EP3099848B1 - Process for localised repair of a damaged thermal barrier - Google Patents

Process for localised repair of a damaged thermal barrier Download PDF

Info

Publication number
EP3099848B1
EP3099848B1 EP14828044.9A EP14828044A EP3099848B1 EP 3099848 B1 EP3099848 B1 EP 3099848B1 EP 14828044 A EP14828044 A EP 14828044A EP 3099848 B1 EP3099848 B1 EP 3099848B1
Authority
EP
European Patent Office
Prior art keywords
damaged
thermal barrier
particles
equal
ceramic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14828044.9A
Other languages
German (de)
French (fr)
Other versions
EP3099848A1 (en
Inventor
André Hubert Louis MALIE
Sarah Hamadi
Florence Ansart
Jean-Pierre Bonino
Hélène CERDA
Guillaume PUJOL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Universite Toulouse III Paul Sabatier
Original Assignee
Safran Aircraft Engines SAS
Centre National de la Recherche Scientifique CNRS
Institut National Polytechnique de Toulouse INPT
Universite Toulouse III Paul Sabatier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS, Centre National de la Recherche Scientifique CNRS, Institut National Polytechnique de Toulouse INPT, Universite Toulouse III Paul Sabatier filed Critical Safran Aircraft Engines SAS
Priority to EP20203886.5A priority Critical patent/EP3789518B1/en
Publication of EP3099848A1 publication Critical patent/EP3099848A1/en
Application granted granted Critical
Publication of EP3099848B1 publication Critical patent/EP3099848B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/18Electrophoretic coating characterised by the process using modulated, pulsed, or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5023Thermal capacity

Definitions

  • the invention relates to methods of localized repair of damaged thermal barriers.
  • the blades of the high pressure turbines of aero engines are exposed to a very aggressive environment. These parts are generally coated with an oxidative protective coating as well as a thermal barrier coating.
  • the thermal barrier coating provides thermal insulation of the underlying part in order to maintain it at temperatures where its mechanical performance and life are acceptable.
  • CMAS calcium and magnesium aluminosilicates
  • the invention provides, according to a first aspect, a method according to claim 1
  • the part is formed of an electrically conductive material and the damaged thermal barrier allows the conduction of electricity in the damaged area to be repaired and therefore the deposition of the ceramic coating by electrophoresis in this area during step a).
  • the ceramic coating obtained during step a) is formed by depositing the particles on the part. Most of the ceramic coating can be deposited in the damaged area. In other words, a mass of ceramic coating greater than or equal to 50% of the total mass of the ceramic coating deposited during step a) can be deposited in the damaged zone. This mass of ceramic coating deposited in the damaged zone may for example be greater than or equal to 75%, or even 90%, of the total mass of the ceramic coating deposited during step a). In an exemplary embodiment, the ceramic coating can be deposited only in the damaged area.
  • the invention advantageously makes it possible to repair the damaged thermal barrier in a rapid, inexpensive and localized manner and thus to avoid the scrapping of partially degraded parts or the complete stripping of the damaged thermal barrier.
  • the invention therefore makes it possible to extend the life of the parts and to limit the cost of putting parts into operation again, the thermal barrier of which has been damaged.
  • the electrophoresis deposition process has the advantage of being usable for parts having complex geometries.
  • the repaired thermal barrier may be intended for use in an environment where the temperature at the surface of the thermal barrier is greater than or equal to 1000 ° C.
  • the part can advantageously be made of a metallic material and, for example, include nickel.
  • the damaged thermal barrier may have a lack of material in the damaged area.
  • the agglomerated particles may have an average size less than or equal to 10 ⁇ m.
  • average size denotes the dimension given by the statistical particle size distribution at half of the population, called D50.
  • the particles, in the non-agglomerated state have an average size of between 20 nm and 1 ⁇ m.
  • Such particle sizes advantageously make it possible to obtain a stable suspension.
  • the method comprises, before step a), a step of forming the particles by implementing a sol-gel method. These particles can then be dispersed in the liquid medium to form the electrolyte.
  • the particles of the electrolyte can, for example, be particles of yttria-containing zirconia (YSZ; “Yttria-Stabilized Zirconia”) which have been obtained by the sol-gel route.
  • Zirconium oxide particles can also be used. More generally, it is possible to use for the deposition by electrophoresis any particles capable of exhibiting an electric charge within the electrolyte (thus allowing them to move during the application of the electric field). It is thus possible, for example, to use particles of the following chemical formula: ZrO 2- ReO 1.5 (where Re denotes a Rare Earth element, for example: Gd, Sm or Er), Y 2 O 3 , Al 2 O 3 , TiO 2 or CeO 2 .
  • the particles are formed of a material different from the ceramic material present in the damaged thermal barrier.
  • the material constituting the particles and the ceramic material of the damaged thermal barrier are advantageously compatible thermomechanically and chemically.
  • the difference between the thermal expansion coefficients of the ceramic material present in the damaged thermal barrier and of the material constituting the particles can in absolute value advantageously be less than or equal to 2.10 -6 K -1 .
  • the use of a different material can advantageously make it possible to provide an additional property, for example an anti-CMAS property or a heat-sensitive material, and thus to functionalize the thermal barrier while repairing it.
  • the liquid medium can, for example, be chosen from: alcohols, for example ethanol or isopropanol, ketones, for example acetylacetone, water and their mixtures.
  • the particles may be present in the liquid medium, before the start of step a), in a concentration greater than or equal to 0.1 g / L, preferably greater than or equal to 1 g / L .
  • the thickness of the ceramic coating deposited may be greater than or equal to 50 nm, for example greater than or equal to 30 ⁇ m. In an exemplary embodiment, the thickness of the ceramic coating deposited may be less than or equal to 200 ⁇ m.
  • the part can be coated with a bonding layer allowing the attachment of the thermal barrier to the part and the ceramic coating can be deposited on the bonding layer.
  • the bonding layer advantageously makes it possible to improve the bonding of the thermal barrier to the part.
  • the bonding layer can, moreover, advantageously make it possible to protect the part against oxidation and corrosion.
  • the tie layer can, for example, be metallic.
  • the thermal barrier can be present directly on the part.
  • the thermal barrier can be present directly on the part.
  • the duration of step a) may be greater than or equal to 1 minute, preferably 5 minutes.
  • a voltage greater than or equal to 1 V can be imposed during all or part of step a) between the part and a counter-electrode.
  • the voltage imposed during all or part of step a) may preferably be greater than or equal to 50 V.
  • the damaged area may, before step a), have been subjected to a stripping step.
  • Carrying out a stripping advantageously makes it possible to eliminate the thermal barrier residues and the oxide layers that may be present and thus improve the electrically conductive nature of the damaged area to be repaired in order to promote the formation of the deposit of ceramic coating by electrophoresis.
  • the stripping can be carried out mechanically, for example by sandblasting, sanding, grinding, high pressure water jet or by laser stripping.
  • the pickling can be a chemical pickling, for example an electrolytic pickling or a pickling in an acidic or basic medium.
  • the damaged thermal barrier may, at the start of step a), exhibit a lack of material in the damaged area.
  • the method may comprise, after step a), a step b) of consolidation by heat treatment of the deposited ceramic coating.
  • Step b) can, for example, include subjecting the part obtained after implementation of step a) to a temperature greater than or equal to 1000 ° C, for example greater than or equal to 1100 ° C.
  • the part may constitute a turbine engine blade.
  • a part 1 for example made of a nickel-based superalloy coated with a bonding layer 2 on which is present a damaged thermal barrier 3.
  • An oxide layer 2a is present between the bonding layer 2 and the thermal barrier 3 damaged.
  • Layer 2a can consist of ⁇ -Al 2 O 3 alumina.
  • the damaged thermal barrier 3 is made of a ceramic material and has a damaged area 4 to be repaired.
  • the damaged zone 4 can have at least one adjacent undamaged zone. In the example illustrated, the damaged zone 4 is present between two adjacent undamaged zones 5a and 5b.
  • the part 1 bearing the damaged thermal barrier 3 is present in an electrolyte 10 comprising a suspension of particles 11 in a liquid medium.
  • the particles 11 can, for example, be particles of yttriated zirconia (zirconia stabilized with yttrium oxide).
  • the oxide powder (yttriated zirconia) thus obtained is then suspended in a liquid medium consisting for example of isopropanol in order to form the electrolyte 10.
  • the part 1 coated with the damaged thermal barrier 3 constitutes an electrode of the electrophoresis system opposite which a counter-electrode 20.
  • the counter-electrode 20 is, for example, made of platinum. Due to the conductive nature of the part 1 and of the damaged zone 4, a deposition by electrophoresis is carried out in the damaged zone 4.
  • the damaged zone 4 consists, in the example illustrated, by a region devoid of material.
  • the damaged area comprises a first region devoid of material as well as a second region in which a ceramic layer is present, the thickness of the ceramic layer present in the second region being sufficiently small for this second region is a conductor of electricity.
  • the damaged zone is constituted by a region in which a ceramic layer is present, the thickness of the ceramic layer being sufficiently small for this region to be electrically conductive.
  • the deposit is preferably carried out in the most conductive areas (sufficiently low thickness of the ceramic layer or total absence of ceramic layer) because the electric field will be relatively high in these areas.
  • the damaged thermal barrier 3 has a single damaged zone 4 to be repaired, but it is not beyond the scope of the present invention if the damaged thermal barrier has a plurality of zones. damaged to repair. In this case, each of the damaged areas to be repaired conducts electricity.
  • a generator G imposes a potential difference between the part 1 and the counter-electrode 20.
  • the generator G has direct or pulsed current.
  • Part 1 is polarized at an opposite charge to that of the particles 11. Due to the application of an electric field between the part 1 and the counter-electrode 20, the particles 11 move and are deposited on the part 1 for forming a ceramic coating 6.
  • the deposition of the ceramic coating 6 in the damaged zone 4 makes it possible to obtain a repaired thermal barrier 7.
  • the deposition of the ceramic coating 6 in the damaged zone 4 induces a progressive decrease in the electrical conductivity of this zone at over time. In fact, as the ceramic coating 6 is deposited, this zone becomes more and more insulating, which slows down or even stops the formation of the ceramic coating 6 on the part 1.
  • the ceramic coating 6 is deposited in the damaged area 4 and covers the entire surface of the damaged area 4.
  • the damaged thermal barrier 3 is not covered with a mask having an opening superimposed with the damaged zone 4 to be repaired.
  • the ceramic coating 6 may have a thickness e greater than or equal to 50 nm, for example greater than or equal to 30 ⁇ m.
  • the thickness e of the ceramic coating 6 corresponds to its largest dimension measured perpendicular to the surface S of the coated part 1.
  • step a drying and then a heat treatment for consolidation of the ceramic coating 6 can be carried out.
  • the thermal barrier was first damaged by water jet.
  • the figure 4A shows the result obtained after damage.
  • a deposition by electrophoresis was carried out from a suspension of YSZ powder in isopropanol (10 g / L) at a voltage of 100 V for 6 minutes.
  • a photograph of the part after treatment by the method according to the invention is given at figure 4B .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Arrière-plan de l'inventionBackground of the invention

L'invention concerne les procédés de réparation localisée des barrières thermiques endommagées.The invention relates to methods of localized repair of damaged thermal barriers.

Les aubages des turbines haute pression des moteurs aéronautiques sont exposés à un environnement très agressif. Ces pièces sont, en général, revêtues d'un revêtement protecteur en oxydation ainsi que d'un revêtement de barrière thermique. Le revêtement de barrière thermique permet d'isoler thermiquement la pièce sous-jacente afin de la maintenir à des températures où ses performances mécaniques et sa durée de vie sont acceptables.The blades of the high pressure turbines of aero engines are exposed to a very aggressive environment. These parts are generally coated with an oxidative protective coating as well as a thermal barrier coating. The thermal barrier coating provides thermal insulation of the underlying part in order to maintain it at temperatures where its mechanical performance and life are acceptable.

Certaines zones de ce système peuvent être endommagées en service à haute température par l'érosion, l'impact de particules, l'oxydation, la corrosion et par les aluminosilicates de calcium et de magnésium (« CMAS »). Les photographies fournies aux figures 1 et 2 montrent l'aspect d'aubes endommagées en service. Ces dégradations peuvent engendrer des disparitions locales de la couche barrière thermique voire de la sous-couche conduisant à une oxydation de la pièce sous-jacente.Some areas of this system can be damaged in high temperature service by erosion, particle impact, oxidation, corrosion and by calcium and magnesium aluminosilicates (“CMAS”). Photographs provided to figures 1 and 2 show the appearance of damaged blades in service. These degradations can cause local disappearance of the thermal barrier layer or even of the sub-layer leading to oxidation of the underlying part.

Actuellement, il est connu afin de reconstituer une barrière thermique de décaper l'intégralité du revêtement de barrière thermique (même les zones non endommagées) des pièces puis de réaliser un nouveau système barrière thermique. Des pièces dont la barrière thermique a été endommagée peuvent même dans certains cas être mises au rebut.Currently, it is known in order to reconstitute a thermal barrier to strip the entire thermal barrier coating (even the undamaged areas) of the parts and then to produce a new thermal barrier system. Parts whose thermal barrier has been damaged can even in some cases be discarded.

On connait aussi DE 103 35 406 qui divulgue la réparation par électrophorèse de barrières thermiques endommagées.We also know DE 103 35 406 which discloses the electrophoretic repair of damaged thermal barriers.

Il existe un besoin pour améliorer la durée d'utilisation des pièces revêtues par des barrières thermiques.There is a need to improve the useful life of parts coated with thermal barriers.

Il existe un besoin pour simplifier et diminuer le coût des procédés de réparation des barrières thermiques endommagées.There is a need to simplify and reduce the cost of repair methods for damaged thermal barriers.

Il existe aussi un besoin pour disposer de nouveaux procédés de réparation des barrières thermiques endommagées.There is also a need for new methods of repairing damaged thermal barriers.

Objet et résumé de l'inventionPurpose and summary of the invention

A cet effet, l'invention propose, selon un premier aspect, un procédé selon la revendication 1To this end, the invention provides, according to a first aspect, a method according to claim 1

Dans l'invention, la pièce est formée d'un matériau conducteur de l'électricité et la barrière thermique endommagée permet la conduction de l'électricité dans la zone endommagée à réparer et donc le dépôt du revêtement céramique par électrophorèse dans cette zone lors de l'étape a). Le revêtement céramique obtenu lors de l'étape a) est formé par le dépôt des particules sur la pièce. Le revêtement céramique peut être majoritairement déposé dans la zone endommagée. En d'autres termes, une masse de revêtement céramique supérieure ou égale à 50% de la masse totale du revêtement céramique déposé lors de l'étape a) peut être déposée dans la zone endommagée. Cette masse de revêtement céramique déposée dans la zone endommagée peut par exemple être supérieure ou égale à 75%, voire à 90%, de la masse totale du revêtement céramique déposé lors de l'étape a). Dans un exemple de réalisation, le revêtement céramique peut être déposé uniquement dans la zone endommagée.In the invention, the part is formed of an electrically conductive material and the damaged thermal barrier allows the conduction of electricity in the damaged area to be repaired and therefore the deposition of the ceramic coating by electrophoresis in this area during step a). The ceramic coating obtained during step a) is formed by depositing the particles on the part. Most of the ceramic coating can be deposited in the damaged area. In other words, a mass of ceramic coating greater than or equal to 50% of the total mass of the ceramic coating deposited during step a) can be deposited in the damaged zone. This mass of ceramic coating deposited in the damaged zone may for example be greater than or equal to 75%, or even 90%, of the total mass of the ceramic coating deposited during step a). In an exemplary embodiment, the ceramic coating can be deposited only in the damaged area.

L'invention permet avantageusement de réparer de manière rapide, peu coûteuse et localisée la barrière thermique endommagée et ainsi d'éviter la mise au rebut de pièces partiellement dégradées ou le décapage complet de la barrière thermique endommagée. L'invention permet, par conséquent, de prolonger la durée de vie des pièces et de limiter le coût de remise en fonctionnement des pièces dont la barrière thermique a été endommagée.The invention advantageously makes it possible to repair the damaged thermal barrier in a rapid, inexpensive and localized manner and thus to avoid the scrapping of partially degraded parts or the complete stripping of the damaged thermal barrier. The invention therefore makes it possible to extend the life of the parts and to limit the cost of putting parts into operation again, the thermal barrier of which has been damaged.

La possibilité d'une réparation localisée résulte de la mise en œuvre d'un dépôt par électrophorèse à la différence du procédé de dépôt en phase vapeur avec évaporation sous faisceau d'électrons (« electron beam physical vapor déposition » ; EB-PVD) ou de projection plasma (« plasma spraying » ; PS) qui ne permettent pas ou difficilement la réalisation d'une réparation localisée.The possibility of localized repair results from the implementation of a deposition by electrophoresis unlike the vapor deposition process with evaporation under an electron beam ("electron beam physical vapor deposition"; EB-PVD) or plasma spraying (“plasma spraying”; PS) which does not allow or hardly allow the realization of a localized repair.

En outre, le procédé de dépôt par électrophorèse présente l'avantage d'être utilisable pour des pièces présentant des géométries complexes.In addition, the electrophoresis deposition process has the advantage of being usable for parts having complex geometries.

La barrière thermique réparée peut être destinée à être utilisée dans un environnement où la température à la surface de la barrière thermique est supérieure ou égale à 1000°C.The repaired thermal barrier may be intended for use in an environment where the temperature at the surface of the thermal barrier is greater than or equal to 1000 ° C.

La pièce peut avantageusement être en matériau métallique et, par exemple, comporter du nickel.The part can advantageously be made of a metallic material and, for example, include nickel.

Avantageusement, avant mise en œuvre de l'étape a), la barrière thermique endommagée peut présenter un manque de matière dans la zone endommagée.Advantageously, before implementation of step a), the damaged thermal barrier may have a lack of material in the damaged area.

Dans un exemple de réalisation, les particules agglomérées peuvent présenter une taille moyenne inférieure ou égale à 10 µm.In an exemplary embodiment, the agglomerated particles may have an average size less than or equal to 10 μm.

Par « taille moyenne », on désigne la dimension donnée par la distribution granulométrique statistique à la moitié de la population, dite D50.The term “average size” denotes the dimension given by the statistical particle size distribution at half of the population, called D50.

Les particules, à l'état non aggloméré, ont une taille moyenne comprise entre 20 nm et 1 µm.The particles, in the non-agglomerated state, have an average size of between 20 nm and 1 μm.

De telles tailles de particules permettent avantageusement d'obtenir une suspension stable.Such particle sizes advantageously make it possible to obtain a stable suspension.

Les particules ont été obtenues par voie sol-gel .Ainsi, le procédé comporte, avant l'étape a), une étape de formation des particules par mise en œuvre d'un procédé sol-gel. Ces particules peuvent ensuite être dispersées dans le milieu liquide afin de former l'électrolyte.The particles were obtained by the sol-gel route. Thus, the method comprises, before step a), a step of forming the particles by implementing a sol-gel method. These particles can then be dispersed in the liquid medium to form the electrolyte.

Les particules de l'électrolyte peuvent, par exemple, être des particules de zircone yttriée (YSZ ; « Yttria-Stabilized Zirconia ») lesquelles ont été obtenues par voie sol-gel. On peut encore utiliser des particules d'oxyde de zirconium. Plus généralement, on peut utiliser pour le dépôt par électrophorèse toutes particules susceptibles de présenter une charge électrique au sein de l'électrolyte (leur permettant ainsi de se déplacer lors de l'application du champ électrique). On peut ainsi, par exemple, utiliser des particules de formule chimique suivante : ZrO2-ReO1.5 (où Re désigne un élément Terre Rare, par exemple : Gd, Sm ou Er), Y2O3, Al2O3, TiO2 ou CeO2.The particles of the electrolyte can, for example, be particles of yttria-containing zirconia (YSZ; “Yttria-Stabilized Zirconia”) which have been obtained by the sol-gel route. Zirconium oxide particles can also be used. More generally, it is possible to use for the deposition by electrophoresis any particles capable of exhibiting an electric charge within the electrolyte (thus allowing them to move during the application of the electric field). It is thus possible, for example, to use particles of the following chemical formula: ZrO 2- ReO 1.5 (where Re denotes a Rare Earth element, for example: Gd, Sm or Er), Y 2 O 3 , Al 2 O 3 , TiO 2 or CeO 2 .

Les particules sont formées d'un matériau différent du matériau céramique présent dans la barrière thermique endommagée. Le matériau constituant les particules et le matériau céramique de la barrière thermique endommagée sont avantageusement compatibles thermomécaniquement et chimiquement. Par exemple, la différence entre les coefficients d'expansion thermique du matériau céramique présent dans la barrière thermique endommagée et du matériau constituant les particules peut en valeur absolue avantageusement être inférieure ou égale à 2.10-6 K-1.The particles are formed of a material different from the ceramic material present in the damaged thermal barrier. The material constituting the particles and the ceramic material of the damaged thermal barrier are advantageously compatible thermomechanically and chemically. For example, the difference between the thermal expansion coefficients of the ceramic material present in the damaged thermal barrier and of the material constituting the particles can in absolute value advantageously be less than or equal to 2.10 -6 K -1 .

L'utilisation d'un matériau différent peut avantageusement permettre d'apporter une propriété supplémentaire, par exemple propriété anti-CMAS ou matériau thermosensible, et ainsi de fonctionnaliser la barrière thermique tout en la réparant.The use of a different material can advantageously make it possible to provide an additional property, for example an anti-CMAS property or a heat-sensitive material, and thus to functionalize the thermal barrier while repairing it.

Le milieu liquide peut, par exemple, être choisi parmi : les alcools, par exemple l'éthanol ou l'isopropanol, les cétones par exemple l'acétylacétone, l'eau et leurs mélanges.The liquid medium can, for example, be chosen from: alcohols, for example ethanol or isopropanol, ketones, for example acetylacetone, water and their mixtures.

Dans un exemple de réalisation, les particules peuvent être présentes dans le milieu liquide, avant le début de l'étape a), en une concentration supérieure ou égale à 0,1 g/L, de préférence supérieure ou égale à 1 g/L.In an exemplary embodiment, the particles may be present in the liquid medium, before the start of step a), in a concentration greater than or equal to 0.1 g / L, preferably greater than or equal to 1 g / L .

De telles valeurs de concentration permettent avantageusement de disposer d'une suspension stable.Such concentration values advantageously make it possible to have a stable suspension.

Dans un exemple de réalisation, l'épaisseur du revêtement céramique déposé peut être supérieure ou égale à 50 nm, par exemple supérieure ou égale à 30 µm. Dans un exemple de réalisation, l'épaisseur du revêtement céramique déposé peut être inférieure ou égale à 200 µm.In an exemplary embodiment, the thickness of the ceramic coating deposited may be greater than or equal to 50 nm, for example greater than or equal to 30 μm. In an exemplary embodiment, the thickness of the ceramic coating deposited may be less than or equal to 200 μm.

Dans un exemple de réalisation, la pièce peut être revêtue d'une couche d'accrochage permettant l'accrochage de la barrière thermique à la pièce et le revêtement céramique peut être déposé sur la couche d'accrochage.In an exemplary embodiment, the part can be coated with a bonding layer allowing the attachment of the thermal barrier to the part and the ceramic coating can be deposited on the bonding layer.

La couche d'accrochage permet avantageusement d'améliorer l'accrochage de la barrière thermique à la pièce. La couche d'accrochage peut, en outre, avantageusement permettre de protéger la pièce contre l'oxydation et la corrosion.The bonding layer advantageously makes it possible to improve the bonding of the thermal barrier to the part. The bonding layer can, moreover, advantageously make it possible to protect the part against oxidation and corrosion.

La couche d'accrochage peut, par exemple, être métallique.The tie layer can, for example, be metallic.

Dans une variante, la barrière thermique peut directement être présente sur la pièce. Ainsi, il est possible qu'aucune couche d'accrochage ne soit présente entre la barrière thermique et la pièce.In a variant, the thermal barrier can be present directly on the part. Thus, it is possible that no bonding layer is present between the thermal barrier and the part.

Dans un exemple de réalisation, la durée de l'étape a) peut être supérieure ou égale à 1 minute, de préférence à 5 minutes.In an exemplary embodiment, the duration of step a) may be greater than or equal to 1 minute, preferably 5 minutes.

De telles valeurs permettent avantageusement d'améliorer le caractère couvrant et l'homogénéité du revêtement céramique formé.Such values advantageously make it possible to improve the covering character and the homogeneity of the ceramic coating formed.

Dans un exemple de réalisation, une tension supérieure ou égale à 1 V peut être imposée durant tout ou partie de l'étape a) entre la pièce et une contre-électrode. La tension imposée durant tout ou partie de l'étape a) peut, de préférence, être supérieure ou égale à 50 V.In an exemplary embodiment, a voltage greater than or equal to 1 V can be imposed during all or part of step a) between the part and a counter-electrode. The voltage imposed during all or part of step a) may preferably be greater than or equal to 50 V.

De telles valeurs permettent avantageusement d'améliorer le caractère couvrant et l'homogénéité du revêtement céramique formé.Such values advantageously make it possible to improve the covering character and the homogeneity of the ceramic coating formed.

Dans un exemple de réalisation, la zone endommagée peut, avant l'étape a), avoir été soumise à une étape de décapage.In an exemplary embodiment, the damaged area may, before step a), have been subjected to a stripping step.

La réalisation d'un décapage permet avantageusement d'éliminer les résidus de barrière thermique et les couches d'oxydes éventuellement présents et ainsi d'améliorer le caractère conducteur de l'électricité de la zone endommagée à réparer afin de favoriser la formation du dépôt du revêtement céramique par électrophorèse.Carrying out a stripping advantageously makes it possible to eliminate the thermal barrier residues and the oxide layers that may be present and thus improve the electrically conductive nature of the damaged area to be repaired in order to promote the formation of the deposit of ceramic coating by electrophoresis.

Le décapage peut être réalisé mécaniquement, par exemple par sablage, ponçage, meulage, jet d'eau haute pression ou par décapage laser.The stripping can be carried out mechanically, for example by sandblasting, sanding, grinding, high pressure water jet or by laser stripping.

En variante, le décapage peut être un décapage chimique, par exemple un décapage électrolytique ou un décapage en milieu acide ou basique.As a variant, the pickling can be a chemical pickling, for example an electrolytic pickling or a pickling in an acidic or basic medium.

Après décapage, la barrière thermique endommagée peut, au début de l'étape a), présenter un manque de matière dans la zone endommagée.After stripping, the damaged thermal barrier may, at the start of step a), exhibit a lack of material in the damaged area.

Dans un exemple de réalisation, le procédé peut comporter, après l'étape a), une étape b) de consolidation par traitement thermique du revêtement céramique déposé.In an exemplary embodiment, the method may comprise, after step a), a step b) of consolidation by heat treatment of the deposited ceramic coating.

L'étape b) peut, par exemple, comporter la soumission de la pièce obtenue après mise en œuvre de l'étape a) à une température supérieure ou égale à 1000°C, par exemple supérieure ou égale à 1100°C.Step b) can, for example, include subjecting the part obtained after implementation of step a) to a temperature greater than or equal to 1000 ° C, for example greater than or equal to 1100 ° C.

Dans un exemple de réalisation, la pièce peut constituer une aube de turbomachine.In an exemplary embodiment, the part may constitute a turbine engine blade.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, en référence aux dessins annexés, sur lesquels :

  • la figure 1 est une photographie d'une aube de turbomachine endommagée en service,
  • la figure 2 comporte une photographie d'une aube de turbomachine endommagée en service et illustre, de manière schématique et partielle, la structure d'une barrière thermique endommagée,
  • les figures 3A et 3B illustrent, de manière schématique et partielle, la mise en œuvre d'un procédé selon l'invention, et
  • les figures 4A et 4B sont des photographies représentant respectivement une pièce avant et après traitement par un procédé hors l'invention.
Other characteristics and advantages of the invention will emerge from the following description, with reference to the appended drawings, in which:
  • the figure 1 is a photograph of a damaged turbine engine blade in service,
  • the figure 2 includes a photograph of a damaged turbine engine blade in service and schematically and partially illustrates the structure of a damaged thermal barrier,
  • the figures 3A and 3B schematically and partially illustrate the implementation of a method according to the invention, and
  • the figures 4A and 4B are photographs respectively representing a part before and after treatment by a process outside the invention.

Description détaillée de modes de réalisationDetailed description of embodiments

On a représenté à la figure 2 une pièce 1 par exemple constituée d'un superalliage à base de nickel revêtue d'une couche d'accrochage 2 sur laquelle est présente une barrière thermique endommagée 3. Une couche d'oxyde 2a est présente entre la couche d'accrochage 2 et la barrière thermique 3 endommagée. La couche 2a peut être constituée d'alumine α-Al2O3. La barrière thermique endommagée 3 comporte un matériau céramique et présente une zone endommagée 4 à réparer.We have represented at the figure 2 a part 1 for example made of a nickel-based superalloy coated with a bonding layer 2 on which is present a damaged thermal barrier 3. An oxide layer 2a is present between the bonding layer 2 and the thermal barrier 3 damaged. Layer 2a can consist of α-Al 2 O 3 alumina. The damaged thermal barrier 3 is made of a ceramic material and has a damaged area 4 to be repaired.

La zone endommagée 4 peut présenter au moins une zone adjacente non endommagée. Dans l'exemple illustré, la zone endommagée 4 est présente entre deux zones adjacentes non endommagées 5a et 5b.The damaged zone 4 can have at least one adjacent undamaged zone. In the example illustrated, the damaged zone 4 is present between two adjacent undamaged zones 5a and 5b.

On a représenté à la figure 3A la mise en œuvre d'une étape a) selon l'invention. Comme illustré, la pièce 1 portant la barrière thermique endommagée 3 est présente dans un électrolyte 10 comportant une suspension de particules 11 dans un milieu liquide. Les particules 11 peuvent, par exemple, être des particules de zircone yttriée (zircone stabilisée par de l'oxyde d'yttrium).We have represented at the figure 3A the implementation of a step a) according to the invention. As illustrated, the part 1 bearing the damaged thermal barrier 3 is present in an electrolyte 10 comprising a suspension of particles 11 in a liquid medium. The particles 11 can, for example, be particles of yttriated zirconia (zirconia stabilized with yttrium oxide).

A titre d'exemple, on décrit ci-dessous les étapes de la synthèse par voie sol-gel d'une poudre de zircone yttriée destinée, dans un exemple de réalisation, à former les particules 11 :

  • Mélange d'acétyl-acétone dans du 1-propanol et de propoxyde de zirconium (Zr(OC3H7)4),
  • Mélange du mélange obtenu avec une solution de nitrate d'yttrium dans du 1-propanol,
  • Mélange du mélange obtenu avec de l'eau et du 1-propanol (10 mol/L) afin d'obtenir un sol,
  • Mise à l'étuve du sol à une température de 50°C,
  • Séchage évaporatif ou séchage supercritique,
  • Calcination à l'air à une température de 700°C.
By way of example, the steps of the sol-gel synthesis of a yttriated zirconia powder intended, in an exemplary embodiment, to form the particles 11 are described below:
  • Mixture of acetyl-acetone in 1-propanol and zirconium propoxide (Zr (OC 3 H 7 ) 4 ),
  • Mixing of the mixture obtained with a solution of yttrium nitrate in 1-propanol,
  • Mixing the mixture obtained with water and 1-propanol (10 mol / L) in order to obtain a soil,
  • Putting the soil in an oven at a temperature of 50 ° C,
  • Evaporative drying or supercritical drying,
  • Calcination in air at a temperature of 700 ° C.

La poudre d'oxyde (zircone yttriée) ainsi obtenue est alors mise en suspension dans un milieu liquide constitué par exemple d'isopropanol afin de former l'électrolyte 10.The oxide powder (yttriated zirconia) thus obtained is then suspended in a liquid medium consisting for example of isopropanol in order to form the electrolyte 10.

La pièce 1 revêtue de la barrière thermique endommagée 3 constitue une électrode du système d'électrophorèse au regard de laquelle est présente une contre-électrode 20. La contre-électrode 20 est, par exemple, en platine. Du fait du caractère conducteur de la pièce 1 et de la zone endommagée 4, un dépôt par électrophorèse est réalisé dans la zone endommagée 4. La zone endommagée 4 est constituée, dans l'exemple illustré, par une région dépourvue de matière. Dans une variante non illustrée, la zone endommagée comporte une première région dépourvue de matière ainsi qu'une deuxième région dans laquelle une couche céramique est présente, l'épaisseur de la couche céramique présente dans la deuxième région étant suffisamment faible pour que cette deuxième région soit conductrice de l'électricité. En variante encore, la zone endommagée est constituée par une région dans laquelle une couche céramique est présente, l'épaisseur de la couche céramique étant suffisamment faible pour que cette région soit conductrice de l'électricité.The part 1 coated with the damaged thermal barrier 3 constitutes an electrode of the electrophoresis system opposite which a counter-electrode 20. The counter-electrode 20 is, for example, made of platinum. Due to the conductive nature of the part 1 and of the damaged zone 4, a deposition by electrophoresis is carried out in the damaged zone 4. The damaged zone 4 consists, in the example illustrated, by a region devoid of material. In a variant not shown, the damaged area comprises a first region devoid of material as well as a second region in which a ceramic layer is present, the thickness of the ceramic layer present in the second region being sufficiently small for this second region is a conductor of electricity. As a further variant, the damaged zone is constituted by a region in which a ceramic layer is present, the thickness of the ceramic layer being sufficiently small for this region to be electrically conductive.

Le dépôt est réalisé préférentiellement dans les zones les plus conductrices (épaisseur de la couche céramique suffisamment faible ou absence totale de couche céramique) car le champ électrique sera relativement élevé dans ces zones.The deposit is preferably carried out in the most conductive areas (sufficiently low thickness of the ceramic layer or total absence of ceramic layer) because the electric field will be relatively high in these areas.

On a représenté un exemple de réalisation où la barrière thermique endommagée 3 présente une unique zone endommagée 4 à réparer mais on ne sort pas du cadre de la présente invention si la barrière thermique endommagée présente une pluralité de zones endommagées à réparer. Dans ce cas, chacune des zones endommagées à réparer est conductrice de l'électricité.An exemplary embodiment has been shown where the damaged thermal barrier 3 has a single damaged zone 4 to be repaired, but it is not beyond the scope of the present invention if the damaged thermal barrier has a plurality of zones. damaged to repair. In this case, each of the damaged areas to be repaired conducts electricity.

Durant l'étape a), un générateur G impose une différence de potentiel entre la pièce 1 et la contre-électrode 20. Le générateur G est à courant continu ou pulsé . La pièce 1 est polarisée à une charge opposée à celle des particules 11. Du fait de l'application d'un champ électrique entre la pièce 1 et la contre-électrode 20, les particules 11 se déplacent et se déposent sur la pièce 1 pour former un revêtement céramique 6. Le dépôt du revêtement céramique 6 dans la zone endommagée 4 permet d'obtenir une barrière thermique réparée 7. Le dépôt du revêtement céramique 6 dans la zone endommagée 4 induit une diminution progressive de la conductivité électrique de cette zone au cours du temps. En effet, au fur et à mesure du dépôt du revêtement céramique 6, cette zone devient de plus en plus isolante ce qui ralentit voire stoppe la formation du revêtement céramique 6 sur la pièce 1.During step a), a generator G imposes a potential difference between the part 1 and the counter-electrode 20. The generator G has direct or pulsed current. Part 1 is polarized at an opposite charge to that of the particles 11. Due to the application of an electric field between the part 1 and the counter-electrode 20, the particles 11 move and are deposited on the part 1 for forming a ceramic coating 6. The deposition of the ceramic coating 6 in the damaged zone 4 makes it possible to obtain a repaired thermal barrier 7. The deposition of the ceramic coating 6 in the damaged zone 4 induces a progressive decrease in the electrical conductivity of this zone at over time. In fact, as the ceramic coating 6 is deposited, this zone becomes more and more insulating, which slows down or even stops the formation of the ceramic coating 6 on the part 1.

Comme illustré, le revêtement céramique 6 est déposé dans la zone endommagée 4 et recouvre toute la surface de la zone endommagée 4.As illustrated, the ceramic coating 6 is deposited in the damaged area 4 and covers the entire surface of the damaged area 4.

Avantageusement, lors du dépôt du revêtement céramique 6, la barrière thermique endommagée 3 n'est pas recouverte d'un masque présentant une ouverture se superposant avec la zone endommagée 4 à réparer. En outre, il n'est pas nécessaire avant l'étape a) de décaper une partie de la barrière thermique endommagée 3 située en dehors de la zone endommagée 4 à réparer.Advantageously, during the deposition of the ceramic coating 6, the damaged thermal barrier 3 is not covered with a mask having an opening superimposed with the damaged zone 4 to be repaired. In addition, it is not necessary before step a) to strip a part of the damaged thermal barrier 3 located outside the damaged zone 4 to be repaired.

Le revêtement céramique 6 peut présenter une épaisseur e supérieure ou égale à 50 nm, par exemple supérieure ou égale à 30 µm. L'épaisseur e du revêtement céramique 6 correspond à sa plus grande dimension mesurée perpendiculairement à la surface S de la pièce 1 revêtue.The ceramic coating 6 may have a thickness e greater than or equal to 50 nm, for example greater than or equal to 30 μm. The thickness e of the ceramic coating 6 corresponds to its largest dimension measured perpendicular to the surface S of the coated part 1.

Après l'étape a), un séchage puis un traitement thermique de consolidation du revêtement céramique 6 peuvent être effectués.After step a), drying and then a heat treatment for consolidation of the ceramic coating 6 can be carried out.

Exemple (hors invention)Example (excluding invention)

Une pièce de superalliage base nickel revêtue d'une barrière thermique de zircone stabilisée par de l'oxyde d'yttrium (YSZ) obtenue par procédé de dépôt en phase vapeur avec évaporation sous faisceau d'électrons (« Electron beam physical vapor deposition » ; EB-PVD) a été utilisée. La barrière thermique a tout d'abord été endommagée par jet d'eau. La figure 4A montre le résultat obtenu après endommagement.A part of nickel-based superalloy coated with a thermal barrier of zirconia stabilized by yttrium oxide (YSZ) obtained by vapor deposition process with under-beam evaporation electron beam (“Electron beam physical vapor deposition”; EB-PVD) was used. The thermal barrier was first damaged by water jet. The figure 4A shows the result obtained after damage.

Un dépôt par électrophorèse a été réalisé à partir d'une suspension de poudre YSZ dans l'isopropanol (10 g/L) à une tension de 100V pendant 6 minutes. Une photographie de la pièce après traitement par le procédé selon l'invention est donnée à la figure 4B.A deposition by electrophoresis was carried out from a suspension of YSZ powder in isopropanol (10 g / L) at a voltage of 100 V for 6 minutes. A photograph of the part after treatment by the method according to the invention is given at figure 4B .

On constate que l'on obtient un dépôt couvrant et homogène de zircone stabilisée par de l'oxyde d'yttrium dans la toute la zone endommagée.It is observed that a covering and homogeneous deposit of zirconia stabilized by yttrium oxide is obtained throughout the damaged zone.

L'expression « comportant/contenant un(e) » doit se comprendre comme « comportant/contenant au moins un(e) ».The expression “comprising / containing one” should be understood as “comprising / containing at least one”.

L'expression « compris(e) entre ... et ... » ou « allant de ... à ... » doit se comprendre comme incluant les bornes.The expression "between ... and ..." or "ranging from ... to ..." should be understood as including the limits.

Claims (10)

  1. A method of localized repair to a damaged thermal barrier (3), the method comprising the following step:
    a) subjecting a part (1) coated by a damaged thermal barrier (3) to electrophoresis treatment, the part being made of an electrically conductive material, the damaged thermal barrier (3) comprising a ceramic material and having at least one damaged zone (4) that is to be repaired, the part (1) being present in an electrolyte (10) comprising a suspension of particles (11) in a liquid medium, the particles (11) in the non-agglomerated state having a mean size lying in the range 20 nm to 1 µm, a ceramic coating (6) being deposited by electrophoresis in the damaged zone (4) in order to obtain a repaired thermal barrier (7) for use at temperatures higher than or equal to 1000°C,
    the particles (11) being made of a material different from the ceramic material present in the damaged thermal barrier (3),
    the method comprising prior to step a), a step of forming the particles (11) by performing a sol-gel method, the drying step of said sol-gel method being performed by supercritical drying.
  2. A method according to claim 1, wherein before the beginning of step a), the particles (11) are present in the liquid medium at a concentration greater than or equal to 0.1 g/L.
  3. A method according to claim 1 or 2, wherein the duration of step a) is greater than or equal to 1 minute.
  4. A method according to any one of claims 1 to 3,
    wherein a voltage greater than or equal to 1 V is imposed during all or part of step a) between the part (1) and a counter electrode (20).
  5. A method according to any one of claims 1 to 4,
    wherein the thickness e of the deposited ceramic coating is greater than or equal to 30 µm.
  6. A method according to any one of claims 1 to 5,
    wherein the part (1) is coated by an attachment layer (2) enabling the thermal barrier (3; 7) to attach to the part (1), and wherein the ceramic coating (6) is deposited on the attachment layer (2).
  7. A method according to any one of claims 1 to 6,
    wherein prior to step a), the damaged zone (4) is subjected to a stripping step.
  8. A method according to any one of claims 1 to 7,
    wherein after step a), it includes a step b) of consolidation by subjecting the deposited ceramic coating (6) to heat treatment.
  9. A method according to any one of claims 1 to 8,
    wherein the part constitutes a turbine engine blade.
  10. A method according to any one of claims 1 to 9, the damaged thermal barrier having a columnar structure.
EP14828044.9A 2014-01-29 2014-12-11 Process for localised repair of a damaged thermal barrier Active EP3099848B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20203886.5A EP3789518B1 (en) 2014-01-29 2014-12-11 Method for localised repair of a damaged thermal barrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400224 2014-01-29
PCT/FR2014/053268 WO2015114227A1 (en) 2014-01-29 2014-12-11 Process for localised repair of a damaged thermal barrier

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP20203886.5A Division-Into EP3789518B1 (en) 2014-01-29 2014-12-11 Method for localised repair of a damaged thermal barrier
EP20203886.5A Division EP3789518B1 (en) 2014-01-29 2014-12-11 Method for localised repair of a damaged thermal barrier

Publications (2)

Publication Number Publication Date
EP3099848A1 EP3099848A1 (en) 2016-12-07
EP3099848B1 true EP3099848B1 (en) 2021-08-25

Family

ID=50976720

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14828044.9A Active EP3099848B1 (en) 2014-01-29 2014-12-11 Process for localised repair of a damaged thermal barrier
EP20203886.5A Active EP3789518B1 (en) 2014-01-29 2014-12-11 Method for localised repair of a damaged thermal barrier

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20203886.5A Active EP3789518B1 (en) 2014-01-29 2014-12-11 Method for localised repair of a damaged thermal barrier

Country Status (7)

Country Link
US (1) US9840914B2 (en)
EP (2) EP3099848B1 (en)
CN (1) CN106414813B (en)
BR (1) BR112016017562B1 (en)
CA (1) CA2938031C (en)
RU (1) RU2678347C2 (en)
WO (1) WO2015114227A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073866B1 (en) * 2017-11-21 2019-11-29 Safran Helicopter Engines METHOD FOR MANUFACTURING A THERMAL BARRIER ON A PIECE OF A TURBOMACHINE
CN110129859B (en) * 2018-02-08 2021-09-21 通用电气公司 Method for masking holes in and treating components
FR3099935B1 (en) * 2019-08-12 2021-09-10 Safran Aircraft Engines Process for coating a part of a turbomachine
US20230220580A1 (en) * 2022-01-12 2023-07-13 General Electric Company Formation of a barrier coating using electrophoretic deposition of a slurry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335406A1 (en) * 2003-08-01 2005-02-17 Mtu Aero Engines Gmbh Method of repairing thermal barrier coatings with local damage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416165A1 (en) * 1983-06-03 1984-12-06 VEB Thuringia Sonneberg, DDR 6412 Sonneberg Method for the electrophoretic production of a composition film
SU1730209A1 (en) * 1988-09-23 1992-04-30 Предприятие П/Я А-7555 Plant for electrophoretic coating
US5723078A (en) * 1996-05-24 1998-03-03 General Electric Company Method for repairing a thermal barrier coating
FR2827311B1 (en) * 2001-07-12 2003-09-19 Snecma Moteurs PROCESS FOR LOCAL REPAIR OF PARTS COATED WITH A THERMAL BARRIER
US20070087129A1 (en) * 2005-10-19 2007-04-19 Blankenship Donn R Methods for repairing a workpiece
US7780832B2 (en) * 2005-11-30 2010-08-24 General Electric Company Methods for applying mitigation coatings, and related articles
KR100753909B1 (en) 2006-09-09 2007-08-31 한국원자력연구원 Repair method of pitting damage or cracks of metals or alloys by using electrophoretic deposition of nanoparticles
EP2000557B1 (en) 2007-06-04 2015-04-29 United Technologies Corporation Erosion barrier for thermal barrier coatings

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335406A1 (en) * 2003-08-01 2005-02-17 Mtu Aero Engines Gmbh Method of repairing thermal barrier coatings with local damage

Also Published As

Publication number Publication date
CA2938031A1 (en) 2015-08-06
WO2015114227A1 (en) 2015-08-06
BR112016017562A2 (en) 2017-08-08
EP3789518B1 (en) 2023-11-29
RU2016135017A3 (en) 2018-08-22
EP3789518A1 (en) 2021-03-10
CA2938031C (en) 2022-05-10
RU2016135017A (en) 2018-03-05
BR112016017562B1 (en) 2022-04-12
US20160348509A1 (en) 2016-12-01
RU2678347C2 (en) 2019-01-28
EP3099848A1 (en) 2016-12-07
US9840914B2 (en) 2017-12-12
CN106414813A (en) 2017-02-15
CN106414813B (en) 2019-04-30

Similar Documents

Publication Publication Date Title
EP3099848B1 (en) Process for localised repair of a damaged thermal barrier
CA2931927C (en) Method for locally repairing thermal barriers
CA2828792C (en) Process for producing a thermal barrier in a multilayer system for protecting a metal part and part equipped with such a protective system
CA2792518A1 (en) Method for manufacturing a thermal-barrier protection and multi-layer coating suitable for forming a thermal barrier
FR3057580A1 (en) METHOD FOR COATING A SURFACE OF A SOLID SUBSTRATE WITH A LAYER COMPRISING A CERAMIC COMPOUND, AND THE COATED SUBSTRATE THUS OBTAINED
FR3058469A1 (en) TURBOMACHINE PIECE COATED WITH A THERMAL BARRIER AND METHOD FOR OBTAINING IT
EP3707297B1 (en) Method for producing a thermal barrier on a part of a turbomachine
EP2882551B1 (en) Abradable coating made of a material having a low surface roughness
FR2941965A1 (en) Depositing a protection layer on a metallic piece e.g. turbine blade using mold, comprises depositing precursor coating on piece and/or inner walls of mold, and depositing piece in the mold and then mold in a compression enclosure
EP3980584B1 (en) Method for manufacturing a fire-resistant part of an air conditioning system and part produced by such a method
WO2010092298A1 (en) Process for depositing a protective layer on a part
WO2018202964A1 (en) Superalloy turbine part and associated method for manufacturing by bombardment with charged particles
EP3669013B1 (en) Method for manufacturing an electrolyte for solid oxide cells by magnetron cathode sputtering
FR3085870A1 (en) METHOD FOR ASSEMBLING A METAL PIECE AND A CERAMIC PIECE, AND ELECTRIC DEVICE, IN PARTICULAR CAPACITIVE SENSOR, CARRIED OUT BY THE METHOD
WO2023094752A1 (en) Method for electrophoretically coating a ceramic matrix composite part with an environmental barrier
FR3139335A1 (en) Manufacturing process for obtaining a part coated with an electrically and thermally insulating coating
FR3147296A1 (en) Production of an environmental barrier layer by electrophoretic means
FR3085872A1 (en) METHOD FOR EXTRACTING A FOREIGN BODY NESTED IN A BLADE OF HIGH PRESSURE DISPENSER
WO2017093648A1 (en) Hybrid annular sector with touch-tolerant protective coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAMADI, SARAH

Inventor name: CERDA, HELENE

Inventor name: BONINO, JEAN-PIERRE

Inventor name: PUJOL, GUILLAUME

Inventor name: ANSART, FLORENCE

Inventor name: MALIE, ANDRE, HUBERT, LOUIS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180413

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 13/22 20060101ALI20200527BHEP

Ipc: C25D 13/02 20060101AFI20200527BHEP

Ipc: F01D 5/00 20060101ALI20200527BHEP

Ipc: F01D 5/28 20060101ALI20200527BHEP

Ipc: C25D 13/12 20060101ALI20200527BHEP

Ipc: C25D 13/20 20060101ALI20200527BHEP

INTG Intention to grant announced

Effective date: 20200624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INSTITUT NATIONAL POLYTECHNIQUE

Owner name: UNIVERSITE PAUL SABATIER - TOULOUSE III

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: SAFRAN AIRCRAFT ENGINES

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1423891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014079715

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1423891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014079715

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211211

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231124

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231121

Year of fee payment: 10

Ref country code: FR

Payment date: 20231122

Year of fee payment: 10

Ref country code: DE

Payment date: 20231121

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825