EP3115331B1 - Dispositif de machine inclinant a partir de charge d'entrainement en forme d'impulsions vers des oscillations et procede de fonctionnement d'un tel dispositif - Google Patents

Dispositif de machine inclinant a partir de charge d'entrainement en forme d'impulsions vers des oscillations et procede de fonctionnement d'un tel dispositif Download PDF

Info

Publication number
EP3115331B1
EP3115331B1 EP16001465.0A EP16001465A EP3115331B1 EP 3115331 B1 EP3115331 B1 EP 3115331B1 EP 16001465 A EP16001465 A EP 16001465A EP 3115331 B1 EP3115331 B1 EP 3115331B1
Authority
EP
European Patent Office
Prior art keywords
acceleration
load
change
drive
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16001465.0A
Other languages
German (de)
English (en)
Other versions
EP3115331A1 (fr
Inventor
Marco Gebhardt
Christian Schindler
Jörg EDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebhardt Foerdertechnik GmbH
Original Assignee
Gebhardt Foerdertechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebhardt Foerdertechnik GmbH filed Critical Gebhardt Foerdertechnik GmbH
Publication of EP3115331A1 publication Critical patent/EP3115331A1/fr
Application granted granted Critical
Publication of EP3115331B1 publication Critical patent/EP3115331B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/07Floor-to-roof stacking devices, e.g. "stacker cranes", "retrievers"

Definitions

  • the present invention relates to a machine device that tends to oscillate from a pulse-shaped drive load, in particular storage and retrieval unit, production machine, robot, crane or the like, with a movable unit, a coupled to the movable unit receiving means for receiving a conveyed material or a load, a first drive unit for moving the movable unit along a travel path from a start to an end position, a control device for controlling the travel movement of the movable unit, wherein the first drive unit is controlled by specifying the time course of a reference variable, namely the temporal acceleration curve, via the control device and the Device during the process tends to vibrations occurring in the process direction, and wherein the temporal acceleration curve during startup until reaching a predetermined travel speed e and first acceleration change range having a positive or negative acceleration change course and an acceleration change time, called Verschliffzeit, and usually having a temporally located between the first and second acceleration change range acceleration range with constant positive acceleration, and when braking to a stop, a first and second acceleration change range with
  • the invention thus relates to all machines that tend to disturbing vibrations that are not induced by disturbances outside the machine such as wind.
  • the present invention further relates to a method of operating such a machine device.
  • Storage and Retrieval Systems take over automatic storage and retrieval processes of conveyed goods, for example in high-bay warehouses. It moves loads that can weigh more than 2 tons, with device heights of, for example, over 20 meters depending on the application must be handled.
  • acceleration, speed and a short Verschliffzeit and transfer times are of great importance for economic use. Due to the slim geometry, such stacker cranes tend to oscillate during the movement process, in particular during short cutting times, which, however, have a positive effect on the sales.
  • Occurring vibrations mean a higher material stress, thus affecting the life, so that the availability decreases and the maintenance costs increase and have a negative impact on an optimal parts turnover, since a pickup or release of loads in the vibrational state is not possible, there for optimal Include way outsourcing high position accuracies of the lifting device are required.
  • the vibration in the dimensioning must be taken into account for the firm design of a light construction branch, so that the wall thicknesses depending on the extent of the oscillation must be adjusted and thus the mass increases.
  • a higher mass causes not only larger drive motors but also increased energy costs and, in addition, increased wear, for example on the rollers.
  • a storage and retrieval device with a driving unit and a mast attached thereto, in which a sensor for determining the respective speed of the driving unit is present.
  • a transducer In the area of the free end of the mast, a transducer is arranged to detect the respective mast speed of the free end of the mast.
  • the transducer is connected as IstWertgeber for a position control device.
  • the desired speed setting of the position control device is subjected to a speed correction value which is formed from the difference between the respective mast speed of the free mast end and the respective speed of the drive unit.
  • the aim of such a design is the reduction of the occurrence vibrations during driving, which requires an extra sensor and special control.
  • the DE 197 09 381 A1 discloses a method for suppressing pendulum movement of a load suspended on a trolley for transport at the destination. This method is characterized in that at a single arbitrary time of steady drive from the determined instantaneous values of the deflection and deflection speed of the oscillating load, an acceleration-time curve for the remaining ride is determined, which is such that at the end of the trip in the predetermined target point, the pendulum load is zero. Overall, this process causes by the at least two-stage braking process not optimal dynamics, since the available engine power is not fully utilized during the delivery process.
  • a mast for a stacker crane is described.
  • the mast has a support strut and a reinforcing structure connected to the support strut, wherein the support strut has at least one guide rail for the stacker crane. It is thus provided a division of the mast in a support strut and in a reinforcing structure.
  • the minimization of the vibrations is thus aimed at by a mechanical solution in which a stiff and lightweight mast construction is chosen. This purely mechanical approach guarantees no oscillation avoidance without considering the drive.
  • the DE 1 531 210 A discloses an arrangement for reducing vibrations of a load suspended freely on a crane, the drive unit being provided with a synchronization device which automatically generates a second equal and equal acceleration change after each acceleration change, after a time equal to half the period of oscillation Load corresponds to clear the occurred vibration.
  • Such an arrangement is unsatisfactory in terms of dynamics, since the speed can be varied only gradually and thus slowly.
  • this system does not consistently guarantee a low load on the material, since the vibration prevention begins only with the second stage, which deletes possibly already damaging loads of the first stage.
  • this method is not suitable for all dynamic lightweight structures.
  • a vibration coefficient of 1 can not be maintained, although the device is free of vibration at the end of movement.
  • DE 10 2005 005 358 A1 is an operating device for a rack warehouse, in particular a storage and retrieval unit for a high-bay warehouse, described with a movable element having a drive for approaching a predetermined shelf position, wherein the drive comprises a drive motor which is controlled by specifying the time course of a reference variable and wherein Element tends during the process to running in the direction of self-oscillations.
  • the oscillations are minimized by the fact that the time course of the reference variable is adapted to the movable element, that in the frequency spectrum of the time course, the fundamental frequency of the natural vibration is missing or at least below one predetermined limit value, so that no natural oscillations of the movable element are excited by the reference variable or their vibration amplitudes are significantly reduced compared to the unmatched course.
  • nominal characteristics are assumed which in practice deviate from the actual characteristics and thus substantially increase the oscillation.
  • the nominal curves are determined according to this approach based on a maximum jerk, which is not effective for the vibration prevention.
  • a mast with an exemplary intrinsic period of 1 s requires a sizing time of 1 s in the case of a linear acceleration change curve in order to be free from vibration.
  • the acceleration is reduced from 5 m / s 2 to 2.5 m / s 2 and the grinding time is calculated from the maximum jerk of 5 m / s 3 , the result is a grinding time of only 0.5 s and thus considerable vibrations. Especially at short distances the maximum acceleration is often not reached.
  • a control method for jerk-limited speed control is known, which is a vote of the allowable jerk time (here called Verschliffzeit) on the period of the system.
  • a linear acceleration increase curve is assumed, which is given in reality only as a target, but is not adhered to as actual, so that this approach only reduces vibrations but does not completely avoid them.
  • the US 2011/0006023 A1 discloses a method for controlling a drive of a crane, wherein a target movement of the cantilever tip serves as an input, on the basis of which a control variable for driving the drive is calculated.
  • the control variable takes into account the vibration dynamics of the drive system and the crane structure in order to reduce natural vibrations.
  • the damping effect of a hydraulic or electric drive is taken into account. It is not taken into account that the target specifications for the drive system do not correspond to the real actual course.
  • the present invention is based on the technical problem or object of specifying a machine device for transporting objects, in particular a stacker crane, production machine, robot, crane or the like, and a method for operating such a device, which is almost complete and continuous vibration prevention allows a simple implementation without absolutely necessary additional sensors or control technology, a permanently reliable Ensures function, reduces the stress on all components, such as the mast on the driving leg to the rollers, and allows adaptation to the different device systems.
  • the device according to the invention is given by the features of independent claim 1.
  • the method according to the invention is given by the features of independent claim 11.
  • Advantageous embodiments and developments are the subject the claims directly or indirectly dependent on independent claims 1 and 11, respectively.
  • the machine device which tends to oscillate from a pulse-shaped drive load, in particular storage and retrieval unit, production machine, robot, crane or the like with a movable unit, coupled to the movable unit receiving means for receiving a conveyed or a load, a first drive unit for moving the movable Unit along a travel path from a start to an end position, a control device for controlling the travel movement of the movable unit, wherein the first drive unit is controlled by specifying the time course of a reference variable, in particular the temporal acceleration curve, via the control device and device during the process tends in the process direction oscillations, and wherein the temporal acceleration course during startup until reaching a predetermined travel speed first and second An acceleration change range having a positive or negative acceleration change history and an acceleration change time called a sweep time and having a constant positive acceleration acceleration region temporally between the first and second acceleration change regions, and a first and second acceleration change region having a positive and negative acceleration change history when decelerating to a stop an acceleration change time,
  • the peculiarity of the invention is that all relevant parameters for the generation of vibrations are already detected in advance by simulation and / or measurement.
  • the significant and so far neglected deviations between the desired and actual course of the acceleration increase is detected by one-time correction factors for each drive configuration in the calculation and can thus be transmitted.
  • vibrations are simple and reliable preventable preventable and eliminates all associated stress on the machine.
  • the effort for complex and error-prone measuring and control technology is eliminated.
  • this system of vibration prevention makes sense for all machines in which no unpredictable vibration excitations, such as wind, occur.
  • the invention enables a simple avoidance of all vibrations that arise from a pulsed load of the machine device by drives.
  • the invention is based on the detection of drive control errors. Since the state of the art assumes that the actual and desired acceleration characteristics of a drive are identical, no reliable avoidance of the vibrations can take place without additional measurement and control technology. The invention detects these missing from the prior art parameters to completely suppress vibrations without additional measurement and control technology on each machine device.
  • the values are preferably stored in the memory device in the form of tables or characteristic curves, depending on the respective position of the picked-up conveyed material / load or characteristic diagrams, depending on the respective position of the picked-up conveyed material / load and depending on the mass of the person recorded conveyed goods / load.
  • the two components that determine the vibration, the supporting structure and the excitation, are coordinated with each other.
  • the structure can be characterized by the natural frequency.
  • the position and weight of the load-carrying means and the mass of the payload on it has a major impact.
  • the excitation, or the pulse can be characterized via the temporal acceleration change course.
  • the simulation calculation can be carried out according to a particularly advantageous embodiment as a finite element calculation or as a multi-body simulation with flexible bodies.
  • the finite element calculation can be used both for calculating the natural frequencies and for transient simulation of the vibration of the structure at different pulses. In this case, the attenuation can be considered.
  • the reference variable values are included in the simulation calculation Consideration of all eigenmodes and the associated natural frequencies of the device calculated.
  • a particularly preferred embodiment which also takes into account the method of the load during the braking process, is characterized in that there is a first sensor unit communicating with the control device, which determines the current height of the receiving means and / or a second sensor unit is present which measures the mass the respective conveyed material or load received by the receiving means, the function variable values being stored as a function of the height of the receiving means and / or the respective mass of the picked conveyed goods or load and the control device being determined from the storage device as a function of the respective first or second sensor unit Values picks up the reference variable values and feeds them to the first drive unit.
  • an advantageous embodiment is characterized in that an acceleration sensor is provided on the movable unit, by means of which the target / actual deviation can be detected and the control device corrects the reference variable values on the basis of the desired / actual deviation.
  • a preferred embodiment is characterized in that the machine device is designed as a storage and retrieval unit for a rack warehouse, the movable unit is coupled via a rack mast with a load receiving means and the load receiving means along the shelf mast on the second drive unit is height-movable or that the machine device is designed as a crane device, the movable unit is coupled via a cable or toothed belt with the load receiving means and the load receiving means by winding or unwinding of the rope by means of the second drive unit is moved in height or the machine device as a robot or Manufacturing machine is designed with appropriate drives for moving objects.
  • a particularly advantageous embodiment is characterized in that in the simulation for calculating minimized vibration coefficients a linear or a drive-specific and once measured non-linear acceleration change course is applied.
  • the inventive method for operating a machine device of the aforementioned type characterized in that the first drive unit reference variable values are supplied from a memory device, the vibration minimized values for the acceleration change course and / or the acceleration change time, the advance by simulation calculation and / or by measurement the respective concretely designed device have been determined and stored in the memory device, wherein the stored values in addition to the simulated natural frequencies and drive-specific deviations between desired and actual acceleration curve of the drive considered so that all the vibration causing parameters are detected to a To realize vibration avoidance.
  • the memory device accesses to the first drive unit to command values that have been simulated due to a previously performed simulation calculation, preferably as a finite element calculation or as a multi-body system, in particular taking into account all eigenmodes and the real actual acceleration characteristics the device.
  • a particularly advantageous method in which the influence of the respective load height with respect to minimized vibrations with is considered, characterized in that a communicating with the control device first sensor unit is used, which determines the current height of the receiving means and / or a second sensor unit is present, the size of each determined by the receiving means recorded load, wherein the function variable values are stored in dependence on the height of the receiving means and / or the respective size of the recorded load and the memory device picks up the reference variable values in dependence of the values respectively determined by the first and second sensor unit and supplies the first drive unit ,
  • an advantageous further development is characterized in that an acceleration sensor is used on the movable unit, by means of which the target / actual deviation is included and the control unit corrects the reference values accordingly.
  • a linear or a non-linear acceleration change course is preferably used.
  • the device according to the invention or the method according to the invention is characterized overall by a novel mechatronic approach.
  • the simulation captures the entire structure with all its eigenmodes.
  • the decisive criteria for susceptibility to vibration, namely the grinding time and the acceleration increase course, are tuned and optimized for the structure. These optimized values are stored in the memory device.
  • the coordination in the context of the mechatronic approach is thus carried out by preliminary investigations, namely after simulation of the drive train or by measurements on an existing structure, which takes into account the deviation of target / depending on the drive type.
  • the vote is made with regard to the criteria vibration reduction, high dynamics of the device or the storage and retrieval unit and energy efficiency of the entire system of the device / the storage and retrieval unit.
  • characteristic curves or characteristic maps are created, which contain vibration-minimized reference variables, in particular also taking into account the respective load height, which usually changes during the braking process.
  • These characteristics / maps are integrated into the controller, but are completely calculated in advance or corrected with respect to the drive deviation setpoint / actual.
  • an acceleration sensor on the subframe of the device / the storage and retrieval device are mounted to determine target / actual deviations in the drive as an input to the control. Suitable sensors allow the exact load position and size of the load to be taken into account and used as input for the control.
  • An important feature is the consideration of the actual course of the acceleration by measuring each drive type or simulation of the desired and actual course.
  • the energy efficiency of the entire system of the device / the storage and retrieval device are taken into account, especially the change in the height of the load during the braking process by the energy exchange of both drives in the DC link.
  • the optimal length of the grounding time varies with respect to the minimum.
  • the ideal desired course can be better achieved. This reduces the grinding time and the storage and retrieval unit is faster and vibration-free with the same drives.
  • the exact course of an improved, non-linear acceleration increase curve, which the drive control receives as a default, can be determined by simulations or measurements.
  • This improved acceleration increase course counteracts the changes in the drive train specifically, so that in effect, for example, the storage and retrieval unit practically corresponds to the ideal properties of the desired course in real use.
  • a supplementation results from the consideration of the acceleration increase course. This can be done, for example, by a kind of constant correction of the acceleration increase course or by an extension of the characteristic curve (taking into account the LAM position) into a characteristic map (taking into account the LAM position and the LAM load) according to the invention.
  • Fig. 1 is a highly schematic representation of a first embodiment of a machine device 10 which is susceptible to vibration and which is designed as a storage and retrieval unit 10.1.
  • the storage and retrieval unit 10.1 moves along a Fahrleit Nur 30, which may be formed as an alley within a shelving system.
  • the storage and retrieval unit 10.1 has a movable unit 12 with wheel units 32.
  • a first drive unit 14 is present.
  • the storage and retrieval unit 10.1 can be pulled over a toothed belt driven by a first unit, whereby it is impossible for the wheel units 32 to spin at high accelerations.
  • a cantilever mast 24 On the upper side of the movable unit 12 is designed as a cantilever mast 24 is connected to which a load-receiving means 16 (LAM) in the longitudinal direction (here vertical direction) is movable, which occasionally receives the conveyed or 18, wherein a second drive unit 22 is present on that the respective height position of the receiving means 16 can be adjusted.
  • LAM load-receiving means 16
  • the Height direction or the stroke is in Fig. 1 represented by the reference H and the respective height level of the receiving means 16 (load 18) relative to the movable unit 12 is shown with HLAM.
  • control device 50 is provided, via which the first drive unit 14 and the second drive unit 22 are controlled.
  • the control device 50 is in communication communication with a higher-level logistics control device which is in Fig. 1 is not shown and transmitted to the storage and retrieval device 10.1 for loading and unloading of goods or loads 18, the respective position information in the direction of travel F for the movable unit 12 and height direction H for the load-receiving means 16. Furthermore, it is determined via the central logistics control device, whether the conveyed 18 is to be stored or outsourced. For this purpose, the load-receiving means 16 is designed accordingly.
  • Such a storage and retrieval unit 10.1 is prone to vibrations of the mast 24 due to the acceleration of the movable unit 12 by the first drive unit 14 as a result of the acceleration process both when starting and during braking.
  • the storage and retrieval unit 10.1 aims to minimize the vibrations occurring, that is virtually no vibrations occur, which means a significantly reduced material stress, a relaxation of the settling and economic operation.
  • a memory device 52 is present, which communicates with the control device 50 in communication, and are stored in the reference variables for the acceleration of the first drive unit 14, the control device 50 picks up, theellessierenhong previously by a simulation calculation of the entire concrete structure with all eigenmodes is calculated.
  • the decisive criteria of susceptibility to vibration namely the grinding time and the course of the acceleration change, are optimized by matching the concrete structure.
  • the coordination with preliminary examinations which take into account the deviation of the target and actual depending on the drive type.
  • the vote is based on the criteria of vibration reduction, high dynamics and energy efficiency of the overall system.
  • the results of the calculations or measurements are stored, for example in the form of characteristic curves, which takes into account the respective current lifting height of the load receiving means 16, since the respective height HLAM of the load receiving means greatly influences the vibrations occurring.
  • characteristic curves are integrated in the control device 50, completely calculated in advance, or the drive deviation between nominal and actual values is measured and taken into account.
  • the vibration of the mast is dependent on the occurring during the acceleration acceleration change course and the Verschliffzeit, the respective eigen forms, which are dependent on the mast height, the type, the mass and the height position of the receiving means, the size of the acceleration itself, the system-related existing damping properties and materials and joining technology.
  • Fig. 2 a second concrete embodiment of a vibration-prone machine device 10 is shown, which is designed as a crane device 10.2. Same components bear the same reference number as Fig. 1 and will not be explained again.
  • the fundamental difference to the storage and retrieval unit according to Fig. 1 consists in the crane 10.2 according to Fig. 2 in that the load 18 hangs on a cable 34, which replaces the mast 24 of the storage and retrieval unit 10.1, wherein here the load 18 along a height direction or a stroke H in the respective height position HLAM on the second drive unit 22 is movable and the crane 10.2 on the first drive unit 14 within the Fahrleit Road 30 (for example, rail device) is movable.
  • Fig. 3 schematically is a standard acceleration curve as a function of time during the process of a storage and retrieval unit 10.1 shown schematically.
  • three phases can be distinguished, namely the starting phase A, the braking phase B and the phase C of constant speed driving.
  • the starting phase A can be subdivided into a period of the acceleration change time tda - also called the grinding time - with a rising acceleration change course av until a constant acceleration ak is reached over a period ta and a subsequent falling acceleration change course av within the acceleration change time tda until the predetermined speed is reached ,
  • This phase may have vibrations of the mast of the stacker crane 10.1 result in an inappropriate for the structure excitation excitation.
  • the acceleration is zero and the storage and retrieval unit 10.1 moves over a predetermined period of time tv at a constant speed, in which then takes place in the B phase of the braking process, which corresponds to the course in the course of phase A, but with the reverse Sign.
  • Fig. 5 is highly schematized in simplified form the acceleration change course (reference numeral on) of the tip of the mast 24 of the storage and retrieval device 10.1 as a function of time on the basis of the standard acceleration curve according to Fig. 3 shown with not vibration-optimized travel.
  • Fig. 8 is shown how the duration of the acceleration change time tda affects the stress of the components.
  • the stress was plotted against the stress of applied strain gauges and thus the changing normal stress in the strain gauges as ordinate value as a function of time. From this Fig. 8 is clearly seen that a short Verschliffzeit tda - in the embodiment 5 ms (dashed line) - at the beginning and at the end of the respective change in acceleration results in an increased stress compared to an acceleration change time tda (160 ms in the embodiment, solid line).
  • the Fig. 9 shows a detail of the time course of the acceleration at different selected acceleration change times tda1 and tda2 under the assumption of a linear acceleration change course av1 or av2.
  • Fig. 10 shows the same relationship, however, assuming in each case a non-linear acceleration change rate av1 or av2 within the time intervals tda1 and tda2, respectively.
  • Fig. 6 is the time course of the acceleration compared to the ideal linear acceleration (dashed line 64) under measurement the actual acceleration / controller (line 60) compared to the setpoint acceleration / controller (line 62).
  • the measurement results are taken directly from the drive control, so that further deviations are not detected by the mechanics. This shows deviations between all acceleration curves 60, 62, 64.
  • the Fig. 6 This is shown with a measuring resolution of 4 ms for a stacker crane with friction wheel drive.
  • the acceleration change time is 500 ms.
  • the desired acceleration and the ideal acceleration are only initially identical. Since the actual acceleration does not exactly follow the target acceleration, the controller adjusts the target acceleration continuously in order to come as close as possible to the ideal acceleration. In the Fig. 6 It can be seen that the actual acceleration and the ideal acceleration differ significantly.
  • the invention is based inter alia on the detection of drive control errors.
  • the prior art assumes that the actual and desired acceleration characteristics of a drive are identical. As a result, no reliable avoidance of vibrations can take place without additional measuring and control technology. According to the procedure according to the invention, this detects the missing parameters according to the state of the art in order to completely suppress vibrations without additional measuring and control technology on each individual device.
  • Fig. 7 The relationship between the vulnerability to vibration as a function of the acceleration change time tda on a specific storage and retrieval unit construction is in Fig. 7 shown in more detail.
  • the actual curve 70 of the vibration coefficient (ordinate) is shown as a solid line and the ideal target curve 72 as a dashed line.
  • the actual course 70 has been determined by measurements during test drives.
  • the grinding time tda was gradually reduced in a time step of 10 ms, starting from 300 ms.
  • acceleration time tda the acceleration is increased linearly, so that at the end of the grinding time tda the maximum acceleration is applied.
  • the maximum measured stress on the applied strain gages on the mast is set in relation to the always constant mean stress, which results from the constant acceleration, and thus determines the vibration coefficient.
  • the voltage was measured by means of strain gages on the mast above the subframe.
  • the natural frequency is constant, since the lifting gear with the load handling device (LAM) is at the same height during the entire examination.
  • the setpoint curve results in an oscillation coefficient of 1.0 for an abscissa value of 125 ms.
  • a sweep time of 125 ms results in a vibration coefficient of 1.25 due to the measurement.
  • the vibration coefficient does not drop to the value 1.0 during the measurement, since additional disturbance variables such as rail unevenness also induce vibrations in the mast.
  • the vibration coefficient 2 is not reached at an abscissa value of 0, since the engine can not follow such a short increase.
  • the first minimum for the type of drive present during the measurement is approximately 30% farther to the right than in the calculation.
  • this deviation varies.
  • the ideal target curve 72 can be better achieved. This reduces the cutting time tda and the storage and retrieval unit is faster and at the same time vibration-free with the same drives.
  • the vibration characteristics of a storage and retrieval unit are also greatly influenced by the respective height HLAM of the load handling device (LAM).
  • Fig. 11 is the relationship between the Verschliffzeit tda (ordinate) and the load receiving height HLAM (abscissa) shown in the form of a characteristic curve 75. This results in the tendency that the Verschliffzeit tda must be increased to achieve a vibration-free storage and retrieval unit with increasing load-receiving height HLAM.
  • a supplementation results from the consideration of the acceleration change course av (non-linear). This can be done for example by a constant correction of the acceleration change course or by an extension of the characteristic curve to a map.
  • the values determined from the measurements and calculations are stored in the memory device 52 and serve to control the first drive unit 14 in order to achieve a storage and retrieval device that moves without oscillation.
  • the size of the load taken in each case also influences the vibration behavior.
  • the size of each recorded load can be taken into account in the determination of the characteristic curves or maps and stored accordingly in the memory device 52 (see Fig. 11 ).
  • Fig. 4 is highly schematic in a block diagram representation of the basic process or the basic procedure for a vibration-free movable storage and retrieval unit 10.1 shown.
  • the control device 50 which controls the first drive unit 14 for moving the storage and retrieval device 10.1, uses reference values of the storage device 52.
  • reference variable values for the course of the acceleration in particular the acceleration change time tda, determined by measurements or preliminary calculations are stored taking into account the actual values.
  • the control device 50 is supplied with current values of the height HLAM of the load receiving means and the size of the respectively recorded load.
  • the control device 50 receives values from the higher-level logistics control device with respect to the Initial and final destination position, the route and the given travel speed.
  • the first drive unit 14 is then actuated, so that a practically virtually vibration-free method of the storage and retrieval unit 10.1 takes place.
  • the acceleration profile, the acceleration change time (grinding time), the oscillating system, which changes with energy-efficient control, the load receiving means moves during braking are matched to one another at each time.
  • the tuning is carried out by simulation or measurement, while the real acceleration curve is taken into account at concrete specified shelf system (actual and not desired).
  • the entire structure is recorded with all eigenmodes by the simulation calculation.
  • the decisive criteria for the grinding time and the course of the acceleration change are matched to the concrete structure present.
  • the coordination takes place with preliminary examinations (measurement, simulation of the drive train), which take into account the deviation of the target / actual depending on the drive type.
  • the vote takes place with regard to the criteria vibration reduction, high dynamics of the storage and retrieval unit and energy efficiency of the entire system.
  • an acceleration sensor can be attached to the subframe to determine the setpoint / actual deviation in the drive as the input variable for the control.
  • the exact load of the load can be taken into account by means of suitable sensors and serve as an input variable for the control.
  • An optional extension is that the acceleration profile is stored in a map, which is accessed by the memory device.
  • the entire concrete system (storage and retrieval unit) is calculated by simulation calculation with regard to minimum vibrations.
  • the vibration behavior is also significantly influenced by the actual existing powertrain. This influence is determined by concrete measurements and combined with the values determined by the simulation calculation. This allows a virtually vibration-free movement of the storage and retrieval unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Control And Safety Of Cranes (AREA)

Claims (15)

  1. Dispositif de machine (10.1, 10.2), qui tend à osciller sous une charge d'entraînement en forme d'impulsions, en particulier appareil de desserte de rayonnage, machine de fabrication, robot, grue ou similaire, avec
    - une unité déplaçable (12),
    - un moyen de réception (16) couplé à l'unité déplaçable (12), destiné à recevoir un produit transporté ou une charge,
    - un premier groupe d'entraînement (14) pour déplacer l'unité déplaçable (12) le long d'une trajectoire (F) d'une position initiale à une position finale,
    - un dispositif de commande (50) pour commander le déplacement de l'unité déplaçable (12),
    - dans lequel le premier groupe d'entraînement (14) est commandé par le dispositif de commande (50) par la prescription de l'évolution temporelle d'une grandeur de guidage, à savoir de l'évolution temporelle de l'accélération, et le dispositif (10.1, 10.2) a tendance à osciller dans la direction de déplacement pendant le déplacement, et
    - dans lequel l'évolution temporelle de l'accélération présente, lors du démarrage jusqu'à l'arrivée à une vitesse de déplacement prédéterminée, une première et une deuxième plages de variation de l'accélération avec une évolution positive ou négative de variation de l'accélération (av) et un temps de variation de l'accélération (tda), appelé temps de lissage, et la plupart du temps avec une plage d'accélération (ak) à accélération positive constante située temporellement entre la première et la deuxième plages de variation de l'accélération, et présente lors du freinage jusqu'à l'arrêt une première et une deuxième plages de variation de l'accélération avec une évolution positive et négative de variation de l'accélération (av) et un temps de variation de l'accélération (tda), appelé temps de lissage, et la plupart du temps avec une plage d'accélération à accélération négative constante située temporellement entre la première et la deuxième plages de variation de l'accélération,
    - dans lequel la grandeur de guidage est adaptée de telle manière que les oscillations soient aussi faibles que possible,
    caractérisé en ce que
    - il se trouve un dispositif de mémoire (52), auquel le dispositif de commande (50) a accès, dans lequel des valeurs de la grandeur de guidage sont mémorisées dans le dispositif de mémoire (52), qui fournit des valeurs à oscillations minimisées pour l'évolution de variation de l'accélération (av) et/ou du temps de variation de l'accélération (tda), qui ont été déterminées au préalable par des calculs de simulation et/ou par des mesures sur le dispositif réalisé chaque fois en construction concrète, dans lequel les valeurs mémorisées tiennent également compte, en plus des fréquences propres simulées, d'écarts spécifiques d'entraînement entre une évolution théorique et réelle de l'accélération de l'entraînement, de telle manière que tous les paramètres provoquant les oscillations soient détectés afin de réaliser une prévention des oscillations.
  2. Dispositif selon la revendication 1, caractérisé en ce que les valeurs sont stockées dans le dispositif de mémoire (52) sous forme de tableaux ou de courbes caractéristiques (75), en fonction de la position respective du produit transporté/de la charge emporté (e) (18) ou de diagrammes caractéristiques (80), en fonction de la position respective du produit transporté/de la charge emporté(e) (18) et en fonction de la masse du produit transporté/de la charge emporté(e) (18) .
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le calcul de simulation est basé sur un calcul par éléments finis (FEM) ou un calcul de système à plusieurs composants (MKS), qui détecte l'effet de l'écart entre la régulation théorique et réelle de l'entraînement.
  4. Dispositif selon la revendication 3, caractérisé en ce que les valeurs de la grandeur de guidage sont calculées dans le cadre du calcul de simulation en tenant compte de toutes les formes propres du dispositif.
  5. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce qu'il se trouve une première unité de capteur communicant avec le dispositif de commande (50), qui détermine la hauteur actuelle du moyen de réception (16) et/ou il se trouve une deuxième unité de capteur, qui détermine la masse du produit transporté ou de la charge respectivement emporté(e) par le moyen de réception (16), dans lequel les valeurs de grandeurs de fonctionnement sont mémorisées en fonction de la hauteur (HLAM) du moyen de réception (16) et/ou de la masse respective du produit transporté ou de la masse emporté(e) (18) et le dispositif de commande prélève dans le dispositif de mémoire les valeurs de la grandeur de guidage en fonction des valeurs déterminées respectivement par la première et par la deuxième unité de capteur et les envoie au premier groupe d'entraînement (14).
  6. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce qu'il se trouve sur l'unité déplaçable (12) un instrument de mesure pour la mesure directe ou indirecte de l'accélération, au moyen duquel l'écart entre la théorie et la réalité peut être détecté et le dispositif de commande corrige les valeurs de la grandeur de guidage sur la base de l'écart entre la théorie et la réalité.
  7. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce que le dispositif est constitué par un appareil de desserte de rayonnage (10.1) pour un entrepôt, l'unité déplaçable (14) est couplée par un mât de rayonnage (24) à un moyen de réception de charge (16) et le moyen de réception de charge (16) est déplaçable en hauteur le long du mât de rayonnage (24) au moyen du deuxième groupe d'entraînement (22).
  8. Dispositif selon une ou plusieurs des revendications 1 à 6, caractérisé en ce que le dispositif est constitué par un système de grue, l'unité déplaçable est couplée par un câble au moyen de réception de charge et le moyen de réception de charge est déplaçable en hauteur par enroulement ou déroulement du câble au moyen du deuxième groupe d'entraînement (22).
  9. Dispositif selon une ou plusieurs des revendications 1 à 6, caractérisé en ce que le dispositif de machine est constitué par un robot ou une machine de fabrication avec des entraînements correspondants pour déplacer des objets.
  10. Dispositif selon une ou plusieurs des revendications précédentes, caractérisé en ce que l'on suppose une évolution linéaire ou non linéaire de variation de l'accélération lors du calcul de simulation pour le calcul de coefficients d'oscillation minimisés.
  11. Procédé de conduite d'un dispositif de machine, qui tend à osciller sous une charge d'entraînement en forme d'impulsions, en particulier appareil de desserte de rayonnage, machine de fabrication, robot, grue ou similaire, avec
    - une unité déplaçable (12),
    - un moyen de réception (16) couplé à l'unité déplaçable (12), destiné à recevoir un produit transporté ou une charge,
    - un premier groupe d'entraînement (14) pour déplacer l'unité déplaçable (12) le long d'une trajectoire (F) d'une position initiale à une position finale,
    - un dispositif de commande (50) pour commander le déplacement de l'unité déplaçable (12),
    - dans lequel le premier groupe d'entraînement (14) est commandé par le dispositif de commande (50) par la prescription de l'évolution temporelle d'une grandeur de guidage, à savoir de l'évolution temporelle de l'accélération, et le dispositif (10.1, 10.2) a tendance à osciller dans la direction de déplacement pendant le déplacement, et
    - dans lequel l'évolution temporelle de l'accélération présente, lors du démarrage jusqu'à l'arrivée à une vitesse de déplacement prédéterminée, une première et une deuxième plages de variation de l'accélération avec une évolution positive ou négative de variation de l'accélération (av) et un temps de variation de l'accélération (tda), appelé temps de lissage, et la plupart du temps avec une plage d'accélération (ak) à accélération positive constante située temporellement entre la première et la deuxième plages de variation de l'accélération, et présente lors du freinage jusqu'à l'arrêt une première et une deuxième plages de variation de l'accélération avec une évolution positive et négative de variation de l'accélération (av) et un temps de variation de l'accélération (tda), appelé temps de lissage,
    - dans lequel la grandeur de guidage est adaptée de telle manière que les oscillations soient aussi faibles que possible,
    caractérisé en ce que l'on envoie au premier groupe d'entraînement (14) des valeurs de grandeur de guidage à partir d'un dispositif de mémoire, qui représentent des valeurs à oscillations minimisées pour l'évolution de variation de l'accélération et/ou le temps de variation de l'accélération, qui ont été déterminées au préalable par un calcul de simulation et/ou par une mesure sur le dispositif réalisé chaque fois en construction concrète et on les mémorise dans le dispositif de mémoire, dans lequel les valeurs mémorisées tiennent également compte, en plus des fréquences propres simulées, d'écarts spécifiques d'entraînement entre une évolution théorique et réelle de l'accélération de l'entraînement, de telle manière que tous les paramètres provoquant les oscillations soient détectés afin de réaliser une prévention des oscillations.
  12. Procédé selon la revendication 11, caractérisé en ce que l'on effectue le calcul de simulation par un calcul par éléments finis (FEM) ou par une simulation à plusieurs corps (MKS) en tenant compte de toutes les formes propres du dispositif.
  13. Procédé selon une revendication 11 ou 12, caractérisé en ce que l'on utilise une première unité de capteur communicant avec le dispositif de commande (50), qui détermine la hauteur actuelle du moyen de réception (16) et/ou il se trouve une deuxième unité de capteur, qui détermine la masse du produit transporté ou de la charge respectivement emporté(e) par le moyen de réception (16), dans lequel les valeurs de grandeurs de fonctionnement sont mémorisées en fonction de la hauteur (HLAM) du moyen de réception (16) et/ou de la masse respective du produit transporté ou de la masse emporté(e) (18) et le dispositif de commande prélève dans le dispositif de mémoire les valeurs de la grandeur de guidage en fonction des valeurs déterminées respectivement par la première et par la deuxième unité de capteur et les envoie au premier groupe d'entraînement (14).
  14. Procédé selon une revendication 11, 12 ou 13, caractérisé en ce que l'on utilise sur l'unité déplaçable (12) un capteur d'accélération, au moyen duquel on comprend l'écart entre la théorie et la réalité et le dispositif de commande corrige de façon correspondante les valeurs de la grandeur de guidage sur la base de l'écart entre la théorie et la réalité.
  15. Procédé selon une ou plusieurs des revendications 11 à 14, caractérisé en ce que l'on suppose une évolution linéaire ou non linéaire de variation de l'accélération lors du calcul de simulation (FEM, MKS) pour le calcul de coefficients d'oscillation minimisés.
EP16001465.0A 2015-07-03 2016-06-30 Dispositif de machine inclinant a partir de charge d'entrainement en forme d'impulsions vers des oscillations et procede de fonctionnement d'un tel dispositif Active EP3115331B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015008506.9A DE102015008506A1 (de) 2015-07-03 2015-07-03 Maschinenvorrichtung, die aus einer impulsförmigen Antriebsbelastung zu Schwingungen neigt, insbesondere Regalbediengerät, Fertigungsmaschine, Roboter, Kran oder dergleichen, und Verfahren zum Betreiben einer derartigen Vorrichtung

Publications (2)

Publication Number Publication Date
EP3115331A1 EP3115331A1 (fr) 2017-01-11
EP3115331B1 true EP3115331B1 (fr) 2019-05-15

Family

ID=56321709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001465.0A Active EP3115331B1 (fr) 2015-07-03 2016-06-30 Dispositif de machine inclinant a partir de charge d'entrainement en forme d'impulsions vers des oscillations et procede de fonctionnement d'un tel dispositif

Country Status (2)

Country Link
EP (1) EP3115331B1 (fr)
DE (1) DE102015008506A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022206859B3 (de) 2022-07-05 2023-07-06 Gebhardt Fördertechnik GmbH Lager- und Entnahmesystem, Arbeitsplatz, Transportfahrzeug, Übergabeplatz, Träger und Verfahren für ein Lager- und Entnahmesystem
DE102022206857A1 (de) 2022-07-05 2024-01-11 Gebhardt Fördertechnik GmbH Lager- und Entnahmesystem, Arbeitsplatz, Behälter und Verfahren für ein Lager- und Entnahmesystem

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124454A1 (de) * 2016-12-15 2018-06-21 Jungheinrich Aktiengesellschaft Regalbediengerät
DE102019112941A1 (de) * 2019-05-16 2020-11-19 Lenze Automation Gmbh Verfahren und Vorrichtung zum Einstellen und/oder Überprüfen eines Regalbediengeräts
CN113552010B (zh) * 2020-04-23 2023-03-28 中国航发商用航空发动机有限责任公司 一种计算与振动加速度载荷相等效的脉动压力载荷的方法
CN112799325B (zh) * 2020-12-31 2022-09-06 泉芯集成电路制造(济南)有限公司 一种机械臂运动监控方法、装置及相关设备
CN112875579A (zh) * 2021-01-26 2021-06-01 上海快仓智能科技有限公司 分段举升控制方法、分段下降控制方法和自动引导车

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI44036B (fr) 1966-08-25 1971-04-30 Kone Oy
DE3524666A1 (de) 1985-07-10 1987-01-15 Keltronic Elektronische System Vorrichtung zur exakten positionierung eines in einem system beweglich gefuehrten elements
DE4107036A1 (de) * 1990-03-19 1991-09-26 Mannesmann Ag Verfahren zum schwingungsarmen anfahren des wagenantriebsmotors in druckeinrichtungen
FR2664885B1 (fr) 1990-07-18 1995-08-04 Caillard Procede de controle de deplacement d'une charge pendulaire et dispositif pour sa mise en óoeuvre.
DE4407862C2 (de) 1994-03-04 1996-05-09 Mannesmann Ag Trag- und Führungsvorrichtung, insbesondere Mast für Regalbedienungsgeräte
JPH07328965A (ja) 1994-06-03 1995-12-19 Toyota Motor Corp 制振制御方法および固有振動周期測定方法および制振制御装置
US5854544A (en) 1994-10-21 1998-12-29 Siemens Aktiengesellschaft Velocity control with limited jolting
DE19641192C2 (de) 1996-09-24 2002-10-31 Siemens Ag Handhabungsgerät, insbesondere Regalbediengerät
DE19709381A1 (de) 1997-03-07 1998-09-10 Gerhard Prof Dr Ing Wagner Verfahren zur Unterdrückung von Pendelbewegungen einer zum Transport an einer Laufkatze hängenden Last im Zielort
DE19907989B4 (de) 1998-02-25 2009-03-19 Liebherr-Werk Nenzing Gmbh Verfahren zur Bahnregelung von Kranen und Vorrichtung zum bahngenauen Verfahren einer Last
DE50001607D1 (de) 1999-01-14 2003-05-08 Siemens Ag Steuerungsverfahren sowie numerische steuerung zur schwingungsarmen beschleunigungsführung eines bewegbaren maschinenelementes
DE10063722C2 (de) 2000-12-20 2003-07-03 Siemens Ag Ruckbegrenzung mit Adaption der Bahndynamik
DE102004024243B4 (de) * 2004-05-11 2006-03-23 Siemens Ag Ansteuerung eines Antriebsmotors zum Anfahren einer vorgegebenen Soll-Position, insbesondere für ein Regalbediengerät, und ein entsprechendes Verfahren zur Ansteuerung
DE102005005358A1 (de) 2005-02-02 2006-08-10 Siemens Ag Bediengerät für ein Regallager, insbesondere ein Regalbediengerät für ein Hochregallager, sowie ein Verfahren zur Steuerung des Bediengerätes
DE102009032270A1 (de) * 2009-07-08 2011-01-13 Liebherr-Werk Nenzing Gmbh Verfahren zur Ansteuerung eines Antriebs eines Kranes
DE102009051846A1 (de) 2009-10-29 2011-05-05 Viastore Systems Gmbh Mast für ein Regalbediengerät
DE102010013526A1 (de) * 2010-03-31 2011-10-06 Weiß GmbH Sondermaschinentechnik Verfahren zur rotatorischen und/oder linearen Bewegung eines Werkstücks
DE102013014622A1 (de) * 2013-09-02 2015-03-05 Northrop Grumman Litef Gmbh System und Verfahren zum Bestimmen von Bewegungen und Schwingungen bewegter Strukturen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022206859B3 (de) 2022-07-05 2023-07-06 Gebhardt Fördertechnik GmbH Lager- und Entnahmesystem, Arbeitsplatz, Transportfahrzeug, Übergabeplatz, Träger und Verfahren für ein Lager- und Entnahmesystem
DE102022206857A1 (de) 2022-07-05 2024-01-11 Gebhardt Fördertechnik GmbH Lager- und Entnahmesystem, Arbeitsplatz, Behälter und Verfahren für ein Lager- und Entnahmesystem
EP4328155A2 (fr) 2022-07-05 2024-02-28 Gebhardt Fördertechnik GmbH Système de stockage et de récupération, poste de travail, récipient et procédé pour système de stockage et de récupération
EP4328152A2 (fr) 2022-07-05 2024-02-28 Gebhardt Fördertechnik GmbH Système de stockage et de prélèvement, poste de travail, véhicule de transport, poste de transfert, support et procédé pour système de stockage et de prélèvement

Also Published As

Publication number Publication date
DE102015008506A1 (de) 2017-01-05
EP3115331A1 (fr) 2017-01-11

Similar Documents

Publication Publication Date Title
EP3115331B1 (fr) Dispositif de machine inclinant a partir de charge d'entrainement en forme d'impulsions vers des oscillations et procede de fonctionnement d'un tel dispositif
DE19907989B4 (de) Verfahren zur Bahnregelung von Kranen und Vorrichtung zum bahngenauen Verfahren einer Last
AT501509B1 (de) Verfahren und positionsregelungseinrichtung zur steuerung des betriebes einer lasttragvorrichtung
EP3409636B1 (fr) Procédé permettant d'amortir des vibrations de torsion d'un élément de réception de charge d'un dispositif de levage
EP3784616A1 (fr) Grue et procédé pour commander une grue de ce type
EP0806715B1 (fr) Procédé pour la régulation d'un appareil de desserte de rayonnages commandé par ordinateur
EP2272786A1 (fr) Commande de grue pour la commande d'un dispositif de levage de grue
EP3653562A1 (fr) Procédé et régulateur d'oscillation permettant de réguler les oscillations d'un système technique oscillant
EP2574820A1 (fr) Machine de traitement dotée de structures mécaniques mobiles à compensation d'oscillations
EP2327651A1 (fr) Système d'amortissement d'une oscillation sur une grue de conteneur
DE10021626A1 (de) Verfahren zur Lastpendeldämpfung an Kranen mit reduzierter Sensorik
DE4325946C2 (de) Dämpfungs- und Positioniereinrichtung zur aktiven Dämpfung der Pendelung von an Kranen aufgehängten Lasten
EP1843967B1 (fr) Appareil de commande pour un entrepot a rayonnages, en particulier un gerbeur pour un entrepot a rayonnages eleves, et procede pour diriger l'appareil de commande
EP2987759A1 (fr) Grue ayant un mouvement oscillant défini pour atteindre un emplacement cible
WO2018086740A1 (fr) Dispositif de compensation de traction oblique dans des grues
EP2170755B1 (fr) Dispositif de transport destiné à transporter des charges vers des entrepôts, en particulier dans un entrepôt à chambres très hautes
EP2383208B1 (fr) Procédé et agencement de déstockage de marchandises de stockage d'une aire de stockage d'un entrepôt
DE19918449A1 (de) Verfahren und Lasthebesystem zur Feinpositionierung und aktiven Pendeldämpfung von Lasten
DE102019102453A1 (de) Verstellbares Gegengewicht für einen Robotermanipulator
AT506266A1 (de) Fahrzeug, insbesondere regalbediengerät, sowie verfahren zur antriebsregelung eines derartigen fahrzeugs
EP4211069A1 (fr) Grue à tour pivotante, procédé et unité de commande pour faire fonctionner une grue à tour pivotante, chariot roulant et mécanisme de roulement pour chariot
EP4190739A1 (fr) Procédé de régulation du mouvement d'une charge dans un espace de travail d'un dispositif de transport de charge
AT500226A1 (de) Regalbediengerät
EP3326957A1 (fr) Procédé de fonctionnement d'une grue
EP2110357A1 (fr) Procédé d'amortissement d'oscillations d'une charge de biens en vrac guidée par une grue, programme de commande et système d'automatisation de grue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170711

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004653

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

26N No opposition filed

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 8

Ref country code: DE

Payment date: 20230627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230616

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 8

Ref country code: CH

Payment date: 20230702

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016004653

Country of ref document: DE

Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE