erfindungsgemäßen Lagerelements, welches das La- gerelement, insbesondere auch ohne konventionelle Schmierung, für die Verwendung in mechanisch wie auch korrosiv hoch beanspruchenden Einsatzgebieten prädestiniert. Entsprechende Einsatzgebiete können z. B. in korrosiv wirkenden Umgebungen, d. h. z. B. in nicht-wässrigen oder wässrigen, insbesondere chlorhaltigen, sowie sauren oder basischen Umgebungen, wie z. B. im Bereich von Gezeiten- bzw. Meereskraftwerken, d. h. insbesondere Offshore- Windturbinen, Offshore-Förderanlagen, allgemein Wasserbauwerken, oder sonstigen Meeresanwendungen, wie z. B. Schiffen, d. h. insbesondere Schiffs- antrieben, oder auch im Bereich von Pumpen und Kompressoren liegen. Auch trocken laufende Anwendungen oder minimal geschmierte Anwendungsgebiete sind relevant, z. B. im Bereich der Lebensmittel- und Pharmatechnik. The special chemical as well as proportionate composition of the powder metallurgical composite material is thus the basis for the special Property profile of the bearing element according to the invention, which predestines the bearing element, in particular also without conventional lubrication, for use in areas of mechanical and corrosive stress. Corresponding applications can z. B. in corrosive environments, ie, for example, in non-aqueous or aqueous, especially chlorine-containing, and acidic or basic environments such. As in the field of tidal or marine power plants, ie in particular offshore wind turbines, offshore conveyors, generally hydraulic structures, or other marine applications such. As ships, ie in particular marine propulsion, or in the range of pumps and compressors. Even dry running applications or minimally lubricated application areas are relevant, eg. B. in the field of food and pharmaceutical technology.
Das erfindungsgemäße Lagerelement respektive das dieses bildende Ver- bundmaterial ist durch pulvermetallurgische Verfahren, d. h. basierend auf einem pulverförm igen Ausgangsmaterial bzw. einer pulverförmigen Ausgangsmaterialmischung, hergestellt. Der Einsatz pulvermetallurgischer Verfahren ist insbesondere deshalb vorteilhaft, als dieser die Ausbildung von Gefügestrukturen mit (nahezu) isotropen Eigenschaften ermöglicht. Gleicher- maßen erlaubt der Einsatz pulvermetallurgischer Verfahren generell eine end- konturnahe Fertigung bzw. Urformung des Lagerelements, was den Bedarf mechanischer, d. h. insbesondere spanender, Nachbearbeitungsschritte weitgehend reduziert und deshalb in fertigungstechnischer und somit auch wirtschaftlicher Hinsicht vorteilhaft ist. The bearing element according to the invention or the composite material forming this is known by powder metallurgical processes, d. H. based on a powdered starting material or a powdery starting material mixture prepared. The use of powder metallurgical methods is particularly advantageous because it allows the formation of microstructures with (nearly) isotropic properties. Likewise, the use of powder metallurgical methods generally permits a near net shape production or primary shaping of the bearing element, which reduces the need for mechanical, ie. H. In particular cutting, post-processing steps largely reduced and therefore advantageous in manufacturing technology and thus also economically.
Bei einem solchen pulvermetallurgischen Verfahren zur Herstellung des Lagerelements kann es sich beispielsweise um heißisostatisches Pressen, kurz HIP; mithin um ein pulvermetallurgisches fertigungstechnisches Prinzip aus dem Bereich des Urformens handeln, gemäß welchem ein pulverförmiges Aus- gangsmaterial respektive eine pulverförmige Ausgangsmaterialmischung unter Druck und Temperatur verdichtet bzw. verpresst und versintert wird. Ein anderes denkbares pulvermetallurgisches Verfahren zur Herstellung eines erfindungsgemäßen Lagerelements ist das Sprühkompaktierverfahren, bei welchem es sich ebenso um ein pulvermetallurgisches fertigungstechnisches Prinzip aus dem Bereich des Urformens handelt, gemäß welchem ein pulverförmi- ges Ausgangsmaterial respektive eine pulverförmige Ausgangsmaterialmischung auf ein Trägermaterial gesprüht und durch einen schichtweisen Auftrag auf dem Trägermaterial ein Bauteil „aufgebaut" wird. Ein Vorteil des Sprühkompaktierverfahrens gegenüber anderen pulvermetallurgischen Verfahren besteht darin, dass hier nicht zwingend eine vollständige Verdichtung der pulverförmigen Ausgangsmaterialien notwendig ist. Ein weiterer Vorteil des Sprühkompaktierverfahrens ist die mögliche Realisierung einer„maßgeschneiderten" Materialzusammensetzung des Verbundmaterials, welches sonach mit örtlich bzw. räumlich verteilten Stoff- bzw. Konzentrationsgradienten ausgebildet werden kann. Such a powder metallurgical process for producing the bearing element may be, for example, hot isostatic pressing, HIP for short; Consequently, it is a powder metallurgical production technology principle from the field of primary shaping, according to which a powdered starting material or a pulverulent starting material mixture is compacted or pressed and sintered under pressure and temperature. Another conceivable powder metallurgical method for producing a bearing element according to the invention is the spray compacting method, which is also a powder metallurgical production engineering principle in the field of primary shaping, according to which a pulverulent starting material or a pulverulent starting material mixture is sprayed onto a carrier material and layered An advantage of the spray-compacting process over other powder-metallurgical processes is that it does not necessarily require complete compaction of the powdery starting materials Composite material, which can be formed with spatially or spatially distributed substance or concentration gradient ,
Im Rahmen der pulvermetallurgischen Herstellung des Verbundmaterials ist es denkbar, das die metallische Bindephase bildende pulverförmige Material bzw. Materialgemisch mit einem die Hartstoffphase bildenden pulverförmigen Material bzw. Materialgemisch im Rahmen eines pulvermetallurgischen Verfahrens zu verbinden. Alternativ dazu ist es denkbar, zunächst die metallische Bindephase über ein pulvermetallurgisches Verfahren herzustellen und die Hartstoffphase in der metallischen Bindephase durch die anschließende gezielte Bildung von Ausscheidungen, etwa im Zuge der Urformung des Verbundmaterials oder einer Wärmebehandlung, auszubilden. In the context of powder metallurgical production of the composite material, it is conceivable to combine the pulverulent material or material mixture forming the metallic binder phase with a pulverulent material or material mixture forming the hard material phase in a powder metallurgical process. Alternatively, it is conceivable first to produce the metallic binder phase via a powder metallurgical process and to form the hard material phase in the metallic binder phase by the subsequent targeted formation of precipitates, for example in the course of the primary shaping of the composite material or a heat treatment.
Die metallische Bindephase kann zusätzlich Anteile von Eisen- und/oder Kohlenstoff und/oder Stickstoff und/oder wenigstens einer Eisen- und/oder Kohlenstoff- und/oder Stickstoff enthaltenden Verbindung enthalten. Derart lässt sich das Eigenschaftsspektrum der metallischen Bindephase im Hinblick auf ein konkretes Einsatzgebiet des erfindungsgemäßen Lagerelements gezielt beeinflussen. Gleichermaßen lässt sich derart gegebenenfalls auch die Verbindung zwischen der metallischen Bindephase und der, typischerweise aus einzelnen Hartstoffphasen körnern gebildeten, Hartstoffphase verbessern. Wie weiter oben erwähnt, kann die metallische Bindephase auch aus einer metallischen Verbindung enthaltend Chrom und/oder Molybdän und/oder Nickel und/oder Kobalt und/oder Titan gebildet sein oder wenigstens eine solche umfassen. Sonach ist es also z. B. möglich, dass die Elemente Chrom, Molybdän, Titan, soweit vorhanden, in gebundener Form vorliegen und daher mit weiteren Bestandteilen der metallischen Bindephase, wie z. B. Eisen und/oder Kohlenstoff und/oder Stickstoff chemisch verbunden sind. Es ist also beispielsweise denkbar, dass die metallische Bindephase als Kohlenstoff enthaltende Verbindung Chrom- und/oder Molybdän- und/oder Titankarbid enthält. The metallic binder phase may additionally contain fractions of iron and / or carbon and / or nitrogen and / or at least one iron and / or carbon and / or nitrogen-containing compound. In this way, the property spectrum of the metallic binder phase can be specifically influenced with regard to a specific field of application of the bearing element according to the invention. Likewise, if appropriate, the connection between the metallic binder phase and the hard material phase, which is typically formed from individual hard material phase grains, can also be improved in this way. As mentioned above, the metallic binder phase may also be formed from or comprise at least one metallic compound containing chromium and / or molybdenum and / or nickel and / or cobalt and / or titanium. So it is so z. B. possible that the elements chromium, molybdenum, titanium, if present, are present in bonded form and therefore with other constituents of the metallic binder phase, such as. As iron and / or carbon and / or nitrogen are chemically bonded. It is thus conceivable, for example, for the metallic binder phase to contain as the carbon-containing compound chromium and / or molybdenum and / or titanium carbide.
Die dem pulvermetallurgischen Verbundmaterial zugehörige Hartstoffphase kann aus wenigstens einer der folgenden Hartstoffverbindungen gebildet sein oder wenigstens eine der folgenden Hartstoffverbindungen umfassen: Boride, Karbide, insbesondere Titankarbid und/oder Wolframkarbid, Karbonitride, insbesondere Titankarbonitrid, Nitride, insbesondere Titannitrid, Silizide. Die Hartstoffphase kann sonach insbesondere aus Hartmetallen, d. h. insbesondere gesinterten Karbidhartmetallen, wie z. B. Wolframkarbid, und/oder Cermets, d. h. in einer metallischen Matrix, z. B. basierend auf Nickel und/oder Molyb- dän, enthaltenen keramischen Partikeln, wie z. B. Titankarbid-, Titankarbonitrid- oder Titannitrid-Partikeln, gebildet sein oder solche umfassen. Selbstverständlich sind Mischungen (chemisch) unterschiedlicher Hartstoffverbindungen denkbar. Die Hartstoffphase kann zudem die thermische Leitfähigkeit des Verbundmaterials positiv beeinflussen, was insbesondere im Hinblick auf die Möglichkeit eines Wärmeabtransports aus dem erfindungsgemäßen Lagerelement und somit das Kühlungsvermögen des erfindungsgemäßen Lagerelements vorteilhaft ist. Dies gilt insbesondere für die Verwendung von auf Karbiden, insbe- sondere Wolframkarbiden, basierenden Hartstoffverbindungen, deren thermische Leitfähigkeit um ein Vielfaches über der thermischen Leitfähigkeit von unlegierten bzw. rostfreien Stählen, welche typischerweise zur Ausbildung herkömmlicher Lagerelemente verwendet werden, liegt. Wie erwähnt, ist die Hartstoffphase typischerweise aus einzelnen Hartstoffpha- senkörnern gebildet oder umfasst solche. Das pulvermetallurgische Verbund- mate al kann auch eine Zwischenphase enthalten, welche um die Hartstoff- phasenkörner gebildet ist und über welche eine Anbindung der Hartstoffpha- senkörner an die metallische Bindephase realisiert ist. Für das Beispiel von aus Cermets, d. h. insbesondere Titankarbonitrid oder Titankarbid, gebildeten Hartstoffphasen körnern wurde eine κ-Phase, d. h. eine komplexe Karbidstruktur, nachgewiesen, welche sich um die Hartstoffphasen körner legt und eine feste Anbindung dieser an die metallische Bindephase gewährleistet. The hard material phase associated with the powder metallurgical composite material can be formed from at least one of the following hard material compounds or comprise at least one of the following hard material compounds: borides, carbides, in particular titanium carbide and / or tungsten carbide, carbonitrides, in particular titanium carbonitride, nitrides, in particular titanium nitride, silicides. The hard material phase can therefore particularly hard metals, ie in particular sintered carbide carbides such. As tungsten carbide, and / or cermets, ie in a metallic matrix, for. B. based on nickel and / or molybdenum, contained ceramic particles such. As titanium carbide, titanium carbonitride or titanium nitride particles, be formed or include such. Of course, mixtures (chemically) of different hard material compounds are conceivable. The hard material phase can also positively influence the thermal conductivity of the composite material, which is advantageous in particular with regard to the possibility of heat removal from the bearing element according to the invention and thus the cooling capacity of the bearing element according to the invention. This applies in particular to the use of carbides based on carbides, in particular tungsten carbides, whose thermal conductivity is many times higher than the thermal conductivity of unalloyed or stainless steels which are typically used to form conventional bearing elements. As mentioned, the hard material phase is typically formed of or comprises individual hard material phase grains. The powder metallurgical composite material may also contain an intermediate phase, which is formed around the hard material phase grains and via which a bonding of the hard material phase grains to the metallic binder phase is realized. For the example of hard cermets formed from cermets, ie in particular titanium carbonitride or titanium carbide, a κ-phase, ie a complex carbide structure was detected, which lays around the hard material phase grains and ensures a firm connection of these to the metallic binder phase.
Der Volumenanteil der Hartstoffphase in dem pulvermetallurgischen Verbundmaterial liegt insbesondere in einem Bereich zwischen 50 und 99 Vol.-%, bevorzugt in einem Bereich zwischen 85 und 95 Vol.-%. Entsprechend liegt der Volumenanteil der metallischen Bindephase in dem pulvermetallurgischen Verbundmaterial insbesondere in einem Bereich zwischen 1 und 50 Vol.-%, bevorzugt in einem Bereich zwischen 15 und 5 Vol.-%. Es ist darauf zu achten, dass der Volumenanteil der Hartstoffphase 50 Vol.-% nicht unterschreitet, um eine hohe Härte des Verbundmaterials und sonach des Lagerelements zu gewähr- leisten. Gleichwohl kann der Volumenanteil der Hartstoffphase in Ausnahmefällen auch unterhalb 50 Vol.-% bzw. der Anteil der metallischen Bindephase in Ausnahmen auch oberhalb 50 Vol.-% liegen. The volume fraction of the hard material phase in the powder metallurgical composite material is in particular in a range between 50 and 99% by volume, preferably in a range between 85 and 95% by volume. Accordingly, the volume fraction of the metallic binder phase in the powder metallurgical composite material is in particular in a range between 1 and 50% by volume, preferably in a range between 15 and 5% by volume. It must be ensured that the volume fraction of the hard material phase does not fall below 50% by volume in order to ensure a high hardness of the composite material and, consequently, of the bearing element. Nevertheless, in exceptional cases, the volume fraction of the hard material phase may also be below 50% by volume or, in exceptional cases, the proportion of the metallic binder phase may also be above 50% by volume.
Die Härte des Lagerelements liegt zumindest im Bereich seiner Oberfläche bzw. Randschicht bzw. in oberflächennahen bzw. randschichtnahen Bereichen insbesondere zwischen von 1000 - 2000 HV (Härte Vickers), typischerweise oberhalb 1 100 HV. Die Oberfläche bzw. Randschicht des Lagerelements kann einen bestimmten Gefügebereich aufweisen, welcher sich von weiter innen liegenden Gefügebereichen in seinen Eigenschaften, d. h. insbesondere der Härte, unterscheidet und sonach von weiter innen liegenden Gefügebereichen abgrenzbar ist. Typischerweise sind derartige Oberflächen- bzw. Randschichtbereiche lagerelementseitig vorgesehene Gleit- bzw. Wälzflächen, d. h. insbesondere Laufbahnflächen für Gleit- oder Wälzkörper oder entsprechende Gleit- oder Wälzkörperflächen. Selbstverständlich kann das Lagerelement auch insgesamt eine konsistente Härte aufweisen. In Ausnahmefällen kann die Härte des Lagerelements, gegebenenfalls auch nur abschnittsweise, unterhalb 1000 HV bzw. oberhalb 2000 HV liegen. The hardness of the bearing element is at least in the region of its surface or boundary layer or in near-surface or near-edge regions, in particular between 1000-2000 HV (Vickers hardness), typically above 1100 HV. The surface or boundary layer of the bearing element can have a certain structural area, which differs from further internal structural areas in its properties, ie in particular the hardness, and can therefore be delimited from further internal structural areas. Such surface or boundary layer areas are typically sliding or rolling surfaces provided on the bearing element side, ie in particular raceway surfaces for sliding or rolling bodies or corresponding sliding surfaces. or rolling elements surfaces. Of course, the bearing element can also have a consistent overall hardness. In exceptional cases, the hardness of the bearing element, possibly even in sections, below 1000 HV or above 2000 HV.
Für das Eigenschaftsprofil des Verbundmaterials ist neben der chemischen und der anteilsmäßigen Zusammensetzung, d. h. des volumenmäßigen Anteils der metallischen Bindephase und der Hartstoffphase, insbesondere auch die Form, Größe und Verteilung der die Hartstoffphase bildenden Hartstoffphasen körner in der als Matrix dienenden metallischen Bindephase von Bedeutung. Die Hart- stoffphasen körner können im Allgemeinen von grob- bis feinkörnig vorliegen. Die Hartstoffphasen körner sind bevorzugt runder oder rundlicher Gestalt. Im Rahmen der Herstellung des Verbundmaterials sollte auf eine möglichst kohärente Verteilung der die Hartstoffphase bildenden. Hartstoffphasenkörner in der als Matrix dienenden metallischen Bindephase geachtet werden. For the property profile of the composite material, besides the chemical and the proportionate composition, i. H. the volume-wise proportion of the metallic binder phase and the hard material phase, in particular also the shape, size and distribution of the hard material phase forming hard material phase grains in the serving as a matrix metallic binder phase of importance. The hard-phase grains may generally be of coarse to fine grained. The hard material phase grains are preferably round or round shape. In the context of the production of the composite material should on a coherent as possible distribution of the hard material phase forming. Hard material phase grains are taken in the serving as a matrix metallic binder phase.
Ein Charakteristikum für die Form, Größe und Verteilung der die Hartstoffphase bildenden Hartstoffphasenkörner stellt die Oberflächengüte und somit die Rauheit des Lagerelements in einem fertig bearbeiteten Zustand, d. h. nach der Finishbearbeitung, dar. Grundsätzlich gilt im Zusammenhang mit der Rauheit entsprechender Lagerelemente, dass größere Außendurchmesser der Lagerelemente in technisch-wirtschaftlicher Hinsicht höhere Rauheitswerte der Lagerelemente aufweisen. Untersuchungen der Rauheit ergaben, dass für Lagerelemente mit Außendurchmessern oberhalb ca. 200 mm mittlere Rauheitswerte Ra im Bereich von 0,1 - 1 ,0 μιτι und für Lagerelemente mit Außendurchmessern unterhalb ca. 200 mm mittlere Rauheitswerte Ra im Bereich von 0,02 - 0,2 μιτι realisierbar sind, was auf eine kohärente und homogene Gefügestruktur, d. h. eine besonders kohärente und homogene Verteilung der Hartstoffphasenkörner in der metallischen Bindephase, insbesondere in Kombination mit einer geeig- neten Fertigungstechnologie, zurückzuführen ist. A characteristic of the shape, size and distribution of the hard material phase forming hard material phase grains is the surface quality and thus the roughness of the bearing element in a finished state, ie after finishing, represents. Basically, in connection with the roughness of corresponding bearing elements that larger outer diameter of Have bearing elements in technical-economic terms higher roughness of the bearing elements. Investigations of the roughness showed that for bearing elements with outer diameters above about 200 mm mean roughness R a in the range 0.1 - 1. 0 μιτι and for bearing elements with outer diameters below about 200 mm mean roughness R a in the range of 0.02 - 0.2 μιτι be realized, which is due to a coherent and homogeneous microstructure, ie a particularly coherent and homogeneous distribution of the hard material phase grains in the metallic binder phase, in particular in combination with a suitable manufacturing technology.
Bei dem erfindungsgemäßen Lagerelement kann es sich z. B. um einen Lagerring, d. h. einen Außen- oder einen Innenring, eines Gleit- oder Wälzlagers handeln. Das Lagerelement kann auch ein Gleit- oder Wälzkörper oder ein Wälzkörperkäfig zur Aufnahme von Wälzkörpern sein. In the bearing element according to the invention, it may be, for. B. a bearing ring, ie an outer or an inner ring, a sliding or rolling bearing act. The bearing element may also be a sliding or rolling element or a rolling element cage for receiving rolling elements.
Die Erfindung betrifft ferner ein Lager, d. h. ein Gleit- oder Wälzlager, welches wenigstens ein wie vorstehend beschriebenes, erfindungsgemäßes Lagerelement umfasst. Bei dem oder den Lagerelement(en) kann es sich, wie erwähnt, insbesondere um Lagerringe und/oder Gleit- oder Wälzkörper und/oder einen Wälzkörperkäfig zur Aufnahme von Wälzkörpern handeln. Bezüglich des erfindungsgemäßen Lagers gelten sämtliche Ausführungen bezüglich des erfin- dungsgemäßen Lagerelements analog. The invention further relates to a bearing, d. H. a sliding or rolling bearing, which comprises at least one as described above, inventive bearing element. As mentioned, the bearing element (s) may be, in particular, bearing rings and / or sliding or rolling elements and / or a rolling element cage for accommodating rolling elements. With regard to the bearing according to the invention, all statements relating to the bearing element according to the invention apply analogously.
Kurze Beschreibung der Zeichnung Short description of the drawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen: An embodiment of the invention is illustrated in the drawing and will be described in more detail below. Show it:
Figur 1 eine Prinzipdarstellung eines Wälzlagers, umfassend ein Lagerelement gemäß einem Ausführungsbeispiel der Erfindung, Figur 2 einen Ausschnitt aus einer Gefügestruktur eines pulvermetallurgischen Verbundmaterials zur Ausbildung eines Lagerelements gemäß einem Ausführungsbeispiel der Erfindung, und Figure 1 is a schematic diagram of a rolling bearing comprising a bearing element according to an embodiment of the invention, Figure 2 shows a detail of a microstructure of a powder metallurgical composite material for forming a bearing element according to an embodiment of the invention, and
Figur 3 ein Diagramm zur Veranschaulichung der Korrosionsbeständig- keit eines erfindungsgemäßen Lagerelements im Vergleich zu einem aus einem herkömmlichen korrosionsfesten Wälzlagerstahl gebildeten Lagerelement. FIG. 3 shows a diagram for illustrating the corrosion resistance of a bearing element according to the invention in comparison to a bearing element formed from a conventional corrosion-resistant bearing steel.
Ausführliche Beschreibung der Zeichnung Detailed description of the drawing
Figur 1 zeigt eine Prinzipdarstellung eines Lagerelements 1 gemäß einem Ausführungsbeispiel der Erfindung. Das Lagerelement 1 ist Teil eines Wälzlagers 2. Bei dem Lagerelement 1 handelt es sich um den Außenring 3 des Wälzla- gers 2. Der Innenring 4 des Wälzlagers 2 könnte gleichermaßen als entsprechendes Lagerelement 1 gemäß einem Ausführungsbeispiel der Erfindung ausgebildet sein. Gleiches gilt für die zwischen dem Außenring 3 und dem Innenring 4 wälzenden Wälzkörper 5 sowie für den die Wälzkörper 5 aufneh- menden bzw. führenden Wälzkörperkäfig 6. Figure 1 shows a schematic diagram of a bearing element 1 according to an embodiment of the invention. The bearing element 1 is part of a roller bearing 2. The bearing element 1 is the outer ring 3 of the rolling bearing. gers 2. The inner ring 4 of the rolling bearing 2 could equally be formed as a corresponding bearing element 1 according to an embodiment of the invention. The same applies to the rolling elements 5 rolling between the outer ring 3 and the inner ring 4 as well as to the rolling element cage 6 receiving or guiding the rolling elements 5.
Bei dem Lagerelement 1 könnte es sich auch um entsprechende Komponenten eines Gleitlagers handeln. Das Lagerelement 1 ist aus einem pulvermetallurgischen, d. h. pulvermetallurgisch hergestellten, Verbundmaterial gebildet. Das pulvermetallurgische Verbundmaterial umfasst eine metallische Bindephase und eine aus wenigstens einem Hartstoff gebildete Hartstoffphase. Das pulvermetallurgische Verbundmaterial kann sonach als„Metal Matrix Composite" bezeichnet bzw. erachtet werden. The bearing element 1 could also be corresponding components of a plain bearing. The bearing element 1 is made of a powder metallurgical, d. H. powder metallurgically produced, composite material formed. The powder metallurgical composite material comprises a metallic binder phase and a hard material phase formed from at least one hard material. The powder metallurgical composite material may accordingly be referred to as "metal matrix composite".
Die metallische Bindephase basiert im Allgemeinen auf wenigstens einem Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan. Hierunter ist zu verstehen, dass die metallische Bindephase aus wenigstens einem Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan gebildet ist oder wenigstens ein Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan als Hauptbestandteil umfasst. Hierunter ist auch zu verstehen, dass die metallische Bindephase aus einer metallischen Verbindung enthaltend Chrom und/oder Kobalt und/oder Molybdän und/oder Nickel und/oder Titan gebildet ist oder wenigs- tens eine solche umfasst. Die genannten Elemente können also elementar oder (chemisch) gebunden vorliegen. The metallic binder phase is generally based on at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium. By this is meant that the metallic binder phase is formed from at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium or at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium as the main constituent. This is to be understood as meaning that the metallic binder phase is formed from or comprises at least one metallic compound containing chromium and / or cobalt and / or molybdenum and / or nickel and / or titanium. The said elements can therefore be present elementary or (chemically) bound.
Die metallische Bindephase kann zusätzlich Anteile von Eisen- und/oder Kohlenstoff und/oder Stickstoff und/oder wenigstens einer Eisen- und/oder Kohlen- stoff- und/oder Stickstoff enthaltenden Verbindung enthalten. Als Kohlenstoff enthaltende Verbindung kommt insbesondere Chrom-, und/oder Molybdän- und/oder Titankarbid in Betracht. Die Hartstoffphase ist im Allgemeinen aus wenigstens einer der folgenden Hartstoffverbindungen gebildet oder umfasst wenigstens eine der folgenden Hartstoffverbindungen: Boride, Karbide, insbesondere Titankarbid und/oder Wolframkarbid, Karbonitride, insbesondere Titankarbonitrid, Nitride, insbeson- dere Titannitrid, Silizide. Die Hartstoffphase liegt typischerweise in Form einzelner oder mehrerer verbundener Hartstoffphasen körner vor. Die Hartstoff- phasenkörner weisen typischerweise eine Korngröße von ca. 0,5 - 10 μιτι, insbesondere 0,9 - 6 μιτι, auf. Das Gefüge des Verbundmaterials besteht sonach insbesondere aus einzelnen oder mehreren miteinander verbundenen Hartstoffphasen körnern, welche von der metallischen Bindephase umgeben sind. Die metallische Bindephase erstreckt sich sonach zwischen den Hartstoffphasen körnern und bindet diese in dem Gefüge. Die Gefügestruktur des Verbundmaterials kann mit einem Mau- erwerk, umfassend mehrere durch einen Mörtel verbundene Mauersteine, verglichen werden, wobei die Hartstoffphasen körner die Mauersteine und die metallische Bindephase den Mörtel repräsentiert. The metallic binder phase may additionally contain fractions of iron and / or carbon and / or nitrogen and / or at least one iron and / or carbon and / or nitrogen-containing compound. Chromium and / or molybdenum and / or titanium carbide is particularly suitable as the carbon-containing compound. The hard material phase is generally formed from at least one of the following hard material compounds or comprises at least one of the following hard material compounds: borides, carbides, in particular titanium carbide and / or tungsten carbide, carbonitrides, in particular titanium carbonitride, nitrides, in particular titanium nitride, silicides. The hard material phase is typically present in the form of single or multiple bonded hard material phase grains. The hard material phase grains typically have a particle size of about 0.5 to 10 μιτι, in particular 0.9 to 6 μιτι on. The structure of the composite material therefore consists in particular of individual or several interconnected hard material phase grains, which are surrounded by the metallic binder phase. The metallic binding phase thus extends between the hard material phases and binds them in the structure. The microstructure of the composite material can be compared with a masonry comprising several bricks connected by a mortar, the hard material phases representing the bricks and the metallic binder phase representing the mortar.
Die Hartstoffphase weist in dem Verbundmaterial einen Anteil von 50 - 99 Vol.- %, insbesondere einen Anteil zwischen 85 und 95 Vol.-%, auf. Die metallische Bindephase weist einen Anteil von 1 - 50 Vol.-%, insbesondere einen Anteil zwischen 15 und 5 Vol.-%, auf. The hard material phase has a proportion of 50 to 99% by volume, in particular a proportion of between 85 and 95% by volume, in the composite material. The metallic binder phase has a proportion of 1-50% by volume, in particular a proportion of between 15 and 5% by volume.
In einem konkreten Ausführungsbeispiel kann das Verbundmaterial als metalli- sehe Bindephase Nickel und gebundenes Chrom enthalten. Die Hartstoffphase besteht in diesem konkreten Ausführungsbeispiel aus Wolframkarbid. Der Anteil der Hartstoffphase liegt zwischen 85 und 95 vol.-%. Der hohe Anteil der Hartstoffphase gewährleistet eine sehr hohe Härte, typischerweise 1 150 - 1750 HV1 , des Verbundmaterials und somit des Lagerelements 1 . Die Zähig- keit der metallischen Bindephase kompensiert die Sprödigkeit der Hartstoffphase und sorgt für eine gute Schlagzähigkeit, typischerweise K c 7 - 19In a specific embodiment, the composite material may contain nickel and bound chromium as a metallic binder phase. The hard material phase consists in this specific embodiment of tungsten carbide. The proportion of hard material phase is between 85 and 95 vol .-%. The high content of the hard material phase ensures a very high hardness, typically 1 150 - 1750 HV1, of the composite material and thus of the bearing element 1. The toughness of the metallic binder phase compensates for the brittleness of the hard material phase and ensures good impact resistance, typically K c 7 - 19
MN/mm , des Verbundmaterials und somit des Lagerelements 1 . Die Druckfestigkeit des Verbundmaterials und somit des Lagerelements 1 liegt zwischen 3500 und 6300 MPa, der E-Modul liegt in einem Bereich zwischen 500 und 650 GPa, die Poisson-Zahl liegt zwischen 0,21 und 0,22 und die Dichte zwischen in einem Bereich von 13,0 und 15,0 g/cm3. Die Korngröße der Hartstoffphasen- körner liegt zwischen 0,5 und 5 μιτι. MN / mm, of the composite material and thus of the bearing element 1. The compressive strength of the composite material and thus of the bearing element 1 lies between 3500 and 6300 MPa, the modulus of elasticity lies in a range between 500 and 650 GPa, the Poisson number is between 0.21 and 0.22 and the density between in a range of 13.0 and 15.0 g / cm 3 . The grain size of the hard material phase grains is between 0.5 and 5 μιτι.
Ähnliche Eigenschaften lassen sich auch in einem weiteren konkreten Ausführungsbeispiel des Verbundmaterials erzielen, welches sich von dem vorstehenden konkreten Ausführungsbeispiel im Wesentlichen dadurch unterscheidet, dass die metallische Bindephase aus Kobalt als Hauptbestandteil besteht. Similar properties can be achieved in a further concrete embodiment of the composite material, which differs from the above concrete embodiment essentially in that the metallic binder phase consists of cobalt as the main component.
In einem weiteren konkreten Ausführungsbeispiel des Verbundmaterials kann dieses als metallische Bindephase hauptsächlich Nickel und Kobalt enthalten. Die metallische Bindephase enthält hier zusätzlich Kohlenstoff- bzw. Karbidverbindungen, wie insbesondere Nickelkarbid- oder Kobaltkarbidverbindungen. Die Hartstoffphase ist hier aus Titankarbid bzw. Titankarbonitrid gebildet. In dem Verbundmaterial ist hier um die Hartstoffphasen körner eine Zwischenphase gebildet, über welche eine feste Anbindung der Hartstoffphasen körner an die metallische Bindephase realisiert ist. Bei der Zwischenphase handelt es sich um eine so genannte κ-Phase, d. h. um eine komplexe Karbidstruktur. Die Härte des Verbundmaterials und somit des Lagerelements 1 liegt zwischen 1 100 und 1650 HV, die Schlagzähigkeit liegt bei ca. K1c 8 - 14 MN/mm3'2, der E-Modul liegt zwischen 370 und 450 GPa, die Dichte liegt zwischen 5,8 und 6,9 g/cm3. Hervorzuheben ist, dass die vergleichsweise geringe Dichte des Verbundmaterials zu einem vergleichsweise geringen Bauteilgewicht führt. In a further concrete embodiment of the composite material, this may contain, as the metallic binder phase, mainly nickel and cobalt. The metallic binder phase here additionally contains carbon or carbide compounds, in particular nickel carbide or cobalt carbide compounds. The hard material phase is formed here from titanium carbide or titanium carbonitride. In the composite material grains here an intermediate phase is formed around the hard material phase, via which a firm connection of the hard material phase grains is realized to the metallic binder phase. The intermediate phase is a so-called κ phase, ie a complex carbide structure. The hardness of the composite material and thus of the bearing element 1 is between 1 100 and 1650 HV, the impact strength is about K 1c 8 - 14 MN / mm 3 ' 2 , the modulus of elasticity is between 370 and 450 GPa, the density is between 5.8 and 6.9 g / cm 3 . It should be emphasized that the comparatively low density of the composite material leads to a comparatively low component weight.
Figur 2 zeigt einen Ausschnitt aus einer Gefügestruktur eines dem vorstehend beschriebenen Ausführungsbeispiel ähnlichen pulvermetallurgischen Verbundmaterials zur Ausbildung eines Lagerelements 1 gemäß einem Ausführungsbeispiel der Erfindung. Die hier hauptsächlich Nickel und Molybdän ent- haltende metallische Bindephase ist mit Bezugszeichen 7, die hier aus Titankarbonitrid bestehenden Hartstoffphasen körner mit Bezugszeichen 8 und die κ-Phase mit Bezugszeichen 9 angedeutet. Die Anbindung der Hartstoffpha- senkörner 8 an die metallische Bindephase 7 erfolgt über die die Hartstoffpha- senkörner 8 unmittelbar umgebende Zwischenphase 9. FIG. 2 shows a detail of a microstructure of a powder metallurgical composite material similar to the exemplary embodiment described above for forming a bearing element 1 according to one exemplary embodiment of the invention. The metallic binder phase containing mainly nickel and molybdenum here is indicated by reference numeral 7, the hard material phase grains consisting of titanium carbonitride hereby referenced 8, and the κ phase by reference numeral 9. The connection of the hard material phase Countersurfers 8 to the metallic binding phase 7 takes place via the intermediate phase 9 immediately surrounding the hard-material phase grains 8.
Mit sämtlichen Ausführungsbeispielen des Verbundmaterials sind je nach Au- ßendurchmesser Lagerelemente 1 mit mittleren Rauheitswerten Ra zwischenWith all embodiments of the composite material, depending on the outside diameter, bearing elements 1 with mean roughness values R a are interposed
0.02 und 1 ,0 μιτι realisierbar, was eine kohärente und homogene Verteilung der Hartstoffphasen körner in der metallischen Bindephase sowie, insbesondere bedingt durch die Auswahl geeigneter Fertigungsparameter, eine hohe Oberflächengüte der Lagerelemente 1 bedeutet. 0.02 and 1, 0 μιτι feasible, which means a coherent and homogeneous distribution of the hard material phase grains in the metallic binder phase and, in particular due to the selection of suitable manufacturing parameters, a high surface quality of the bearing elements 1.
Insgesamt betrachtet zeichnet sich das das Lagerelement 1 bildende Verbundmaterial und somit auch das Lagerelement 1 durch eine hohe Festigkeit, hohe Zähigkeit, hohe Härte, hohe Überroll- und Verschleißfestigkeit, hohe Wärmeleitfähigkeit sowie eine hohe Korrosionsbeständigkeit aus. Overall, the bearing element 1 forming composite material and thus also the bearing element 1 characterized by a high strength, high toughness, high hardness, high rollover and wear resistance, high thermal conductivity and high corrosion resistance.
Figur 3 zeigt ein Diagramm zur Veranschaulichung der Korrosionsbeständigkeit eines erfindungsgemäßen Lagerelements 1 im Vergleich zu einem aus einem herkömmlichen korrosionsfesten Wälzlagerstahl gebildeten Lagerelement. Anhand von Figur 3 lässt sich die im Vergleich zu einem aus einem herkömmli- chen Wälzlagerstahl verbesserte Korrosionsbeständigkeit des das erfindungsgemäße Lagerelement 1 bildenden Verbundmaterials veranschaulichen. FIG. 3 shows a diagram for illustrating the corrosion resistance of a bearing element 1 according to the invention in comparison to a bearing element formed from a conventional corrosion-resistant bearing steel. The corrosion resistance of the composite material forming the bearing element 1 according to the invention can be illustrated with reference to FIG. 3 in comparison to a corrosion resistance improved from a conventional rolling bearing steel.
In dem in Figur 3 gezeigten Diagramm ist der elektrische Strom (y-Achse) gegen das elektrische Potential (x-Achse) aufgetragen. Gezeigt sind Versuchser- gebnisse aus elektrochemischen Untersuchungen des Lochkorrosionspotentials bzw. des Repassivierungspotentials (Ag/AgCI, 3,5% NaCI, 20°C). Die Kurve 10 repräsentiert die Messergebnisse für ein erfindungsgemäßes LagerelementIn the diagram shown in FIG. 3, the electrical current (y-axis) is plotted against the electrical potential (x-axis). Shown are test results from electrochemical investigations of the pitting corrosion potential or the repassivation potential (Ag / AgCl, 3.5% NaCl, 20 ° C.). The curve 10 represents the measurement results for a bearing element according to the invention
1 , die Kurve 1 1 repräsentiert die Messergebnisse für ein aus einem herkömmlichen Wälzlagerstahl gebildetes nicht erfindungsgemäßes Lagerelement. 1, the curve 1 1 represents the measurement results for a non-inventive bearing element formed from a conventional bearing steel.
Ersichtlich beginnt die durch den Anstieg der Kurve 10 indizierte Materialauflösung bei dem erfindungsgemäßen Lagerelement 1 deutlich später als bei dem nicht erfindungsgemäßen Lagerelement. Das Repassivierungspotential, d. h. das Potential, bei welchem die Kurven nach dem Anstieg wieder auf die x- Achse treffen, liegt bei dem erfindungsgemäßen Lagerelement 1 im Vergleich zu dem nicht erfindungsgemäßen Lagerelement deutlich höher. Die Untersuchungen belegen die sehr gute Korrosionsbeständigkeit des erfindungsgemä- ßen Lagerelements 1 . As can be seen, the material dissolution indexed by the rise of the curve 10 starts significantly later in the bearing element 1 according to the invention than in the bearing element not according to the invention. The repatriation potential, ie the potential at which the curves hit the x-axis again after the rise is significantly higher in the case of the bearing element 1 according to the invention compared to the bearing element not according to the invention. The investigations prove the very good corrosion resistance of the bearing element 1 according to the invention.
Bezugszahlenliste LIST OF REFERENCE NUMBERS
Lagerelement bearing element
2 Wälzlager  2 rolling bearings
3 Außenring 3 outer ring
4 Innenring  4 inner ring
5 Wälzkörper  5 rolling elements
6 Wälzkörperkäfig  6 rolling element cage
7 Nickel und Molybdän enthaltende metallische Bindephase 8 Hartstoffphasen körner  7 Metallic binder phase containing nickel and molybdenum 8 Hard material phase grains
9 κ-Phase  9 κ phase
10 Kurve  10 curve
1 1 Kurve  1 1 curve

Claims

Patentansprüche claims
1 . Lagerelement (1 ) für ein Gleit- oder Wälzlager, welches Lagerelement (1 ) zumindest abschnittsweise aus einem pulvermetallurgischen Verbundmaterial, welches eine metallische Bindephase und eine Hartstoffphase enthält, gebildet ist oder ein solches Verbundmaterial umfasst, dadurch gekennzeichnet, dass die metallische Bindephase auf wenigs- tens einem Element der Gruppe: Chrom, Kobalt, Molybdän, Nickel, Titan basiert. 1 . Bearing element (1) for a sliding or roller bearing, which bearing element (1) is at least partially formed of a powder metallurgical composite material which contains a metallic binder phase and a hard material phase, or comprises such a composite material, characterized in that the metallic binder phase at least at least one element of the group: chromium, cobalt, molybdenum, nickel, titanium.
2. Lagerelement nach Anspruch 1 , dadurch gekennzeichnet, dass die metallische Bindephase zusätzlich Anteile von Eisen- und/oder Kohlen- stoff und/oder Stickstoff und/oder wenigstens einer Eisen- und/oder Kohlenstoff- und/oder Stickstoff enthaltenden Verbindung enthält. 2. Bearing element according to claim 1, characterized in that the metallic binder phase additionally contains fractions of iron and / or carbon and / or nitrogen and / or at least one iron and / or carbon and / or nitrogen-containing compound.
3. Lagerelement nach Anspruch 2, dadurch gekennzeichnet, dass die metallische Bindephase als Kohlenstoff enthaltende Verbindung Chrom-, und/oder Molybdän- und/oder Titankarbid enthält. 3. Bearing element according to claim 2, characterized in that the metallic binder phase contains as carbon-containing compound chromium and / or molybdenum and / or titanium carbide.
4. Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hartstoffphase aus einzelnen Hartstoffpha- senkörnern gebildet ist oder solche umfasst und das Verbundmaterial eine Zwischenphase enthält, welche um die Hartstoffphasen körner gebildet ist und über welche eine Anbindung der Hartstoffphasenkörner an die metallische Bindephase realisiert ist. 4. Bearing element according to one of the preceding claims, characterized in that the hard material phase consists of individual hard material grains or comprises grains and the composite material contains an intermediate phase, which is formed around the hard material phases grains and via which a connection of the hard material phase grains to the metallic binder phase is realized.
5. Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hartstoffphase aus wenigstens einer der folgenden Hartstoffverbindungen gebildet ist oder wenigstens eine der folgenden Hartstoffverbindungen umfasst: Boride, Karbide, insbesondere Titankarbid und/oder Wolframkarbid, Karbonitride, insbesondere Titan karbonitrid, Nitride, insbesondere Titannitrid, Silizide. 5. Bearing element according to one of the preceding claims, characterized in that the hard material phase is formed from at least one of the following hard compounds or at least one of the following hard material compounds comprises: borides, carbides, in particular titanium carbide and / or tungsten carbide, carbonitrides, in particular Titanium carbonitride, nitrides, in particular titanium nitride, silicides.
6. Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hartstoffphase in dem Verbundmaterial einen Anteil von 50 - 99 Vol.-%, insbesondere einen Anteil zwischen 85 und6. Bearing element according to one of the preceding claims, characterized in that the hard material phase in the composite material, a proportion of 50 to 99 vol .-%, in particular a proportion between 85 and
95 Vol.-%, und die metallische Bindephase einen Anteil von 1 - 50 Vol.- %, insbesondere einen Anteil zwischen 15 und 5 Vol.-%, aufweist. 95% by volume, and the metallic binder phase has a proportion of 1-50% by volume, in particular a proportion of between 15 and 5% by volume.
7. Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es, zumindest im Bereich der Oberfläche, insbesondere im Bereich von Gleit- oder Wälzflächen, eine Härte von 1000 - 2000 HV, insbesondere oberhalb 1 100 HV, aufweist. 7. Bearing element according to one of the preceding claims, characterized in that it, at least in the region of the surface, in particular in the region of sliding or rolling surfaces, a hardness of 1000 - 2000 HV, in particular above 1 100 HV.
8. Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es einen mittleren Rauheitswert Ra zwischen8. Bearing element according to one of the preceding claims, characterized in that it has an average roughness value R a between
0,02 und 1 ,0 μιτι aufweist. 0.02 and 1, 0 μιτι has.
9. Lagerelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es ein Lagerring (3, 4) oder ein Gleit- oder Wälz- körper (5) oder ein Wälzkörperkäfig (6) zur Aufnahme von Wälzkörpern9. Bearing element according to one of the preceding claims, characterized in that there is a bearing ring (3, 4) or a sliding or rolling body (5) or a Wälzkörperkäfig (6) for receiving rolling elements
(5) ist. (5).
10. Lager, insbesondere Gleit- oder Wälzlager, umfassend wenigstens ein Lagerelement (1 ) nach einem der vorangehenden Ansprüche. 10. Bearing, in particular sliding or rolling bearing, comprising at least one bearing element (1) according to one of the preceding claims.
EP15714171.4A 2014-03-20 2015-03-03 Bearing element for a sliding or rolling bearing Ceased EP3120036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014205164.9A DE102014205164B4 (en) 2014-03-20 2014-03-20 Bearing element for a rolling bearing
PCT/DE2015/200116 WO2015139699A1 (en) 2014-03-20 2015-03-03 Bearing element for a sliding or rolling bearing

Publications (1)

Publication Number Publication Date
EP3120036A1 true EP3120036A1 (en) 2017-01-25

Family

ID=52810921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15714171.4A Ceased EP3120036A1 (en) 2014-03-20 2015-03-03 Bearing element for a sliding or rolling bearing

Country Status (7)

Country Link
US (1) US20170138401A1 (en)
EP (1) EP3120036A1 (en)
JP (1) JP2017514022A (en)
KR (1) KR20160134734A (en)
CN (1) CN106415036A (en)
DE (1) DE102014205164B4 (en)
WO (1) WO2015139699A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309786B (en) * 2021-04-13 2022-12-02 中国核电工程有限公司 Sliding bearing, stirring device and mixer settler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392522B (en) * 1986-03-22 1991-04-25 Glyco Metall Werke SLIDE BEARING ELEMENT WITH INHOMOGENIC ANTIFRICTION LAYER
FR2608950B1 (en) * 1986-12-29 1991-10-18 Demit Joel PROCESS FOR MANUFACTURING CERAMIC-METAL COMPOSITE MATERIALS USING SURFACTANT METALS AT CERAMIC-METAL INTERFACES
JP4018308B2 (en) * 2000-02-08 2007-12-05 株式会社クボタ Composite material for sliding member and sliding member
US6874942B2 (en) * 2001-03-02 2005-04-05 Nsk Ltd. Rolling device
GB0912669D0 (en) * 2009-07-21 2009-08-26 Skf Publ Ab Bearing steels
DE102012212426B3 (en) * 2012-07-16 2013-08-29 Schaeffler Technologies AG & Co. KG Rolling element, in particular rolling bearing ring

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015139699A1 *

Also Published As

Publication number Publication date
WO2015139699A1 (en) 2015-09-24
KR20160134734A (en) 2016-11-23
DE102014205164B4 (en) 2018-01-04
JP2017514022A (en) 2017-06-01
CN106415036A (en) 2017-02-15
US20170138401A1 (en) 2017-05-18
DE102014205164A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
EP1364732B1 (en) Hard metal part with graded structure
EP1882109B1 (en) Antifriction bearing race, particularly for highly stressed antifriction bearings in aircraft power units and methods for the production thereof
DE102013220840B4 (en) Bearing element for a rolling or sliding bearing
DE102005020081A1 (en) Powder metallurgically produced, wear-resistant material
WO2015049309A1 (en) Sintered molybdenum carbide-based spray powder
EP1256403A2 (en) Metal casting with hard material insert
DE102010014303A1 (en) Composite component for rolling steel, comprises a carrier made of powder metal, and a wear-resistant body made of hard metal that is embedded in sections in the carrier, where the hard-metal body is metallized in sections
DE102007017306A1 (en) Elongated carbide tool with iron-based binder
DE102014004450A1 (en) Iron-based sintered alloy for a sliding member and manufacturing method therefor
AT505699A1 (en) METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
EP3323902A1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP2580362B1 (en) Method for producing a lead-free sliding bearing
DE102014205164B4 (en) Bearing element for a rolling bearing
AT517721B1 (en) Method for producing a sliding bearing element
AT518875B1 (en) Multilayer plain bearing element
EP3320124B1 (en) Sliding bearing element
DE112018001615T5 (en) Valve seat made of sintered iron alloy with excellent thermal conductivity for use in internal combustion engines
AT519398B1 (en) Method for producing a swash plate
EP3323903B1 (en) Steel material prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
AT504651B1 (en) Sliding element, comprises supporting body with sliding layer arranged on it, where space is stretched and formed in longitudinal extended direction of sliding layer
EP3825119A1 (en) Multilayer sliding bearing element
DE102012207813A1 (en) Sliding body with coating
DE102004047053B3 (en) Roller bearing components are produced by preparing a powder metallurgical open pored sintered stainless steel member, and treating the surface mechanically and/or chemically
DE102019213989A1 (en) Plain bearing and method for manufacturing a plain bearing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171113

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 29/08 20060101AFI20180725BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190112

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523