EP3119939A1 - Outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol, et procédé correspondant. - Google Patents

Outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol, et procédé correspondant.

Info

Publication number
EP3119939A1
EP3119939A1 EP15715343.8A EP15715343A EP3119939A1 EP 3119939 A1 EP3119939 A1 EP 3119939A1 EP 15715343 A EP15715343 A EP 15715343A EP 3119939 A1 EP3119939 A1 EP 3119939A1
Authority
EP
European Patent Office
Prior art keywords
concrete
fluid
tool
tooling
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15715343.8A
Other languages
German (de)
English (en)
Other versions
EP3119939B1 (fr
Inventor
Bruno DEMARCQ
Steve Ako
David EGGLESDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soletanche Freyssinet SA
Original Assignee
Soletanche Freyssinet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soletanche Freyssinet SA filed Critical Soletanche Freyssinet SA
Publication of EP3119939A1 publication Critical patent/EP3119939A1/fr
Application granted granted Critical
Publication of EP3119939B1 publication Critical patent/EP3119939B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/36Concrete or concrete-like piles cast in position ; Apparatus for making same making without use of mouldpipes or other moulds

Definitions

  • the present invention relates to the production of concrete piles in the ground.
  • augers comprising a helical blade wound around a central core and provided with a cutting tool at their lower end.
  • the auger is first lowered into the ground and, once the perforation is complete, concrete is injected under pressure through the central core at the same time as the auger is raised.
  • a drilling and concreting tool for producing a concrete pile in the ground comprises a central core extending in an axial direction and surrounded by a helical blade, a cutting tool disposed at one end. tool, a concrete injection pipe provided with at least one concrete injection port and a treatment fluid injection circuit comprising at least one fluid injection port in the vicinity of the cutting tool.
  • the fluid injection circuit in order to limit the size of the tooling, communicates with the concrete injection conduit in order to be powered by said conduit.
  • the tool according to the invention allows a cleaning of the cutting tool throughout the perforation by injection of a pressure treatment fluid in the vicinity of the tool. Stuffing problems and untimely stops during the implementation are thus avoided.
  • cutting surface designates the ground surface marking the end of the perforation at a given moment.
  • the tool according to the invention makes it possible, thanks to the injection of treatment fluid, to clear the cuttings covering the cutting surface and to guide these cuttings upwards between the turns of the helical blade.
  • the cutting tool is thus brought into contact with uncut ground, improving the efficiency and thus the perforation speed.
  • the soil is lighter and generates less friction than the ground.
  • the torque of the tooling is therefore limited, improving the efficiency of the perforation.
  • a process fluid may be any fluid different from the concrete.
  • the treatment fluid may for example be air. It can also be a foam.
  • the fluid is injected in the vicinity of the cutting tool, for example when it is injected at a distance from the tool equivalent to less than 5% of the axial length of the drilling and concreting tool, said distance being measured in the axial direction of the tooling. Generally, this distance is less than the pitch of the helical blade.
  • the concrete injection port is also generally located near the lower end of the tool.
  • an axial direction is a direction parallel to the axis of the central core of the drilling and concreting tool.
  • a radial direction is a direction perpendicular to the axis of the central core and intersecting this axis.
  • a cutting direction of the tooling is also defined as the direction of rotation of the drilling and concreting tool during the drilling phase (when the tool is lowered into the ground).
  • the front and rear are defined with reference to this cutting direction, the front being directed in the cutting direction.
  • the helical blade extends over the entire axial length of the central core, forming a continuous auger. In this case, and as indicated in the introduction to the present application, all the cuttings are extracted once the auger is raised.
  • the injection of treatment fluid in the vicinity of the cutting tool makes it possible, at identical speed of rotation, to obtain a greater perforation speed than with the augers of the prior art.
  • the number of "screw" turns needed to reach a given depth is reduced. In the particular case of a continuous auger, this leads to a smaller amount of cuttings reassembled during the perforation, which is favorable to a greater compactness of the surrounding land, and therefore to a better bearing of the pile.
  • the injection of treatment fluid can allow a reduction of more than 30%, preferably 50%, of the total volume of cuttings excavated during drilling.
  • the helicoidal blade may extend over a limited axial portion of the central core, preferably from its lower end over an axial length representing less than 20% of the total axial length of the core.
  • This configuration is common in the realization of so-called recessed piles, wherein the soil is moved radially and compacted around the entire borehole.
  • the tool according to the invention is arranged to be able to pass from a first position in which the concrete injection orifice is at least partially closed and the fluid injection circuit is open at a second position. wherein the concrete injection port is open.
  • the concrete injection port generally has a larger section than that of the fluid injection port.
  • the concrete injection port has a minimum width at least two times greater than that of the fluid injection port.
  • the width of an orifice must be understood here as the distance separating two opposite faces of said orifice.
  • the minimum width is thus the smallest measurable width between two opposite faces of the orifice.
  • the width of the orifice corresponds to its diameter.
  • the width of the orifice corresponds to the distance between its two longest faces.
  • the concrete injection port has a minimum width greater than 60 mm, preferably greater than 80 mm, particularly allowing the passage of gravel contained in the concrete.
  • the fluid injection orifice advantageously has a minimum width of less than 30 mm, preferably less than 15 mm, allowing the injection of the treatment fluid at a sufficient pressure.
  • the treatment fluid injection circuit comprises at least one fluid supply orifice formed in the central core and opening in a radial direction of said core.
  • the fluid supply port is distinct from the concrete injection port.
  • the fluid supply port may open above or below the helical blade, preferably directly above or below the first turn of the blade.
  • the fluid supply port can open directly to the outside. It then constitutes a fluid injection orifice at which the flow of fluid is injected into the ground in a substantially radial direction.
  • the fluid injection circuit comprises a fluid deflection device disposed between the fluid supply port and the fluid injection port, the deflection device being configured such that at the level of the fluid injection port, the fluid flows in a direction substantially tangential to the central core while being oriented in the cutting direction. Thanks to these arrangements, the injection of fluid into the soil can be located optimally.
  • the cutting tool comprises, at the periphery of the central core, at least one cutting member comprising a series of cutting teeth distributed in a main direction of the cutting member extending substantially radially.
  • the deflection device is configured so that at the injection orifice, the fluid flow is distributed in the main direction of the cutting member, preferably distributed substantially regularly. over all its extent.
  • the deflection device thus makes it possible to distribute the flow of fluid over a maximum width of the cutting tool, optimizing the drilling efficiency, in particular in the case of tools of large diameter.
  • the deflection device is configured such that at the outlet of the injection orifice, the fluid flows so as to strike the cutting tool.
  • the deflection device comprises a housing provided with an inlet connected to the fluid supply orifice and a deflector wall, adapted to discharge the fluid coming from said inlet towards the cooling tool. chopped off.
  • the housing may for example be arranged at the rear of the cutting member. It can thus, in addition, fulfill a stiffener function of the body generally subjected to significant mechanical stresses.
  • the central core comprises a tubular rod carrying the helical blade and the concrete injection pipe is a dip tube comprising said at least one concrete injection port on its lower part, the dip tube being arranged to slide axially inside the tubular shaft between the first and second positions.
  • a dip tube of this type is already known from patent application FR 2 566 813 mentioned above.
  • the fluid supply orifice is advantageously formed in the tubular rod so as to communicate with the concrete injection port of said dip tube, in the first position of the tool (retracted state of the dip tube for example).
  • the fluid supply orifice may in particular be arranged facing the concrete injection port in said position.
  • the invention also relates to a drilling and concreting machine for producing a concrete pile in the ground, comprising drilling and concreting tools as defined above, means for supplying the concrete injection pipe with concrete, and means for supplying the fluid injection circuit with process fluid.
  • the concrete injection pipe is connected to means for storing and pumping concrete on the one hand, and to storage and pumping means for treatment fluid on the other hand, for can be fed alternately by one and the other, depending on the stage performed (drilling or concreting).
  • the drilling machine further comprises a frame provided with a longitudinal mast, the central core of the drilling and concreting tool extending parallel to the mast, and means for moving the drilling tool and concreting relative to the mast in translation in the longitudinal direction of the mast and in rotation about the axis of the central core.
  • the invention also relates to a method for producing a concrete pile in the soil, into which a drilling and concreting tool is introduced into the ground comprising a central core surrounded by a helical blade and a cutting tool at one end. lowering said tooling, by turning it and injecting a pressurized treatment fluid in the vicinity of the cutting tool (50), whereby the soil is cut; during drilling, the treatment fluid and the concrete are injected through the same injection pipe of the drilling and concreting tool; and in a concreting step, the tooling is raised by injecting concrete into the ground by said tool, so as to form a concrete pile.
  • the tooling comprises a concrete injection pipe provided with at least one concrete injection port and a treatment fluid injection circuit comprising at least one fluid injection orifice at the near the cutting tool, at least part of the drilling step being performed with the tool in a first position in which the concrete injection port is at least partially closed and the injection circuit of fluid is opened and the concreting step is performed with the tooling in a second position in which the concrete injection port is open.
  • the injection of pressure treatment fluid into the soil can advantageously begin at the start of drilling. She may be continued throughout the drilling or, depending on the type of terrain encountered, be stopped before the end of drilling.
  • cuttings related to drilling are raised to the soil surface during drilling.
  • the cuttings are either reassembled during the ascent of the tooling, that is to say during concreting, or discharged radially out of the borehole and compacted.
  • FIG. 1 illustrates a drilling machine according to an exemplary embodiment of the present invention
  • FIG. 1 shows the lower end of the drilling and concreting tool of Figure 1, in front view
  • FIG. 3 is a view from below of the drilling and concreting tool of FIG. 1;
  • FIG. 4A is a sectional view along line IV-IV of Figure 3, wherein the dip tube is illustrated in the retracted position;
  • FIG. 4B is a partial sectional view along IV-IV of Figure 3, wherein the dip tube is illustrated in the deployed position;
  • FIG. 5 is a perspective view, from below, of the drilling and concreting tool of FIG. 1;
  • FIGS. 6A and 6B respectively illustrate the drilling step and the concreting step, during the production of the concrete pile by means of the tool of FIG. 1;
  • FIG. 7 is a detailed view of the upper end of the drilling and concreting tool of FIG. 1; - Figure 8 illustrates an alternative embodiment of the tool according to the invention.
  • FIG. 1 shows a drilling and concreting machine 10 according to the invention, which makes it possible to produce a concrete pile 100 in the ground S.
  • the drilling machine 10 comprises a frame 12 on which is mounted, generally in an articulated manner, a drillpole 14. On the frame 12 are usually mounted other equipment such as the control panel 16 of the drilling machine 10.
  • the drilling mast 14 serves as a guide rail for a drilling and concreting tool 18 according to the invention.
  • Means are provided, on the machine 10, for moving the tool 18 relative to the mast 16.
  • these means comprise a carriage 20 movable in the longitudinal direction of the mast 14, and a hydraulic rotation head 22 mounted on the carriage 20.
  • the hydraulic rotation head 22 is intended to be fixed to the drilling and concreting tool 18, and is adapted to rotate it to perform the perforation of the soil S.
  • the tooling 18 comprises a central core 24 extending in an axial direction X and surrounded by a helical blade 30, as well as a cutting tool 50 disposed at its lower end 18b and which allows the cutting of the ground during the operation. 'drilling step.
  • the central core 24 of the tooling 18 comprises a tubular shaft 26 preferably formed by a plurality of tubes such as 26i (see Figure 1) and extending in the longitudinal direction X.
  • the tubular rod 26 is fixed at its upper end to the hydraulic rotation head 22.
  • first helically shaped blade 30 extending here over its entire axial height, forming an auger continues.
  • it also comprises a second helical blade 32, shifted 180 degrees relative to the first continuous blade 30 and extending from the lower end of the rod 26 on a very short portion, equivalent to a turn.
  • a plunger tube 34 forming a concrete injection conduit extends longitudinally inside the tubular rod 26.
  • the inlet of the dip tube 34, projecting from the upper end of the tubular rod 26, is fixed to a support platform 36 mounted on the carriage 20.
  • the inlet of the tube is also connected, by a rotating connection 38, to a concrete supply line 40 connected to concrete storage and pumping means 42, in particular a concrete pump fed by a router.
  • the structure and operation of the plunger tube 34 are well known from FR 2 566 813.
  • the tube 34 is slidably mounted inside the tubular rod 26, between a first position or retracted position illustrated in particular in FIGS. 4A and 6A, and a second position or extended position as illustrated in FIGS. 4B and 6B.
  • the longitudinal translation of the plunger tube 34 with respect to the tubular rod 26 is for example carried out by means of a jack 44 mounted between the rotation head 22 and the support platform 36 of the plunger tube 34, as illustrated in FIG. 7.
  • the rod 26 and the dip tube 34 comprise complementary means for securing them in rotation.
  • the tube 34 On its lower part, the tube 34 is provided with lateral openings 46a, 46b forming concrete injection orifices.
  • lower part is meant here its lower half, usually an axial portion extending from its lower end on a length less than 5% of its total axial length.
  • the dip tube 34 In its retracted position, the dip tube 34 is contained inside the tubular rod 26. Its lateral openings 46a, 46b are closed by the tubular rod 26.
  • the tubular rod 26 is raised while the plunger tube 34 remains in position. in the ground.
  • the dip tube 34 is then in the deployed position: its lower portion, carrying the lateral openings 46a, 46b, is outside the tubular rod 26. Concrete introduced by the upper end of the drilling and concreting tool 18, can be injected into the ground S by these lateral openings 46a, 46b.
  • the cutting tool 50 comprises two substantially identical lateral cutting members 52a, 52b disposed on either side of the central core 24.
  • a first lateral cutter 52a is attached to the lower end of the first blade 30, and a second lateral cutter 52b is attached to the lower end of the second blade 32, the two cutters 52a, 52b are extending generally in the same radial direction of the tooling 18.
  • Each lateral cutting member 52a, 52b comprises a tooth support 54 extending from the periphery of the tubular stem in a substantially radial direction, said main direction Ba, Bb of the cutting member 52.
  • Each cutting member further comprises a series of cutting teeth 56 projecting from its support 54, distributed in said main direction and oriented substantially in the cutting direction and downwards.
  • the teeth 56 are arranged next to each other, in a row, and evenly distributed on the tooth support.
  • the cutting tool 50 further comprises a central cutting member 58 integral with the plunger tube 34, disposed below the lateral openings 46a, 46b of the latter, and which also comprises a plurality of teeth 60.
  • the drilling and concreting tooling 18 makes it possible to inject a pressurized treatment fluid into the soil S in the vicinity of the cutting tool 50.
  • the drilling machine 10 comprises a process fluid supply duct 64, itself connected to means for storing and pumping the treatment fluid. on the ground 66, and intended to feed the treatment fluid injection circuit 90.
  • the two diametrically opposite fluid supply ports 62a, 62b are positioned to face the concrete injection ports 46a, 46b of the dip tube 34 when the tube 34 is in its retracted position (Fig. 4A).
  • the treatment fluid injection circuit 90 thus communicates with the plunger tube 34, through which the fluid can be conveyed to the lower end of the tooling 18, where the openings are located. supply 62a, 62b.
  • the inlet of the plunger tube is thus connected, in addition to the concrete conduit 40, to the supply fluid supply line 64 mentioned above.
  • This insulation system may for example comprise a solenoid valve or a non-return valve, in particular integrated in the fluid supply line 64.
  • the fluid supply orifices 62a, 62b do not constitute fluid injection orifices.
  • the fluid at the outlet of each fluid supply port 62 is deflected to injection ports 76 by a fluid deflection device 70 described in more detail below.
  • Each fluid deflection device here comprises a distribution housing 72 provided with an inlet 73 connected by a connecting duct 74 to the supply orifice 62.
  • the housing 72 is disposed at the rear of a tooth support 54, forming a stiffener for this support 54. It is hollow, defining an interior chamber 78 delimited in part by the tooth support 54.
  • the housing 72 here comprises an inclined wall 71 72, forming a deflector for the fluid.
  • each tooth support 54 of the cutting tool 50 is further pierced with a plurality of through holes 76 of axes extending orthogonally to the main direction of the cutting member 52.
  • the inside of the distribution housing 72 associated with the tooth support 54 communicates with each hole 76 of the support 54, each hole thus forming an injection port for the treatment fluid.
  • tooling 18 is explained briefly below in connection with FIGS. 6A and 6B.
  • the drilling and concreting tool 18 is lowered into the ground S while rotating. It is so to speak “screwed" into the ground.
  • the cutting direction C of the tooling is defined as the direction of rotation of the tooling during drilling (see FIGS. 3 and 6A in particular).
  • the soil S is cut by the cutting tool 50.
  • the cuttings D fill the inter-turn space of the blade 30.
  • the treatment fluid is injected into the concrete injection pipe 34, and conveyed to the fluid supply ports 62.
  • the dip tube 34 is advantageously enclosed by a seal 80 carried by the tubular rod 26 and intended to seal with said rod 26.
  • the treatment fluid circulates through the duct 74, enters the distribution housing 72, where it is deflected by the ramp 71, and then escapes through the orifices.
  • the fluid flows in a direction substantially tangential to the central core 24 while being oriented in the cutting direction.
  • the injection ports 76 being distributed in the main direction of the cutting member, the fluid flow sweeps the entire extent of said member.
  • the cuttings covering the cutting surface are guided upwards between the turns of the helical blade 30.
  • the soil S becomes lighter and generates less friction with the tooling than the rough terrain.
  • the couple The rotation of the tooling 18 is therefore limited, improving the efficiency of the perforation.
  • a concrete pile 100 is finally obtained, after hardening of the concrete.
  • the fluid injection circuit can be fed independently of the concrete injection circuit, by a separate supply line.
  • the concrete injection pipe may be constituted by the tubular stem itself, or by a fixed duct extending inside said tubular stem.
  • the concrete injection port may open axially to the lower end of the central core and be, during the drilling operation , closed by means of a removable cap.
  • the deflection device may be omitted.
  • the fluid is injected directly into the soil as it leaves the central core.
  • the deflection device may also be in the form of a simple pipe (possibly divided into several pipes), connected to the fluid supply orifice and shaped and oriented to deflect the fluid in the most suitable direction, in particular towards the front of the cutting tool (in the cutting direction) or towards the cutting tool itself.
  • FIG. 8 A deflection device according to another exemplary embodiment of the invention is illustrated in FIG. 8. All elements identical or similar to those described above retain, in this figure, the same reference numerals, and are not described again.
  • the deflection device 70 always comprises a housing 72 disposed at the rear of a tooth support 74, connected to a fluid supply orifice 62.
  • a longitudinal opening 86 extending in the main direction of the cutting member 52 is formed in the housing 72, particularly in its inclined wall 71 forming a deflector for the fluid.
  • the fluid F from the housing 72 is thus injected at the rear of the cutting teeth 76 flowing in the cutting direction. Due to the elongate profile of the opening 86, the fluid flow furthermore scans the entire extent of the cutting member 52, and the cutting surface Se.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

Un outillage de forage et bétonnage (18) pour la réalisation d'un pieu en béton (100) dans le sol (S) comprend une âme centrale (24) s'étendant selon une direction axiale (X) et entourée d'une lame hélicoïdale (30), un outil de coupe (50) disposé à une extrémité inférieure de l'outillage (24), un conduit d'injection de béton (34) muni d'au moins un orifice d'injection de béton et un circuit d'injection d'un fluide de traitement comprenant au moins un orifice d'injection de fluide au voisinage de l'outil de coupe (50).

Description

OUTILLAGE DE FORAGE ET BETONNAGE POUR LA REALISATION D'UN PIEU EN BETON DANS LE SOL, ET PROCEDE CORRESPONDANT
Domaine technique
La présente invention concerne la réalisation de pieux en béton dans le sol.
Arrière-plan de l'invention
Pour la réalisation de pieux en béton dans le sol, il est courant d'utiliser des tarières comprenant une lame hélicoïdale enroulée autour d'une âme centrale et munies d'un outil de coupe à leur extrémité inférieure.
La tarière est tout d'abord descendue dans le sol puis, une fois la perforation achevée, du béton est injecté sous pression à travers l'âme centrale en même temps que la tarière est remontée.
Un exemple de tarière continue est décrit dans la demande de brevet français FR 2 566 813.
Avec un tel outillage, tous les déblais ne sont pas extraits du sol au fur et à mesure de la perforation. Au moins une quantité de sol correspondant à l'encombrement de l'outillage remonte, de fait, durant la perforation, mais les espaces entre les spires de la lame hélicoïdale restent, elles, constamment remplies de déblais. Ces déblais ne sont extraits que lors de la remontée de la tarière, ce qui engendre un certain nombre de difficultés. Du fait du frottement entre les déblais et la lame hélicoïdale, le couple de rotation résistant de la tarière augmente avec la profondeur de sol perforé, diminuant progressivement l'efficacité de la perforation. En outre, notamment en cas de sol cohérent, l'outil de coupe situé à l'extrémité inférieure de la tarière reste entouré de déblais qui diminuent l'efficacité de la coupe du terrain.
II existe donc un besoin de fournir un outillage et un procédé pour la réalisation d'un pieu en béton dans le sol, qui permettent de remédier aux problèmes de l'art antérieur énoncés ci-dessus.
Objet et résumé de l'invention
La présente invention vise à répondre à ce besoin. Selon l'invention, un outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol comprend une âme centrale s'étendant selon une direction axiale et entourée d'une lame hélicoïdale, un outil de coupe disposé à une extrémité inférieure de l'outillage, un conduit d'injection de béton muni d'au moins un orifice d'injection de béton et un circuit d'injection d'un fluide de traitement comprenant au moins un orifice d'injection de fluide au voisinage de l'outil de coupe.
Selon l'invention, pour limiter l'encombrement de l'outillage, le circuit d'injection de fluide communique avec le conduit d'injection de béton pour pouvoir être alimenté par ledit conduit.
L'outillage selon l'invention permet un nettoyage de l'outil de coupe tout au long de la perforation par injection d'un fluide de traitement sous pression au voisinage de l'outil. Les problèmes de bourrage et les arrêts intempestifs lors de la mise en œuvre sont ainsi évités.
Dans le cadre de la présente invention, on désigne par surface de coupe la surface de terrain marquant la fin de la perforation à un instant donné.
L'outillage selon l'invention permet, grâce à l'injection de fluide de traitement, de dégager les déblais recouvrant la surface de coupe et de guider ces déblais vers le haut, entre les spires de la lame hélicoïdale. L'outil de coupe est ainsi amené en contact avec du sol non coupé, améliorant l'efficacité et donc la vitesse de perforation.
De plus, en se mélangeant avec le fluide de traitement, le sol s'allège et génère moins de frottement que le terrain brut. Le couple de rotation de l'outillage est donc limité, améliorant l'efficacité de la perforation.
Dans le présent exposé, un fluide de traitement peut être tout fluide différent du béton. Le fluide de traitement peut par exemple être de l'air. Il peut aussi être une mousse.
On dit que le fluide est injecté au voisinage de l'outil de coupe par exemple lorsqu'il est injecté à une distance de l'outil équivalent à moins de 5% de la longueur axiale de l'outillage de forage et bétonnage, ladite distance étant mesurée dans la direction axiale de l'outillage. Généralement, cette distance est inférieure au pas de la lame hélicoïdale.
L'orifice d'injection de béton est, lui-aussi, généralement situé au voisinage de l'extrémité inférieure de l'outillage. Dans le présent exposé, sauf précision contraire, une direction axiale est une direction parallèle à l'axe de l'âme centrale de l'outillage de forage et bétonnage. En outre, une direction radiale est une direction perpendiculaire à l'axe de l'âme centrale et coupant cet axe.
On définit également un sens de coupe de l'outillage comme le sens de rotation de l'outillage de forage et de bétonnage en phase de forage (lorsque l'outillage est descendu dans le sol). On définit, enfin, l'avant et l'arrière, en référence à ce sens de coupe, l'avant étant dirigé dans le sens de coupe.
Selon un exemple, la lame hélicoïdale s'étend sur toute la longueur axiale de l'âme centrale, formant une tarière continue. Dans ce cas, et comme indiqué dans l'introduction de la présente demande, tous les déblais sont extraits une fois la tarière remontée.
Comme indiqué précédemment, l'injection de fluide de traitement au voisinage de l'outil de coupe permet, à vitesse de rotation identique, d'obtenir une vitesse de perforation plus importante qu'avec les tarières de l'art antérieur. Le nombre de tours de « vis » nécessaires pour atteindre une profondeur donnée est réduit. Dans le cas particulier d'une tarière continue, cela conduit à une quantité moins importante de déblais remontés au cours de la perforation, ce qui est favorable à une plus grande compacité du terrain encaissant, et donc à une meilleure portance du pieu. L'injection de fluide de traitement peut permettre, dans ce cas, une diminution de plus de 30%, de préférence 50%, du volume total de déblais excavés au cours du forage.
Selon un autre exemple, au contraire, la lame hélicoïdale peut s'étendre sur une portion axiale limitée de l'âme centrale, de préférence depuis son extrémité inférieure sur une longueur axiale représentant moins de 20% de la longueur axiale totale de l'âme. Cette configuration est courante dans la réalisation de pieux dits refoulés, dans laquelle le sol est déplacé radialement et compacté sur tout le pourtour du trou de forage.
Selon un exemple, l'outillage selon l'invention est agencé pour pouvoir passer d'une première position dans laquelle l'orifice d'injection de béton est au moins partiellement obturé et le circuit d'injection de fluide est ouvert à une deuxième position dans laquelle l'orifice d'injection de béton est ouvert. L'orifice d'injection de béton présente généralement une section plus importante que celle de l'orifice d'injection de fluide.
De préférence, l'orifice d'injection de béton présente une largeur minimale au moins deux fois supérieure à celle de l'orifice d'injection de fluide.
La largeur d'un orifice doit s'entendre ici comme la distance séparant deux faces opposées dudit orifice. La largeur minimale est ainsi la plus petite largeur mesurable entre deux faces opposées de l'orifice. Dans le cas d'un orifice circulaire par exemple, la largeur de l'orifice correspond à son diamètre. Dans le cas d'un orifice de section rectangulaire, la largeur de l'orifice correspond à la distance entre ses deux faces les plus longues.
Par exemple, l'orifice d'injection de béton présente une largeur minimale supérieure à 60mm, de préférence supérieure à 80mm, permettant notamment le passage des gravillons contenus dans le béton.
L'orifice d'injection de fluide présente avantageusement une largeur minimale inférieure à 30mm, de préférence inférieure àl5mm, permettant l'injection du fluide de traitement à une pression suffisante.
De préférence, le circuit d'injection de fluide de traitement comprend au moins un orifice d'amenée de fluide formé dans l'âme centrale et débouchant dans une direction radiale de ladite âme.
Dans certains modes de réalisation, l'orifice d'amenée de fluide est distinct de l'orifice d'injection de béton.
L'orifice d'amenée de fluide peut déboucher au-dessus ou en- dessous de la lame hélicoïdale, avantageusement directement au-dessus ou en-dessous de la première spire de la lame.
L'orifice d'amenée de fluide peut déboucher directement à l'extérieur. Il constitue alors un orifice d'injection de fluide, au niveau duquel le flux de fluide est injecté dans le sol dans une direction sensiblement radiale.
De façon avantageuse cependant, le circuit d'injection de fluide comprend un dispositif de déviation de fluide disposé entre l'orifice d'amenée de fluide et l'orifice d'injection de fluide, le dispositif de déviation étant configuré de sorte qu'au niveau de l'orifice d'injection de fluide, le fluide s'écoule dans une direction sensiblement tangentielle à l'âme centrale en étant orienté dans le sens de coupe. Grâce à ces dispositions, l'injection de fluide dans le sol peut être localisée de manière optimale. Selon un exemple, l'outil de coupe comprend, à la périphérie de l'âme centrale, au moins un organe de coupe comportant une série de dents de coupe réparties dans une direction principale de l'organe de coupe s'étendant sensiblement radialement.
Dans ce cas, de préférence, le dispositif de déviation est configuré de sorte qu'au niveau de l'orifice d'injection, l'écoulement de fluide est réparti dans la direction principale de l'organe de coupe, de préférence réparti sensiblement régulièrement sur toute son étendue. Le dispositif de déviation permet ainsi de répartir le flux de fluide sur une largeur maximale de l'outil de coupe, optimisant l'efficacité du forage, en particulier dans le cas d'outillages de grand diamètre.
Encore plus préférentiellement, le dispositif de déviation est configuré de sorte qu'en sortie de l'orifice d'injection, le fluide s'écoule de façon à venir frapper l'outil de coupe.
Selon un exemple, le dispositif de déviation comprend un boîtier muni d'une entrée reliée à l'orifice d'amenée de fluide et d'une paroi formant déflecteur, adaptée à refouler le fluide provenant de ladite entrée en direction de l'outil de coupe. Le boîtier peut par exemple être disposé à l'arrière de l'organe de coupe. Il peut ainsi, en plus, remplir une fonction de raidisseur de l'organe généralement soumis à d'importantes sollicitations mécaniques.
Selon un exemple de réalisation, l'âme centrale comprend une tige tubulaire portant la lame hélicoïdale et le conduit d'injection de béton est un tube plongeur comportant ledit au moins un orifice d'injection de béton sur sa partie inférieure, le tube plongeur étant agencé pour pouvoir coulisser axialement à l'intérieur de la tige tubulaire entre la première et la deuxième position. Un tube plongeur de ce type est déjà connu de la demande de brevet FR 2 566 813 citée précédemment.
Dans ce cas, l'orifice d'amenée de fluide est avantageusement formé dans la tige tubulaire de façon à communiquer avec l'orifice d'injection de béton dudit tube plongeur, dans la première position de l'outillage (état rétracté du tube plongeur par exemple). L'orifice d'amenée de fluide peut notamment être agencé en regard de l'orifice d'injection de béton, dans ladite position. L'invention concerne également une machine de forage et bétonnage pour réaliser un pieu en béton dans le sol, comportant un outillage de forage et bétonnage tel que défini précédemment, des moyens pour alimenter en béton le conduit d'injection de béton, et des moyens pour alimenter en fluide de traitement le circuit d'injection de fluide.
Selon une disposition préférée déjà évoquée, le conduit d'injection de béton est relié à des moyens de stockage et de pompage de béton d'une part, et à des moyens de stockage et de pompage de fluide de traitement d'autre part, pour pouvoir être alimenté alternativement par l'un et l'autre, selon l'étape réalisée (forage ou bétonnage).
Selon un exemple, la machine de forage comporte en outre un châssis muni d'un mât longitudinal, l'âme centrale de l'outillage de forage et bétonnage s'étendant parallèlement au mât, et des moyens pour déplacer l'outillage de forage et bétonnage par rapport au mât en translation selon la direction longitudinale du mât et en rotation autour de l'axe de l'âme centrale.
L'invention concerne également un procédé de réalisation d'un pieu en béton dans le sol, dans lequel on introduit dans le sol un outillage de forage et bétonnage comprenant une âme centrale entourée d'une lame hélicoïdale et un outil de coupe à une extrémité inférieure dudit outillage, en le tournant et en injectant un fluide de traitement sous pression au voisinage de l'outil de coupe (50), ce par quoi le sol est découpé ; au cours du forage, le fluide de traitement et le béton sont injectés par un même conduit d'injection de l'outillage de forage et bétonnage ; et dans une étape de bétonnage, on remonte l'outillage en injectant du béton dans le sol par ledit outillage, de manière à former un pieu en béton.
Selon un exemple, l'outillage comprend un conduit d'injection de béton muni d'au moins un orifice d'injection de béton et un circuit d'injection d'un fluide de traitement comprenant au moins un orifice d'injection de fluide au voisinage de l'outil de coupe, au moins une partie de l'étape de forage étant réalisée avec l'outillage dans une première position dans laquelle l'orifice d'injection de béton est au moins partiellement obturé et le circuit d'injection de fluide est ouvert et l'étape de bétonnage est réalisée avec l'outillage dans une deuxième position dans laquelle l'orifice d'injection de béton est ouvert.
L'injection de fluide de traitement sous pression dans le sol peut avantageusement débuter au démarrage du forage. Elle peut être poursuivie durant tout le forage ou, selon le type de terrain rencontré, être stoppée avant la fin du forage.
Selon un exemple particulier de mise en œuvre, moins de 30%, de préférence moins de 15%, des déblais liés au forage sont remontés à la surface du sol lors du forage. Les déblais sont soit remontés lors de la remontée de l'outillage, c'est-à-dire pendant le bétonnage, soit refoulés radialement vers l'extérieur du trou de forage et compactés.
Plusieurs exemples de réalisation et de mise en uvre sont décrits dans le présent exposé. Toutefois, sauf précision contraire, les caractéristiques décrites en liaison avec un exemple de réalisation et de mise en œuvre quelconque peuvent être appliquées à un autre exemple de réalisation ou de mise en œuvre.
Brève description des dessins
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, de plusieurs exemples représentés à titre non limitatif. La description se réfère aux dessins annexés sur lesquels :
- La figure 1 illustre une machine de forage selon un exemple de réalisation de la présente invention ;
- La figure 2 montre l'extrémité inférieure de l'outillage de forage et bétonnage de la figure 1, en vue de face ;
- La figure 3 est une vue de dessous de l'outillage de forage et bétonnage de la figure 1 ;
- La figure 4A est une vue en coupe selon IV-IV de la figure 3, sur laquelle le tube plongeur est illustré en position rétractée ;
- La figure 4B est une vue en coupe partielle selon IV-IV de la figure 3, sur laquelle le tube plongeur est illustré en position déployée ;
- La figure 5 est une vue en perspective, de dessous, de l'outillage de forage et bétonnage de la figure 1 ;
- Les figures 6A et 6B illustrent respectivement l'étape de forage et l'étape de bétonnage, lors de la réalisation du pieu en béton au moyen de l'outillage de la figure 1 ;
- La figure 7 est une vue de détail de l'extrémité supérieure de l'outillage de forage et bétonnage de la figure 1 ; - La figure 8 illustre une variante de réalisation de l'outillage selon l'invention.
Description détaillée d'exemples de réalisation
Sur la figure 1, on a représenté une machine de forage et bétonnage 10 selon l'invention, qui permet de réaliser dans le sol S un pieu 100 en béton.
La machine de forage 10 comprend un châssis 12 sur lequel est monté, généralement de façon articulée, un mât de forage 14. Sur le châssis 12 sont habituellement montés d'autres équipements tels que le pupitre de commande 16 de la machine de forage 10.
De façon connue, le mât de forage 14 sert de glissière de guidage pour un outillage de forage et bétonnage 18 selon l'invention.
Des moyens sont prévus, sur la machine 10, pour déplacer l'outillage 18 par rapport au mât 16. De manière connue, ces moyens comportent un chariot 20 mobile selon la direction longitudinale du mât 14, ainsi qu'une tête de rotation hydraulique 22 montée sur le chariot 20. La tête de rotation hydraulique 22 est destinée à venir se fixer à l'outillage de forage et bétonnage 18, et est adaptée à le mettre en rotation pour réaliser la perforation du sol S.
Pour la suite, on définit une extrémité inférieure 18b de l'outillage 18 dirigée vers le sol en position prêt à forer, et une extrémité supérieure 18a dudit outillage, dirigée vers le ciel dans la même position.
L'outillage 18 comprend une âme centrale 24 s'étendant selon une direction axiale X et entourée d'une lame hélicoïdale 30, ainsi qu'un outil de coupe 50 disposé à son extrémité inférieure 18b et qui permet le découpage du sol lors de l'étape de forage.
Dans l'exemple particulier illustré, l'âme centrale 24 de l'outillage 18 comporte une tige tubulaire 26 formée de préférence par une pluralité de tubes tels que 26i (voir la figure 1) et s'étendant dans la direction longitudinale X.
La tige tubulaire 26 est fixée par son extrémité supérieure à la tête de rotation hydraulique 22.
Comme indiqué précédemment et comme illustré notamment sur les figures 1 et 2, elle porte, sur sa surface externe, une première lame de forme hélicoïdale 30 s'étendant ici sur toute sa hauteur axiale, formant une tarière continue. Dans l'exemple, elle comprend aussi une deuxième lame hélicoïdale 32, décalée de 180 degrés par rapport à la première lame continue 30 et s'étendant depuis l'extrémité inférieure de la tige 26 sur une portion très courte, équivalent à une spire.
Dans l'exemple, comme illustré sur les figures 1 et 4, un tube plongeur 34, formant conduit d'injection de béton, s'étend longitudinalement à l'intérieur de la tige tubulaire 26. Comme illustré sur les figures 1 et 7, l'entrée du tube plongeur 34, en saillie par rapport à l'extrémité supérieure de la tige tubulaire 26, est fixée à une plateforme support 36 montée sur le chariot 20.
L'entrée du tube est par ailleurs reliée, par un raccord tournant 38, à une conduite d'alimentation en béton 40 reliée à des moyens de stockage et de pompage de béton 42, notamment une pompe à béton alimentée par une toupie.
La structure et le fonctionnement du tube plongeur 34 sont bien connus du document FR 2 566 813.
De manière connue, le tube 34 est monté coulissant à l'intérieur de la tige tubulaire 26, entre une première position ou position rétractée illustrée notamment sur les figure 4A et 6A, et une deuxième position ou position déployée telle qu'illustrée sur les figures 4B et 6B.
La translation longitudinale du tube plongeur 34 par rapport à la tige tubulaire 26 est par exemple réalisée au moyen d'un vérin 44 monté entre la tête de rotation 22 et la plateforme support 36 du tube plongeur 34, comme illustré sur la figure 7.
La tige 26 et le tube plongeur 34 comportent des moyens complémentaires permettant de les solidariser en rotation.
Sur sa partie inférieure, le tube 34 est muni d'ouvertures latérales 46a, 46b formant orifices d'injection de béton. Par partie inférieure on entend ici sa moitié inférieure, généralement une portion axiale s'étendant depuis son extrémité inférieure sur une longueur représentant moins de 5% de sa longueur axiale totale.
Dans sa position rétractée, le tube plongeur 34 est contenu à l'intérieur de la tige tubulaire 26. Ses ouvertures latérales 46a, 46b sont obturées par la tige tubulaire 26.
Lors de la remontée de l'outillage 18 pour le bétonnage, la tige tubulaire 26 est remontée tandis que le tube plongeur 34 reste en position dans le sol. Le tube plongeur 34 est alors en position déployée : sa portion inférieure, portant les ouvertures latérales 46a, 46b, se trouve hors de la tige tubulaire 26. Du béton, introduit par l'extrémité supérieure de l'outillage de forage et bétonnage 18, peut être injecté dans le sol S par ces ouvertures latérales 46a, 46b.
Selon une configuration usuelle, et comme illustré sur les figures 2, 3 et 5, l'outil de coupe 50 comporte deux organes de coupe latéraux 52a, 52b, sensiblement identiques, disposés de part et d'autre de l'âme centrale 24. Un premier organe de coupe latéral 52a est fixé à l'extrémité inférieure de la première lame 30, et un deuxième organe de coupe latéral 52b est fixé à l'extrémité inférieure de la deuxième lame 32, les deux organes de coupe 52a, 52b s'étendant généralement selon une même direction radiale de l'outillage 18.
Chaque organe de coupe latéral 52a, 52b comprend un support de dents 54 s'étendant depuis la périphérie de la tige tubulaire dans une direction sensiblement radiale dite direction principale Ba, Bb de l'organe de coupe 52. Chaque organe de coupe comporte en outre une série de dents de coupe 56 en saillie depuis son support 54, réparties dans ladite direction principale et orientées sensiblement dans le sens de coupe et vers le bas.
Dans l'exemple, les dents 56 sont disposées les unes à côté des autres, en rangée, et régulièrement réparties sur le support de dents.
Dans l'exemple, l'outil de coupe 50 comprend, de plus, un organe de coupe central 58 solidaire du tube plongeur 34, disposé en-dessous des ouvertures latérales 46a, 46b de ce dernier, et qui comporte, lui aussi, une pluralité de dents 60.
Comme indiqué précédemment, l'outillage de forage et bétonnage 18 permet l'injection d'un fluide de traitement sous pression, dans le sol S, au voisinage de l'outil de coupe 50.
II comporte, pour cela, un circuit d'injection de fluide de traitement
90 comprenant, entre autres, deux orifices d'amenée de fluide 62a, 62b, formés dans la tige tubulaire 26 et débouchant radialement, visibles sur les figures 4A et 4B.
Comme illustré sur les figures 1 et 7, la machine de forage 10 comprend un conduit d'alimentation en fluide de traitement 64, relié lui- même à des moyens de stockage et de pompage de fluide de traitement au sol 66, et destinés à alimenter le circuit d'injection de fluide de traitement 90.
Les deux orifices d'amenée de fluide 62a, 62b, diamétralement opposés, sont positionnés de manière à faire face aux orifices d'injection de béton 46a, 46b du tube plongeur 34 lorsque le tube 34 est dans sa position rétractée (figure 4A).
Dans l'exemple particulier représenté, le circuit d'injection de fluide de traitement 90 communique ainsi avec le tube plongeur 34, par lequel le fluide peut être acheminé jusqu'à l'extrémité inférieure de l'outillage 18, où se trouvent les orifices d'amenée 62a, 62b.
L'entrée du tube plongeur est ainsi reliée, outre au conduit de béton 40, au conduit d'alimentation en fluide de traitement 64 mentionné précédemment.
Comme illustré sur la figure 7, on peut avantageusement prévoir un système d'isolation 82 du circuit d'alimentation en fluide et du circuit d'alimentation en béton. Ce système d'isolation peut par exemple comprendre une électrovanne ou un clapet anti-retour, notamment intégré dans la conduite d'alimentation en fluide 64.
Dans l'exemple, les orifices d'amenée de fluide 62a, 62b ne constituent pas des orifices d'injection de fluide. Le fluide en sortie de chaque orifice d'amenée de fluide 62 est dévié vers des orifices d'injection 76 par un dispositif de déviation de fluide 70 décrit plus en détail dans la suite.
Chaque dispositif de déviation de fluide comprend ici un boîtier de répartition 72 muni d'une entrée 73 reliée, par un conduit de liaison 74, à l'orifice d'amenée 62.
Dans l'exemple, le boîtier 72 est disposé à l'arrière d'un support de dents 54, formant un raidisseur pour ce support 54. Il est creux, définissant une chambre intérieure 78 délimitée en partie par le support de dent 54.
Le boîtier 72 comprend ici une paroi inclinée 71 72, formant déflecteur pour le fluide.
Dans l'exemple particulier décrit, chaque support de dents 54 de l'outil de coupe 50 est en outre percé d'une pluralité de trous traversants 76 d'axes s'étendant orthogonalement à la direction principale de l'organe de coupe 52. Comme illustré sur la figure 5, l'intérieur du boîtier de répartition 72 associé au support de dents 54 communique avec chaque trou 76 du support 54, chaque trou formant ainsi un orifice d'injection pour le fluide de traitement.
L'utilisation de l'outillage 18 est explicitée brièvement ci-dessous en liaison avec les figures 6A et 6B.
Dans une première étape dite de forage du sol, illustrée sur la figure 6A, l'outillage de forage et bétonnage 18 est descendu, dans le sol S, en tournant. Il est donc pour ainsi dire « vissé » dans le sol. On définit ici le sens de coupe C de l'outillage comme le sens de rotation de l'outillage lors du forage (voir figures 3 et 6A notamment).
Durant la descente de l'outillage, le sol S est découpé par l'outil de coupe 50. A mesure que l'outillage 18 descend dans le sol S, les déblais D viennent remplir l'espace inter-spires de la lame 30.
Dans l'exemple particulier représenté, le fluide de traitement est injecté dans le conduit d'injection de béton 34, et acheminé jusqu'aux orifices d'amenée de fluide 62.
A noter que pour éviter que le fluide F ne remonte dans l'âme centrale 24 par l'interstice formé entre le tube plongeur 34 et la tige tubulaire 26, le tube plongeur 34 est avantageusement enserré par un joint 80 porté par la tige tubulaire 26 et destiné à assurer l'étanchéité avec ladite tige 26.
En sortie de chaque orifice d'amenée de fluide, le fluide de traitement circule à travers le conduit 74, pénètre dans le boîtier de répartition 72, où il est dévié par la rampe 71, puis s'en échappe à travers les orifices d'injection 76 formés dans le support de dents.
En sortie du circuit d'injection, le fluide s'écoule dans une direction sensiblement tangentielle à l'âme centrale 24 en étant orienté dans le sens de coupe. De plus, les orifices d'injection 76 étant répartis dans la direction principale de l'organe de coupe, le flux de fluide vient balayer toute l'étendue dudit organe.
Les déblais recouvrant la surface de coupe Se sont guidés vers le haut, entre les spires de la lame hélicoïdale 30.
En se mélangeant avec le fluide de traitement, le sol S s'allège, et génère moins de frottements avec l'outillage que le terrain brut. Le couple de rotation de l'outillage 18 est donc limité, améliorant l'efficacité de la perforation.
Ce gain d'efficacité de la perforation permet d'approcher la vitesse de vissage de la tarière (pénétration de la hauteur d'une spire par révolution), limitant le volume de déblais extraits lors de l'étape de forage. La décompression du sol entourant le pieu pouvant intervenir avant l'étape de bétonnage est donc limitée, ce qui est favorable à une meilleure portance du pieu.
Une fois la profondeur de forage souhaitée atteinte, l'alimentation en fluide de forage F est stoppée, le tube plongeur est amené dans sa position déployée, et du béton B est injecté, dans le trou de forage résultant du perçage, par le conduit d'injection de béton 34. Cette étape est illustrée sur la figure 6B.
Un pieu en béton 100 est enfin obtenu, après durcissement du béton.
L'exemple décrit précédemment n'est cependant pas limitatif. Ainsi, le circuit d'injection de fluide peut être alimenté indépendamment du circuit d'injection de béton, par une conduite d'amenée séparée.
De la même manière, le conduit d'injection de béton peut être constitué par la tige tubuiaire elle-même, ou par un conduit fixe s'étendant à l'intérieur de ladite tige tubuiaire.
Dans le cas où le conduit d'injection de béton est constitué par la tige tubuiaire, notamment, l'orifice d'injection de béton peut déboucher axialement à l'extrémité inférieure de l'âme centrale et être, durant l'opération de forage, obturé au moyen d'un bouchon amovible.
Indépendamment de la configuration du conduit d'injection de béton, le dispositif de déviation peut être omis. Dans ce cas, le fluide est injecté directement dans le sol à sa sortie de l'âme centrale.
Le dispositif de déviation peut aussi se présenter sous la forme d'une simple conduite (éventuellement subdivisée en plusieurs conduites), reliée à l'orifice d'amenée de fluide et conformée et orientée pour dévier le fluide dans la direction la plus adaptée, notamment vers l'avant de l'outil de coupe (dans le sens de coupe) ou vers l'outil de coupe lui-même.
Un dispositif de déviation selon un autre exemple de réalisation de l'invention est illustré sur la figure 8. Tous les éléments identiques ou similaires à ceux décrits précédemment conservent, sur cette figure, les mêmes références numériques, et ne sont pas décrits une nouvelle fois.
Le dispositif de déviation 70 comprend toujours un boîtier 72 disposé à l'arrière d'un support de dents 74, relié à un orifice d'amenée de fluide 62.
Dans cet exemple, cependant, l'injection du fluide est réalisée à l'arrière des dents 76 et non pas à l'avant du support de dents 74. Le support de dents 74 est d'ailleurs dépourvu de trous.
Comme illustré, une ouverture 86 longitudinale s'étendant dans la direction principale de l'organe de coupe 52, est formée dans le boîtier 72, en particulier dans sa paroi inclinée 71 formant déflecteur pour le fluide. Le fluide F issu du boîtier 72 est ainsi injecté à l'arrière des dents de coupe 76 en s'écoulant dans le sens de coupe. Du fait du profil allongé de l'ouverture 86, le flux de fluide balaye, en outre, toute l'étendue de l'organe de coupe 52, et la surface de coupe Se.

Claims

REVENDICATIONS
1. Outillage de forage et bétonnage (18) pour la réalisation d'un pieu en béton (100) dans le sol (S), l'outillage (18) comprenant une âme centrale (24) s'étendant selon une direction axiale (X) et entourée d'une lame hélicoïdale (30), un outil de coupe (50) disposé à une extrémité inférieure de l'outillage (24), et un conduit d'injection de béton muni d'au moins un orifice d'injection de béton (46a, 46b), et un circuit d'injection (90) d'un fluide de traitement comprenant au moins un orifice d'injection de fluide (76) au voisinage de l'outil de coupe (50), l'outillage étant caractérisé en ce que le circuit d'injection de fluide communique avec le conduit d'injection de béton (34) pour pouvoir être alimenté par ledit conduit.
2. Outillage (18) selon la revendication 1, agencé pour pouvoir passer d'une première position dans laquelle l'orifice d'injection de béton (46a, 46b) est au moins partiellement obturé et le circuit d'injection de fluide (90) est ouvert à une deuxième position dans laquelle l'orifice d'injection de béton (46a, 46b) est ouvert.
3. Outillage (18) selon l'une quelconque des revendications 1 ou 2, dans lequel l'orifice d'injection de béton (46a, 46b) présente une largeur minimale au moins deux fois supérieure à celle de l'orifice d'injection de fluide (76).
4. Outillage (18) selon l'une quelconque des revendications 1 à 3, dans lequel l'orifice d'injection de béton (46a, 46b) présente une largeur minimale supérieure à 60mm, de préférence supérieure à 80mm.
5. Outillage (18) selon l'une quelconque des revendications 1 à 4, dans lequel l'orifice d'injection de fluide (76) présente une largeur minimale inférieure à 30mm, de préférence inférieure à 15mm.
6. Outillage (18) selon l'une quelconque des revendications 1 à 5, dans lequel l'âme centrale (24) comprend une tige tubulaire (26) portant la lame hélicoïdale (30) et le conduit d'injection de béton (34) est un tube plongeur comportant ledit au moins un orifice d'injection de béton sur sa partie inférieure, le tube plongeur étant agencé pour pouvoir coulisser axialement à l'intérieur de la tige tubulaire (26) entre une première position dans laquelle l'orifice d'injection de béton (46a,46b) est au moins partiellement obturé et le circuit d'injection de fluide (90) est ouvert, et une deuxième position dans laquelle l'orifice d'injection de béton (46a,46b) est ouvert.
7. Outillage (18) selon l'une quelconque des revendications 1 à 6, dans lequel le circuit d'injection de fluide de traitement comprend au moins un orifice d'amenée de fluide (62a, 62b) formé dans l'âme centrale (24) et débouchant dans une direction radiale de ladite âme.
8. Outillage (18) selon les revendications 6 et 7, dans lequel l'orifice d'amenée de fluide (62a, 62b) est formé dans la tige tubulaire (26) de façon à communiquer avec l'orifice d'injection de béton (46a, 46b) dudit tube plongeur (34), dans la première position de l'outillage.
9. Outillage (18) selon la revendication 7 ou 8, dans lequel le circuit d'injection de fluide (90) comprend un dispositif de déviation de fluide (70) disposé entre l'orifice d'amenée de fluide (62a, 62b) et l'orifice d'injection de fluide, le dispositif de déviation (70) étant configuré de sorte qu'au niveau de l'orifice d'injection de fluide, le fluide s'écoule dans une direction sensiblement tangentielle à l'âme centrale (24) en étant orienté dans le sens de coupe (C).
10. Outillage (18) selon la revendication 9, dans lequel l'outil de coupe (50) comprend, à la périphérie de l'âme centrale (24), au moins un organe de coupe (52) comportant une série de dents de coupe (56) réparties dans une direction principale (B) de l'organe de coupe (52) s'étendant sensiblement radialement, et le dispositif de déviation (70) est configuré de sorte qu'au niveau de l'orifice d'injection de fluide (76), l'écoulement de fluide est réparti dans la direction principale (B) de l'organe de coupe (52).
11. Outillage (18) selon l'une quelconque des revendications 1 à 10, dans lequel la lame hélicoïdale (30) s'étend sur toute la longueur axiale de l'âme centrale (24).
12. Outillage (18) selon l'une quelconque des revendications 1 à 10, dans lequel la lame hélicoïdale (30) s'étend sur une portion axiale limitée de l'âme centrale (24).
13. Machine de forage et bétonnage (10) pour réaliser un pieu en béton (100) dans le sol (S), ladite machine comportant :
- un outillage de forage et bétonnage (18) selon l'une quelconque des revendications 1 à 12,
- des moyens (40, 42) pour alimenter en béton le conduit d'injection de béton (34), et
- des moyens (64, 66) pour alimenter en fluide de traitement le circuit d'injection de fluide (90).
14. Machine (10) selon la revendication 13, comprenant en outre un châssis (12) muni d'un mât longitudinal (14), l'âme centrale (24) de l'outillage de forage et bétonnage (18) s'étendant parallèlement au mât (14), et des moyens (20, 22) pour déplacer l'outillage de forage et bétonnage (18) par rapport au mât (14) en translation selon la direction longitudinale du mât (14) et en rotation autour de l'axe de l'âme centrale (24).
15. Procédé de réalisation d'un pieu en béton (100) dans le sol (S), dans lequel :
- on introduit dans le sol (S) un outillage de forage et bétonnage (18) comprenant une âme centrale (24) entourée d'une lame hélicoïdale (30) et un outil de coupe (50) à une extrémité inférieure dudit outillage (24), en le tournant et en injectant un fluide de traitement sous pression au voisinage de l'outil de coupe (50), ce par quoi le sol est découpé, et
- dans une étape de bétonnage, on remonte l'outillage (18) en injectant du béton dans le sol (S) par ledit outillage, de manière à former un pieu en béton (100),
le procédé étant caractérisé en ce que le fluide de traitement et le béton sont injectés par un même conduit d'injection (34) de l'outillage de forage et bétonnage (18).
16. Procédé selon la revendication 15, dans lequel l'outillage (18) comprend un conduit d'injection de béton muni d'au moins un orifice d'injection de béton (46a, 46b) et un circuit d'injection (90) d'un fluide de traitement comprenant au moins un orifice d'injection de fluide (76) au voisinage de l'outil de coupe (50), au moins une partie de l'étape de forage étant réalisée avec l'outillage (18) dans une première position dans laquelle l'orifice d'injection de béton (46a, 46b) est au moins partiellement obturé et le circuit d'injection de fluide (90) est ouvert et l'étape de bétonnage est réalisée avec l'outillage (18) dans une deuxième position dans laquelle l'orifice d'injection de béton (46a, 46b) est ouvert.
17. Procédé selon la revendication 15 ou 16, dans lequel le fluide de traitement est de l'air.
EP15715343.8A 2014-03-21 2015-03-18 Outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol, et procédé correspondant. Active EP3119939B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452403A FR3018834B1 (fr) 2014-03-21 2014-03-21 Outillage de forage et betonnage pour la realisation d'un pieu en beton dans le sol, et procede correspondant
PCT/FR2015/050659 WO2015140468A1 (fr) 2014-03-21 2015-03-18 Outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol, et procédé correspondant.

Publications (2)

Publication Number Publication Date
EP3119939A1 true EP3119939A1 (fr) 2017-01-25
EP3119939B1 EP3119939B1 (fr) 2019-03-13

Family

ID=51168065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15715343.8A Active EP3119939B1 (fr) 2014-03-21 2015-03-18 Outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol, et procédé correspondant.

Country Status (5)

Country Link
EP (1) EP3119939B1 (fr)
ES (1) ES2728132T3 (fr)
FR (1) FR3018834B1 (fr)
HU (1) HUE044288T2 (fr)
WO (1) WO2015140468A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051218B1 (fr) * 2016-05-10 2021-05-07 Franki Fond Dispositif de forage a outil telescopable.
FR3101102B1 (fr) * 2019-09-23 2021-08-27 Nge Fond Dispositif de forage comportant un tube plongeur télescopique à goupille
EP4101987A1 (fr) * 2021-06-08 2022-12-14 BAUER Spezialtiefbau GmbH Outil de forage et procédé de production d'un forage dans le sol
CN118498356B (zh) * 2024-07-18 2024-09-24 中铁六局集团呼和浩特铁路建设有限公司 一种护壁挖孔浇筑一体机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1208123B (it) * 1983-04-19 1989-06-06 Fondedile Spa Colonna in conglomerato realizzata nel terreno in situ mediante immissione di materiali inerti durante la perforazione e contemporaneao successiva iniezione con opportuni leganti, procedimenti di esecuzione relativi
FR2566813B1 (fr) 1984-06-29 1987-02-20 Soletanche Dispositif et procede pour la realisation de pieux en beton dans le sol et pieux obtenus par ce procede
DE19503177C1 (de) * 1995-02-01 1996-07-18 Bauer Spezialtiefbau Verfahren zur Herstellung von Bohrpfählen
FR2986247B1 (fr) * 2012-01-30 2014-03-14 Soletanche Freyssinet Machine de forage pour la realisation de pieux comprenant une sonde penetrometrique

Also Published As

Publication number Publication date
FR3018834B1 (fr) 2018-11-23
WO2015140468A1 (fr) 2015-09-24
EP3119939B1 (fr) 2019-03-13
HUE044288T2 (hu) 2019-10-28
FR3018834A1 (fr) 2015-09-25
ES2728132T3 (es) 2019-10-22

Similar Documents

Publication Publication Date Title
EP3119939B1 (fr) Outillage de forage et bétonnage pour la réalisation d'un pieu en béton dans le sol, et procédé correspondant.
EP0265344B1 (fr) Procédé pour la réalisation d'un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procédé
BE1014353A5 (fr) Element coupant et trepan tournant utilisant cet element.
EP1525371B1 (fr) Conduite de guidage telescopique de forage en mer
EP3002371A1 (fr) Machine et procédé pour la réalisation de colonnes dans un sol
EP0883731B1 (fr) Carottier
EP2156907B1 (fr) Equipement et procédé de traitement de polluants dans le sol
EP1231326B1 (fr) Tête d'injection sous pression
FR2566813A1 (fr) Dispositif et procede pour la realisation de pieux en beton dans le sol et pieux obtenus par ce procede
EP1087063B1 (fr) Dispositif de forage et d'ancrage et procédé de mise en place de tirants d'ancrage
EP3077599B1 (fr) Installation de betonnage et procede de betonnage correspondant
EP2295648B1 (fr) Machine d'excavation comportant au moins un tambour couvert par un déflecteur
EP1396585B1 (fr) Tête d'injection sous pression d'un fluide pour désagréger le terrain à partir d'un forage
EP1471186B1 (fr) Système de tarière à ergot
FR2642777A1 (fr) Dispositif pour l'execution a la tariere continue creuse de pieux moules dans le sol
EP0010037A1 (fr) Tarière creuse pour le forage en vue du moulage de pieux en béton
EP3887603B1 (fr) Procede de traitement d'un sol
EP2925935B1 (fr) Procede de mise en place et de scellement d'un element tubulaire dans un sol sous charge d'eau
EP2900875B1 (fr) Procédé de réalisation d'un ancrage dans un sol
EP2697470B1 (fr) Procédé et dispositif de forage non destructif
FR3091884A3 (fr) Dispositif et procédé pour la réalisation dans le sol d’un écran imperméable ou d’une structure de consolidation du sol
WO2021048496A1 (fr) Procédé et dispositif de forage grand diamètre ou de creusement de puits suivant plusieurs inclinaisons
EP3754154B1 (fr) Machine pour forer un sol recouvert d'une couche poreuse, et procédé correspondant
FR2826050A1 (fr) Outil de forage et de refoulement
FR3051205A1 (fr) Realisation de pieux avec un dispositif de forage a outil telescopable.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181016

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EGGLESDEN, DAVID

Inventor name: AKO, STEVE

Inventor name: DEMARCQ, BRUNO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1107831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015026306

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1107831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190313

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2728132

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191022

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E044288

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015026306

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602015026306

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240311

Year of fee payment: 10

Ref country code: DE

Payment date: 20240220

Year of fee payment: 10

Ref country code: GB

Payment date: 20240220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240220

Year of fee payment: 10

Ref country code: FR

Payment date: 20240220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240402

Year of fee payment: 10