EP3113286B1 - Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux - Google Patents

Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux Download PDF

Info

Publication number
EP3113286B1
EP3113286B1 EP16176732.2A EP16176732A EP3113286B1 EP 3113286 B1 EP3113286 B1 EP 3113286B1 EP 16176732 A EP16176732 A EP 16176732A EP 3113286 B1 EP3113286 B1 EP 3113286B1
Authority
EP
European Patent Office
Prior art keywords
transmission line
quasi
beamformer
lens
lens according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16176732.2A
Other languages
German (de)
English (en)
Other versions
EP3113286A1 (fr
Inventor
Hervé Legay
Ségolène TUBAU
Jean-Philippe Fraysse
Etienne Girard
Mauro Ettorre
Ronan Sauleau
Nelson Fonseca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1, Thales SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3113286A1 publication Critical patent/EP3113286A1/fr
Application granted granted Critical
Publication of EP3113286B1 publication Critical patent/EP3113286B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/04Refracting or diffracting devices, e.g. lens, prism comprising wave-guiding channel or channels bounded by effective conductive surfaces substantially perpendicular to the electric vector of the wave, e.g. parallel-plate waveguide lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • H01Q25/008Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device lens fed multibeam arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2658Phased-array fed focussing structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2664Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture electrically moving the phase centre of a radiating element in the focal plane of a focussing device

Definitions

  • the present invention relates to a quasi-optical lens beamformer and a planar antenna having such a beamformer. It is applicable to any thin multibeam antenna and more particularly to the field of space applications such as satellite telecommunications, for antennas intended to be mounted on board satellites, or for antennas intended to be used on the ground on satellites. fixed or mobile terminals.
  • the mode of operation of the beam formers is assumed in transmission, but a similar description could be formulated in reception, the beam trainers considered being passive elements therefore reciprocal.
  • the beamformers are used in multibeam antennas to develop output beams from input radio frequency signals.
  • planar quasi-optical beamformers using electromagnetic propagation of radiofrequency waves between two parallel metal plates (in English: parallel plates), according to a propagation mode in general TEM (in English: Transverse Electric Magnetic) for which the electric and magnetic fields are orthogonal to the propagation direction of the radiofrequency waves.
  • the TEM mode propagates in the parallel plate guide at the same speed as in vacuum, which renders said guide non-dispersive for this TEM mode.
  • the focusing and collimation of the beams can be performed by a constrained lens, as described for example in the documents US 6160520 , US 3170158 and US 5936588 which illustrate the case of a Rotman lens, or alternatively by a reflector as described for example in the documents FR 2944153 and FR 2 986377 for Pillbox beam formers, the constrained lens, or respectively the reflector, being inserted in the propagation path of the radiofrequency waves, between the two parallel metal plates.
  • the constrained lens, or the reflector serves essentially as phase corrector and makes it possible, by transmission in the case of a lens, or after reflection in the case of a reflector, to convert cylindrical wave fronts into plane wave fronts.
  • a Pillbox beamformer may, at output, be connected to a linear array of several individual radiating elements aligned side by side.
  • the linear output opening located between the two parallel plates, it is also possible to connect the linear output opening, located between the two parallel plates, to a single linear output horn which makes the transition between the parallel plates and the free space where beams are radiated.
  • the radiating aperture at the output of the Pillbox beamformer is linear and extends continuously over the entire transverse width of the parallel plates.
  • radio-frequency waves are constrained, i.e., guided, along a propagation path that does not correspond to a natural optical path, free space, as defined by the laws of Snell-Descartes.
  • These beamformers can be synthesized to have three or four different foci, resulting in fewer aberrations and better beams.
  • these beam formers need to take radiofrequency waves along the inner contour. of the lens by a network of different delay transmission lines.
  • the transmission lines used are coaxial lines, but this necessitates a transition between the coaxial lines and the linear radiating opening, and the structure of the beamformer is then not completely integrated.
  • the transmission lines used are coaxial lines, but this necessitates a transition between the coaxial lines and the linear radiating opening, and the structure of the beamformer is then not completely integrated.
  • the object of the invention is to provide a novel quasi-optical lens-beamformer for converting cylindrical wavefronts into plane wavefronts by applying differential delays between the center and the lateral edges of the beam.
  • the lens not having the disadvantages of known constraint lens beam formers, to overcome the spatial sampling of radio frequency waves, and allowing the use of a single output linear horn.
  • the quasi-optical lens beamformer comprises a radio frequency transmission line fed at a first end, by at least one input power source, the transmission line comprising two stacked metal plates. , spaced from one another and extending in two longitudinal X and transverse Y directions.
  • the transmission line further comprises at least one protrusion extending in the directions X, Y, and in a direction Z orthogonal to the XY plane, the projection having a metal insert extending in the direction X, in the transverse direction Y between two lateral edges of the lens, and extending in height in the direction Z.
  • the metal insert comprises a base secured to one of the two metal plates, at least one free end and has, in longitudinal section, a contour of variable length between the two lateral edges of the transmission line.
  • the transmission line is contiguous to the metal insert and forms, in the Z direction, a convolution around the metal insert.
  • the free end of the insert can be folded parallel to the XY plane.
  • the free end of the insert can be doubly folded T-shaped, parallel to the XY plane.
  • the protrusion and the metal insert may have a profile of curvilinear shape along the X and Y directions.
  • the protrusion may have an input profile and an output profile of different shapes.
  • the outgrowth may comprise adaptation stubs.
  • the metal plates of the transmission line may have an internal face having transitions in steps.
  • the length of the contour of the metal insert can be progressively decreasing from the center towards the two lateral edges of the transmission line.
  • the length of the contour, in longitudinal section, of the metal insert can be progressively increasing from the center towards the two lateral edges of the transmission line.
  • the metal insert may comprise a symmetrical profile with respect to the median longitudinal axis of the transmission line.
  • the lens may comprise several input power sources distributed around an input edge, according to a focal curve.
  • the beamformer may comprise a plurality of excrescences capable of producing progressive delays, the excrescences being successively distributed along the longitudinal axis X of the transmission line, at different distances from the input supply sources, each outgrowth comprising a metal insert whose length of the contour, in longitudinal section, varies between the two lateral edges of the transmission line.
  • the length of the contour of the metal inserts, in the different successive excrescences may vary progressively from one protrusion to another adjacent protuberance, along the longitudinal direction X of the transmission line.
  • the transmission line can be folded on itself in the X direction, according to a fold of straight shape.
  • the beamformer may further comprise at least one first reflector wall extending transversely in the transmission line, and orthogonal to the metal plates in the Z direction, the first reflector wall being able to fold the transmission line, on itself, according to the X direction, according to a curvilinear fold.
  • the quasi-optical lens-beamformer may comprise two layers stacked and closed at one end by the first reflector wall and two opposite protuberances arranged around a metal insert extending in the two stacked layers, the first reflective wall. being integrated with the two opposite growths.
  • the quasi-optical lens-beamformer may further comprise a third layer stacked on the second layer and a second reflective wall extending in the second and third layers.
  • the quasi-optical lens-beamformer may further include at least one third protrusion arranged in the second layer downstream of the first reflector wall.
  • the invention also relates to a planar antenna comprising at least one such beamformer and further comprising a linear radiating horn connected at the output of the beamformer.
  • the invention relates to a planar antenna comprising such a beamformer, the transmission line being folded on itself and having a linear output opening connected to an array of several radiating horns.
  • the lens bundle trainer shown in the diagram of FIG. figure 1 and on the perspective view of the figure 2a comprises a transmission line 20 with two metal plates and a lens with progressive and continuous delays between the center 14 of the lens and the two lateral edges 15, 16.
  • the transmission line 20 consists of two stacked metal plates, respectively upper and lower. lower, spaced from each other by a cavity, and extending in two longitudinal directions X and transverse Y.
  • the transmission line 20 is fed at a first end, by at least one input power source 10 and is provided with a protrusion 13, located on the path of radio waves.
  • the input and output contours of the protrusion which respectively correspond to the inner and outer contours of the lens, may have profiles of identical shapes and parallel to each other or may have different profiles.
  • the protrusion 13 extends in thickness in the X direction, transversely in the width of the transmission line in the Y direction, and in height in a Z direction orthogonal to the XY plane of the metal plates, the length dL1, dL2, dL3 of the transmission line in the protrusion being variable from the center 14 to the two lateral edges 15, 16 of the lens, so as to apply a different delay to the radiofrequency waves propagating in the lens along paths 1, 2, 3 having different angular directions and respective lengths L1, L2, L3.
  • the delay achieved by the protrusion is proportional to the length of the transmission line, in the protrusion, on the path considered.
  • the delay applied to the radio frequency waves propagating along the median longitudinal axis 3 of the lens may be greater than the delays applied to all other paths while the delay applied to radiofrequency waves propagating towards the edges of the lens, which correspond to the longest paths, may be zero.
  • the law of delays is different.
  • the law of delays is more complex because it also depends on the respective shapes of said internal and external contours.
  • the protrusion 13 comprises a metal insert 21 housed transversely in the cavity, between the two metal plates, the insert 21, of any shape, comprising a base 21b integral with one of the two metal plates, lower or upper, for example the lower metal plate, and at least one free end 21a.
  • the metal insert 21 extends in width, in the transverse direction Y, between two lateral edges of the lens 15, 16, extends in thickness in the direction X, and extends in height, at least in part along the Z direction.
  • the insert 21 has an outer contour of progressively variable length between the two lateral edges of the transmission line.
  • the variation of the length of the contour of the insert 21 can be obtained by varying the height of the insert in the Z direction, or by varying the thickness of the insert in the X direction, or by combination of a variation in height in the direction Z and a variation in thickness in the direction X as illustrated for example on the Figures 3a, 3b, 3c .
  • the figure 3a is an exploded diagram in perspective of an example of protrusion in which the insert has a variable height in the direction Z and a variable thickness in the direction X.
  • the figure 3b shows two diagrams, in longitudinal section, respectively in the center of the lens and on the lateral edges of the lens, the outgrowth of the figure 3a .
  • the insert has an I-shaped wall on the median longitudinal axis, in the center of the lens, and has an increased thickness and a reduced height on the lateral edges of the lens.
  • the figure 3c is a perspective diagram of the beam trainer corresponding to the Figures 3a and 3b .
  • the two input profiles 18 and 19 of the output protrusion 13, which respectively correspond to the internal contours and outer of the lens, are not parallel to each other.
  • the transmission line 20 is contiguous to the metal insert 21 and thus forms, in the Z direction, a convolution 22 around the metal insert 21, as represented for example on the figure 4a for an insert having an I-shaped longitudinal section.
  • the transmission line travels along the contour of the insert and thus changes orientation several times but does not include any transmission discontinuity.
  • the transmission line follows continuously the shape of the insert 21, along a first front surface, from the base 21b to the free end 21a of the insert, then along a second rear surface, the free end 21a at the base 21a.
  • the propagation of the electromagnetic waves is always carried out between two metal plates and according to the propagation mode TEM, the insert 21, placed in the middle of the protrusion, ensuring the role of the metal plate, lower or upper , to which its base is solidarized.
  • the direction of the electric field E in the transmission line rotates in the protrusion according to the orientation of the metal plates and remains, in all points of the transmission line, perpendicular to the metal plates, or almost perpendicular to the parallel plates when the metal plates are not exactly parallel.
  • the insert 21 placed in the path of the electromagnetic waves TEM constitutes an obstacle to circumvent which causes a propagation delay all the more important that the insert has a longer contour.
  • the law of variation of the length of the contour of the insert, in a transverse direction of the lens, depends on the desired delay law for the formation of the beams.
  • the length of the contour of the metal insert may progressively vary from the center of the lens, located on the median longitudinal axis, to the lateral edges of the lens, so as to compensate for the difference in travel time between the different paths. and obtaining propagation paths of identical lengths across the entire width of the aperture radiating output of the lens.
  • the lens is convergent when the variation of the length of the contour of the insert is progressively decreasing from the center towards the two lateral edges of the transmission line.
  • the length of the contour of the insert is important in the center of the lens and may be zero on the lateral edges of the lens.
  • the lens is divergent when the variation of the length of the contour of the insert is progressively increasing from the center towards the two lateral edges of the transmission line.
  • a convergent lens is required.
  • the combination of a converging lens and a diverging lens can minimize phase aberrations over a wider angular sector, and thus form more beams.
  • the length of the contour of the insert may vary symmetrically on either side of the median longitudinal axis of the lens.
  • the insert 21 can have different shapes.
  • the insert when there is no thickness constraint for the beamformer, the insert can extend without limitation in the Z direction and have an I-shaped section across the entire width of the lens, as represented on the figure 4a .
  • the insert when it is necessary to reduce the dimension of the growths, in the direction Z, to maintain a small thickness of the lens, for the large delays requiring insert heights greater than the desired thickness, to reduce the height of the insert without changing the length of its contour, it is possible to fold a free end 21a, opposite the base 21b, of the insert parallel to the XY plane, the folding can be single or double as shown in the embodiments of the Figures 4b and 4c , in which the insert 21 may have an L-shaped section when there is a simple folding, or a T-shaped section when there is a double folding.
  • the metal insert 21 and the inner face 23 of the wall 22 of the protrusion 20 comprise transitions 24 at right angles corresponding, for the transmission line 20, to changes in direction of propagation of the direction Z towards the direction X or vice versa from the X direction towards the Z direction.
  • the folding may not be necessary locally, on certain parts of the insert, for example on the lateral edges of the lens, when the local delays to be achieved are low. .
  • the length of the contour of the folded insert 21 may be greater on the median longitudinal axis 3, at the center 14 of the lens, than on the other paths as shown in the view from above of the figure 4d then can gradually and symmetrically decrease to the two lateral edges 15, 16 of the lens where the folding is no longer necessary.
  • the protrusion it is also possible to vary gradually the thickness of the insert, in the X direction, between the center and the lateral edges of the lens as on the Figures 4a, 4b , 4c .
  • the input and output profiles of the protrusion which correspond to the inner and outer contours of the lens, are of different shapes. This makes it possible to obtain an additional degree of freedom and thus to obtain fewer aberrations and beams of better quality.
  • the separation distance between the parallel plates must be reduced at the level of the excrescences, to be typically less than a quarter of the guided wavelength corresponding to the highest frequency.
  • the separation distance must instead be maximum. It is thus possible to vary gradually the separation distance from the input supply sources 10 to the protuberances 13.
  • adaptation stubs 25 to the protrusion 13, the adaptation stubs being consisting of portions of waveguides arranged symmetrically in the outer metal wall 22 of the protrusion 20, on either side of the metal insert 21.
  • the stubs have a transversely variable profile, depending on the profile of the 13.
  • the adaptation of the transmission line at the level of the protrusion can also be improved by replacing the edges of the angles at 90 °, located at the base of the insert and at the upper end of the outgrowth and corresponding to changes of direction of the transmission line, by bevel transitions or by stair step transitions as shown for example on Figures 5a, 5b , 5c .
  • the protrusion 13 and the insert 21, placed on an exit edge of the lens may have a planar shape profile in the X and Y directions, as shown in FIGS. figures 1 and 2 or have a profile of curvilinear shape in the X and Y directions, for example parabolic as shown on the Figures 6a and 6b .
  • the transmission line can have a linear input profile as on the figure 1 or a curvilinear entry profile.
  • the transmission line comprises a plurality of input supply sources 10 distributed periodically around an input edge 31 of the lens in a focal curve, for example a focal arc, centered on a median longitudinal axis 3 of the lens .
  • Curvilinear profiles at the entrance and exit of the lens make it possible to obtain several different focal points and to form beams over a wider angular sector.
  • the electromagnetic wave at the output of the beamformer is not spatially quantized, and unlike a Pillbox formatter, the folding of the transmission line is not essential.
  • the lens beam former according to the invention applies to the incident wave a continuous and gradually modulated transverse delay. Thanks to this continuity of spatial transmission, to obtain a plane antenna, it is possible, at the output of the lens, to connect the beamformer to a horn linear 35 extending transversely over the entire width of the waveguide, as shown in FIGS. Figures 6a and 6b or a network of linear openings extending transversely over the entire width of the waveguide as shown in FIGS. Figures 9 and 10 .
  • the lens bundle trainer may comprise a single protrusion provided with a metal insert capable of producing progressive delays or a plurality of excrescences distributed along the longitudinal axis X of the transmission line, at different distances from the input power sources 10 as shown for example on the figures 7 and 8a .
  • Each protrusion 13a, 13b, 13c, 13i, 13n extends in height in the direction Z orthogonal to the XY plane of the metal plates and comprises a metal insert whose length of the contour, in longitudinal section, varies progressively from the center of the lens, located on the median longitudinal axis, to the lateral edges of the lens.
  • the multiplicity of excrescences makes it possible to distribute, between the different excrescences, the delays to be achieved for each propagation path 1, 2, 3, each protrusion realizing a fraction of the different respective delays. This makes it possible to reduce the amplitude of the delays produced by each outgrowth, to reduce the length dL1, dL2, dL3 of the transmission line, in each outgrowth, along the Z direction, and to reduce the height of the beamformer in the Z direction. .
  • the fraction of the delays produced by each outgrowth may be identical for all the outgrowths or may vary according to the respective distance between each outgrowth and the input supply sources so as to obtain a gradient of delays in the longitudinal direction X of the transmission line.
  • splitting the delays on seven successive growths distributed longitudinally it is possible to realize a gradient of delays in the longitudinal direction X.
  • the height of the insert in the direction Z, in the different successive protuberances gradually varies along the longitudinal axis X of the transmission line.
  • the length d.sub.L of the transmission line, around the insert, in each protrusion 13 increases between the first four protrusions closest to the input supply sources, then decreases over the last three excrescences. close to the linear output horn. Consequently, since the delay achieved by each outgrowth is proportional to the length dL of the transmission line in the outgrowth, the fraction of the delays produced by each outgrowth varies in the same direction and increases between the first four outgrowths closest to the sources. 10 input power, then decreases on the last three outgrowths closest to the output linear horn.
  • the lens thus produced makes it possible, thanks to each protrusion, to obtain a delay that varies progressively and continuously over the entire transverse width of the lens and, thanks to the fractionation of the delays on several successive excrescences, makes it possible to obtain a gradient of delays in the longitudinal direction.
  • the lens behaves like a graded index lens.
  • the value of the index in each outgrowth in the longitudinal direction is equal to (L + dL) / L, where L is the length of the transmission line in the longitudinal direction X, and dL is the length of the line transmission around the insert 21, in the corresponding protrusion 13.
  • the beamformer can form beams without aberrations using transmission lines having a reduced length between the input power sources and the output radiating aperture.
  • a single linear radiating horn is connected at the output of the transverse outgrowth of the continuous delay lens.
  • the continuous delay lens may also be used to power a network of several linear radiating horns, such as the antenna shown in the diagram of the figure 9 .
  • the parallel plate transmission line is folded back on itself, and has a linear output opening connected to the network of radiating horns 40 via power dividers 41. in this case, the folding of the transmission line is carried out in a straight line 42.
  • the folding can be total 180 ° or partial and form an angle between 0 and 180 °.
  • the transmission line with a fold of curvilinear shape, for example parabolic, by inserting, in the transmission line, a reflective wall 43, for example metallic, extending according to Z direction, as shown for example in the diagrams of figures 10 , 11, 12 .
  • the beam former consists of two layers 44, 45, stacked and closed at one end by the reflector wall 43 which extends transversely in the two layers of the beamformer, across the width and over all the height of the transmission line.
  • the reflective wall can be of any shape, for example flat or parabolic.
  • the beamformer includes at least one progressive delay lens input fed by one or more power sources 10 according to the invention, and has a linear output aperture 48.
  • the progressive delay lens may be placed upstream or downstream of the reflector wall, or may be combined with the reflector wall to form an integrated assembly.
  • the metal insert may be of any shape and may extend in height in the Z direction and / or in thickness in the X direction.
  • the outlet linear opening 48 may be connected to a horn linear radiator 35 or to a network of several linear horns 40.
  • the protrusion (s) 13, 13a, 13b, 13c developing the progressive and continuous delays of the lenses with delays can be arranged indifferently in the first or second layer, or in both layers of the beamformer.
  • a single transverse protrusion 13 is arranged in the first layer 44 of the beam former, upstream of the reflecting wall 43.
  • two opposing protuberances 131, 132 are arranged around a metal insert 21 extending in the two layers 44, 45 of the beam former and the reflecting wall 43 is integrated with the two opposite protuberances 131, 132.
  • the metal insert extends in the Z direction, parallel to the reflector wall 43, but of course, alternatively, it could extend in thickness in the direction X.
  • the shapes of the metal insert in the two layers are symmetrical, but it is not mandatory.
  • the shapes of the metal insert in each protrusion and in each layer of the beamformer may be different from each other.
  • the beam former comprises two transverse protrusions 131, 132 combined with the reflector wall 43 and arranged around a metal insert 21 extending in the two layers of the beamformer and further comprises at least a third transverse protrusion 133 arranged in downstream of the reflector 43, in the second layer of the beam former, between the reflecting wall 43 and the linear opening 48 of output.
  • the radiofrequency waves emitted in the first layer at the input of the transmission line are delayed in the different protuberances of the continuous delay lenses, and reflected by the reflecting wall, towards the second layer before being radiated by the linear output horn. or through the network of linear output horns.
  • the combination of a continuous-delay lens bundle combiner with a reflective wall has the advantage of increasing the number of degrees of freedom, the number of focusing points and improving the performance of the lens.
  • the number of reflective walls may of course be greater than one, the growths may be located upstream or downstream of or reflective walls, and the reflective walls may or may not be incorporated into growths.
  • the beamformer has a plurality of protuberances 131, 132, 133, 134, 135 and two reflector walls 43, 50.
  • the first reflector wall 43 is integrated in the two opposite protuberances 131, 132, the third protrusion 133 is arranged downstream of the first reflector wall 43, between the first reflector wall 43 and the second reflector wall 50, the fourth protrusion 134 is arranged upstream of the first reflector wall 43, and finally the fifth protrusion 135 is arranged between the second reflector wall 50 and a linear output opening 48.
  • the beamformer then comprises three stacked layers 44, 45, 46.
  • the first reflector wall 43 extends into the first and second layers while the second reflector wall 50 extends into the second and third layers.
  • the transmission line is then folded twice on itself, through the first reflective wall 43, then through the second reflector wall 50.
  • the separation between the parallel plates must be reduced at the level of the growths, to be typically less than a quarter of the wavelength corresponding to the highest frequency among all the guided radio frequency waves, so that only the TEM mode can propagate.
  • the separation distance must instead be maximum. It is thus possible to vary gradually the separation distance from the input supply sources 10 to the protuberances 13.
  • the precisely described beamformer allows one beamline to be formed in a single XY plane since all power sources are located in the XY plane.
  • planar beamformer according to the invention, with different planar beam formers, suitable for forming beams in a plane orthogonal to the XY plane, such as for example a Butler matrix.
  • the shape of the protuberance and the shape of the insert may be different from the forms explicitly described.
  • the dimensions of the insert may vary in height in the direction Z, or in thickness in the direction X, or vary in both height and thickness.
  • the insert may comprise different types of folding and / or a number of folds greater than two, or a combination of several types of folds.
  • the number of protrusions may be greater than one, the shape of the reflector may be arbitrary and the number of reflectors used may be greater than one.
  • the protuberances can be placed upstream or downstream of a reflective wall.
  • the beamformer may also include a reflector wall integrated with two protuberances. When the beamformer has two reflective walls, one or more protuberances can be arranged between the two reflective walls.

Description

  • La présente invention concerne un formateur de faisceaux quasi-optique à lentille et une antenne plane comportant un tel formateur de faisceaux. Elle s'applique à toute antenne multifaisceaux de faible épaisseur et plus particulièrement au domaine des applications spatiales telles que les télécommunications par satellite, pour des antennes destinées à être montées à bord des satellites, ou pour des antennes destinées à être utilisées au sol sur des terminaux fixes ou mobiles.
  • Pour faciliter la description, le mode d'opération des formateurs de faisceaux est supposé en transmission, mais une description similaire pourrait être formulée en réception, les formateurs de faisceaux considérés étant des éléments passifs donc réciproques.
  • Les formateurs de faisceaux sont utilisés dans les antennes multifaisceaux pour élaborer des faisceaux de sortie à partir de signaux radiofréquence d'entrée. De manière connue, il existe des formateurs de faisceaux quasi-optiques planaires utilisant une propagation électromagnétique des ondes radiofréquences entre deux plaques métalliques parallèles (en anglais : parallel plates), selon un mode de propagation en général TEM (en anglais : Transverse Electrique Magnétique) pour lequel les champs électrique et magnétique sont orthogonaux à la direction de propagation des ondes radiofréquences. Le mode TEM se propage dans le guide à plaques parallèles à la même vitesse que dans le vide, ce qui rend ledit guide non dispersif pour ce mode TEM. La focalisation et la collimation des faisceaux peuvent être réalisées par une lentille contrainte, comme décrit par exemple dans les documents US 6160520 , US 3170158 et US 5936588 qui illustrent le cas d'une lentille de Rotman, ou alternativement par un réflecteur comme décrit par exemple dans les documents FR 2944153 et FR 2 986377 pour des formateurs de faisceaux Pillbox, la lentille contrainte, ou respectivement le réflecteur, étant insérée sur le trajet de propagation des ondes radiofréquences, entre les deux plaques métalliques parallèles. La lentille contrainte, ou le réflecteur, sert essentiellement de correcteur de phase et permet, par transmission dans le cas d'une lentille, ou après réflexion dans le cas d'un réflecteur, de convertir des fronts d'ondes cylindriques en des fronts d'ondes plans.
  • Un formateur de faisceaux Pillbox peut, en sortie, être connecté à un réseau linéaire de plusieurs éléments rayonnants individuels alignés côte à côte. En alternative à l'utilisation de plusieurs éléments rayonnants individuels, il est également possible de connecter l'ouverture linéaire de sortie, située entre les deux plaques parallèles, à un unique cornet linéaire de sortie qui réalise la transition entre les plaques parallèles et l'espace libre où sont rayonnés les faisceaux. Dans le cas de l'utilisation d'un unique cornet linéaire, l'ouverture rayonnante en sortie du formateur de faisceaux Pillbox est linéaire et s'étend continument sur toute la largeur transversale des plaques parallèles. Ces ouvertures linéaires rayonnantes, qui ne sont pas spatialement quantifiées, ont des performances très supérieures par rapport aux réseaux linéaires de plusieurs éléments rayonnants, pour les faisceaux dépointés par rapport à l'axe focal, en raison de l'absence de quantification, et présentent une bande passante très supérieure en raison de l'absence de modes de propagation résonants. Cependant, un formateur de faisceaux Pillbox présente l'inconvénient d'engendrer des faisceaux dégradés lorsque les sources d'excitation sont éloignées du foyer du réflecteur intégré entre les plaques parallèles.
  • Dans les formateurs de faisceaux de type lentilles contraintes, telles que les lentilles de Ruze ou de Rotman, les ondes radiofréquences sont contraintes, c'est-à-dire guidées, selon un chemin de propagation ne correspondant pas à un chemin optique naturel, en espace libre, tel que défini par les lois de Snell-Descartes. Ces formateurs de faisceaux peuvent être synthétisés de façon à présenter trois ou quatre foyers différents, ce qui permet d'obtenir moins d'aberrations et des faisceaux de meilleure qualité. Cependant pour maîtriser les retards des ondes radiofréquences se propageant vers les bords latéraux de la lentille par rapport à celles se propageant selon une direction axiale, vers le centre de la lentille, ces formateurs de faisceaux nécessitent de prélever les ondes radiofréquences le long du contour interne de la lentille par un réseau de différentes lignes de transmission à retard. Ces lignes de transmission à retard sont réparties sur ledit contour interne de la lentille et connectées à des éléments rayonnants correspondants dont les ports définissent le contour externe de la lentille. Le problème est que le prélèvement des ondes radiofréquences perturbe le champ électromagnétique qui est échantillonné spatialement et induit des pertes. Par ailleurs, pour que le formateur de faisceaux à lentille contrainte soit planaire et que la lentille soit complètement intégrée entre les deux plaques parallèles, il est nécessaire d'ajouter, sur le trajet des ondes radiofréquences, des lignes de transmission à retard, par exemple des guides d'onde rectangulaires, qui induisent une dispersion en fréquence et limitent la bande passante du formateur de faisceaux. Pour éviter la dispersion en fréquence et augmenter la bande passante, dans certaines lentilles de Rotman, les lignes de transmission utilisées sont des lignes coaxiales, mais cela nécessite l'aménagement d'une transition entre les lignes coaxiales et l'ouverture rayonnante linéaire, et la structure du formateur de faisceaux n'est alors pas complètement intégrée. Il n'existe actuellement pas de solution de formateur de faisceaux de type lentille contrainte permettant de s'affranchir de l'échantillonnage des ondes radiofréquences.
  • Le but de l'invention est de réaliser un nouveau formateur de faisceaux quasi-optique à lentille permettant de convertir des fronts d'onde cylindriques en des fronts d'ondes plans par l'application de retards différentiels entre le centre et les bords latéraux de la lentille, ne présentant pas les inconvénients des formateurs de faisceaux à lentille contrainte connus, permettant de s'affranchir de l'échantillonnage spatial des ondes radiofréquences, et permettant l'utilisation d'un unique cornet linéaire de sortie.
  • Pour cela, selon l'invention, le formateur de faisceau quasi-optique à lentille comprend une ligne de transmission radiofréquence alimentée à une première extrémité, par au moins une source d'alimentation d'entrée, la ligne de transmission comportant deux plaques métalliques empilées, espacées l'une de l'autre et s'étendant, selon deux directions longitudinale X et transversale Y. La ligne de transmission comporte en outre au moins une excroissance s'étendant selon les directions X, Y, et selon une direction Z orthogonale au plan XY, l'excroissance comportant un insert métallique s'étendant selon la direction X, selon la direction transversale Y entre deux bords latéraux de la lentille, et s'étendant en hauteur selon la direction Z. L'insert métallique comporte une base solidaire de l'une des deux plaques métalliques, au moins une extrémité libre et a, en section longitudinale, un contour de longueur variable entre les deux bords latéraux de la ligne de transmission. Dans l'excroissance, la ligne de transmission est accolée à l'insert métallique et forme, dans la direction Z, une circonvolution autour de l'insert métallique.
  • Avantageusement, l'extrémité libre de l'insert peut être repliée parallèlement au plan XY.
  • Avantageusement, l'extrémité libre de l'insert peut être doublement repliée en forme de T, parallèlement au plan XY.
  • Avantageusement, l'excroissance et l'insert métallique peuvent avoir un profil de forme curviligne selon les directions X et Y.
  • Avantageusement, l'excroissance peut avoir un profil d'entrée et un profil de sortie de formes différentes.
  • Avantageusement, l'excroissance peut comporter des stubs d'adaptation.
  • Avantageusement, dans l'excroissance, les plaques métalliques de la ligne de transmission peuvent avoir une face interne comportant des transitions en marches d'escalier.
  • Avantageusement, dans le cas d'une lentille convergente, la longueur du contour de l'insert métallique peut être progressivement décroissante du centre vers les deux bords latéraux de la ligne de transmission.
  • Alternativement, dans le cas d'une lentille divergente, la longueur du contour, en section longitudinale, de l'insert métallique peut être progressivement croissante du centre vers les deux bords latéraux de la ligne de transmission.
  • Avantageusement, l'insert métallique peut comporter un profil symétrique par rapport à l'axe longitudinal médian de la ligne de transmission.
  • Avantageusement, la lentille peut comporter plusieurs sources d'alimentation d'entrée distribuées autour d'un bord d'entrée, selon une courbe focale.
  • Avantageusement, le formateur de faisceaux peut comporter plusieurs excroissances aptes à réaliser des retards progressifs, les excroissances étant réparties successivement le long de l'axe longitudinal X de la ligne de transmission, à différentes distances des sources d'alimentation d'entrée, chaque excroissance comportant un insert métallique dont la longueur du contour, en section longitudinale, varie entre les deux bords latéraux de la ligne de transmission.
  • Avantageusement, la longueur du contour des inserts métalliques, dans les différentes excroissances successives, peut varier progressivement d'une excroissance à une autre excroissance adjacente, selon la direction longitudinale X de la ligne de transmission.
  • Avantageusement, la ligne de transmission peut être repliée sur elle-même selon la direction X, selon une pliure de forme droite.
  • Avantageusement, le formateur de faisceaux peut comporter en outre au moins un premier mur réflecteur s'étendant transversalement dans la ligne de transmission, et orthogonalement aux plaques métalliques selon la direction Z, le premier mur réflecteur étant apte à replier la ligne de transmission, sur elle-même, selon la direction X, selon une pliure de forme curviligne.
  • Avantageusement, le formateur de faisceaux quasi-optique à lentille peut comporter deux couches empilées et fermées à une extrémité par le premier mur réflecteur et deux excroissances opposées aménagées autour d'un insert métallique s'étendant dans les deux couches empilées, le premier mur réflecteur étant intégré aux deux excroissances opposées.
  • Avantageusement, le formateur de faisceaux quasi-optique à lentille peut comporter en outre une troisième couche empilée sur la deuxième couche et un deuxième mur réflecteur s'étendant dans les deuxième et troisième couches.
  • Avantageusement, le formateur de faisceaux quasi-optique à lentille peut comporter en outre au moins une troisième excroissance aménagée dans la deuxième couche en aval du premier mur réflecteur.
  • L'invention concerne aussi une antenne plane comportant au moins un tel formateur de faisceaux et comportant en outre un cornet rayonnant linéaire connecté en sortie du formateur de faisceaux.
  • L'invention concerne enfin une antenne plane comportant un tel formateur de faisceaux, la ligne de transmission étant repliée sur elle-même et comportant une ouverture linéaire de sortie reliée à un réseau de plusieurs cornets rayonnants.
  • D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :
    • figure 1 : un schéma illustrant le principe de fonctionnement d'un formateur de faisceaux à lentille à retards continus et progressifs, selon l'invention ;
    • figure 2a : un schéma en perspective d'un exemple de formateur de faisceaux à lentille à retards continus et progressifs comportant une excroissance à profil plan, selon l'invention ;
    • figure 2b : un schéma éclaté en perspective de l'excroissance de la figure 2a, selon l'invention;
    • figure 3a : un schéma éclaté, en perspective, d'un exemple d'excroissance dans laquelle l'insert a une hauteur variable selon la direction Z et une épaisseur variable selon la direction X, selon une variante de l'invention ;
    • figure 3b : deux schémas, en coupe longitudinale, respectivement au centre de la lentille et sur les bords latéraux de la lentille, de l'excroissance correspondant à l'exemple de la figure 3a, selon l'invention ;
    • figure 3c : un schéma en perspective du formateur de faisceaux correspondant aux figures 3a et 3b, selon l'invention ;
    • figures 4a, 4b, 4c : trois schémas, en coupes longitudinales, d'une excroissance comportant un insert métallique dont la section est respectivement en forme de I, en forme de L, en forme de T, la paroi interne de l'excroissance comportant des changements de direction à angles droits, selon des premiers exemples de réalisation de l'invention ;
    • figure 4d : une vue de dessus de l'excroissance dans le cas où l'insert est doublement replié en forme de T, selon un mode de réalisation de l'invention ;
    • figures 5a, 5b, 5c : trois schémas, en coupes longitudinales, d'une excroissance comportant un insert métallique respectivement en forme de I, en forme de L, en forme de T, la paroi interne de l'excroissance comportant des changements de direction en marches d'escalier, selon des deuxièmes exemples de réalisation de l'invention ;
    • figures 6 a et 6b: deux schémas, respectivement en perspective et en vue de dessus, d'un exemple d'antenne multifaisceaux comportant un formateur de faisceaux à lentille muni d'une excroissance à profil curviligne, selon l'invention ;
    • figure 7 : un schéma en perspective d'un exemple d'antenne multifaisceaux comportant un formateur de faisceaux à lentille muni de deux excroissances, selon l'invention ;
    • figures 8a et 8b : deux schémas, respectivement en perspective et en coupe longitudinale, d'un exemple d'antenne multifaisceaux comportant un formateur de faisceaux à lentille à retards progressifs, muni de plusieurs excroissances à profil curviligne et à gradient de retards, selon l'invention ;
    • figure 9 : un schéma en perspective, d'un exemple d'antenne multifaisceaux comportant un formateur de faisceaux à lentille à retards progressifs, muni d'une ligne de transmission repliée sur elle-même, selon l'invention ;
    • figure 10 : un schéma en perspective, d'un exemple d'antenne multifaisceaux comportant un formateur de faisceaux à lentille à retards progressifs, muni d'un mur réflecteur, selon l'invention ;
    • figures 11 et 12: deux schémas, en coupes longitudinales, d'un formateur de faisceaux à lentille à retards progressifs, muni d'un mur réflecteur, selon l'invention ;
    • figure 13 : un schéma, en coupe longitudinale, d'un formateur de faisceaux à lentille à retards progressifs, muni de deux murs réflecteurs, selon l'invention.
  • Conformément à l'invention, le formateur de faisceaux à lentille représentée sur le schéma de la figure 1 et sur la vue en perspective de la figure 2a comporte une ligne de transmission 20 à deux plaques métalliques et une lentille à retards progressifs et continus entre le centre 14 de la lentille et les deux bords latéraux 15, 16. La ligne de transmission 20 est constituée de deux plaques métalliques empilées, respectivement supérieure et inférieure, espacées l'une de l'autre par une cavité, et s'étendant selon deux directions longitudinale X et transversale Y. La ligne de transmission 20 est alimentée à une première extrémité, par au moins une source d'alimentation d'entrée 10 et est munie d'une excroissance 13, située sur le trajet des ondes radiofréquences. Les contours d'entrée et de sortie de l'excroissance, qui correspondent respectivement aux contours interne et externe de la lentille, peuvent avoir des profils de formes identiques et parallèles entre elles ou peuvent avoir des profils différents. L'excroissance 13 s'étend en épaisseur selon la direction X, transversalement sur la largeur de la ligne de transmission selon la direction Y, et en hauteur selon une direction Z orthogonale au plan XY des plaques métalliques, la longueur dL1, dL2, dL3 de la ligne de transmission dans l'excroissance étant variable du centre 14 vers les deux bords latéraux 15, 16 de la lentille, de façon à appliquer un retard différent aux ondes radiofréquences se propageant dans la lentille selon des trajets 1, 2, 3 ayant des directions angulaires différentes et des longueurs respectives L1, L2, L3 différentes. Lorsque les contours interne et externe de la lentille ont des profils de formes identiques, le retard réalisé par l'excroissance est proportionnel à la longueur de la ligne de transmission, dans l'excroissance, sur le trajet considéré. En particulier, lorsque les contours interne et externe de la lentille ont des profils de formes identiques, pour réaliser une lentille convergente, le retard appliqué aux ondes radiofréquences se propageant selon l'axe longitudinal médian 3 de la lentille, qui correspond au trajet le plus court, peut être supérieur aux retards appliqués à tous les autres trajets alors que le retard appliqué aux ondes radiofréquences se propageant vers les bords de la lentille, qui correspondent aux trajets les plus longs, peut être nul. Dans le cas d'une lentille divergente, la loi des retards est différente. Lorsque les contours interne et externe de la lentille ont des profils de formes différentes, la loi des retards est plus complexe car elle dépend aussi des formes respectives desdits contours interne et externe.
  • L'excroissance 13 comporte un insert métallique 21 logé transversalement dans la cavité, entre les deux plaques métalliques, l'insert 21, de forme quelconque, comportant une base 21b solidaire de l'une des deux plaques métalliques, inférieure ou supérieure, par exemple la plaque métallique inférieure, et au moins une extrémité libre 21a. Comme représenté sur la vue éclatée de la figure 2b, l'insert métallique 21 s'étend en largeur, selon la direction transversale Y, entre deux bords latéraux de la lentille 15, 16, s'étend en épaisseur selon la direction X, et s'étend en hauteur, au moins en partie, selon la direction Z. Selon une section longitudinale de la ligne de transmission, l'insert 21 a un contour externe de longueur progressivement variable entre les deux bords latéraux de la ligne de transmission. La variation de la longueur du contour de l'insert 21 peut être obtenue par une variation de la hauteur de l'insert selon la direction Z, ou par une variation de l'épaisseur de l'insert selon la direction X, ou par une combinaison d'une variation en hauteur selon la direction Z et d'une variation en épaisseur selon la direction X comme illustré par exemple sur les figures 3a, 3b, 3c. La figure 3a est un schéma éclaté en perspective d'un exemple d'excroissance dans laquelle l'insert a une hauteur variable selon la direction Z et une épaisseur variable selon la direction X. La figure 3b montre deux schémas, en coupe longitudinale, respectivement au centre de la lentille et sur les bords latéraux de la lentille, de l'excroissance de la figure 3a. Sur cette figure 3b, l'insert a une paroi en forme de I sur l'axe longitudinal médian, au centre de la lentille, et a une épaisseur augmentée et une hauteur réduite sur les bords latéraux de la lentille. La figure 3c est un schéma en perspective du formateur de faisceaux correspondant aux figures 3a et 3b. Dans cet exemple, comme l'épaisseur de l'insert varie selon la direction Y, entre les deux bords latéraux de la lentille, les deux profils d'entrée 18 et de sortie 19 de l'excroissance 13, qui correspondent respectivement aux contours interne et externe de la lentille, ne sont pas parallèles entre eux.
  • Dans l'excroissance 13, la ligne de transmission 20 est accolée à l'insert métallique 21 et forme donc, dans la direction Z, une circonvolution 22 autour de l'insert métallique 21, comme représenté par exemple sur la figure 4a pour un insert ayant une section longitudinale en forme de I. La ligne de transmission chemine le long du contour de l'insert et change donc plusieurs fois d'orientation mais ne comporte aucune discontinuité de transmission. Ainsi, la ligne de transmission suit continument la forme de l'insert 21, longe une première surface avant, de la base 21b à l'extrémité libre 21a de l'insert, puis longe une deuxième surface arrière, de l'extrémité libre 21a à la base 21a. Dans l'excroissance 13, la propagation des ondes électromagnétiques est toujours réalisée entre deux plaques métalliques et selon le mode de propagation TEM, l'insert 21, placé au milieu de l'excroissance, assurant le rôle de la plaque métallique, inférieure ou supérieure, à laquelle sa base est solidarisée. La direction du champ électrique E dans la ligne de transmission tourne dans l'excroissance en fonction de l'orientation des plaques métalliques et reste, en tous points de la ligne de transmission, perpendiculaire aux plaques métalliques, ou quasiment perpendiculaire aux plaques parallèles lorsque les plaques métalliques ne sont pas exactement parallèles.
  • L'insert 21 placé sur le trajet des ondes électromagnétiques TEM, constitue un obstacle à contourner qui provoque un retard de propagation d'autant plus important que l'insert a un contour plus long. La loi de variation de la longueur du contour de l'insert, selon une direction transversale de la lentille, dépend de la loi de retard souhaitée pour la formation des faisceaux.
  • La longueur du contour de l'insert métallique peut varier progressivement du centre de la lentille, situé sur l'axe longitudinal médian, jusqu'aux bords latéraux de la lentille, de façon à compenser l'écart de temps de trajet entre les différents chemins et à obtenir des trajets de propagation de longueurs identiques sur toute la largeur de l'ouverture rayonnante de sortie de la lentille.
  • En particulier, lorsque les contours interne et externe de la lentille ont des profils de mêmes formes, la lentille est convergente lorsque la variation de la longueur du contour de l'insert est progressivement décroissante du centre vers les deux bords latéraux de la ligne de transmission. Dans ce cas, la longueur du contour de l'insert est importante au centre de la lentille et peut être nulle sur les bords latéraux de la lentille. A l'inverse, la lentille est divergente lorsque la variation de la longueur du contour de l'insert est progressivement croissante du centre vers les deux bords latéraux de la ligne de transmission. Pour réaliser une transformation d'une onde cylindrique en une onde plane, il faut une lentille convergente. Toutefois, l'association d'une lentille convergente et d'une lentille divergente peut permettre de minimiser les aberrations de phase sur un plus large secteur angulaire, et donc de former davantage de faisceaux.
  • Par ailleurs, dans le cas de faisceaux non formés, la longueur du contour de l'insert, peut par exemple, varier symétriquement de part et d'autre de l'axe longitudinal médian de la lentille.
  • L'insert 21 peut avoir différentes formes. Par exemple, lorsqu'il n'y a aucune contrainte d'épaisseur pour le formateur de faisceaux, l'insert peut s'étendre sans limitation selon la direction Z et avoir une section en forme de I sur toute la largeur de la lentille, comme représenté sur la figure 4a. Lorsqu'il est nécessaire de réduire la dimension des excroissances, selon la direction Z, pour maintenir une faible épaisseur de la lentille, pour les retards importants nécessitant des hauteurs d'insert supérieures à l'épaisseur souhaitée, pour diminuer la hauteur de l'insert sans modifier la longueur de son contour, il est possible de replier une extrémité libre 21a, opposée à la base 21b, de l'insert parallèlement au plan XY, le repliement pouvant être simple ou double comme représenté sur les modes de réalisation des figures 4b et 4c, dans lesquelles l'insert 21 peut avoir une section en forme de L lorsqu'il y a un repliement simple, ou une section en forme de T lorsqu'il y a un double repliement. Il est également possible de combiner ces différentes formes en I, en L, en T, sur la largeur transversale de l'insert. Dans ces trois exemples illustrés sur les figures 4a, 4b, 4c, l'insert métallique 21 et la face interne 23 de la paroi 22 de l'excroissance 20 comportent des transitions 24 à angles droits correspondant, pour la ligne de transmission 20, à des changements de direction de propagation de la direction Z vers la direction X ou inversement de la direction X vers la direction Z. Bien entendu, le repliement peut ne pas être nécessaire localement, sur certaines parties de l'insert, par exemple sur les bords latéraux de la lentille, lorsque les retards locaux à réaliser sont faibles. Par exemple, la longueur du contour de l'insert 21 replié peut être plus grande sur l'axe longitudinal médian 3, au centre 14 de la lentille, que sur les autres trajets comme le montre la vue de dessus de la figure 4d puis peut diminuer progressivement et symétriquement jusqu'aux deux bords latéraux 15, 16 de la lentille où le repliement n'est plus nécessaire.
  • En outre, dans l'excroissance, il est également possible de faire varier progressivement l'épaisseur de l'insert, selon la direction X, entre le centre et les bords latéraux de la lentille comme sur les figures 4a, 4b, 4c. Dans ce cas, les profils d'entrée et de sortie de l'excroissance, qui correspondent aux contours interne et externe de la lentille, sont de formes différentes. Cela permet d'obtenir un degré de liberté supplémentaire et d'obtenir ainsi moins d'aberrations et des faisceaux de meilleure qualité.
  • Pour réduire l'encombrement de la ligne de transmission en épaisseur, selon la direction Z, et éviter l'excitation de modes supérieurs au niveau des excroissances, et notamment lorsque l'insert est replié, la distance de séparation entre les plaques parallèles doit être réduite au niveau des excroissances, pour être typiquement inférieure au quart de la longueur d'onde guidée correspondant à la fréquence la plus élevée. Pour réduire les pertes de la ligne de transmission, la distance de séparation doit au contraire être maximale. Il est ainsi possible de faire varier progressivement la distance de séparation depuis les sources d'alimentations d'entrées 10 jusqu'aux excroissances 13.
  • Par ailleurs, pour améliorer l'adaptation de la ligne de transmission au niveau de l'excroissance et augmenter la bande passante, il est également possible d'ajouter des stubs d'adaptation 25 sur l'excroissance 13, les stubs d'adaptation étant constitués de portions de guides d'onde aménagées symétriquement dans la paroi métallique externe 22 de l'excroissance 20, de part et d'autre de l'insert métallique 21. Les stubs ont un profil variable transversalement, en fonction du profil de l'excroissance 13. Alternativement, au lieu d'ajouter des stubs, l'adaptation de la ligne de transmission au niveau de l'excroissance peut également être améliorée en remplaçant les arêtes des angles à 90°, situés à la base de l'insert et à l'extrémité supérieure de l'excroissance et correspondant à des changements de direction de la ligne de transmission, par des transitions en biseaux ou par des transitions en marches en escalier 30 comme représenté par exemple sur les figures 5a, 5b, 5c.
  • L'excroissance 13 et l'insert 21, placés sur un bord de sortie de la lentille, peuvent avoir un profil de forme plane selon les directions X et Y, comme représenté sur les figures 1 et 2 ou comporter un profil de forme curviligne selon les directions X et Y, par exemple parabolique comme représenté sur les figures 6a et 6b.
  • De même, la ligne de transmission peut avoir un profil d'entrée linéaire comme sur la figure 1 ou un profil d'entrée curviligne. Sur les figures 6a et 6b, la ligne de transmission comporte plusieurs sources d'alimentation d'entrée 10 distribuées périodiquement autour d'un bord d'entrée 31 de la lentille selon une courbe focale, par exemple un arc focal, centrée sur un axe longitudinal médian 3 de la lentille. Des profils curvilignes en entrée et en sortie de la lentille permettent d'obtenir plusieurs points focaux différents et de former des faisceaux sur un plus large secteur angulaire.
  • Contrairement à la lentille contrainte, l'onde électromagnétique en sortie du formateur de faisceaux n'est pas quantifiée spatialement, et contrairement à un formateur Pillbox, le repliement de la ligne de transmission n'est pas indispensable. Le formateur de faisceaux à lentille conforme à l'invention applique à l'onde incidente un retard continu et progressivement modulé transversalement. Grâce à cette continuité de transmission spatiale, pour obtenir une antenne plane, il est possible, en sortie de la lentille, de connecter le formateur de faisceaux à un cornet linéaire 35 s'étendant transversalement sur toute la largeur du guide d'onde, comme représenté sur les figures 6a et 6b ou à un réseau d'ouvertures linéaires s'étendant transversalement sur toute la largeur du guide d'onde comme représenté sur les figures 9 et 10. Ces ouvertures linéaires continues présentent l'avantage de rayonner l'énergie sur toute la largeur d'ouverture du formateur de faisceaux, ce qui permet de réaliser une antenne à grande largeur de bande de fonctionnement et à grande capacité de dépointage du faisceau formé et permet de s'affranchir des lobes de réseaux. La forme des parois du cornet linéaire peut être curviligne comme sur les figures 6a, 6b, 7 et 8a.
  • Pour réaliser les retards de propagation pour tous les trajets de propagation, le formateur de faisceaux à lentille peut comporter une seule excroissance munie d'un insert métallique apte à réaliser des retards progressifs ou plusieurs excroissances réparties le long de l'axe longitudinal X de la ligne de transmission, à différentes distances des sources d'alimentation d'entrée 10 comme représenté par exemple sur les figures 7 et 8a. Chaque excroissance 13a, 13b, 13c, 13i, 13n s'étend en hauteur selon la direction Z orthogonale au plan XY des plaques métalliques et comporte un insert métallique dont la longueur du contour, en section longitudinale, varie progressivement du centre de la lentille, situé sur l'axe longitudinal médian, jusqu'aux bords latéraux de la lentille. La multiplicité d'excroissances permet de répartir, entre les différentes excroissances, les retards à réaliser pour chaque trajet de propagation 1, 2, 3, chaque excroissance réalisant une fraction des différents retards respectifs. Cela permet de diminuer l'amplitude des retards réalisés par chaque excroissance, de diminuer la longueur dL1, dL2, dL3 de la ligne de transmission, dans chaque excroissance, selon la direction Z et de diminuer la hauteur du formateur de faisceaux selon la direction Z.
  • La fraction des retards réalisée par chaque excroissance peut être identique pour toutes les excroissances ou peut varier en fonction de la distance respective entre chaque excroissance et les sources 10 d'alimentation d'entrée de façon à obtenir un gradient de retards selon la direction longitudinale X de la ligne de transmission. Ainsi, comme représenté sur le schéma, en coupe longitudinale, de la figure 8b, en fractionnant les retards sur sept excroissances successives réparties longitudinalement, il est possible de réaliser un gradient de retards selon la direction longitudinale X. Sur l'exemple de la figure 8b, la hauteur de l'insert selon la direction Z, dans les différentes excroissances successives varie progressivement le long de l'axe longitudinal X de la ligne de transmission. Ainsi, la longueur dL de la ligne de transmission, autour de l'insert, dans chaque excroissance 13, croit entre les quatre premières excroissances les plus proches des sources 10 d'alimentation d'entrée, puis décroit sur les trois dernières excroissances les plus proches du cornet linéaire 35 de sortie. Par conséquent, le retard réalisé par chaque excroissance étant proportionnel à la longueur dL de la ligne de transmission dans l'excroissance, la fraction des retards réalisée par chaque excroissance varie dans le même sens et croit entre les quatre premières excroissances les plus proches des sources 10 d'alimentation d'entrée, puis décroit sur les trois dernières excroissances les plus proches du cornet linéaire 35 de sortie.
  • La lentille ainsi réalisée, permet grâce à chaque excroissance d'obtenir un retard variant progressivement et continument sur toute la largeur transversale de la lentille et grâce au fractionnement des retards sur plusieurs excroissances successives, permet d'obtenir un gradient de retards selon la direction longitudinale. Selon la direction longitudinale, la lentille se comporte alors comme une lentille à gradient d'indice. La valeur de l'indice dans chaque excroissance, selon la direction longitudinale, est égale à (L+dL) /L, où L est la longueur de la ligne de transmission selon la direction longitudinale X, et dL est la longueur de la ligne de transmission autour de l'insert 21, dans l'excroissance 13 correspondante.
  • En contrôlant le gradient d'indice, ou le gradient de retard, il est ainsi possible de réduire les aberrations, pour les faisceaux dépointés, sur un large secteur angulaire. Cela permet également d'augmenter le nombre de degrés de liberté et de points de focalisation.
  • En contrôlant le gradient de retard transversalement mais aussi longitudinalement, le formateur de faisceaux peut former des faisceaux sans aberrations en utilisant des lignes de transmission ayant une longueur réduite entre les sources d'alimentation d'entrée et l'ouverture rayonnante de sortie.
  • Pour améliorer le secteur de dépointage angulaire du faisceau formé, il est également possible, dans une même ligne de transmission, d'aménager plusieurs excroissances successives, correspondant alternativement à des lentilles convergentes puis à des lentilles divergentes.
  • Sur les schémas des figures 6a et 6b, un seul cornet rayonnant linéaire est connecté en sortie de l'excroissance transversale de la lentille à retard continu. La lentille à retard continu peut également être utilisée pour alimenter un réseau de plusieurs cornets rayonnants linéaires, comme l'antenne représentée sur le schéma de la figure 9. Pour cela, en sortie de l'excroissance 13, la ligne de transmission à plaques parallèles est repliée sur elle-même, et comporte une ouverture linéaire de sortie reliée au réseau de cornets rayonnants 40 par l'intermédiaire de diviseurs de puissance 41. Dans ce cas, le repliement de la ligne de transmission est réalisée selon une ligne droite 42. Le repliement peut être total à 180° ou partiel et former un angle compris entre 0 et 180°.
  • Alternativement, il est également possible de réaliser le repliement de la ligne de transmission avec une pliure de forme curviligne, par exemple de forme parabolique, en insérant, dans la ligne de transmission, un mur réflecteur 43, par exemple métallique, s'étendant selon la direction Z, comme représenté par exemple sur les schémas des figures 10, 11, 12. Dans ce cas, le formateur de faisceaux est constituée de deux couches 44, 45, empilées et fermées à une extrémité par le mur réflecteur 43 qui s'étend transversalement, dans les deux couches du formateur de faisceaux, sur toute la largeur et sur toute la hauteur de la ligne de transmission. Le mur réflecteur peut être de n'importe quelle forme, par exemple plane ou parabolique. Le formateur de faisceaux comporte au moins une lentille à retards progressifs alimentée en entrée par une ou plusieurs sources d'alimentation 10 conformément à l'invention, et comporte une ouverture linéaire 48 de sortie. La lentille à retards progressifs peut être placée en amont, ou en aval du mur réflecteur, ou peut être combinée au mur réflecteur pour former un ensemble intégré. Dans chaque excroissance, l'insert métallique peut être de n'importe quelle forme et peut s'étendre en hauteur selon la direction Z et/ou en épaisseur selon la direction X. L'ouverture linéaire 48 de sortie peut être connectée à un cornet rayonnant linéaire 35 ou à un réseau de plusieurs cornets linéaires 40.
  • La ou les excroissances 13, 13a, 13b, 13c élaborant les retards progressifs et continus des lentilles à retards, peuvent être aménagées indifféremment dans la première ou la deuxième couche, ou dans les deux couches du formateur de faisceaux. Sur le schéma en perspective de la figure 10, une seule excroissance transversale 13 est aménagée dans la première couche 44 du formateur de faisceaux, en amont du mur réflecteur 43. Sur le schéma en coupe longitudinale de la figure 11, deux excroissances opposées 131, 132 sont aménagées autour d'un insert métallique 21 s'étendant dans les deux couches 44, 45 du formateur de faisceaux et le mur réflecteur 43 est intégré aux deux excroissances opposées 131, 132. Sur la figure 11, l'insert métallique s'étend selon la direction Z, parallèlement au mur réflecteur 43, mais bien entendu, alternativement, il pourrait s'étendre en épaisseur selon la direction X. Par ailleurs, sur le schéma de la figure 11, les formes de l'insert métallique dans les deux couches sont symétriques, mais ce n'est pas obligatoire. Les formes de l'insert métallique dans chaque excroissance et dans chaque couche du formateur de faisceaux peuvent être différentes les unes des autres.
  • Sur le schéma en coupe longitudinale de la figure 12, le formateur de faisceaux comporte deux excroissances transversales 131, 132 combinées au mur réflecteur 43 et aménagées autour d'un insert métallique 21 s'étendant dans les deux couches du formateur de faisceaux et comporte en outre au moins une troisième excroissance transversale 133 aménagée en aval du réflecteur 43, dans la deuxième couche du formateur de faisceaux, entre le mur réflecteur 43 et l'ouverture linéaire 48 de sortie. Les ondes radiofréquences émises dans la première couche en entrée de la ligne de transmission sont retardées dans les différentes excroissances des lentilles à retards continus, et réfléchies, par le mur réflecteur, vers la deuxième couche avant d'être rayonnées par le cornet linéaire de sortie ou par le réseau de cornets linéaires de sortie. La combinaison d'un formateur de faisceaux à lentille à retards continus avec un mur réflecteur présente l'avantage d'augmenter le nombre de degrés de liberté, le nombre de points de focalisation et d'améliorer les performances de la lentille. Le nombre de murs réflecteurs peut bien entendu être supérieur à un, les excroissances peuvent être situées en amont ou en aval du, ou des murs réflecteurs, et les murs réflecteurs peuvent être intégrés ou non à des excroissances.
  • Sur le schéma de la figure 13, le formateur de faisceaux comporte plusieurs excroissances 131, 132, 133, 134, 135 et deux murs réflecteurs successifs 43, 50. Le premier mur réflecteur 43 est intégré dans les deux excroissances opposées 131, 132, la troisième excroissance 133 est aménagée en aval du premier mur réflecteur 43, entre le premier mur réflecteur 43 et le deuxième mur réflecteur 50, la quatrième excroissance 134 est aménagée en amont du premier mur réflecteur 43, et enfin la cinquième excroissance 135 est aménagée entre le deuxième mur réflecteur 50 et une ouverture linéaire de sortie 48. Le formateur de faisceaux comporte alors trois couches empilées 44, 45, 46. Le premier mur réflecteur 43 s'étend dans les première et deuxième couches alors que le deuxième mur réflecteur 50 s'étend dans les deuxième et troisième couches. La ligne de transmission est alors repliée deux fois sur elle-même, par l'intermédiaire du premier mur réflecteur 43, puis par l'intermédiaire du deuxième mur réflecteur 50.
  • Pour réduire l'encombrement vertical, et éviter l'excitation de modes supérieurs au niveau des excroissances, et notamment lorsque celles-ci sont repliées, la séparation entre les plaques parallèles doit être réduite au niveau des excroissances, pour être typiquement inférieure au quart de la longueur d'onde correspondant à la fréquence la plus élevée, parmi toutes les ondes radiofréquence guidées, de façon que seul le mode TEM puisse se propager. Pour réduire les pertes de la ligne de transmission, la distance de séparation doit au contraire être maximale. Il est ainsi possible de faire varier progressivement la distance de séparation depuis les sources d'alimentations d'entrées 10 jusqu'aux excroissances 13.
  • Le formateur de faisceaux précisément décrit permet de former une seule ligne de faisceaux dans un seul plan XY puisque toutes les sources d'alimentation sont situées dans le plan XY. Bien entendu, il est possible d'empiler plusieurs formateurs de faisceaux identiques, conformes à l'invention, pour former plusieurs lignes de faisceaux différentes.
  • De même, il est possible de former des faisceaux dans deux plans orthogonaux en utilisant deux formateurs de faisceaux identiques, conformes à l'invention, et connectés orthogonalement l'un à l'autre par leurs ports d'entrée/sortie respectifs.
  • Il est également possible de former des faisceaux selon deux plans orthogonaux, en combinant le formateur de faisceaux planaire conforme à l'invention, avec des formateurs de faisceaux planaires différents, aptes à former des faisceaux dans un plan orthogonal au plan XY, tel que par exemple une matrice de Butler.
  • Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. En particulier, la forme de l'excroissance et la forme de l'insert peuvent être différentes des formes explicitement décrites. Pour faire varier le retard entre les deux bords latéraux de la lentille, correspondant à une variation de la longueur de la ligne de transmission, les dimensions de l'insert peuvent varier en hauteur selon la direction Z, ou en épaisseur selon la direction X, ou varier à la fois en hauteur et en épaisseur. Par ailleurs, pour diminuer l'épaisseur du formateur de faisceaux selon la direction Z, l'insert peut comporter différents types de repliement et/ou un nombre de repliements supérieurs à deux, ou une combinaison de plusieurs types de repliements. De même, le nombre d'excroissance peut être supérieur à un, la forme du réflecteur peut être quelconque et le nombre de réflecteurs utilisé peut être supérieur à un. Les excroissances peuvent être placées en amont ou en aval d'un mur réflecteur. Le formateur de faisceaux peut également comporter un mur réflecteur intégré à deux excroissances. Lorsque le formateur de faisceaux comporte deux murs réflecteurs, une ou plusieurs excroissances peuvent être aménagées entre les deux murs réflecteurs.

Claims (20)

  1. Formateur de faisceaux quasi-optique à lentille comprenant une ligne de transmission radiofréquence (20) alimentée à une première extrémité, par au moins une source d'alimentation d'entrée (10), la ligne de transmission (20) comportant deux plaques métalliques empilées, espacées l'une de l'autre et s'étendant, selon deux directions longitudinale X et transversale Y, caractérisé en ce que la ligne de transmission (20) comporte en outre au moins une excroissance (13) s'étendant selon les directions X, Y, et selon une direction Z orthogonale au plan XY, l'excroissance (13) comportant un insert métallique (21) s'étendant selon la direction X, selon la direction transversale Y entre deux bords latéraux (15, 16) de la ligne de transmission, et s'étendant en hauteur selon la direction Z, l'insert métallique (21) comportant une base (21b) solidaire de l'une des deux plaques métalliques et au moins une extrémité libre (21a) et ayant, en section longitudinale, un contour de longueur variable entre les deux bords latéraux de la ligne de transmission (20), et en ce que dans l'excroissance (13), la ligne de transmission (20) est accolée à l'insert métallique (21) et forme, dans la direction Z, une circonvolution (22) autour de l'insert métallique (21).
  2. Formateur de faisceaux quasi-optique à lentille selon la revendication 1, caractérisé en ce que l'extrémité libre (21a) de l'insert métallique est repliée parallèlement au plan XY.
  3. Formateur de faisceaux quasi-optique à lentille selon la revendication 1, caractérisé en ce que l'extrémité libre (21a) de l'insert métallique est doublement repliée en forme de T, parallèlement au plan XY.
  4. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications 1 ou 2, caractérisé en ce que l'excroissance (13) et l'insert métallique (21) ont des profils de formes curvilignes selon les directions X et Y.
  5. Formateur de faisceaux quasi-optique à lentille selon la revendication 4, caractérisé en ce que l'excroissance (13) a un profil d'entrée (18) et un profil de sortie (19) de formes différentes.
  6. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications précédentes, caractérisé en ce que l'excroissance (13) comporte des stubs d'adaptation (25).
  7. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications précédentes, caractérisé en ce que dans l'excroissance (13), les plaques métalliques de la ligne de transmission (20) ont une face interne (23) comportant des transitions en marches d'escalier (30).
  8. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications 1 à 7, caractérisé en ce que la longueur du contour, en section longitudinale, de l'insert métallique (21) est progressivement décroissante du centre (14) vers les deux bords latéraux (15, 16) de la ligne de transmission.
  9. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications 1 à 7, caractérisé en ce que la longueur du contour, en section longitudinale, de l'insert métallique (21) est progressivement croissante du centre (14) vers les deux bords latéraux (15, 16) de la ligne de transmission.
  10. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications 8 ou 9, caractérisé en ce que l'insert métallique (21) comporte un profil symétrique par rapport à un axe longitudinal médian (3) de la ligne de transmission.
  11. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications précédentes, caractérisé en ce que la ligne de transmission comporte plusieurs sources d'alimentation d'entrée (10) distribuées périodiquement, autour d'un bord d'entrée (31), selon une courbe focale.
  12. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications précédentes, caractérisé en ce que la ligne de transmission comporte plusieurs excroissances (13a, 13b, 13c,.., 13i, 13j) aptes à réaliser des retards progressifs, les excroissances étant réparties successivement le long de l'axe longitudinal X de la ligne de transmission, à différentes distances des sources d'alimentation d'entrée (10), chaque excroissance comportant un insert métallique (21) dont la longueur du contour, en section longitudinale, varie entre les deux bords latéraux de la ligne de transmission (20).
  13. Formateur de faisceaux quasi-optique à lentille selon la revendication 12, caractérisé en ce que la longueur du contour des inserts métalliques (21), dans les différentes excroissances successives, varie progressivement d'une excroissance à une autre excroissance adjacente, selon la direction longitudinale X de la ligne de transmission.
  14. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications précédentes, caractérisé en ce que la ligne de transmission (20) est repliée sur elle-même selon la direction X, selon une pliure de forme droite.
  15. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications précédentes, caractérisé en ce qu'il comporte en outre au moins un premier mur réflecteur (43) s'étendant transversalement dans la ligne de transmission, et orthogonalement aux plaques métalliques selon la direction Z, le premier mur réflecteur (43) étant apte à replier la ligne de transmission, sur elle-même, selon la direction X, selon une pliure de forme curviligne.
  16. Formateur de faisceaux quasi-optique à lentille selon la revendication 15, caractérisé en ce qu'il comporte au moins deux couches (44, 45), respectivement première et deuxième couches, empilées et fermées à une extrémité par le premier mur réflecteur (43) et deux excroissances opposées (131, 132) aménagées autour d'un insert métallique (21) s'étendant dans les deux couches empilées (44, 45), le premier mur réflecteur (43) étant intégré aux deux excroissances opposées (131, 132).
  17. Formateur de faisceaux quasi-optique à lentille selon la revendication 16, caractérisé en ce qu'il comporte en outre une troisième couche (46) empilée sur la deuxième couche (45) et un deuxième mur réflecteur (50) s'étendant dans les deuxième et troisième couches (45, 46).
  18. Formateur de faisceaux quasi-optique à lentille selon l'une des revendications 16 ou 17, caractérisé en ce qu'il comporte en outre au moins une troisième excroissance (133) aménagée dans la deuxième couche en aval du premier mur réflecteur (43).
  19. Antenne plane, caractérisée en ce qu'elle comporte au moins un formateur de faisceaux selon l'une des revendications précédentes et en ce qu'elle comporte en outre un cornet rayonnant linéaire (35) connecté en sortie du formateur de faisceaux.
  20. Antenne plane, caractérisée en ce qu'elle comporte au moins un formateur de faisceaux selon l'une des revendications 1 à 18 et en ce que la ligne de transmission (20) est repliée, sur elle-même, selon la direction X, et comporte en outre une ouverture linéaire (48) de sortie reliée à un réseau de plusieurs cornets rayonnants (40).
EP16176732.2A 2015-07-03 2016-06-28 Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux Active EP3113286B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1501415A FR3038457B1 (fr) 2015-07-03 2015-07-03 Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux

Publications (2)

Publication Number Publication Date
EP3113286A1 EP3113286A1 (fr) 2017-01-04
EP3113286B1 true EP3113286B1 (fr) 2018-03-14

Family

ID=54545188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16176732.2A Active EP3113286B1 (fr) 2015-07-03 2016-06-28 Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux

Country Status (6)

Country Link
US (1) US10135150B2 (fr)
EP (1) EP3113286B1 (fr)
CA (1) CA2934754C (fr)
DK (1) DK3113286T3 (fr)
ES (1) ES2669523T3 (fr)
FR (1) FR3038457B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069713B1 (fr) 2017-07-27 2019-08-02 Thales Antenne integrant des lentilles a retard a l'interieur d'un repartiteur a base de diviseurs a guide d'ondes a plaques paralleles
FR3076088B1 (fr) * 2017-12-26 2020-01-10 Thales Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
CN108767475B (zh) * 2018-04-28 2021-09-28 安徽四创电子股份有限公司 一种基于台阶变换的天线方向图赋形结构
CN109638408B (zh) * 2018-12-05 2021-06-04 上海无线电设备研究所 一种应用于准动态缩比测试的v波段天线
FR3095303B1 (fr) 2019-04-18 2021-04-09 Thales Sa Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL90090C (fr) * 1950-06-23
US3170158A (en) 1963-05-08 1965-02-16 Rotman Walter Multiple beam radar antenna system
FR2738954B1 (fr) * 1995-09-19 1997-11-07 Dassault Electronique Antenne a balayage electronique perfectionnee
US6160520A (en) * 1998-01-08 2000-12-12 E★Star, Inc. Distributed bifocal abbe-sine for wide-angle multi-beam and scanning antenna system
US5936588A (en) 1998-06-05 1999-08-10 Rao; Sudhakar K. Reconfigurable multiple beam satellite phased array antenna
FR2944153B1 (fr) 2009-04-02 2013-04-19 Univ Rennes Antenne multicouche a plans paralleles, de type pillbox, et systeme d'antenne correspondant
FR2986377B1 (fr) 2012-01-27 2014-03-28 Thales Sa Formateur multi-faisceaux a deux dimensions, antenne comportant un tel formateur multi-faisceaux et systeme de telecommunication par satellite comportant une telle antenne
EP3143665B1 (fr) * 2014-05-14 2021-04-07 Gapwaves AB Guides d'ondes et lignes de transmission dans des espaces entre des surfaces conductrices parallèles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2934754C (fr) 2023-09-26
CA2934754A1 (fr) 2017-01-03
FR3038457B1 (fr) 2017-07-28
FR3038457A1 (fr) 2017-01-06
EP3113286A1 (fr) 2017-01-04
DK3113286T3 (en) 2018-06-06
US20170005407A1 (en) 2017-01-05
US10135150B2 (en) 2018-11-20
ES2669523T3 (es) 2018-05-28

Similar Documents

Publication Publication Date Title
EP3113286B1 (fr) Formateur de faisceaux quasi-optique a lentille et antenne plane comportant un tel formateur de faisceaux
EP3073569B1 (fr) Matrice de butler compacte, formateur de faisceaux bidimensionnel planaire et antenne plane comportant une telle matrice de butler
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP2415120B1 (fr) Antenne multicouche a plans paralleles, de type pillbox, et systeme d'antenne correspondant
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
CA2862729A1 (fr) Formateur multi-faisceaux a deux dimensions, antenne comportant un tel formateur multi-faisceaux et systeme de telecommunication par satellite comportant une telle antenne
EP3726642B1 (fr) Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
EP3086409A1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
EP3435480B1 (fr) Antenne intégrant des lentilles à retard à l'intérieur d'un répartiteur à base de diviseurs à guide d'ondes à plaques parallèles
EP3840124B1 (fr) Antenne à onde de fuite en technologie afsiw
FR3105884A1 (fr) Cornet pour antenne satellite bi-bande Ka à polarisation circulaire
EP3664214B1 (fr) Eléments rayonnants à accès multiples
EP2658032A1 (fr) Cornet d'antenne à grille corruguée
FR3044832A1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
EP0048190B1 (fr) Antenne réseau non dispersive, et son application à la réalisation d'une antenne à balayage électronique
FR2613140A1 (fr) Antenne cornet parallelepipedique a repartition du champ d'ouverture linearisee en deux polarisations
EP0407258B1 (fr) Distributeur d'énergie hyperfréquence pouvant rayonner directement
EP3220181B1 (fr) Systeme optique hybride a encombrement reduit pour antenne reseau imageur
WO2019086787A1 (fr) Guide d'onde bi-mode à plans parallèles structurés
EP0035929A1 (fr) Source hyperfréquence multimode et antenne comportant une telle source
EP4262024A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques rf selon leur bande de fréquence et procédé de fabrication
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2729011A1 (fr) Antenne reseau a double polarisation et a faibles pertes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170424

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 3/26 20060101ALI20170913BHEP

Ipc: H01Q 25/00 20060101AFI20170913BHEP

Ipc: H01Q 15/02 20060101ALI20170913BHEP

Ipc: H01Q 21/00 20060101ALI20170913BHEP

INTG Intention to grant announced

Effective date: 20171002

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 979715

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016001975

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2669523

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180531

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 979715

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016001975

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180628

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 8

Ref country code: FR

Payment date: 20230523

Year of fee payment: 8

Ref country code: DK

Payment date: 20230613

Year of fee payment: 8

Ref country code: DE

Payment date: 20230516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230526

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230518

Year of fee payment: 8

Ref country code: ES

Payment date: 20230711

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231019 AND 20231025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016001975

Country of ref document: DE

Owner name: UNIVERSITE DE RENNES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, 75016 PARIS, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016001975

Country of ref document: DE

Owner name: THALES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, 75016 PARIS, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016001975

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, 75016 PARIS, FR; THALES, COURBEVOIE, FR; UNIVERSITE DE RENNES 1, RENNES, FR