EP3099848B1 - Process for localised repair of a damaged thermal barrier - Google Patents
Process for localised repair of a damaged thermal barrier Download PDFInfo
- Publication number
- EP3099848B1 EP3099848B1 EP14828044.9A EP14828044A EP3099848B1 EP 3099848 B1 EP3099848 B1 EP 3099848B1 EP 14828044 A EP14828044 A EP 14828044A EP 3099848 B1 EP3099848 B1 EP 3099848B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- damaged
- thermal barrier
- particles
- equal
- ceramic coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 22
- 238000005524 ceramic coating Methods 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 29
- 238000001962 electrophoresis Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 7
- 229910010293 ceramic material Inorganic materials 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 238000007596 consolidation process Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000003980 solgel method Methods 0.000 claims description 3
- 238000000352 supercritical drying Methods 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 18
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 14
- 238000000151 deposition Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012720 thermal barrier coating Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910020203 CeO Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/02—Electrophoretic coating characterised by the process with inorganic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/005—Repairing methods or devices
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/12—Electrophoretic coating characterised by the process characterised by the article coated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/18—Electrophoretic coating characterised by the process using modulated, pulsed, or reversing current
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/20—Pretreatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/22—Servicing or operating apparatus or multistep processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/40—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/502—Thermal properties
- F05D2300/5023—Thermal capacity
Definitions
- the invention relates to methods of localized repair of damaged thermal barriers.
- the blades of the high pressure turbines of aero engines are exposed to a very aggressive environment. These parts are generally coated with an oxidative protective coating as well as a thermal barrier coating.
- the thermal barrier coating provides thermal insulation of the underlying part in order to maintain it at temperatures where its mechanical performance and life are acceptable.
- CMAS calcium and magnesium aluminosilicates
- the invention provides, according to a first aspect, a method according to claim 1
- the part is formed of an electrically conductive material and the damaged thermal barrier allows the conduction of electricity in the damaged area to be repaired and therefore the deposition of the ceramic coating by electrophoresis in this area during step a).
- the ceramic coating obtained during step a) is formed by depositing the particles on the part. Most of the ceramic coating can be deposited in the damaged area. In other words, a mass of ceramic coating greater than or equal to 50% of the total mass of the ceramic coating deposited during step a) can be deposited in the damaged zone. This mass of ceramic coating deposited in the damaged zone may for example be greater than or equal to 75%, or even 90%, of the total mass of the ceramic coating deposited during step a). In an exemplary embodiment, the ceramic coating can be deposited only in the damaged area.
- the invention advantageously makes it possible to repair the damaged thermal barrier in a rapid, inexpensive and localized manner and thus to avoid the scrapping of partially degraded parts or the complete stripping of the damaged thermal barrier.
- the invention therefore makes it possible to extend the life of the parts and to limit the cost of putting parts into operation again, the thermal barrier of which has been damaged.
- the electrophoresis deposition process has the advantage of being usable for parts having complex geometries.
- the repaired thermal barrier may be intended for use in an environment where the temperature at the surface of the thermal barrier is greater than or equal to 1000 ° C.
- the part can advantageously be made of a metallic material and, for example, include nickel.
- the damaged thermal barrier may have a lack of material in the damaged area.
- the agglomerated particles may have an average size less than or equal to 10 ⁇ m.
- average size denotes the dimension given by the statistical particle size distribution at half of the population, called D50.
- the particles, in the non-agglomerated state have an average size of between 20 nm and 1 ⁇ m.
- Such particle sizes advantageously make it possible to obtain a stable suspension.
- the method comprises, before step a), a step of forming the particles by implementing a sol-gel method. These particles can then be dispersed in the liquid medium to form the electrolyte.
- the particles of the electrolyte can, for example, be particles of yttria-containing zirconia (YSZ; “Yttria-Stabilized Zirconia”) which have been obtained by the sol-gel route.
- Zirconium oxide particles can also be used. More generally, it is possible to use for the deposition by electrophoresis any particles capable of exhibiting an electric charge within the electrolyte (thus allowing them to move during the application of the electric field). It is thus possible, for example, to use particles of the following chemical formula: ZrO 2- ReO 1.5 (where Re denotes a Rare Earth element, for example: Gd, Sm or Er), Y 2 O 3 , Al 2 O 3 , TiO 2 or CeO 2 .
- the particles are formed of a material different from the ceramic material present in the damaged thermal barrier.
- the material constituting the particles and the ceramic material of the damaged thermal barrier are advantageously compatible thermomechanically and chemically.
- the difference between the thermal expansion coefficients of the ceramic material present in the damaged thermal barrier and of the material constituting the particles can in absolute value advantageously be less than or equal to 2.10 -6 K -1 .
- the use of a different material can advantageously make it possible to provide an additional property, for example an anti-CMAS property or a heat-sensitive material, and thus to functionalize the thermal barrier while repairing it.
- the liquid medium can, for example, be chosen from: alcohols, for example ethanol or isopropanol, ketones, for example acetylacetone, water and their mixtures.
- the particles may be present in the liquid medium, before the start of step a), in a concentration greater than or equal to 0.1 g / L, preferably greater than or equal to 1 g / L .
- the thickness of the ceramic coating deposited may be greater than or equal to 50 nm, for example greater than or equal to 30 ⁇ m. In an exemplary embodiment, the thickness of the ceramic coating deposited may be less than or equal to 200 ⁇ m.
- the part can be coated with a bonding layer allowing the attachment of the thermal barrier to the part and the ceramic coating can be deposited on the bonding layer.
- the bonding layer advantageously makes it possible to improve the bonding of the thermal barrier to the part.
- the bonding layer can, moreover, advantageously make it possible to protect the part against oxidation and corrosion.
- the tie layer can, for example, be metallic.
- the thermal barrier can be present directly on the part.
- the thermal barrier can be present directly on the part.
- the duration of step a) may be greater than or equal to 1 minute, preferably 5 minutes.
- a voltage greater than or equal to 1 V can be imposed during all or part of step a) between the part and a counter-electrode.
- the voltage imposed during all or part of step a) may preferably be greater than or equal to 50 V.
- the damaged area may, before step a), have been subjected to a stripping step.
- Carrying out a stripping advantageously makes it possible to eliminate the thermal barrier residues and the oxide layers that may be present and thus improve the electrically conductive nature of the damaged area to be repaired in order to promote the formation of the deposit of ceramic coating by electrophoresis.
- the stripping can be carried out mechanically, for example by sandblasting, sanding, grinding, high pressure water jet or by laser stripping.
- the pickling can be a chemical pickling, for example an electrolytic pickling or a pickling in an acidic or basic medium.
- the damaged thermal barrier may, at the start of step a), exhibit a lack of material in the damaged area.
- the method may comprise, after step a), a step b) of consolidation by heat treatment of the deposited ceramic coating.
- Step b) can, for example, include subjecting the part obtained after implementation of step a) to a temperature greater than or equal to 1000 ° C, for example greater than or equal to 1100 ° C.
- the part may constitute a turbine engine blade.
- a part 1 for example made of a nickel-based superalloy coated with a bonding layer 2 on which is present a damaged thermal barrier 3.
- An oxide layer 2a is present between the bonding layer 2 and the thermal barrier 3 damaged.
- Layer 2a can consist of ⁇ -Al 2 O 3 alumina.
- the damaged thermal barrier 3 is made of a ceramic material and has a damaged area 4 to be repaired.
- the damaged zone 4 can have at least one adjacent undamaged zone. In the example illustrated, the damaged zone 4 is present between two adjacent undamaged zones 5a and 5b.
- the part 1 bearing the damaged thermal barrier 3 is present in an electrolyte 10 comprising a suspension of particles 11 in a liquid medium.
- the particles 11 can, for example, be particles of yttriated zirconia (zirconia stabilized with yttrium oxide).
- the oxide powder (yttriated zirconia) thus obtained is then suspended in a liquid medium consisting for example of isopropanol in order to form the electrolyte 10.
- the part 1 coated with the damaged thermal barrier 3 constitutes an electrode of the electrophoresis system opposite which a counter-electrode 20.
- the counter-electrode 20 is, for example, made of platinum. Due to the conductive nature of the part 1 and of the damaged zone 4, a deposition by electrophoresis is carried out in the damaged zone 4.
- the damaged zone 4 consists, in the example illustrated, by a region devoid of material.
- the damaged area comprises a first region devoid of material as well as a second region in which a ceramic layer is present, the thickness of the ceramic layer present in the second region being sufficiently small for this second region is a conductor of electricity.
- the damaged zone is constituted by a region in which a ceramic layer is present, the thickness of the ceramic layer being sufficiently small for this region to be electrically conductive.
- the deposit is preferably carried out in the most conductive areas (sufficiently low thickness of the ceramic layer or total absence of ceramic layer) because the electric field will be relatively high in these areas.
- the damaged thermal barrier 3 has a single damaged zone 4 to be repaired, but it is not beyond the scope of the present invention if the damaged thermal barrier has a plurality of zones. damaged to repair. In this case, each of the damaged areas to be repaired conducts electricity.
- a generator G imposes a potential difference between the part 1 and the counter-electrode 20.
- the generator G has direct or pulsed current.
- Part 1 is polarized at an opposite charge to that of the particles 11. Due to the application of an electric field between the part 1 and the counter-electrode 20, the particles 11 move and are deposited on the part 1 for forming a ceramic coating 6.
- the deposition of the ceramic coating 6 in the damaged zone 4 makes it possible to obtain a repaired thermal barrier 7.
- the deposition of the ceramic coating 6 in the damaged zone 4 induces a progressive decrease in the electrical conductivity of this zone at over time. In fact, as the ceramic coating 6 is deposited, this zone becomes more and more insulating, which slows down or even stops the formation of the ceramic coating 6 on the part 1.
- the ceramic coating 6 is deposited in the damaged area 4 and covers the entire surface of the damaged area 4.
- the damaged thermal barrier 3 is not covered with a mask having an opening superimposed with the damaged zone 4 to be repaired.
- the ceramic coating 6 may have a thickness e greater than or equal to 50 nm, for example greater than or equal to 30 ⁇ m.
- the thickness e of the ceramic coating 6 corresponds to its largest dimension measured perpendicular to the surface S of the coated part 1.
- step a drying and then a heat treatment for consolidation of the ceramic coating 6 can be carried out.
- the thermal barrier was first damaged by water jet.
- the figure 4A shows the result obtained after damage.
- a deposition by electrophoresis was carried out from a suspension of YSZ powder in isopropanol (10 g / L) at a voltage of 100 V for 6 minutes.
- a photograph of the part after treatment by the method according to the invention is given at figure 4B .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Coating By Spraying Or Casting (AREA)
Description
L'invention concerne les procédés de réparation localisée des barrières thermiques endommagées.The invention relates to methods of localized repair of damaged thermal barriers.
Les aubages des turbines haute pression des moteurs aéronautiques sont exposés à un environnement très agressif. Ces pièces sont, en général, revêtues d'un revêtement protecteur en oxydation ainsi que d'un revêtement de barrière thermique. Le revêtement de barrière thermique permet d'isoler thermiquement la pièce sous-jacente afin de la maintenir à des températures où ses performances mécaniques et sa durée de vie sont acceptables.The blades of the high pressure turbines of aero engines are exposed to a very aggressive environment. These parts are generally coated with an oxidative protective coating as well as a thermal barrier coating. The thermal barrier coating provides thermal insulation of the underlying part in order to maintain it at temperatures where its mechanical performance and life are acceptable.
Certaines zones de ce système peuvent être endommagées en service à haute température par l'érosion, l'impact de particules, l'oxydation, la corrosion et par les aluminosilicates de calcium et de magnésium (« CMAS »). Les photographies fournies aux
Actuellement, il est connu afin de reconstituer une barrière thermique de décaper l'intégralité du revêtement de barrière thermique (même les zones non endommagées) des pièces puis de réaliser un nouveau système barrière thermique. Des pièces dont la barrière thermique a été endommagée peuvent même dans certains cas être mises au rebut.Currently, it is known in order to reconstitute a thermal barrier to strip the entire thermal barrier coating (even the undamaged areas) of the parts and then to produce a new thermal barrier system. Parts whose thermal barrier has been damaged can even in some cases be discarded.
On connait aussi
Il existe un besoin pour améliorer la durée d'utilisation des pièces revêtues par des barrières thermiques.There is a need to improve the useful life of parts coated with thermal barriers.
Il existe un besoin pour simplifier et diminuer le coût des procédés de réparation des barrières thermiques endommagées.There is a need to simplify and reduce the cost of repair methods for damaged thermal barriers.
Il existe aussi un besoin pour disposer de nouveaux procédés de réparation des barrières thermiques endommagées.There is also a need for new methods of repairing damaged thermal barriers.
A cet effet, l'invention propose, selon un premier aspect, un procédé selon la revendication 1To this end, the invention provides, according to a first aspect, a method according to
Dans l'invention, la pièce est formée d'un matériau conducteur de l'électricité et la barrière thermique endommagée permet la conduction de l'électricité dans la zone endommagée à réparer et donc le dépôt du revêtement céramique par électrophorèse dans cette zone lors de l'étape a). Le revêtement céramique obtenu lors de l'étape a) est formé par le dépôt des particules sur la pièce. Le revêtement céramique peut être majoritairement déposé dans la zone endommagée. En d'autres termes, une masse de revêtement céramique supérieure ou égale à 50% de la masse totale du revêtement céramique déposé lors de l'étape a) peut être déposée dans la zone endommagée. Cette masse de revêtement céramique déposée dans la zone endommagée peut par exemple être supérieure ou égale à 75%, voire à 90%, de la masse totale du revêtement céramique déposé lors de l'étape a). Dans un exemple de réalisation, le revêtement céramique peut être déposé uniquement dans la zone endommagée.In the invention, the part is formed of an electrically conductive material and the damaged thermal barrier allows the conduction of electricity in the damaged area to be repaired and therefore the deposition of the ceramic coating by electrophoresis in this area during step a). The ceramic coating obtained during step a) is formed by depositing the particles on the part. Most of the ceramic coating can be deposited in the damaged area. In other words, a mass of ceramic coating greater than or equal to 50% of the total mass of the ceramic coating deposited during step a) can be deposited in the damaged zone. This mass of ceramic coating deposited in the damaged zone may for example be greater than or equal to 75%, or even 90%, of the total mass of the ceramic coating deposited during step a). In an exemplary embodiment, the ceramic coating can be deposited only in the damaged area.
L'invention permet avantageusement de réparer de manière rapide, peu coûteuse et localisée la barrière thermique endommagée et ainsi d'éviter la mise au rebut de pièces partiellement dégradées ou le décapage complet de la barrière thermique endommagée. L'invention permet, par conséquent, de prolonger la durée de vie des pièces et de limiter le coût de remise en fonctionnement des pièces dont la barrière thermique a été endommagée.The invention advantageously makes it possible to repair the damaged thermal barrier in a rapid, inexpensive and localized manner and thus to avoid the scrapping of partially degraded parts or the complete stripping of the damaged thermal barrier. The invention therefore makes it possible to extend the life of the parts and to limit the cost of putting parts into operation again, the thermal barrier of which has been damaged.
La possibilité d'une réparation localisée résulte de la mise en œuvre d'un dépôt par électrophorèse à la différence du procédé de dépôt en phase vapeur avec évaporation sous faisceau d'électrons (« electron beam physical vapor déposition » ; EB-PVD) ou de projection plasma (« plasma spraying » ; PS) qui ne permettent pas ou difficilement la réalisation d'une réparation localisée.The possibility of localized repair results from the implementation of a deposition by electrophoresis unlike the vapor deposition process with evaporation under an electron beam ("electron beam physical vapor deposition"; EB-PVD) or plasma spraying (“plasma spraying”; PS) which does not allow or hardly allow the realization of a localized repair.
En outre, le procédé de dépôt par électrophorèse présente l'avantage d'être utilisable pour des pièces présentant des géométries complexes.In addition, the electrophoresis deposition process has the advantage of being usable for parts having complex geometries.
La barrière thermique réparée peut être destinée à être utilisée dans un environnement où la température à la surface de la barrière thermique est supérieure ou égale à 1000°C.The repaired thermal barrier may be intended for use in an environment where the temperature at the surface of the thermal barrier is greater than or equal to 1000 ° C.
La pièce peut avantageusement être en matériau métallique et, par exemple, comporter du nickel.The part can advantageously be made of a metallic material and, for example, include nickel.
Avantageusement, avant mise en œuvre de l'étape a), la barrière thermique endommagée peut présenter un manque de matière dans la zone endommagée.Advantageously, before implementation of step a), the damaged thermal barrier may have a lack of material in the damaged area.
Dans un exemple de réalisation, les particules agglomérées peuvent présenter une taille moyenne inférieure ou égale à 10 µm.In an exemplary embodiment, the agglomerated particles may have an average size less than or equal to 10 μm.
Par « taille moyenne », on désigne la dimension donnée par la distribution granulométrique statistique à la moitié de la population, dite D50.The term “average size” denotes the dimension given by the statistical particle size distribution at half of the population, called D50.
Les particules, à l'état non aggloméré, ont une taille moyenne comprise entre 20 nm et 1 µm.The particles, in the non-agglomerated state, have an average size of between 20 nm and 1 μm.
De telles tailles de particules permettent avantageusement d'obtenir une suspension stable.Such particle sizes advantageously make it possible to obtain a stable suspension.
Les particules ont été obtenues par voie sol-gel .Ainsi, le procédé comporte, avant l'étape a), une étape de formation des particules par mise en œuvre d'un procédé sol-gel. Ces particules peuvent ensuite être dispersées dans le milieu liquide afin de former l'électrolyte.The particles were obtained by the sol-gel route. Thus, the method comprises, before step a), a step of forming the particles by implementing a sol-gel method. These particles can then be dispersed in the liquid medium to form the electrolyte.
Les particules de l'électrolyte peuvent, par exemple, être des particules de zircone yttriée (YSZ ; « Yttria-Stabilized Zirconia ») lesquelles ont été obtenues par voie sol-gel. On peut encore utiliser des particules d'oxyde de zirconium. Plus généralement, on peut utiliser pour le dépôt par électrophorèse toutes particules susceptibles de présenter une charge électrique au sein de l'électrolyte (leur permettant ainsi de se déplacer lors de l'application du champ électrique). On peut ainsi, par exemple, utiliser des particules de formule chimique suivante : ZrO2-ReO1.5 (où Re désigne un élément Terre Rare, par exemple : Gd, Sm ou Er), Y2O3, Al2O3, TiO2 ou CeO2.The particles of the electrolyte can, for example, be particles of yttria-containing zirconia (YSZ; “Yttria-Stabilized Zirconia”) which have been obtained by the sol-gel route. Zirconium oxide particles can also be used. More generally, it is possible to use for the deposition by electrophoresis any particles capable of exhibiting an electric charge within the electrolyte (thus allowing them to move during the application of the electric field). It is thus possible, for example, to use particles of the following chemical formula: ZrO 2- ReO 1.5 (where Re denotes a Rare Earth element, for example: Gd, Sm or Er), Y 2 O 3 , Al 2 O 3 , TiO 2 or CeO 2 .
Les particules sont formées d'un matériau différent du matériau céramique présent dans la barrière thermique endommagée. Le matériau constituant les particules et le matériau céramique de la barrière thermique endommagée sont avantageusement compatibles thermomécaniquement et chimiquement. Par exemple, la différence entre les coefficients d'expansion thermique du matériau céramique présent dans la barrière thermique endommagée et du matériau constituant les particules peut en valeur absolue avantageusement être inférieure ou égale à 2.10-6 K-1.The particles are formed of a material different from the ceramic material present in the damaged thermal barrier. The material constituting the particles and the ceramic material of the damaged thermal barrier are advantageously compatible thermomechanically and chemically. For example, the difference between the thermal expansion coefficients of the ceramic material present in the damaged thermal barrier and of the material constituting the particles can in absolute value advantageously be less than or equal to 2.10 -6 K -1 .
L'utilisation d'un matériau différent peut avantageusement permettre d'apporter une propriété supplémentaire, par exemple propriété anti-CMAS ou matériau thermosensible, et ainsi de fonctionnaliser la barrière thermique tout en la réparant.The use of a different material can advantageously make it possible to provide an additional property, for example an anti-CMAS property or a heat-sensitive material, and thus to functionalize the thermal barrier while repairing it.
Le milieu liquide peut, par exemple, être choisi parmi : les alcools, par exemple l'éthanol ou l'isopropanol, les cétones par exemple l'acétylacétone, l'eau et leurs mélanges.The liquid medium can, for example, be chosen from: alcohols, for example ethanol or isopropanol, ketones, for example acetylacetone, water and their mixtures.
Dans un exemple de réalisation, les particules peuvent être présentes dans le milieu liquide, avant le début de l'étape a), en une concentration supérieure ou égale à 0,1 g/L, de préférence supérieure ou égale à 1 g/L.In an exemplary embodiment, the particles may be present in the liquid medium, before the start of step a), in a concentration greater than or equal to 0.1 g / L, preferably greater than or equal to 1 g / L .
De telles valeurs de concentration permettent avantageusement de disposer d'une suspension stable.Such concentration values advantageously make it possible to have a stable suspension.
Dans un exemple de réalisation, l'épaisseur du revêtement céramique déposé peut être supérieure ou égale à 50 nm, par exemple supérieure ou égale à 30 µm. Dans un exemple de réalisation, l'épaisseur du revêtement céramique déposé peut être inférieure ou égale à 200 µm.In an exemplary embodiment, the thickness of the ceramic coating deposited may be greater than or equal to 50 nm, for example greater than or equal to 30 μm. In an exemplary embodiment, the thickness of the ceramic coating deposited may be less than or equal to 200 μm.
Dans un exemple de réalisation, la pièce peut être revêtue d'une couche d'accrochage permettant l'accrochage de la barrière thermique à la pièce et le revêtement céramique peut être déposé sur la couche d'accrochage.In an exemplary embodiment, the part can be coated with a bonding layer allowing the attachment of the thermal barrier to the part and the ceramic coating can be deposited on the bonding layer.
La couche d'accrochage permet avantageusement d'améliorer l'accrochage de la barrière thermique à la pièce. La couche d'accrochage peut, en outre, avantageusement permettre de protéger la pièce contre l'oxydation et la corrosion.The bonding layer advantageously makes it possible to improve the bonding of the thermal barrier to the part. The bonding layer can, moreover, advantageously make it possible to protect the part against oxidation and corrosion.
La couche d'accrochage peut, par exemple, être métallique.The tie layer can, for example, be metallic.
Dans une variante, la barrière thermique peut directement être présente sur la pièce. Ainsi, il est possible qu'aucune couche d'accrochage ne soit présente entre la barrière thermique et la pièce.In a variant, the thermal barrier can be present directly on the part. Thus, it is possible that no bonding layer is present between the thermal barrier and the part.
Dans un exemple de réalisation, la durée de l'étape a) peut être supérieure ou égale à 1 minute, de préférence à 5 minutes.In an exemplary embodiment, the duration of step a) may be greater than or equal to 1 minute, preferably 5 minutes.
De telles valeurs permettent avantageusement d'améliorer le caractère couvrant et l'homogénéité du revêtement céramique formé.Such values advantageously make it possible to improve the covering character and the homogeneity of the ceramic coating formed.
Dans un exemple de réalisation, une tension supérieure ou égale à 1 V peut être imposée durant tout ou partie de l'étape a) entre la pièce et une contre-électrode. La tension imposée durant tout ou partie de l'étape a) peut, de préférence, être supérieure ou égale à 50 V.In an exemplary embodiment, a voltage greater than or equal to 1 V can be imposed during all or part of step a) between the part and a counter-electrode. The voltage imposed during all or part of step a) may preferably be greater than or equal to 50 V.
De telles valeurs permettent avantageusement d'améliorer le caractère couvrant et l'homogénéité du revêtement céramique formé.Such values advantageously make it possible to improve the covering character and the homogeneity of the ceramic coating formed.
Dans un exemple de réalisation, la zone endommagée peut, avant l'étape a), avoir été soumise à une étape de décapage.In an exemplary embodiment, the damaged area may, before step a), have been subjected to a stripping step.
La réalisation d'un décapage permet avantageusement d'éliminer les résidus de barrière thermique et les couches d'oxydes éventuellement présents et ainsi d'améliorer le caractère conducteur de l'électricité de la zone endommagée à réparer afin de favoriser la formation du dépôt du revêtement céramique par électrophorèse.Carrying out a stripping advantageously makes it possible to eliminate the thermal barrier residues and the oxide layers that may be present and thus improve the electrically conductive nature of the damaged area to be repaired in order to promote the formation of the deposit of ceramic coating by electrophoresis.
Le décapage peut être réalisé mécaniquement, par exemple par sablage, ponçage, meulage, jet d'eau haute pression ou par décapage laser.The stripping can be carried out mechanically, for example by sandblasting, sanding, grinding, high pressure water jet or by laser stripping.
En variante, le décapage peut être un décapage chimique, par exemple un décapage électrolytique ou un décapage en milieu acide ou basique.As a variant, the pickling can be a chemical pickling, for example an electrolytic pickling or a pickling in an acidic or basic medium.
Après décapage, la barrière thermique endommagée peut, au début de l'étape a), présenter un manque de matière dans la zone endommagée.After stripping, the damaged thermal barrier may, at the start of step a), exhibit a lack of material in the damaged area.
Dans un exemple de réalisation, le procédé peut comporter, après l'étape a), une étape b) de consolidation par traitement thermique du revêtement céramique déposé.In an exemplary embodiment, the method may comprise, after step a), a step b) of consolidation by heat treatment of the deposited ceramic coating.
L'étape b) peut, par exemple, comporter la soumission de la pièce obtenue après mise en œuvre de l'étape a) à une température supérieure ou égale à 1000°C, par exemple supérieure ou égale à 1100°C.Step b) can, for example, include subjecting the part obtained after implementation of step a) to a temperature greater than or equal to 1000 ° C, for example greater than or equal to 1100 ° C.
Dans un exemple de réalisation, la pièce peut constituer une aube de turbomachine.In an exemplary embodiment, the part may constitute a turbine engine blade.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, en référence aux dessins annexés, sur lesquels :
- la
figure 1 est une photographie d'une aube de turbomachine endommagée en service, - la
figure 2 comporte une photographie d'une aube de turbomachine endommagée en service et illustre, de manière schématique et partielle, la structure d'une barrière thermique endommagée, - les
figures 3A et 3B illustrent, de manière schématique et partielle, la mise en œuvre d'un procédé selon l'invention, et - les
figures 4A et 4B sont des photographies représentant respectivement une pièce avant et après traitement par un procédé hors l'invention.
- the
figure 1 is a photograph of a damaged turbine engine blade in service, - the
figure 2 includes a photograph of a damaged turbine engine blade in service and schematically and partially illustrates the structure of a damaged thermal barrier, - the
figures 3A and 3B schematically and partially illustrate the implementation of a method according to the invention, and - the
figures 4A and 4B are photographs respectively representing a part before and after treatment by a process outside the invention.
On a représenté à la
La zone endommagée 4 peut présenter au moins une zone adjacente non endommagée. Dans l'exemple illustré, la zone endommagée 4 est présente entre deux zones adjacentes non endommagées 5a et 5b.The damaged zone 4 can have at least one adjacent undamaged zone. In the example illustrated, the damaged zone 4 is present between two adjacent
On a représenté à la
A titre d'exemple, on décrit ci-dessous les étapes de la synthèse par voie sol-gel d'une poudre de zircone yttriée destinée, dans un exemple de réalisation, à former les particules 11 :
- Mélange d'acétyl-acétone dans du 1-propanol et de propoxyde de zirconium (Zr(OC3H7)4),
- Mélange du mélange obtenu avec une solution de nitrate d'yttrium dans du 1-propanol,
- Mélange du mélange obtenu avec de l'eau et du 1-propanol (10 mol/L) afin d'obtenir un sol,
- Mise à l'étuve du sol à une température de 50°C,
- Séchage évaporatif ou séchage supercritique,
- Calcination à l'air à une température de 700°C.
- Mixture of acetyl-acetone in 1-propanol and zirconium propoxide (Zr (OC 3 H 7 ) 4 ),
- Mixing of the mixture obtained with a solution of yttrium nitrate in 1-propanol,
- Mixing the mixture obtained with water and 1-propanol (10 mol / L) in order to obtain a soil,
- Putting the soil in an oven at a temperature of 50 ° C,
- Evaporative drying or supercritical drying,
- Calcination in air at a temperature of 700 ° C.
La poudre d'oxyde (zircone yttriée) ainsi obtenue est alors mise en suspension dans un milieu liquide constitué par exemple d'isopropanol afin de former l'électrolyte 10.The oxide powder (yttriated zirconia) thus obtained is then suspended in a liquid medium consisting for example of isopropanol in order to form the
La pièce 1 revêtue de la barrière thermique endommagée 3 constitue une électrode du système d'électrophorèse au regard de laquelle est présente une contre-électrode 20. La contre-électrode 20 est, par exemple, en platine. Du fait du caractère conducteur de la pièce 1 et de la zone endommagée 4, un dépôt par électrophorèse est réalisé dans la zone endommagée 4. La zone endommagée 4 est constituée, dans l'exemple illustré, par une région dépourvue de matière. Dans une variante non illustrée, la zone endommagée comporte une première région dépourvue de matière ainsi qu'une deuxième région dans laquelle une couche céramique est présente, l'épaisseur de la couche céramique présente dans la deuxième région étant suffisamment faible pour que cette deuxième région soit conductrice de l'électricité. En variante encore, la zone endommagée est constituée par une région dans laquelle une couche céramique est présente, l'épaisseur de la couche céramique étant suffisamment faible pour que cette région soit conductrice de l'électricité.The
Le dépôt est réalisé préférentiellement dans les zones les plus conductrices (épaisseur de la couche céramique suffisamment faible ou absence totale de couche céramique) car le champ électrique sera relativement élevé dans ces zones.The deposit is preferably carried out in the most conductive areas (sufficiently low thickness of the ceramic layer or total absence of ceramic layer) because the electric field will be relatively high in these areas.
On a représenté un exemple de réalisation où la barrière thermique endommagée 3 présente une unique zone endommagée 4 à réparer mais on ne sort pas du cadre de la présente invention si la barrière thermique endommagée présente une pluralité de zones endommagées à réparer. Dans ce cas, chacune des zones endommagées à réparer est conductrice de l'électricité.An exemplary embodiment has been shown where the damaged
Durant l'étape a), un générateur G impose une différence de potentiel entre la pièce 1 et la contre-électrode 20. Le générateur G est à courant continu ou pulsé . La pièce 1 est polarisée à une charge opposée à celle des particules 11. Du fait de l'application d'un champ électrique entre la pièce 1 et la contre-électrode 20, les particules 11 se déplacent et se déposent sur la pièce 1 pour former un revêtement céramique 6. Le dépôt du revêtement céramique 6 dans la zone endommagée 4 permet d'obtenir une barrière thermique réparée 7. Le dépôt du revêtement céramique 6 dans la zone endommagée 4 induit une diminution progressive de la conductivité électrique de cette zone au cours du temps. En effet, au fur et à mesure du dépôt du revêtement céramique 6, cette zone devient de plus en plus isolante ce qui ralentit voire stoppe la formation du revêtement céramique 6 sur la pièce 1.During step a), a generator G imposes a potential difference between the
Comme illustré, le revêtement céramique 6 est déposé dans la zone endommagée 4 et recouvre toute la surface de la zone endommagée 4.As illustrated, the ceramic coating 6 is deposited in the damaged area 4 and covers the entire surface of the damaged area 4.
Avantageusement, lors du dépôt du revêtement céramique 6, la barrière thermique endommagée 3 n'est pas recouverte d'un masque présentant une ouverture se superposant avec la zone endommagée 4 à réparer. En outre, il n'est pas nécessaire avant l'étape a) de décaper une partie de la barrière thermique endommagée 3 située en dehors de la zone endommagée 4 à réparer.Advantageously, during the deposition of the ceramic coating 6, the damaged
Le revêtement céramique 6 peut présenter une épaisseur e supérieure ou égale à 50 nm, par exemple supérieure ou égale à 30 µm. L'épaisseur e du revêtement céramique 6 correspond à sa plus grande dimension mesurée perpendiculairement à la surface S de la pièce 1 revêtue.The ceramic coating 6 may have a thickness e greater than or equal to 50 nm, for example greater than or equal to 30 μm. The thickness e of the ceramic coating 6 corresponds to its largest dimension measured perpendicular to the surface S of the
Après l'étape a), un séchage puis un traitement thermique de consolidation du revêtement céramique 6 peuvent être effectués.After step a), drying and then a heat treatment for consolidation of the ceramic coating 6 can be carried out.
Une pièce de superalliage base nickel revêtue d'une barrière thermique de zircone stabilisée par de l'oxyde d'yttrium (YSZ) obtenue par procédé de dépôt en phase vapeur avec évaporation sous faisceau d'électrons (« Electron beam physical vapor deposition » ; EB-PVD) a été utilisée. La barrière thermique a tout d'abord été endommagée par jet d'eau. La
Un dépôt par électrophorèse a été réalisé à partir d'une suspension de poudre YSZ dans l'isopropanol (10 g/L) à une tension de 100V pendant 6 minutes. Une photographie de la pièce après traitement par le procédé selon l'invention est donnée à la
On constate que l'on obtient un dépôt couvrant et homogène de zircone stabilisée par de l'oxyde d'yttrium dans la toute la zone endommagée.It is observed that a covering and homogeneous deposit of zirconia stabilized by yttrium oxide is obtained throughout the damaged zone.
L'expression « comportant/contenant un(e) » doit se comprendre comme « comportant/contenant au moins un(e) ».The expression “comprising / containing one” should be understood as “comprising / containing at least one”.
L'expression « compris(e) entre ... et ... » ou « allant de ... à ... » doit se comprendre comme incluant les bornes.The expression "between ... and ..." or "ranging from ... to ..." should be understood as including the limits.
Claims (10)
- A method of localized repair to a damaged thermal barrier (3), the method comprising the following step:a) subjecting a part (1) coated by a damaged thermal barrier (3) to electrophoresis treatment, the part being made of an electrically conductive material, the damaged thermal barrier (3) comprising a ceramic material and having at least one damaged zone (4) that is to be repaired, the part (1) being present in an electrolyte (10) comprising a suspension of particles (11) in a liquid medium, the particles (11) in the non-agglomerated state having a mean size lying in the range 20 nm to 1 µm, a ceramic coating (6) being deposited by electrophoresis in the damaged zone (4) in order to obtain a repaired thermal barrier (7) for use at temperatures higher than or equal to 1000°C,the particles (11) being made of a material different from the ceramic material present in the damaged thermal barrier (3),
the method comprising prior to step a), a step of forming the particles (11) by performing a sol-gel method, the drying step of said sol-gel method being performed by supercritical drying. - A method according to claim 1, wherein before the beginning of step a), the particles (11) are present in the liquid medium at a concentration greater than or equal to 0.1 g/L.
- A method according to claim 1 or 2, wherein the duration of step a) is greater than or equal to 1 minute.
- A method according to any one of claims 1 to 3,
wherein a voltage greater than or equal to 1 V is imposed during all or part of step a) between the part (1) and a counter electrode (20). - A method according to any one of claims 1 to 4,
wherein the thickness e of the deposited ceramic coating is greater than or equal to 30 µm. - A method according to any one of claims 1 to 5,
wherein the part (1) is coated by an attachment layer (2) enabling the thermal barrier (3; 7) to attach to the part (1), and wherein the ceramic coating (6) is deposited on the attachment layer (2). - A method according to any one of claims 1 to 6,
wherein prior to step a), the damaged zone (4) is subjected to a stripping step. - A method according to any one of claims 1 to 7,
wherein after step a), it includes a step b) of consolidation by subjecting the deposited ceramic coating (6) to heat treatment. - A method according to any one of claims 1 to 8,
wherein the part constitutes a turbine engine blade. - A method according to any one of claims 1 to 9, the damaged thermal barrier having a columnar structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20203886.5A EP3789518B1 (en) | 2014-01-29 | 2014-12-11 | Method for localised repair of a damaged thermal barrier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1400224 | 2014-01-29 | ||
PCT/FR2014/053268 WO2015114227A1 (en) | 2014-01-29 | 2014-12-11 | Process for localised repair of a damaged thermal barrier |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20203886.5A Division-Into EP3789518B1 (en) | 2014-01-29 | 2014-12-11 | Method for localised repair of a damaged thermal barrier |
EP20203886.5A Division EP3789518B1 (en) | 2014-01-29 | 2014-12-11 | Method for localised repair of a damaged thermal barrier |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3099848A1 EP3099848A1 (en) | 2016-12-07 |
EP3099848B1 true EP3099848B1 (en) | 2021-08-25 |
Family
ID=50976720
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14828044.9A Active EP3099848B1 (en) | 2014-01-29 | 2014-12-11 | Process for localised repair of a damaged thermal barrier |
EP20203886.5A Active EP3789518B1 (en) | 2014-01-29 | 2014-12-11 | Method for localised repair of a damaged thermal barrier |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20203886.5A Active EP3789518B1 (en) | 2014-01-29 | 2014-12-11 | Method for localised repair of a damaged thermal barrier |
Country Status (7)
Country | Link |
---|---|
US (1) | US9840914B2 (en) |
EP (2) | EP3099848B1 (en) |
CN (1) | CN106414813B (en) |
BR (1) | BR112016017562B1 (en) |
CA (1) | CA2938031C (en) |
RU (1) | RU2678347C2 (en) |
WO (1) | WO2015114227A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3073866B1 (en) * | 2017-11-21 | 2019-11-29 | Safran Helicopter Engines | METHOD FOR MANUFACTURING A THERMAL BARRIER ON A PIECE OF A TURBOMACHINE |
CN110129859B (en) * | 2018-02-08 | 2021-09-21 | 通用电气公司 | Method for masking holes in and treating components |
FR3099935B1 (en) * | 2019-08-12 | 2021-09-10 | Safran Aircraft Engines | Process for coating a part of a turbomachine |
US20230220580A1 (en) * | 2022-01-12 | 2023-07-13 | General Electric Company | Formation of a barrier coating using electrophoretic deposition of a slurry |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10335406A1 (en) * | 2003-08-01 | 2005-02-17 | Mtu Aero Engines Gmbh | Method of repairing thermal barrier coatings with local damage |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3416165A1 (en) * | 1983-06-03 | 1984-12-06 | VEB Thuringia Sonneberg, DDR 6412 Sonneberg | Method for the electrophoretic production of a composition film |
SU1730209A1 (en) * | 1988-09-23 | 1992-04-30 | Предприятие П/Я А-7555 | Plant for electrophoretic coating |
US5723078A (en) * | 1996-05-24 | 1998-03-03 | General Electric Company | Method for repairing a thermal barrier coating |
FR2827311B1 (en) * | 2001-07-12 | 2003-09-19 | Snecma Moteurs | PROCESS FOR LOCAL REPAIR OF PARTS COATED WITH A THERMAL BARRIER |
US20070087129A1 (en) * | 2005-10-19 | 2007-04-19 | Blankenship Donn R | Methods for repairing a workpiece |
US7780832B2 (en) * | 2005-11-30 | 2010-08-24 | General Electric Company | Methods for applying mitigation coatings, and related articles |
KR100753909B1 (en) | 2006-09-09 | 2007-08-31 | 한국원자력연구원 | Repair method of pitting damage or cracks of metals or alloys by using electrophoretic deposition of nanoparticles |
EP2000557B1 (en) | 2007-06-04 | 2015-04-29 | United Technologies Corporation | Erosion barrier for thermal barrier coatings |
-
2014
- 2014-12-11 BR BR112016017562-0A patent/BR112016017562B1/en active IP Right Grant
- 2014-12-11 CN CN201480074456.0A patent/CN106414813B/en active Active
- 2014-12-11 EP EP14828044.9A patent/EP3099848B1/en active Active
- 2014-12-11 CA CA2938031A patent/CA2938031C/en active Active
- 2014-12-11 WO PCT/FR2014/053268 patent/WO2015114227A1/en active Application Filing
- 2014-12-11 US US15/115,068 patent/US9840914B2/en active Active
- 2014-12-11 EP EP20203886.5A patent/EP3789518B1/en active Active
- 2014-12-11 RU RU2016135017A patent/RU2678347C2/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10335406A1 (en) * | 2003-08-01 | 2005-02-17 | Mtu Aero Engines Gmbh | Method of repairing thermal barrier coatings with local damage |
Also Published As
Publication number | Publication date |
---|---|
CA2938031A1 (en) | 2015-08-06 |
WO2015114227A1 (en) | 2015-08-06 |
BR112016017562A2 (en) | 2017-08-08 |
EP3789518B1 (en) | 2023-11-29 |
RU2016135017A3 (en) | 2018-08-22 |
EP3789518A1 (en) | 2021-03-10 |
CA2938031C (en) | 2022-05-10 |
RU2016135017A (en) | 2018-03-05 |
BR112016017562B1 (en) | 2022-04-12 |
US20160348509A1 (en) | 2016-12-01 |
RU2678347C2 (en) | 2019-01-28 |
EP3099848A1 (en) | 2016-12-07 |
US9840914B2 (en) | 2017-12-12 |
CN106414813A (en) | 2017-02-15 |
CN106414813B (en) | 2019-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3099848B1 (en) | Process for localised repair of a damaged thermal barrier | |
CA2931927C (en) | Method for locally repairing thermal barriers | |
CA2828792C (en) | Process for producing a thermal barrier in a multilayer system for protecting a metal part and part equipped with such a protective system | |
CA2792518A1 (en) | Method for manufacturing a thermal-barrier protection and multi-layer coating suitable for forming a thermal barrier | |
FR3057580A1 (en) | METHOD FOR COATING A SURFACE OF A SOLID SUBSTRATE WITH A LAYER COMPRISING A CERAMIC COMPOUND, AND THE COATED SUBSTRATE THUS OBTAINED | |
FR3058469A1 (en) | TURBOMACHINE PIECE COATED WITH A THERMAL BARRIER AND METHOD FOR OBTAINING IT | |
EP3707297B1 (en) | Method for producing a thermal barrier on a part of a turbomachine | |
EP2882551B1 (en) | Abradable coating made of a material having a low surface roughness | |
FR2941965A1 (en) | Depositing a protection layer on a metallic piece e.g. turbine blade using mold, comprises depositing precursor coating on piece and/or inner walls of mold, and depositing piece in the mold and then mold in a compression enclosure | |
EP3980584B1 (en) | Method for manufacturing a fire-resistant part of an air conditioning system and part produced by such a method | |
WO2010092298A1 (en) | Process for depositing a protective layer on a part | |
WO2018202964A1 (en) | Superalloy turbine part and associated method for manufacturing by bombardment with charged particles | |
EP3669013B1 (en) | Method for manufacturing an electrolyte for solid oxide cells by magnetron cathode sputtering | |
FR3085870A1 (en) | METHOD FOR ASSEMBLING A METAL PIECE AND A CERAMIC PIECE, AND ELECTRIC DEVICE, IN PARTICULAR CAPACITIVE SENSOR, CARRIED OUT BY THE METHOD | |
WO2023094752A1 (en) | Method for electrophoretically coating a ceramic matrix composite part with an environmental barrier | |
FR3139335A1 (en) | Manufacturing process for obtaining a part coated with an electrically and thermally insulating coating | |
FR3147296A1 (en) | Production of an environmental barrier layer by electrophoretic means | |
FR3085872A1 (en) | METHOD FOR EXTRACTING A FOREIGN BODY NESTED IN A BLADE OF HIGH PRESSURE DISPENSER | |
WO2017093648A1 (en) | Hybrid annular sector with touch-tolerant protective coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160718 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HAMADI, SARAH Inventor name: CERDA, HELENE Inventor name: BONINO, JEAN-PIERRE Inventor name: PUJOL, GUILLAUME Inventor name: ANSART, FLORENCE Inventor name: MALIE, ANDRE, HUBERT, LOUIS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180413 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 13/22 20060101ALI20200527BHEP Ipc: C25D 13/02 20060101AFI20200527BHEP Ipc: F01D 5/00 20060101ALI20200527BHEP Ipc: F01D 5/28 20060101ALI20200527BHEP Ipc: C25D 13/12 20060101ALI20200527BHEP Ipc: C25D 13/20 20060101ALI20200527BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200624 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INSTITUT NATIONAL POLYTECHNIQUE Owner name: UNIVERSITE PAUL SABATIER - TOULOUSE III Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Owner name: SAFRAN AIRCRAFT ENGINES |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH Ref country code: AT Ref legal event code: REF Ref document number: 1423891 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014079715 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1423891 Country of ref document: AT Kind code of ref document: T Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211227 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211125 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014079715 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20220527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211211 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221122 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231124 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231121 Year of fee payment: 10 Ref country code: FR Payment date: 20231122 Year of fee payment: 10 Ref country code: DE Payment date: 20231121 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210825 |