EP3109339B1 - Method for treating a workpiece made of tantalum or a tantalum alloy - Google Patents

Method for treating a workpiece made of tantalum or a tantalum alloy Download PDF

Info

Publication number
EP3109339B1
EP3109339B1 EP16175631.7A EP16175631A EP3109339B1 EP 3109339 B1 EP3109339 B1 EP 3109339B1 EP 16175631 A EP16175631 A EP 16175631A EP 3109339 B1 EP3109339 B1 EP 3109339B1
Authority
EP
European Patent Office
Prior art keywords
carbon
piece
tantalum
furnace
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16175631.7A
Other languages
German (de)
French (fr)
Other versions
EP3109339A1 (en
Inventor
Dominique COTTON
Sébastien FAURE
Philippe Jacquet
Vincent VIGNAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3109339A1 publication Critical patent/EP3109339A1/en
Application granted granted Critical
Publication of EP3109339B1 publication Critical patent/EP3109339B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/066Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0081Cooling of charges therein the cooling medium being a fluid (other than a gas in direct or indirect contact with the charge)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0031Regulation through control of the flow of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0056Regulation involving cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0075Regulation of the charge quantity

Definitions

  • the present invention relates to the treatment by cementation of a metal piece made of tantalum or tantalum alloy, in order to make it more mechanically and chemically resistant.
  • the process according to the invention makes it possible to form on the surface of a tantalum or tantalum alloy part one or more layers of tantalum carbide, by controlling their structures and their thicknesses.
  • Tantalum is a material that is extremely resistant to corrosion and has a very high melting point (melting point ⁇ 3000 ° C).
  • the tantalum or tantalum alloy parts are therefore used in many fields and in particular for the manufacture of crucibles for use in pyrochemistry.
  • thermochemical treatment which consists in increasing the surface carbon content of the part.
  • Subsequent treatment (chemical, mechanical or thermal) can then be implemented to obtain a particular surface microstructure.
  • cementation the part to be cemented is put directly in contact with solid carbon. Once sublimed, the carbon becomes gaseous solid will be adsorbed on the surface of the room, then spread in the room to react with tantalum.
  • This case cementation method requires a sufficiently high carbon vapor pressure for the tantalum to be cemented properly, which requires very high carburization temperatures (> 2000 ° C) and a long heating time (for example 10h at 1700 ° C in the document [1] ).
  • this method requires pressing carbon powder on the surface of the part to be cemented and is therefore not applicable to parts having a complex geometry.
  • the carbon contribution on the surface is heterogeneous.
  • Controlled atmosphere carburizing consists in placing the part to be cemented in a controlled atmosphere furnace, heating the furnace to a carburising temperature (> 1200 ° C for tantalum), then injecting under a pressure of approximately 1 bar a mixture of inert gas (argon) and fuel gas (in general, a hydrocarbon such as methane, acetylene, propane, etc.). In some applications, an air / methanol or nitrogen / methanol mixture may also be employed. The fuel molecules then come to crack on the surface of the part to be cementized and release their carbon, which diffuses then reacts with surface tantalum.
  • This method of carburizing however, has the disadvantage of generating oxides when an oxygenated compound is injected.
  • a hydrocarbon it is common that soot form inside the enclosure of the furnace, polluting it and disrupting the cementation of the room.
  • Cementation under reduced pressure involves placing the part to be cemented in a thermochemical treatment furnace and then evacuating the furnace chamber. The chamber is then heated until the carburising temperature is reached, and then a gaseous hydrocarbon (methane, acetylene, propane, etc.) is injected under a low pressure (that is to say a pressure of less than 100 mbar). from a few millibars to a few tens millibars).
  • a gaseous hydrocarbon methane, acetylene, propane, etc.
  • plasma-assisted cementation is very close to carburizing under reduced pressure.
  • the main interest of this technique lies in the creation of a plasma around the room to be cementer. This plasma activates the surface of the material and thus facilitates the diffusion of carbon in the room.
  • This method is useful for the cementation of very complex geometry parts.
  • it remains undeveloped compared to carburizing under reduced pressure because it requires the use of very specific equipment.
  • One of these main drawbacks is that it does not make it possible to treat parts having singularities such as holes of small diameters, these singularities being able to generate a hollow cathode phenomenon (local melting inside the hole).
  • the bearing face of the parts on the basket of the treatment furnace is never treated, since it is never in direct contact with the plasma.
  • chemical surface treatment can be carried out by acid etching.
  • a surface chemical treatment is described in document [1] .
  • the disadvantage of surface chemical treatments is that they modify the surface condition of the parts and are difficult to implement because of the properties of high hardness and high chemical inertness of carbides vis-à-vis acids. It is therefore necessary to use very powerful acid mixtures (the most common being a mixture of nitric, hydrofluoric and lactic acids), which are generally toxic and very dangerous to use.
  • the etching will attack all of the carbide layers (TaC layer and underlying Ta 2 C layer) and not only the TaC surface layer, leaving only the layer having a saturated tantalum structure. carbon with Ta 2 C at the grain boundaries.
  • the invention aims to at least partially solve the problems encountered in the solutions of the prior art.
  • the diffusion in step e) causes the decomposition of all or some of the carbides present in the layer C1.
  • the tantalum carbide TaC of the layer C1 will be decomposed mainly tantalum carbide Ta 2 C, then tantalum tantalum carbon having Ta 2 C grain boundaries.
  • the surface of the part (the so-called “surface layer” below) is free of tantalum carbide of the TaC type, but, as the decomposition begins near the surface, the thickness of this superficial layer can correspond to the thickness of the layer C1 of the carbonaceous multilayer or to an upper part of the layer C1.
  • the layer Ta sat. C + Ta 2 C can also be a Ta sat layer. C, if the degree of carbon saturation of the tantalum layer is lower.
  • the process described does not make it possible to obtain complex multilayer structures of the "low carbon / high carbon layer / low carbon layer" type on a tantalum or tantalum alloy core, as for example those illustrated in FIG. in the figures 5b and 6b hereinafter (that is Ta 2 C / TaC / Ta 2 C / Ta sat C + Ta 2 C / core and Ta sat C + Ta 2 C / Ta 2 C / Ta sat C + Ta 2 C / heart).
  • a tantalum alloy corresponds to an alloy comprising at least 90% by weight of tantalum. Furthermore, it it is a metal alloy, that is to say a mixture of tantalum with another metal. It may for example be a TaW alloy.
  • step b) comprises injecting, preferably continuously, the carbonaceous gas source into the furnace at a flow rate of between 1 and 100 Lh -1 and, preferably, at a lower injection pressure. or equal to 10 mbar.
  • the duration of the injection is a function of the amount of carbon that it is desired to introduce into the peripheral part of the tantalum or tantalum alloy part. This time depends on the injection parameters of the carbon source, the surface of the part, as well as the thickness and type of carbon multilayer that is desired.
  • the injection of the gaseous carbon source in step b) is carried out at an injection pressure of 5 mbar for a flow rate of 20 Lh -1 and in a furnace heated to a temperature of 1600 ° C.
  • the gaseous carbon source used in step b) is ethylene.
  • ethylene has the advantage of allowing a low carbon input and limiting the formation of any soot occurring during the use of higher carbon gases, such as acetylene for example.
  • Step c) is intended to stop the formation of the carbonaceous multilayer; in other words, we seek by this step to stop the carbon contribution in the room.
  • step c) comprises an injection of nitrogen gas into the oven at a pressure of 1 bar, which makes it possible to obtain rapid cooling of the part.
  • Step e) comprises heating the room to a temperature sufficient to allow the diffusion of the carbon present in the layer C1 of the carbonaceous multilayer in the direction of the layers C2 and C3.
  • step e) comprises heating the oven to a temperature of 1600 ° C and a pressure of 10 -2 mbar.
  • step f) the cooling is carried out under vacuum in order to protect the tantalum or tantalum alloy part from any traces of residual pollution of the furnace which could be drawn towards the part if a refurbishment was carried out. high temperature oven pressure.
  • the carbon input in the peripheral part of the part is controlled and mastered, since it comes solely from the gaseous carbon source used during step b) of the process which is the subject of the invention the carbon supply is then prevented by steps c) and d) of the process.
  • the carbon supply is then prevented by steps c) and d) of the process.
  • steps a) and b) of the process makes it possible to work at a lower temperature than with other known cementation methods, and the control of the carbon input. allows optimize processing times, which ultimately saves time, energy and consumables.
  • Hard-to-use chemicals are not used to remove TaC-type tantalum carbide from the surface layer of the part and there is no oxygen and nitrogen pollution in the treated part .
  • the method which is the subject of the invention can be used to process parts having complex geometries and / or having singularities (holes of small diameters, etc.).
  • the method which is the subject of the invention makes it possible to control the cementation of a tantalum or tantalum alloy part, while choosing the nature and the crystallographic structure of the surface layer of the part. It makes it possible to obtain, at the surface of the part, a surface layer of tantalum carbide of Ta 2 C type with an underlying layer of tantalum carbide of the TaC type or of carbon-saturated tantalum with Ta 2 C at the grain boundaries, a mixed surface layer of tantalum saturated with carbon with Ta 2 C at grain boundaries, or even a superficial layer of carbon-saturated tantalum with an underlying Ta 2 C-type tantalum carbide layer, while controlling the thickness of this superficial layer.
  • the duration of the heating in step b) of the method that is the subject of the invention depends on the amount of carbon that it is desired to bring to the part.
  • the duration of the heating in step e) is, in turn, depending on the nature of the layer that is desired to obtain on the surface, as well as the thickness that it is desired that it has.
  • a tantalum piece for example a crucible having a diameter of 100 mm, is used for a thickness of 1.5 mm and a height of 150 mm.
  • the part to be treated is installed in the enclosure of an oven, for example a furnace of mark BMI bearing the reference BMICRO.
  • the oven chamber is evacuated until a pressure of 10 -2 ⁇ 0.01 mbar is reached.
  • the enclosure After stabilization of the pressure, the enclosure is heated with a ramp of 30 ° C / min, until reaching 1600 ° C ⁇ 1%.
  • the work is then cemented by injecting into the chamber a fuel gas under a low pressure (pressure less than about ten millibars) for a predetermined period.
  • ethylene is injected (C 2 H 6) in the enclosure under a pressure of 5 ⁇ 1 mbar and at a controlled flow rate of 20 L / h for 1 hour.
  • the part is then cooled, for example by means of nitrogen injected into the chamber of the oven at a pressure of 1 bar for a period of 90 minutes.
  • a carbon-based multilayer 1 comprising a surface layer C1 of tantalum carbide of the TaC type, an underlying layer C2 of tantalum carbide of Ta 2 C type and a layer under C3 in carbon-saturated tantalum with precipitates of Ta 2 C at the grain boundaries ( Figures 1a and 1b ).
  • tantalum is a very hot reactive element vis-à-vis atoms such as carbon, oxygen and nitrogen and these elements can for example be in molecules adsorbed on the walls of the oven enclosure.
  • the piece is placed in a cavity (for example formed by depositing a bell on a support, the bell and the support being both in tantalum) which is placed in the oven enclosure.
  • a cavity for example formed by depositing a bell on a support, the bell and the support being both in tantalum
  • polluting elements O, N 2 , etc.
  • any carbon atoms present on the walls of the furnace enclosure before they come into contact with the room.
  • This also makes it possible to slow gas exchange between the furnace chamber and the workpiece, which is favorable for the carbon diffusion process.
  • a double pumping of the furnace enclosure may optionally be carried out by performing an intermediate purge with nitrogen (pressure of 10 -2 +/- 0.01 mbar) in order to evacuate any pollutant.
  • step e will allow the carbon present in the layer C1 of the carbonaceous multilayer 1 to diffuse to the layers C2 and C3 of the multilayer.
  • the assembly formed by the part and the protective device (cavity) is heated at 30 ° C / minute until the desired treatment temperature.
  • the tantalum piece had on the surface a carbonaceous multilayer 1 having a surface layer C1 in TaC, an underlying layer C2 in Ta 2 C and an underlying layer C3 in carbon saturated tantalum with precipitates of Ta 2 C at the grain boundaries.
  • the carbon diffuses from the surface layer C1 to TaC (the layer richest in carbon) towards the layer C2 in Ta 2 C, and from the layer C2 in Ta 2 C to the layer C3 in your sat. C + Ta 2 C. This cascade carbon diffusion causes the reduction in thickness of the layer of TaC the benefit of the Ta layer 2 C.
  • step b) Different structures that can be obtained by varying the duration of the heating in step b) and / or step e) are illustrated in the following figures.
  • a carbonaceous multilayer 1 having a layer C1 in TaC, a layer C2 in Ta 2 C and a layer is obtained.
  • C3 in Ta sat. C + Ta 2 C ( Figures 1a and 1b ).
  • a surface layer 2 is obtained in Ta 2 C on an underlying layer 3 in Ta sat. C + Ta 2 C ( Figures 3a and 3b ).
  • the part provided with the carbonaceous multilayer is subjected to vacuum heating for 6 h at 1600 ° C. in step e), a carbon-saturated tantalum layer 2 with Ta 2 C precipitates is obtained. at the grain boundaries ( Figures 4a, 4b and 4c , the precipitates being visible in black on the figure 4c ).
  • the carbon diffusion is such that the layers C1, C2 and C3 of the carbonaceous multilayer are transformed into the surface layer 2.
  • step b) if the piece is subjected to carburization by heating under vacuum at 1600 ° C. for 2 hours in step b) and heating under vacuum at 1600 ° C. for 30 minutes in step e) a part having a surface layer 2 in Ta 2 C, a first sub-layer 3 in TaC, a second sub-layer 4 in Ta 2 C and a third sub-layer 5 in Ta sat are obtained.
  • C + Ta 2 C Figures 5a and 5b ).

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne le traitement par cémentation d'une pièce métallique en tantale ou en un alliage de tantale, afin de la rendre plus résistante mécaniquement et chimiquement.The present invention relates to the treatment by cementation of a metal piece made of tantalum or tantalum alloy, in order to make it more mechanically and chemically resistant.

En particulier, le procédé selon l'invention permet de former en surface d'une pièce en tantale ou en un alliage de tantale une ou plusieurs couches en carbure de tantale, en maitrisant leurs structures et leurs épaisseurs.In particular, the process according to the invention makes it possible to form on the surface of a tantalum or tantalum alloy part one or more layers of tantalum carbide, by controlling their structures and their thicknesses.

Les domaines d'application d'un tel procédé sont nombreux et sont tous les domaines nécessitant la réalisation de pièces résistantes en tantale ou en un alliage de tantale (réalisation de creusets pour la métallurgie, d'électrodes, de filaments de lampe, de résistances, d'outillages, etc.).The fields of application of such a method are numerous and are all areas requiring the production of resistant parts made of tantalum or a tantalum alloy (production of crucibles for metallurgy, electrodes, lamp filaments, resistors , tools, etc.).

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

Le tantale est un matériau extrêmement résistant à la corrosion et possède un point de fusion très élevé (T fusion ≥ 3000°C). Les pièces en tantale ou en un alliage de tantale sont donc utilisées dans de nombreux domaines et notamment pour la fabrication de creusets utilisables en pyrochimie.Tantalum is a material that is extremely resistant to corrosion and has a very high melting point (melting point ≥ 3000 ° C). The tantalum or tantalum alloy parts are therefore used in many fields and in particular for the manufacture of crucibles for use in pyrochemistry.

Afin de rendre ces pièces encore plus résistantes à la corrosion et augmenter leur dureté, il est possible de leur faire subir une cémentation, c'est-à-dire un traitement thermochimique qui consiste à augmenter la teneur superficielle en carbone de la pièce. Un traitement ultérieur (chimique, mécanique ou thermique) peut ensuite être mis en oeuvre afin d'obtenir une microstructure de surface particulière.In order to make these parts even more resistant to corrosion and increase their hardness, it is possible to make them undergo a cementation, that is to say a thermochemical treatment which consists in increasing the surface carbon content of the part. Subsequent treatment (chemical, mechanical or thermal) can then be implemented to obtain a particular surface microstructure.

On distingue trois types de cémentation suivant l'état du milieu cémentant, à savoir la cémentation solide, la cémentation liquide et la cémentation gazeuse. Parmi ces trois types de cémentation, quatre grandes méthodes de cémentation (principalement développées pour des aciers) sont couramment décrites dans la littérature, à savoir la cémentation en bac, la cémentation sous atmosphère contrôlée, la cémentation sous pression réduite et la cémentation assistée par plasma.There are three types of carburizing according to the state of the cementing medium, namely solid carburizing, liquid carburizing and gaseous carburizing. Among these three types of cementation, four major cementation methods (mainly developed for steels) are commonly described in the literature, namely case carburizing, carburizing under controlled atmosphere, carburizing under reduced pressure and plasma-aided cementation.

Dans la cémentation en bac, la pièce à cémenter est mise directement en contact avec du carbone solide. Une fois sublimé, le carbone solide devenu gazeux va être adsorbé à la surface de la pièce, puis diffuser dans la pièce pour réagir avec le tantale. Cette méthode de cémentation en bac nécessite d'avoir une pression de vapeur du carbone suffisamment élevée pour que le tantale soit cémenté correctement, ce qui nécessite des températures de cémentation très élevées (> 2000°C) et un temps de chauffe long (par exemple 10h à 1700°C dans le document [1]). De plus, cette méthode nécessite de presser de la poudre de carbone sur la surface de la pièce à cémenter et n'est donc pas applicable à des pièces ayant une géométrie complexe. En outre, en raison de l'interface solide/solide, l'apport en carbone sur la surface est hétérogène.In case cementation, the part to be cemented is put directly in contact with solid carbon. Once sublimed, the carbon becomes gaseous solid will be adsorbed on the surface of the room, then spread in the room to react with tantalum. This case cementation method requires a sufficiently high carbon vapor pressure for the tantalum to be cemented properly, which requires very high carburization temperatures (> 2000 ° C) and a long heating time (for example 10h at 1700 ° C in the document [1] ). In addition, this method requires pressing carbon powder on the surface of the part to be cemented and is therefore not applicable to parts having a complex geometry. In addition, due to the solid / solid interface, the carbon contribution on the surface is heterogeneous.

La cémentation sous atmosphère contrôlée consiste à placer la pièce à cémenter dans un four à atmosphère contrôlée, à chauffer le four jusqu'à atteindre une température de cémentation (> 1200°C pour le tantale), puis à injecter sous une pression d'environ 1 bar un mélange de gaz inerte (argon) et de gaz carburant (en général, un hydrocarbure du type méthane, acétylène, propane, etc.). Dans certaines applications, un mélange air/méthanol ou azote/méthanol peut aussi être employé. Les molécules carburantes viennent alors se craquer sur la surface de la pièce à cémenter et libèrent leur carbone, qui diffuse puis réagit avec le tantale de surface. Cette méthode de cémentation présente cependant l'inconvénient de générer des oxydes lorsqu'un composé oxygéné est injecté. En outre, lorsqu'un hydrocarbure est utilisé, il est courant que des suies se forment à l'intérieur de l'enceinte du four, polluant celle-ci et perturbant la cémentation de la pièce.Controlled atmosphere carburizing consists in placing the part to be cemented in a controlled atmosphere furnace, heating the furnace to a carburising temperature (> 1200 ° C for tantalum), then injecting under a pressure of approximately 1 bar a mixture of inert gas (argon) and fuel gas (in general, a hydrocarbon such as methane, acetylene, propane, etc.). In some applications, an air / methanol or nitrogen / methanol mixture may also be employed. The fuel molecules then come to crack on the surface of the part to be cementized and release their carbon, which diffuses then reacts with surface tantalum. This method of carburizing, however, has the disadvantage of generating oxides when an oxygenated compound is injected. In addition, when a hydrocarbon is used, it is common that soot form inside the enclosure of the furnace, polluting it and disrupting the cementation of the room.

La cémentation sous pression réduite (également connue sous le terme de cémentation basse pression) consiste à placer la pièce à cémenter dans un four de traitement thermochimique, puis à faire le vide dans l'enceinte du four. L'enceinte est ensuite chauffée jusqu'à atteindre la température de cémentation, puis un hydrocarbure gazeux (méthane, acétylène, propane, etc.) est injecté sous une faible pression (c'est-à-dire une pression inférieure à 100 mbar allant de quelques millibars à quelques dizaines de millibars). Cette méthode est reconnue pour cémenter efficacement des pièces à géométrie très complexes et permet de réduire la pollution des pièces. C'est cette méthode de cémentation que nous allons utiliser dans le cadre de la présente invention.Cementation under reduced pressure (also known as low-pressure carburizing) involves placing the part to be cemented in a thermochemical treatment furnace and then evacuating the furnace chamber. The chamber is then heated until the carburising temperature is reached, and then a gaseous hydrocarbon (methane, acetylene, propane, etc.) is injected under a low pressure (that is to say a pressure of less than 100 mbar). from a few millibars to a few tens millibars). This method is known for effectively cementing very complex geometry parts and reduces the pollution of parts. It is this cementation method that we will use in the context of the present invention.

Enfin, la cémentation assistée par plasma est très proche de la cémentation sous pression réduite. L'intérêt principal de cette technique réside dans la création d'un plasma autour de la pièce à cémenter. Ce plasma active la surface du matériau et facilite ainsi la diffusion du carbone dans la pièce. Cette méthode est pratique pour la cémentation de pièces à géométrie très complexes. Elle reste cependant peu développée par rapport à la cémentation sous pression réduite, car elle nécessite l'utilisation d'équipements très spécifiques. L'un de ces principaux inconvénients est qu'elle ne permet pas de traiter des pièces possédant des singularités telles que des trous de faibles diamètres, ces singularités pouvant engendrer un phénomène de cathode creuse (fusion locale à l'intérieur du trou). De plus, la face d'appui des pièces sur le panier du four de traitement n'est jamais traitée, puisqu'elle n'est jamais en contact direct avec le plasma.Finally, plasma-assisted cementation is very close to carburizing under reduced pressure. The main interest of this technique lies in the creation of a plasma around the room to be cementer. This plasma activates the surface of the material and thus facilitates the diffusion of carbon in the room. This method is useful for the cementation of very complex geometry parts. However, it remains undeveloped compared to carburizing under reduced pressure because it requires the use of very specific equipment. One of these main drawbacks is that it does not make it possible to treat parts having singularities such as holes of small diameters, these singularities being able to generate a hollow cathode phenomenon (local melting inside the hole). In addition, the bearing face of the parts on the basket of the treatment furnace is never treated, since it is never in direct contact with the plasma.

Ces quatre méthodes de cémentation permettent d'obtenir une structure hétérogène, composée en surface d'une couche de TaC, puis, en se rapprochant du coeur de la pièce, d'une sous-couche de Ta2C et enfin d'une couche de tantale saturée en carbone, ayant éventuellement des précipité de Ta2C aux joints de grains selon le degré de saturation en carbone du tantale (couche que nous appellerons également « couche Ta saturée C » ou, si elle présente des précipités de Ta2C aux joints de grains, « couche Ta saturée C + Ta2C »). Plus l'enrichissement en carbone est grand, plus l'épaisseur de la couche de TaC sera importante par rapport aux épaisseurs de la couche de Ta2C et de la couche de Ta saturée C (ou Ta saturée C + Ta2C). Si l'enrichissement en carbone est suffisamment important, il est ainsi possible de convertir entièrement le tantale de la pièce en carbure de tantale TaC.These four cementation methods make it possible to obtain a heterogeneous structure, composed on the surface of a layer of TaC, then, while approaching the core of the part, an underlayer of Ta 2 C and finally a layer carbon-saturated tantalum, optionally having Ta 2 C precipitates at the grain boundaries according to the degree of carbon saturation of the tantalum (a layer which we will also call "saturated Ta layer C" or, if it has precipitates of Ta 2 C at the grain boundaries, "saturated Ta layer C + Ta 2 C"). The greater the carbon enrichment, the greater the thickness of the TaC layer will be relative to the thicknesses of the layer of Ta 2 C and the saturated Ta layer C (or Ta saturated C + Ta 2 C). If the carbon enrichment is sufficiently large, it is thus possible to convert the tantalum of the tantalum carbide piece TaC completely.

Quelle que soit la méthode de cémentation utilisée, on obtient donc toujours une couche de TaC en surface de la pièce. Cependant, pour certaines applications, il n'est pas souhaitable d'avoir une telle couche en surface de la pièce et il est alors nécessaire de l'enlever.Whatever the cementation method used, one always obtains a layer of TaC on the surface of the part. However, for some applications, it is not desirable to have such a layer on the surface of the part and it is then necessary to remove it.

Pour retirer cette couche superficielle, on peut procéder à un traitement chimique de surface par attaque acide. A titre d'exemple, un tel traitement chimique de surface est décrit dans le document [1]. L'inconvénient des traitements chimiques de surface est qu'ils modifient l'état de surface des pièces et sont difficiles à mettre en oeuvre en raison des propriétés de grande dureté et de grande inertie chimique des carbures vis-à-vis des acides. Il est donc nécessaire d'utiliser des mélanges acides très puissants (le plus courant étant un mélange d'acides nitrique, fluorhydrique et lactique), qui sont généralement toxiques et très dangereux à utiliser. En outre, l'attaque chimique va attaquer l'ensemble des couches de carbure (couche de TaC et couche de Ta2C sous-jacente) et pas seulement la couche superficielle en TaC, pour ne laisser que la couche ayant une structure tantale saturé carbone avec du Ta2C aux joints de grains.To remove this superficial layer, chemical surface treatment can be carried out by acid etching. By way of example, such a surface chemical treatment is described in document [1] . The disadvantage of surface chemical treatments is that they modify the surface condition of the parts and are difficult to implement because of the properties of high hardness and high chemical inertness of carbides vis-à-vis acids. It is therefore necessary to use very powerful acid mixtures (the most common being a mixture of nitric, hydrofluoric and lactic acids), which are generally toxic and very dangerous to use. In addition, the etching will attack all of the carbide layers (TaC layer and underlying Ta 2 C layer) and not only the TaC surface layer, leaving only the layer having a saturated tantalum structure. carbon with Ta 2 C at the grain boundaries.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention vise à résoudre au moins partiellement les problèmes rencontrés dans les solutions de l'art antérieur.The invention aims to at least partially solve the problems encountered in the solutions of the prior art.

Pour ce faire, l'invention a pour objet un procédé de traitement d'une pièce en tantale ou en un alliage de tantale, comprenant les étapes consistant à :

  1. a) placer la pièce dans un four et chauffer le four sous vide à une température au moins égale à 1400°C ;
  2. b) former un multicouche carboné dans la partie périphérique de la pièce, par injection, dans le four chauffé, d'une source carbonée gazeuse à une pression au plus égale à 10 mbar, le multicouche carboné comprenant au moins une couche C1 en carbure de tantale, qui est située à la surface de la pièce, et deux couches sous-jacentes C2 et C3 comprenant chacune une teneur en carbone différente et inférieure à la teneur en carbone de la couche C1 ;
  3. c) stopper la formation du multicouche carboné par refroidissement de la pièce ;
  4. d) placer autour de la pièce un dispositif capable de piéger le carbone, l'oxygène et l'azote pour protéger la pièce du carbone ainsi que des éventuelles traces d'oxygène et d'azote présent(s) dans le four ;
  5. e) provoquer la diffusion de tout ou partie du carbone présent dans la couche C1 en direction des couches C2 et C3, par chauffage du four sous vide, la pièce étant maintenue dans le dispositif de protection ; et
  6. f) stopper la diffusion du carbone dans la pièce par refroidissement de la pièce sous vide avant que le carbone présent dans le multicouche carboné n'atteigne la partie centrale de la pièce ;
To do this, the subject of the invention is a method for treating a tantalum or tantalum alloy part, comprising the steps of:
  1. a) place the piece in an oven and heat the oven under vacuum at a temperature of at least 1400 ° C;
  2. b) forming a carbonaceous multilayer in the peripheral part of the part, by injecting, in the heated furnace, a gaseous carbon source at a pressure of at most 10 mbar, the carbonaceous multilayer comprising at least one layer C1 of carbide of tantalum, which is located on the surface of the part, and two underlying layers C2 and C3 each comprising a different carbon content and lower than the carbon content of the layer C1;
  3. c) stop the formation of the carbonaceous multilayer by cooling the part;
  4. d) place around the room a device capable of trapping carbon, oxygen and nitrogen to protect the carbon part as well as any traces of oxygen and nitrogen present in the furnace;
  5. e) causing the diffusion of all or part of the carbon present in the layer C1 towards the layers C2 and C3, by heating the oven under vacuum, the piece being maintained in the protective device; and
  6. f) stopping the diffusion of carbon into the room by cooling the vacuum chamber before the carbon in the carbonaceous multilayer reaches the central part of the room;

moyennant quoi on obtient une pièce dont la surface est exempte de tantale sous la forme de TaC, dont la partie centrale est exempte de carbone et dont la partie (ci-après « partie intermédiaire »), située entre la surface et la partie centrale, comprend du tantale et du carbone.whereby a room is obtained whose surface is free of tantalum in the form of TaC, the central portion of which is free of carbon and whose part (hereinafter "intermediate part") situated between the surface and the central part, includes tantalum and carbon.

Dans le procédé objet de l'invention, la diffusion à l'étape e) entraine la décomposition de tout ou partie des carbures présents dans la couche C1. Ainsi, selon la température et la durée du chauffage, le carbure de tantale TaC de la couche C1 va être décomposé principalement en carbure de tantale Ta2C, puis en tantale saturé en carbone ayant du Ta2C aux joints de grain. Ainsi, la surface de la pièce (ce qu'on appellera « couche superficielle » ci-dessous) est exempte de carbure de tantale de type TaC, mais, comme la décomposition commence près de la surface, l'épaisseur de cette couche superficielle pourra correspondre à l'épaisseur de la couche C1 du multicouche carboné ou à une partie supérieure de la couche C1.In the method that is the subject of the invention, the diffusion in step e) causes the decomposition of all or some of the carbides present in the layer C1. Thus, depending on the temperature and the duration of the heating, the tantalum carbide TaC of the layer C1 will be decomposed mainly tantalum carbide Ta 2 C, then tantalum tantalum carbon having Ta 2 C grain boundaries. Thus, the surface of the part (the so-called "surface layer" below) is free of tantalum carbide of the TaC type, but, as the decomposition begins near the surface, the thickness of this superficial layer can correspond to the thickness of the layer C1 of the carbonaceous multilayer or to an upper part of the layer C1.

Le procédé objet de l'invention permet, par une même suite d'étapes, de cémenter une pièce tout en choisissant la structure et la composition chimique de la couche superficielle de la pièce cémentée obtenue à l'issue du procédé, sans avoir à utiliser un traitement chimique avec des acides ou un traitement mécanique de la surface de la pièce. Par exemple, pour une pièce en tantale, on pourra choisir d'obtenir, à l'issue des étapes du procédé, une couche superficielle en carbure de tantale de type Ta2C ou en tantale saturé en carbone ayant du Ta2C aux joints de grain. On peut ainsi obtenir des structures multicouches du type, par exemple :

  • Ta2C/ Ta sat. C + Ta2C (c'est-à-dire avec, dans la couche superficielle, du Ta2C et, dans la partie intermédiaire de la pièce, une couche de Ta saturé en carbone avec du Ta2C aux joints de grain) ;
  • Ta2C/TaC/Ta2C/Ta sat. C + Ta2C (c'est-à-dire avec, dans la couche superficielle, du Ta2C, et, dans la partie intermédiaire de la pièce, une couche de TaC, une couche de Ta2C et une couche de Ta saturé en carbone avec du Ta2C aux joints de grain) ; ou bien encore
  • Ta saturé en carbone + Ta2C /Ta2C/Ta saturé en carbone + Ta2C (c'est-à-dire avec, dans la couche superficielle, du Ta saturé en carbone avec du Ta2C aux joints de grain, et, dans la partie intermédiaire de la pièce, une couche de Ta2C et une couche de Ta saturé en carbone avec du Ta2C aux joints de grain) ;
ces structures multicouches étant sur une partie centrale en tantale ou en un alliage de tantale.The method which is the subject of the invention makes it possible, by the same sequence of steps, to cement a part while choosing the structure and the chemical composition of the superficial layer of the cemented part obtained at the end of the process, without having to use chemical treatment with acids or mechanical treatment of the surface of the room. For example, for a tantalum piece, it will be possible to obtain, at the end of the process steps, a surface layer of Ta 2 C tantalum carbide or carbon-saturated tantalum having Ta 2 C at the joints. of grain. It is thus possible to obtain multilayer structures of the type, for example:
  • Ta 2 C / Ta sat. C + Ta 2 C (ie with Ta 2 C in the surface layer and a layer of carbon-saturated Ta with Ta 2 C at the grain boundaries in the intermediate part of the part) );
  • Ta 2 C / TaC / Ta 2 C / Ta sat. C + Ta 2 C (that is, with Ta 2 C in the surface layer), and in the intermediate part of the part, a layer of TaC, a layer of Ta 2 C and a layer of Your saturated carbon with Ta 2 C at grain boundaries); or even
  • It is saturated with carbon + Ta 2 C / Ta 2 C / Ta saturated with carbon + Ta 2 C (that is to say with, in the superficial layer, carbon saturated Ta with Ta 2 C at grain boundaries and, in the intermediate part of the part, a layer of Ta 2 C and a layer of carbon-saturated Ta with Ta 2 C at the grain boundaries);
these multilayer structures being on a central portion of tantalum or a tantalum alloy.

On peut également avoir simplement une couche superficielle Ta sat. C + Ta2C sur une partie centrale en tantale ou en un alliage de tantale.One can also simply have a surface layer Ta sat. C + Ta 2 C on a central part made of tantalum or a tantalum alloy.

Il est à noter que dans les exemples cités ci-dessus, la couche Ta sat. C + Ta2C peut également être une couche Ta sat. C, si le degré de saturation en carbone de la couche de tantale est moindre.It should be noted that in the examples cited above, the layer Ta sat. C + Ta 2 C can also be a Ta sat layer. C, if the degree of carbon saturation of the tantalum layer is lower.

Il est à noter que dans le document [2] est décrit un procédé comprenant la formation de couches de carbure à la surface d'une pièce en tantale ou en un alliage de tantale, suivie de l'application d'un traitement thermique qui est mis en oeuvre afin de carburer la pièce dans sa totalité. Ainsi, contrairement au procédé objet de l'invention où l'on souhaite conserver au coeur de la pièce du tantale ou un alliage de tantale, le procédé décrit dans le document [2] a pour but la réalisation d'une pièce saturée en carbone (pièce « Ta sat. C » ou « Ta sat. C + Ta2C ») dans toute son épaisseur. En outre, le procédé décrit ne permet pas l'obtention de structures multicouches complexes du type « couche pauvre en carbone/couche riche en carbone/couche pauvre en carbone » sur un coeur en tantale ou en alliage de tantale, comme par exemple celles illustrées dans les figures 5b et 6b ci-après (c'est-à-dire Ta2C/TaC/Ta2C/Ta sat. C+Ta2C/coeur et Ta sat. C + Ta2C /Ta2C/Ta sat. C + Ta2C/coeur).It should be noted that in the document [2] is described a method comprising the formation of carbide layers on the surface of a tantalum or tantalum alloy piece, followed by the application of a heat treatment which is implemented to fuel the room in its entirety. Thus, in contrast to the process which is the subject of the invention, where it is desired to keep tantalum or tantalum alloy in the center of the piece, the method described in document [2] aims at producing a saturated piece of carbon. (piece "Your sat C" or "Your sat C + Ta 2 C") in all its thickness. In addition, the process described does not make it possible to obtain complex multilayer structures of the "low carbon / high carbon layer / low carbon layer" type on a tantalum or tantalum alloy core, as for example those illustrated in FIG. in the figures 5b and 6b hereinafter (that is Ta 2 C / TaC / Ta 2 C / Ta sat C + Ta 2 C / core and Ta sat C + Ta 2 C / Ta 2 C / Ta sat C + Ta 2 C / heart).

Dans le cadre de la présente invention, on considère qu'un alliage de tantale correspond à un alliage comprenant au moins 90% en poids de tantale. En outre, il s'agit d'un alliage métallique, c'est-à-dire un mélange de tantale avec un autre métal. Il peut par exemple s'agir d'un alliage TaW.In the context of the present invention, it is considered that a tantalum alloy corresponds to an alloy comprising at least 90% by weight of tantalum. Furthermore, it it is a metal alloy, that is to say a mixture of tantalum with another metal. It may for example be a TaW alloy.

De préférence, l'étape a) comprend les opérations consistant à :

  1. i) introduire la pièce dans le four;
  2. ii) mettre sous vide le four; et
  3. iii) chauffer progressivement le four jusqu'à atteindre une température de travail comprise entre 1500 et 1700°C.
Preferably, step a) comprises the operations of:
  1. i) insert the piece into the oven;
  2. ii) evacuate the furnace; and
  3. iii) gradually heat the oven to reach a working temperature between 1500 and 1700 ° C.

De préférence, l'étape b) comprend l'injection, de préférence de manière continue, de la source carbonée gazeuse dans le four selon un débit compris entre 1 et 100 L.h-1 et, de préférence, à une pression d'injection inférieure ou égale à 10 mbar. La durée de l'injection est fonction de la quantité de carbone que l'on souhaite introduire dans la partie périphérique de la pièce en tantale ou en un alliage de tantale. Cette durée dépend des paramètres d'injection de la source carbonée, de la surface de la pièce, ainsi que de l'épaisseur et du type de multicouche carboné que l'on souhaite obtenir.Preferably, step b) comprises injecting, preferably continuously, the carbonaceous gas source into the furnace at a flow rate of between 1 and 100 Lh -1 and, preferably, at a lower injection pressure. or equal to 10 mbar. The duration of the injection is a function of the amount of carbon that it is desired to introduce into the peripheral part of the tantalum or tantalum alloy part. This time depends on the injection parameters of the carbon source, the surface of the part, as well as the thickness and type of carbon multilayer that is desired.

De préférence, l'injection de la source carbonée gazeuse à l'étape b) est réalisée à une pression d'injection de 5 mbar pour un débit de 20 L.h-1 et dans un four chauffé à une température de 1600°C.Preferably, the injection of the gaseous carbon source in step b) is carried out at an injection pressure of 5 mbar for a flow rate of 20 Lh -1 and in a furnace heated to a temperature of 1600 ° C.

De préférence, la source carbonée gazeuse utilisée à l'étape b) est l'éthylène. Le choix de l'éthylène présente l'avantage de permettre un faible apport de carbone et de limiter la formation d'éventuelles suies apparaissant lors de l'utilisation de gaz plus riches en carbone, comme l'acétylène par exemple.Preferably, the gaseous carbon source used in step b) is ethylene. The choice of ethylene has the advantage of allowing a low carbon input and limiting the formation of any soot occurring during the use of higher carbon gases, such as acetylene for example.

L'étape c) a pour but de stopper la formation du multicouche carboné ; en d'autres termes, on cherche par cette étape à stopper l'apport en carbone dans la pièce. De préférence, l'étape c) comprend une injection d'azote gazeux dans le four sous une pression de 1 bar, ce qui permet d'obtenir un refroidissement rapide de la pièce.Step c) is intended to stop the formation of the carbonaceous multilayer; in other words, we seek by this step to stop the carbon contribution in the room. Preferably, step c) comprises an injection of nitrogen gas into the oven at a pressure of 1 bar, which makes it possible to obtain rapid cooling of the part.

De préférence, l'étape d) comprend les opérations consistant à :

  1. i) placer la pièce dans une cavité fermée dont les parois sont en un matériau attirant le carbone, l'oxygène et l'azote (le matériau choisi doit bien évidemment supporter les températures de traitement régnant dans le four), ledit matériau étant de préférence en tantale ; et
  2. ii) purger la cavité à l'aide d'un gaz inerte de manière à évacuer du four tout gaz susceptible de contenir au moins l'un des éléments atomiques choisis parmi le carbone, l'oxygène et l'azote.
Preferably, step d) comprises the operations of:
  1. i) place the piece in a closed cavity whose walls are made of a material attracting carbon, oxygen and nitrogen (the chosen material must be of course, withstanding the processing temperatures prevailing in the furnace), said material preferably being tantalum; and
  2. ii) purge the cavity with an inert gas so as to evacuate any oven gas likely to contain at least one of the atomic elements selected from carbon, oxygen and nitrogen.

L'étape e) comprend le chauffage de la pièce à une température suffisante pour permettre la diffusion du carbone présent dans la couche C1 du multicouche carboné en direction des couches C2 et C3. De préférence, l'étape e) comprend le chauffage du four à une température de 1600°C et à une pression de 10-2 mbar.Step e) comprises heating the room to a temperature sufficient to allow the diffusion of the carbon present in the layer C1 of the carbonaceous multilayer in the direction of the layers C2 and C3. Preferably, step e) comprises heating the oven to a temperature of 1600 ° C and a pressure of 10 -2 mbar.

Dans l'étape f), le refroidissement est réalisé sous vide afin de protéger la pièce en tantale ou en un alliage de tantale des éventuelles traces de pollutions résiduelles du four qui pourraient être entrainées vers la pièce si l'on procédait à une remise en pression à haute température du four.In step f), the cooling is carried out under vacuum in order to protect the tantalum or tantalum alloy part from any traces of residual pollution of the furnace which could be drawn towards the part if a refurbishment was carried out. high temperature oven pressure.

Le procédé objet de l'invention comprend de nombreux avantages.The method which is the subject of the invention comprises numerous advantages.

Tout d'abord, l'apport en carbone dans la partie périphérique de la pièce est contrôlé et maitrisé, du fait qu'il provient uniquement de la source carbonée gazeuse utilisée au cours de l'étape b) du procédé objet de l'invention, l'apport de carbone étant ensuite empêchée par les étapes c) et d) du procédé. Ainsi, même s'il reste du carbone sur les parois du four (sous forme de suies par exemple, ou bien encore tout simplement si l'on utilise un four ayant des parois en carbone) et que du carbone se retrouve dans l'atmosphère du four à l'étape e) du fait du chauffage du four, il sera piégé par le dispositif de protection et ne sera pas introduit dans la pièce. Il est ainsi possible d'obtenir une cémentation sur une épaisseur contrôlée de la partie périphérique de la pièce, tout en conservant dans la partie centrale de la pièce les propriétés du métal d'origine et en ayant en surface une couche superficielle qui ne contient pas de carbure de tantale TaC.Firstly, the carbon input in the peripheral part of the part is controlled and mastered, since it comes solely from the gaseous carbon source used during step b) of the process which is the subject of the invention the carbon supply is then prevented by steps c) and d) of the process. Thus, even if there is carbon remaining on the oven walls (in the form of soot, for example, or simply if a furnace with carbon walls is used) and carbon is found in the atmosphere of the oven in step e) because of the heating of the oven, it will be trapped by the protective device and will not be introduced into the room. It is thus possible to obtain a cementation on a controlled thickness of the peripheral part of the part, while preserving in the central part of the part the properties of the original metal and having on the surface a superficial layer which does not contain of tantalum carbide TaC.

Par ailleurs, l'utilisation d'une méthode de cémentation basse pression (étapes a) et b) du procédé) permet de travailler à plus basse température qu'avec les autres méthodes de cémentation connues, et le contrôle de l'apport en carbone permet d'optimiser les durées de traitement, ce qui, au final, permet d'obtenir des gains de temps, d'énergie et de consommables.Furthermore, the use of a low pressure carburization method (steps a) and b) of the process makes it possible to work at a lower temperature than with other known cementation methods, and the control of the carbon input. allows optimize processing times, which ultimately saves time, energy and consumables.

On n'utilise pas de produits chimiques difficiles à mettre en oeuvre pour supprimer le carbure de tantale de type TaC de la couche superficielle de la pièce et il n'y a pas de pollution par l'oxygène et l'azote dans la pièce traitée.Hard-to-use chemicals are not used to remove TaC-type tantalum carbide from the surface layer of the part and there is no oxygen and nitrogen pollution in the treated part .

Enfin, le procédé objet de l'invention peut être utilisé pour traiter des pièces ayant des géométries complexes et/ou présentant des singularités (trous de faibles diamètres, etc.).Finally, the method which is the subject of the invention can be used to process parts having complex geometries and / or having singularities (holes of small diameters, etc.).

D'autres caractéristiques et avantages de l'invention ressortiront du complément de description qui suit et qui se rapporte à des exemples de mise en oeuvre du procédé de fabrication selon l'invention.Other features and advantages of the invention will emerge from the additional description which follows and which relates to examples of implementation of the manufacturing method according to the invention.

Il va de soi que ce complément de description n'est donné qu'à titre d'illustration de l'objet de l'invention et ne doit en aucun cas être interprété comme une limitation de cet objet.It goes without saying that this additional description is given only as an illustration of the subject of the invention and should in no way be interpreted as a limitation of this object.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

  • La figure 1a représente une vue schématique en coupe d'une portion d'une pièce en tantale obtenue à l'issue de l'étape b) du procédé objet de l'invention selon un mode de réalisation particulier (1 heure de cémentation à 1600°C) et montrant les couches de carbures crées en surface de la pièce.The figure 1a represents a schematic cross-sectional view of a portion of a tantalum piece obtained at the end of step b) of the method that is the subject of the invention according to a particular embodiment (1 hour of cementation at 1600 ° C.) and showing the layers of carbides created on the surface of the piece.
  • La figure 1b représente un cliché obtenu par microscopie électronique à balayage (MEB) de la pièce illustrée dans la figure 1a.The figure 1b represents a snapshot obtained by scanning electron microscopy (SEM) of the piece illustrated in FIG. figure 1a .
  • Les figures 2a et 2b représentent respectivement la durée de cémentation en fonction du temps à différentes températures pour la croissance de couches de TaC (figure 2a) et pour la croissance de couches de Ta2C (figure 2b).The Figures 2a and 2b represent the cementation time as a function of time at different temperatures for the growth of TaC layers ( figure 2a ) and for the growth of Ta 2 C layers ( figure 2b ).
  • La figure 3a représente une vue schématique en coupe d'une portion d'une pièce en tantale obtenue selon un mode de réalisation particulier du procédé objet de l'invention (1 heure de cémentation à 1600°C, un refroidissement et 1 heure de chauffe sous vide à 1600°C) et montrant les couches de carbures crées en surface de la pièce.The figure 3a represents a schematic cross-sectional view of a portion of a tantalum piece obtained according to a particular embodiment of the method that is the subject of the invention (1 hour of carburizing at 1600 ° C., cooling and 1 hour of vacuum heating at 1600 ° C) and showing the layers of carbides created on the surface of the piece.
  • La figure 3b représente un cliché obtenu par MEB de la pièce illustrée dans la figure 3a.The figure 3b represents a snapshot obtained by SEM of the piece illustrated in the figure 3a .
  • La figure 4a représente une vue schématique en coupe d'une portion d'une pièce en tantale obtenue selon un mode de réalisation particulier du procédé objet de l'invention (avec 1 heure de cémentation à 1600°C à l'étape b) et 6 heures de chauffe sous vide à 1600°C à l'étape e).The figure 4a represents a diagrammatic sectional view of a portion of a tantalum piece obtained according to a particular embodiment of the process which is the subject of the invention (with 1 hour of cementation at 1600 ° C. in step b) and 6 hours of vacuum heating at 1600 ° C in step e).
  • La figure 4b et 4c représentent respectivement un cliché obtenu par MEB de la pièce illustrée dans la figure 4a selon deux grossissements différents. Il est à noter que, dans la figure 4c, la pièce a subi une attaque chimique afin de révéler la présence et la localisation des précipités de Ta2C (taches noires).The Figure 4b and 4c represent respectively a snapshot obtained by SEM of the piece illustrated in the figure 4a according to two different magnifications. It should be noted that in the figure 4c , the piece was etched to reveal the presence and location of Ta 2 C precipitates (black spots).
  • La figure 5a représente une vue schématique en coupe d'une portion d'une pièce en tantale obtenue selon un mode de réalisation particulier du procédé objet de l'invention (avec 2 heures de cémentation à 1600°C à l'étape b) et 30 minutes de chauffe sous vide à 1600°C à l'étape e)).The figure 5a represents a schematic cross-sectional view of a portion of a tantalum piece obtained according to a particular embodiment of the process which is the subject of the invention (with 2 hours of cementation at 1600 ° C. in step b) and 30 minutes of heating under vacuum at 1600 ° C in step e)).
  • La figure 5b représente un cliché obtenu par MEB de la pièce illustrée dans la figure 6a.The figure 5b represents a snapshot obtained by SEM of the piece illustrated in the figure 6a .
  • La figure 6a représente une vue schématique en coupe d'une portion d'une pièce en tantale obtenue selon un mode de réalisation particulier du procédé objet de l'invention (avec 2 heures de cémentation à 1600°C à l'étape b) et 6 heures de chauffe sous vide à 1600°C à l'étape e)).The figure 6a represents a schematic cross-sectional view of a portion of a tantalum piece obtained according to a particular embodiment of the process that is the subject of the invention (with 2 hours of cementation at 1600 ° C. in step b) and 6 hours of heating under vacuum at 1600 ° C in step e)).
  • La figure 6b représente un cliché obtenu par MEB de la pièce illustrée dans la figure 6a.The figure 6b represents a snapshot obtained by SEM of the piece illustrated in the figure 6a .

Il est à noter que les figures ci-dessus, la partie centrale de la pièce n'est jamais représentée.It should be noted that the figures above, the central part of the piece is never shown.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

Le procédé objet de l'invention permet de maitriser la cémentation d'une pièce en tantale ou en un alliage de tantale, tout en choisissant la nature et la structure cristallographique de la couche superficielle de la pièce. Il permet en effet d'obtenir au choix, en surface de la pièce, une couche superficielle en carbure de tantale de type Ta2C avec une couche sous-jacente en carbure de tantale du type TaC ou en tantale saturé en carbone avec du Ta2C aux joints de grains, une couche superficielle mixte constituée de tantale saturé en carbone avec du Ta2C aux joints de grains, ou bien encore une couche superficielle de tantale saturé en carbone avec une couche sous-jacente en carbure de tantale du type Ta2C, tout en maitrisant l'épaisseur de cette couche superficielle.The method which is the subject of the invention makes it possible to control the cementation of a tantalum or tantalum alloy part, while choosing the nature and the crystallographic structure of the surface layer of the part. It makes it possible to obtain, at the surface of the part, a surface layer of tantalum carbide of Ta 2 C type with an underlying layer of tantalum carbide of the TaC type or of carbon-saturated tantalum with Ta 2 C at the grain boundaries, a mixed surface layer of tantalum saturated with carbon with Ta 2 C at grain boundaries, or even a superficial layer of carbon-saturated tantalum with an underlying Ta 2 C-type tantalum carbide layer, while controlling the thickness of this superficial layer.

Comme nous l'avons dit précédemment, la durée du chauffage à l'étape b) du procédé objet de l'invention est fonction de la quantité de carbone que l'on souhaite apporter à la pièce. La durée du chauffage à l'étape e) est, quant à elle, fonction de la nature de la couche que l'on souhaite obtenir en surface, ainsi que de l'épaisseur que l'on souhaite qu'elle ait. En jouant sur ces paramètres, on peut obtenir des structures monocouches (une couche superficielle de Ta2C, de Ta sat. C + Ta2C ou de Ta sat. C sur un coeur en tantale ou en un alliage de tantale) ou bien encore des structures multicouches (couches Ta2C/TaC/Ta2C/Ta sat. C + Ta2C ; couches Ta sat. C + Ta2C/Ta2C/Ta sat. C + Ta2C ; etc., sur un coeur en tantale ou en un alliage de tantale). L'obtention de ces différentes structures permet de renforcer la dureté et/ou la résistance à la corrosion de la pièce, afin de la rendre compatible avec son utilisation finale.As we said above, the duration of the heating in step b) of the method that is the subject of the invention depends on the amount of carbon that it is desired to bring to the part. The duration of the heating in step e) is, in turn, depending on the nature of the layer that is desired to obtain on the surface, as well as the thickness that it is desired that it has. By playing on these parameters, it is possible to obtain monolayer structures (a surface layer of Ta 2 C, Ta sat, C + Ta 2 C or Ta sat C on a tantalum or tantalum alloy core) or multilayer structures (Ta 2 C / TaC / Ta 2 C / Ta sat layers C + Ta 2 C, Ta sat layers C + Ta 2 C / Ta 2 C / Ta sat layers C + Ta 2 C, etc. , on a heart made of tantalum or an alloy of tantalum). Obtaining these different structures makes it possible to reinforce the hardness and / or the resistance to corrosion of the part, so as to make it compatible with its end use.

Pour illustrer l'invention, nous allons à présent décrire un mode de réalisation préféré du procédé objet de l'invention.To illustrate the invention, we will now describe a preferred embodiment of the method which is the subject of the invention.

On utilise une pièce en tantale, par exemple un creuset ayant un diamètre de 100 mm, pour une épaisseur de 1,5 mm et une hauteur de 150 mm.A tantalum piece, for example a crucible having a diameter of 100 mm, is used for a thickness of 1.5 mm and a height of 150 mm.

La pièce à traiter est installée dans l'enceinte d'un four, par exemple un four de marque BMI portant la référence BMICRO.The part to be treated is installed in the enclosure of an oven, for example a furnace of mark BMI bearing the reference BMICRO.

Puis, l'enceinte du four est mise sous vide jusqu'à atteindre une pression de 10-2 ± 0,01 mbar.Then, the oven chamber is evacuated until a pressure of 10 -2 ± 0.01 mbar is reached.

Après stabilisation de la pression, l'enceinte est chauffée selon une rampe de 30°C/min, jusqu'à atteindre 1600°C ± 1%.After stabilization of the pressure, the enclosure is heated with a ramp of 30 ° C / min, until reaching 1600 ° C ± 1%.

On procède ensuite à la cémentation de la pièce en injectant dans l'enceinte un gaz carburant sous une faible pression (pression inférieure à une dizaine de millibars) pendant une durée déterminée. Dans cet exemple, on injecte de l'éthylène (C2H6) dans l'enceinte sous une pression de 5 ± 1 mbar et sous un débit contrôlé de 20 L/h pendant 1 heure.The work is then cemented by injecting into the chamber a fuel gas under a low pressure (pressure less than about ten millibars) for a predetermined period. In this example, ethylene is injected (C 2 H 6) in the enclosure under a pressure of 5 ± 1 mbar and at a controlled flow rate of 20 L / h for 1 hour.

On procède ensuite à un refroidissement de la pièce, par exemple au moyen d'azote injecté dans l'enceinte du four sous une pression de 1 bar pendant une durée de 90 minutes.The part is then cooled, for example by means of nitrogen injected into the chamber of the oven at a pressure of 1 bar for a period of 90 minutes.

On obtient ainsi, dans la partie périphérique de la pièce en tantale, un multicouche carboné 1 comprenant une couche superficielle C1 en carbure de tantale de type TaC, une couche sous-jacente C2 en carbure de tantale de type Ta2C et une couche sous-jacente C3 en tantale saturé en carbone avec des précipités de Ta2C aux joints de grains (figures 1a et 1b).Thus, in the peripheral portion of the tantalum piece, a carbon-based multilayer 1 comprising a surface layer C1 of tantalum carbide of the TaC type, an underlying layer C2 of tantalum carbide of Ta 2 C type and a layer under C3 in carbon-saturated tantalum with precipitates of Ta 2 C at the grain boundaries ( Figures 1a and 1b ).

L'épaisseur du multicouche carboné 1 (et donc la quantité totale de carbone apporté dans la pièce) dépend du temps de maintien de la pièce en tantale sous le flux de gaz carburant (figures 2a et 2b). En effet, de manière connue, la croissance des couches de carbures de tantale suit la loi parabolique W = kt

Figure imgb0001
où W représente l'épaisseur de la couche de carbure (en µm), t la durée de maintien (en minutes) et k le coefficient de croissance (µm2.min-1). Par analogie, on applique la même formule pour la formation du multicouche carboné 1. La vitesse de formation du multicouche carboné dépend également de la température de cémentation. Cette vitesse de formation croit exponentiellement avec la température.The thickness of the carbonaceous multilayer 1 (and therefore the total quantity of carbon introduced into the part) depends on the holding time of the tantalum part under the flow of fuel gas ( Figures 2a and 2b ). Indeed, in known manner, the growth of tantalum carbide layers follows the parabolic law W = kt
Figure imgb0001
where W represents the thickness of the carbide layer (in μm), t the holding time (in minutes) and k the growth coefficient (μm 2 .min -1 ). By analogy, the same formula is applied for the formation of the carbonaceous multilayer 1. The rate of formation of the carbonaceous multilayer also depends on the carburising temperature. This formation rate exponentially increases with temperature.

La pièce ainsi traitée est ensuite coupée de toute source de carbone, ainsi que d'éventuels polluants. Cette étape est nécessaire si l'on veut éviter les phénomènes de pollution du tantale lors de l'étape de diffusion et contrôler la quantité de carbone présent dans la pièce. En effet, le tantale est un élément très réactif à chaud vis-à-vis d'atomes tels que le carbone, l'oxygène et l'azote et ces éléments peuvent par exemple se trouver dans des molécules adsorbées sur les parois de l'enceinte du four.The piece thus treated is then cut off from any source of carbon, as well as any pollutants. This step is necessary if one wants to avoid the phenomena of pollution of the tantalum during the stage of diffusion and to control the quantity of carbon present in the room. Indeed, tantalum is a very hot reactive element vis-à-vis atoms such as carbon, oxygen and nitrogen and these elements can for example be in molecules adsorbed on the walls of the oven enclosure.

Pour cela, selon un mode de réalisation préféré du procédé selon l'invention, on place la pièce dans une cavité (par exemple formée en déposant une cloche sur un support, la cloche et le support étant tous les deux en tantale) qui est placée dans l'enceinte du four. Cela permet de piéger les éléments polluants (O, N2, etc.), ainsi que les éventuels atomes de carbone présents sur les parois de l'enceinte du four, avant que ceux-ci n'arrivent au contact de la pièce. Cela permet également de freiner les échanges gazeux entre l'enceinte du four et la pièce à traiter, ce qui s'avère favorable pour le processus de diffusion du carbone.For this, according to a preferred embodiment of the method according to the invention, the piece is placed in a cavity (for example formed by depositing a bell on a support, the bell and the support being both in tantalum) which is placed in the oven enclosure. This makes it possible to trap polluting elements (O, N 2 , etc.), as well as any carbon atoms present on the walls of the furnace enclosure, before they come into contact with the room. This also makes it possible to slow gas exchange between the furnace chamber and the workpiece, which is favorable for the carbon diffusion process.

On peut éventuellement procéder à un double pompage de l'enceinte du four en réalisant une purge intermédiaire à l'azote (pression de 10-2 +/- 0,01 mbar) afin d'évacuer tout polluant.A double pumping of the furnace enclosure may optionally be carried out by performing an intermediate purge with nitrogen (pressure of 10 -2 +/- 0.01 mbar) in order to evacuate any pollutant.

Puis, on procède au chauffage de la pièce. Le chauffage sous vide à l'étape e) va permettre au carbone présent dans la couche C1 du multicouche carboné 1 de diffuser vers les couches C2 et C3 du multicouche.Then, we proceed to the heating of the room. The vacuum heating in step e) will allow the carbon present in the layer C1 of the carbonaceous multilayer 1 to diffuse to the layers C2 and C3 of the multilayer.

Le temps de maintien en chauffe de l'ensemble formé par la pièce et le dispositif de protection dépend de trois paramètres :

  • le type de structure que l'on souhaite obtenir à l'issue du procédé ;
  • l'épaisseur du multicouche formé lors de l'étape de cémentation ;
  • l'épaisseur de la pièce.
The heating time of the assembly formed by the workpiece and the protective device depends on three parameters:
  • the type of structure that one wishes to obtain at the end of the process;
  • the thickness of the multilayer formed during the carburizing step;
  • the thickness of the room.

L'ensemble formé par la pièce et le dispositif de protection (cavité) est chauffé à 30°C/minute jusqu'à atteindre la température de traitement voulue. On choisit ici d'utiliser la même température que celle utilisée pour la cémentation, c'est-à-dire 1600°C +/- 1%.The assembly formed by the part and the protective device (cavity) is heated at 30 ° C / minute until the desired treatment temperature. We choose here to use the same temperature as that used for carburizing, that is to say 1600 ° C +/- 1%.

A la fin de l'étape b) (après la cémentation), la pièce en tantale comportait en surface un multicouche carboné 1 ayant une couche superficielle C1 en TaC, une couche sous-jacente C2 en Ta2C et une couche sous-jacente C3 en tantale saturé en carbone avec des précipités de Ta2C aux joints de grain. Pendant le chauffage à l'étape e), le carbone diffuse de la couche superficielle C1 en TaC (couche la plus riche en carbone) vers la couche C2 en Ta2C, et de la couche C2 en Ta2C vers la couche C3 en Ta sat. C + Ta2C. Cette diffusion du carbone en cascade provoque la diminution d'épaisseur de la couche de TaC au profit de la couche de Ta2C. Il est alors possible de faire disparaitre totalement la couche de TaC au profit d'une couche unique de Ta2C en surface de la pièce. Si le chauffage est poursuivi, la couche de Ta2C se décompose également pour disparaitre totalement. Il ne reste alors en surface que du tantale saturé en carbone ayant des précipités de Ta2C aux joints de grains.At the end of step b) (after cementation), the tantalum piece had on the surface a carbonaceous multilayer 1 having a surface layer C1 in TaC, an underlying layer C2 in Ta 2 C and an underlying layer C3 in carbon saturated tantalum with precipitates of Ta 2 C at the grain boundaries. During the heating in step e), the carbon diffuses from the surface layer C1 to TaC (the layer richest in carbon) towards the layer C2 in Ta 2 C, and from the layer C2 in Ta 2 C to the layer C3 in your sat. C + Ta 2 C. This cascade carbon diffusion causes the reduction in thickness of the layer of TaC the benefit of the Ta layer 2 C. It is then possible to completely disappear layer of TaC in favor of a single layer of Ta 2 C at the surface of the piece. If the heating is continued, the layer of Ta 2 C also decomposes to disappear completely. Only carbon-saturated tantalum with precipitates of Ta 2 C at the grain boundaries remains on the surface.

Différentes structures qu'il est possible d'obtenir en faisant varier la durée du chauffage à l'étape b) et/ou à l'étape e) sont illustrées dans les figures suivantes.Different structures that can be obtained by varying the duration of the heating in step b) and / or step e) are illustrated in the following figures.

Comme précisé ci-dessus, après un chauffage de la pièce en tantale pendant 1h à 1600°C à l'étape b), on obtient un multicouche carboné 1 ayant une couche C1 en TaC, une couche C2 en Ta2C et une couche C3 en Ta sat. C + Ta2C (figures 1a et 1b).As specified above, after heating the tantalum piece for 1 hour at 1600 ° C. in step b), a carbonaceous multilayer 1 having a layer C1 in TaC, a layer C2 in Ta 2 C and a layer is obtained. C3 in Ta sat. C + Ta 2 C ( Figures 1a and 1b ).

Si on lui fait ensuite subir les autres étapes du procédé objet de l'invention, dont 1h de chauffage sous vide à 1600°C à l'étape e) après l'avoir isolée de toute source de carbone, on obtient une couche superficielle 2 en Ta2C sur une couche sous-jacente 3 en Ta sat. C + Ta2C (figures 3a et 3b).If it is then subjected to the other steps of the process object of the invention, including 1h of heating under vacuum at 1600 ° C in step e) after being isolated from any source of carbon, a surface layer 2 is obtained in Ta 2 C on an underlying layer 3 in Ta sat. C + Ta 2 C ( Figures 3a and 3b ).

Si, au contraire, on fait subir à la pièce munie du multicouche carboné un chauffage sous vide de 6h à 1600°C à l'étape e), on obtient une couche superficielle 2 en tantale saturé en carbone avec des précipités de Ta2C aux joints de grains (figures 4a, 4b et 4c, les précipités étant visibles en noir sur la figure 4c). Ici, on peut supposer que la diffusion du carbone est telle que les couches C1, C2 et C3 du multicouche carboné se sont transformées en la couche superficielle 2.If, on the other hand, the part provided with the carbonaceous multilayer is subjected to vacuum heating for 6 h at 1600 ° C. in step e), a carbon-saturated tantalum layer 2 with Ta 2 C precipitates is obtained. at the grain boundaries ( Figures 4a, 4b and 4c , the precipitates being visible in black on the figure 4c ). Here, it can be supposed that the carbon diffusion is such that the layers C1, C2 and C3 of the carbonaceous multilayer are transformed into the surface layer 2.

Selon un autre exemple, si l'on fait subir à la pièce une carburation par chauffage sous vide à 1600°C pendant 2h à l'étape b) et un chauffage sous vide à 1600°C pendant 30 minutes à l'étape e), on obtient une pièce ayant une couche superficielle 2 en Ta2C, une première sous-couche 3 en TaC, une seconde sous-couche 4 en Ta2C et une troisième sous-couche 5 en Ta sat. C + Ta2C (figures 5a et 5b).According to another example, if the piece is subjected to carburization by heating under vacuum at 1600 ° C. for 2 hours in step b) and heating under vacuum at 1600 ° C. for 30 minutes in step e) a part having a surface layer 2 in Ta 2 C, a first sub-layer 3 in TaC, a second sub-layer 4 in Ta 2 C and a third sub-layer 5 in Ta sat are obtained. C + Ta 2 C ( Figures 5a and 5b ).

Si, au contraire, on lui fait subir une carburation par chauffage sous vide à 1600°C pendant 2h à l'étape b) et un chauffage sous vide à 1600°C pendant 6h à l'étape e), on obtient une couche superficielle 2 en Ta sat. C, une première sous-couche 3 en Ta2C et une deuxième sous-couche 4 en Ta sat. C + Ta2C (figures 6a et 6b).If, on the contrary, it is subjected to carburization by heating under vacuum at 1600 ° C for 2 hours in step b) and heating under vacuum at 1600 ° C for 6 hours in step e), a superficial layer is obtained. 2 in Ta sat. C, a first sub-layer 3 Ta 2 C and a second sub-layer 4 Ta sat. C + Ta 2 C ( Figures 6a and 6b ).

REFERENCES CITEESREFERENCES CITED

  1. [1][1] US 5,916,377US 5,916,377
  2. [2][2] US 5,383,981US5,383,981

Claims (7)

  1. A process for treating a piece of tantalum or of a tantalum alloy, the process comprising the steps of:
    a) placing the piece in a furnace and heating the furnace under vacuum at a temperature at least equal to 1,400°C;
    b) forming a carbon multilayer (1) in the peripheral part of the piece, by injecting, in the heated furnace, a gas carbon source at a pressure at most equal to 10 mbar, the carbon multilayer comprising at least one layer C1 of tantalum carbide, which is located at the surface of the piece, and two underlying layers C2 and C3 each comprising a carbon content which is different and lower than a carbon content of the layer C1;
    c) stopping the formation of the carbon multilayer (1) by cooling the piece;
    d) placing around the piece a protecting device for trapping carbon, oxygen and nitrogen to protect the piece from carbon as well as possible oxygen and nitrogen traces present in the furnace;
    e) causing a diffusion of all or part of carbon present in the layer C1 towards the layers C2 and C3, by heating the furnace under vacuum, the piece being held in the protecting device; and
    f) stopping the diffusion of carbon in the piece by cooling the piece under vacuum before carbon present in the carbon multilayer reaches the centre part of the piece;
    whereby there is obtained a piece whose surface is free from tantalum as TaC, whose centre part is free from carbon and whose part which is located between the surface and the centre part comprises tantalum and carbon.
  2. The process according to claim 1, wherein step d) comprises:
    i) placing the piece in a closed cavity having walls made of a material attracting carbon, oxygen and nitrogen, the material being preferably of tantalum; and
    ii) draining the cavity using an inert gas so as to discharge from the furnace any gas likely to contain at least one of atomic elements chosen from carbon, oxygen and nitrogen.
  3. The process according to claim 1 or claim 2, wherein step a) comprises:
    i) introducing the piece into the furnace;
    ii) putting the furnace under vacuum; and
    iii) gradually heating the furnace until a working temperature between 1,500 and 1,700°C is reached.
  4. The process according to any of claims 1 to 3, wherein step b) comprises injecting the gas carbon source in the furnace at a flow rate between 1 and 100 L.h-1 and at an injection pressure lower than or equal to 10 mbar.
  5. The process according to claim 4, wherein the injection of the gas carbon source in step b) is made at an injection pressure of 5 mbar for a flow rate of 20 L.h-1 and in a furnace heated at a temperature of 1,600°C.
  6. The process according to any of claims 1 to 5, wherein step e) comprises heating the furnace at a temperature of 1,600°C and at a pressure of 10-2 mbar.
  7. The process according to any of claims 1 to 6, wherein the gas carbon source used in step b) is ethylene.
EP16175631.7A 2015-06-25 2016-06-22 Method for treating a workpiece made of tantalum or a tantalum alloy Active EP3109339B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1555872A FR3037971B1 (en) 2015-06-25 2015-06-25 PROCESS FOR PROCESSING A TANTAL OR TANTAL ALLOY PART

Publications (2)

Publication Number Publication Date
EP3109339A1 EP3109339A1 (en) 2016-12-28
EP3109339B1 true EP3109339B1 (en) 2017-06-21

Family

ID=55361566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16175631.7A Active EP3109339B1 (en) 2015-06-25 2016-06-22 Method for treating a workpiece made of tantalum or a tantalum alloy

Country Status (5)

Country Link
US (1) US10287667B2 (en)
EP (1) EP3109339B1 (en)
JP (1) JP6803156B2 (en)
KR (1) KR102501313B1 (en)
FR (1) FR3037971B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164678B (en) * 2017-04-26 2018-10-02 北京有色金属研究总院 A kind of high temeperature chemistry container tantalum material and preparation method thereof
CN112159952B (en) * 2020-10-10 2022-07-12 哈尔滨科友半导体产业装备与技术研究院有限公司 Device and method capable of simultaneously carbonizing multiple tantalum sheets

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702936A (en) * 1948-12-30 1954-01-27 Heraeus Gmbh W C Improvements relating to spinning nozzles for rayon and cellulose wool
FR1056564A (en) * 1952-05-15 1954-03-01 Onera (Off Nat Aerospatiale) Process for the formation of extra hard layers on metals and their alloys
US3163563A (en) * 1962-07-13 1964-12-29 Nat Res Corp Composite body formed of a tantalum alloy having an outer carburized surface layer
US4664722A (en) * 1985-10-24 1987-05-12 Hughes Tool Company-Usa Method for protecting from hardening a selected region of a steel structure
US5383981A (en) * 1993-06-14 1995-01-24 The United States Of America As Represented By The United States Department Of Energy Reusable crucible for containing corrosive liquids
US5580397A (en) * 1995-01-26 1996-12-03 The United States Of America As Represented By The Department Of Energy Carbide and carbonitride surface treatment method for refractory metals
US5916377A (en) 1997-04-21 1999-06-29 The Regents Of The University Of California Packed bed carburization of tantalum and tantalum alloy
JP3680281B2 (en) * 2003-08-01 2005-08-10 学校法人関西学院 Tantalum carbide, tantalum carbide manufacturing method, tantalum carbide wiring, tantalum carbide electrode
EP1666413B1 (en) * 2003-08-01 2015-12-09 Toyo Tanso Co., Ltd. Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
DE102004034807A1 (en) * 2004-07-19 2006-03-16 Ip2H Ag Light source and a method for mechanical stabilization of the filament or the electrode of a light source
WO2006093759A1 (en) * 2005-02-26 2006-09-08 General Electric Company Method for substrate stabilization of diffusion aluminide coated nickel-based superalloys
JP4926632B2 (en) * 2006-09-27 2012-05-09 東洋炭素株式会社 Method for producing tantalum and carbon bond, gradient composition structure of tantalum and carbon, and tantalum-carbon composite
JP2015050001A (en) * 2013-08-30 2015-03-16 スタンレー電気株式会社 Near-infrared heater
JP2015098634A (en) * 2013-11-20 2015-05-28 スタンレー電気株式会社 Method for manufacturing tantalum carbide filament and method for manufacturing tantalum carbide light bulb
EP3260573B1 (en) * 2015-02-18 2019-10-02 Kirin Company Limited Heat generation element and method for producing the same

Also Published As

Publication number Publication date
FR3037971B1 (en) 2017-07-21
EP3109339A1 (en) 2016-12-28
US10287667B2 (en) 2019-05-14
KR20170001636A (en) 2017-01-04
KR102501313B1 (en) 2023-02-17
US20160376692A1 (en) 2016-12-29
FR3037971A1 (en) 2016-12-30
JP2017088998A (en) 2017-05-25
JP6803156B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
EP1885904B2 (en) Low pressure carbonitriding method
EP3109339B1 (en) Method for treating a workpiece made of tantalum or a tantalum alloy
WO2018060644A1 (en) Composite nuclear component, dli-mocvd method for producing same, and uses for controlling oxidation/hydridation
EP3520118A1 (en) Nuclear component with metastable cr coating, dli-mocvd method for producing same, and uses for controlling oxidation/hydridation
EP0010484B1 (en) Improvement in the chromising of steel in the gaseous phase
EP3519604A1 (en) Nuclear component with a metal substrate, method for the production thereof by dli-mocvd, and uses of same for controlling oxidation/hydridation
EP0001373A1 (en) Method of forming smooth and pinhole-free silicon carbide films on a silicon substrate
FR2822851A1 (en) Formation of a chromium rich layer on the surface of a nickel based alloy component containing chromium by heating to chromium oxidising temperature and exposing it to a controlled oxidising gas mixture
US8349093B2 (en) Method of plasma nitriding of alloys via nitrogen charging
WO2007003639A2 (en) Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film
EP3084046B1 (en) Method for manufacturing a part coated with a protective coating
JP2007254856A (en) Method for manufacturing titanium or titanium alloy decoration member
EP3287857B1 (en) Method for obtaining a zirconia item having a metallic appearance
EP0801142A2 (en) Treatment method of a metallic substrate, metallic substrate thereby obtained and his applications
WO2015036974A1 (en) Substrate with low-permeability coating for the solidification of silicon
EP0885980B1 (en) Process for forming a superficial layer having a high hardness by plasma-free thermochemical treatment
JP4608884B2 (en) Method for forming surface protective film of jig for heat treatment
EP1743952B1 (en) Process for the treatment of titanium or titanium alloy parts.
EP2804965A1 (en) Concurrent flow of activating gas in low temperature carburization
FR2900416A1 (en) Device for thermochemical treatment of chromium diffusion in surface layer of substrate, comprises donor containing chromium, enclosure having walls, and support placed inside enclosure to maintain distance between substrate and donor
FR3023850A1 (en) PROCESS FOR NITRIDING A STAINLESS STEEL WORKPIECE
WO2020099794A1 (en) Method for pickling a turbomachine component
JP2005159014A (en) Jig for heat treatment and surface protection film forming method therefor
FR2790267A1 (en) Deposition of a diamond layer on a refractory transition metal component
BE372511A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 27/02 20060101ALI20170103BHEP

Ipc: C23C 8/20 20060101AFI20170103BHEP

INTG Intention to grant announced

Effective date: 20170125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 2

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016000098

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 903008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016000098

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

26N No opposition filed

Effective date: 20180322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230623

Year of fee payment: 8

Ref country code: DE

Payment date: 20230620

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230609

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 8

Ref country code: CH

Payment date: 20230703

Year of fee payment: 8