EP3098527B1 - Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung - Google Patents

Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung Download PDF

Info

Publication number
EP3098527B1
EP3098527B1 EP16158064.2A EP16158064A EP3098527B1 EP 3098527 B1 EP3098527 B1 EP 3098527B1 EP 16158064 A EP16158064 A EP 16158064A EP 3098527 B1 EP3098527 B1 EP 3098527B1
Authority
EP
European Patent Office
Prior art keywords
exhaust air
mass flow
relative humidity
ambient air
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16158064.2A
Other languages
English (en)
French (fr)
Other versions
EP3098527A1 (de
Inventor
Johannes Meissner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maico Elektroapparate Fabrik GmbH
Original Assignee
Maico Elektroapparate Fabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maico Elektroapparate Fabrik GmbH filed Critical Maico Elektroapparate Fabrik GmbH
Publication of EP3098527A1 publication Critical patent/EP3098527A1/de
Application granted granted Critical
Publication of EP3098527B1 publication Critical patent/EP3098527B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air

Definitions

  • the invention relates to a method for operating a ventilation device for a room, with exhaust air with a specific exhaust air mass flow being taken from the room during a ventilation process by means of the ventilation device and / or outside air being taken from the outside environment with a specific outside air mass flow and being supplied to the room in the form of supply air, wherein an exhaust air relative humidity and an exhaust air temperature of the exhaust air as well as an outside air temperature of the outside air are measured.
  • the invention also relates to a ventilation device.
  • the ventilation device is preferably used to ventilate and / or air-condition the room.
  • the room is, for example, a living room, but can of course also be of a different nature.
  • the space is not just to be understood as a single room, although this can of course be the case.
  • the space preferably describes a volume of air in very general terms. This can be present in a single room of a building or house or, alternatively, be distributed over several rooms, in particular the entire building.
  • the ventilation device can be designed as a decentralized ventilation device or as a central ventilation device, or it can be part of a decentralized ventilation system or a central ventilation system.
  • the ventilation device can serve to remove exhaust air from the room, to supply supply air into the room or both to remove exhaust air and to supply supply air. If the ventilation device is in operation, i.e. if the ventilation process is carried out, the room is also exhaust air taken from the specific exhaust air mass flow. The exhaust air is then preferably supplied to the outside environment in the form of exhaust air. In addition or as an alternative, outside air is taken from the outside environment, this being done with the outside air mass flow determined. The outside air is then fed into the room in the form of supply air.
  • the air in the air flow from the room to the ventilation device is referred to as exhaust air, while the air discharged from the ventilation device in the direction of the outside environment is referred to as exhaust air.
  • the air in the air flow from the outside environment to the ventilation device is referred to above as outside air, while the air in the air flow from the ventilation device into the room is referred to as supply air.
  • Air present in the room can be referred to as room air.
  • the exhaust air supplied to the outside environment by the ventilation device has a specific exhaust air mass flow, which preferably corresponds to the exhaust air mass flow.
  • the supply air from the ventilation device into the room takes place with a certain supply air mass flow, which preferably corresponds to the outside air mass flow.
  • the exhaust air mass flow and / or the outside air mass flow are determined based on at least one parameter and set on the ventilation device.
  • the ventilation device preferably has at least one air delivery device, in particular a fan.
  • the air conveyor With the help of the air conveyor, the exhaust air is taken from the room or the outside air is taken from the outside environment.
  • air conveying devices can be provided, for example exhaust air is taken from the room by means of a first of the air conveying devices and outside air is taken from the outside environment by means of a second of the air conveying devices.
  • the air delivery device or the air delivery devices are now set in such a way that the specific exhaust air mass flow and / or the specific outside air mass flow are present.
  • a control and / or regulation of the air delivery device is provided for this purpose, wherein in particular a speed of the at least one air delivery device serves as the manipulated variable.
  • EP 1 878 979 A1 a method for controlled ventilation is known.
  • the temperatures inside and outside the room as well as the relative humidity inside the room are measured using measuring units.
  • the measurement results are passed on to a control unit where they are evaluated by calculating the maximum permissible relative humidity, which can avoid condensation, taking into account the minimum surface temperature, and comparing it with the measured value. If the measured relative humidity is above the calculated relative humidity, a unit is activated to initiate a ventilation process.
  • the EP 1 878 979 A1 thus discloses a method for operating a ventilation device according to the preamble of claim 1 and a ventilation device according to the preamble of claim 8.
  • the publication also shows DE 10 2008 044 439 A1 a control device and a method for automatic ventilation of basement rooms, the pamphlet DE 199 52 519 1 a temperature and humidity-dependent fan control as well as the publication DE 10 2011 013 944 A1 a ventilation device with dew point-controlled forced ventilation. It is now the object of the invention to propose a method for operating a ventilation device for a room, which has advantages over the prior art, in particular enables reliable dehumidification of the room.
  • the relative humidity of the exhaust air and the temperature of the exhaust air are measured.
  • the outside air temperature of the outside air is determined, in particular measured.
  • the exhaust air relative humidity corresponds to the relative humidity of the exhaust air taken from the room or the relative humidity Humidity of the room air present in the room.
  • the exhaust air temperature is analogously the temperature of the exhaust air taken from the room or the temperature of the room air present in the room.
  • the outside air relative humidity is determined or estimated within the scope of the method according to the invention.
  • the relative humidity of the outside air can be set on the ventilation device, in particular ex works or by a user of the ventilation device.
  • the outdoor air relative humidity is a constant value that can be specified manually.
  • the relative humidity of the outside air can of course be estimated or measured.
  • the exhaust air relative humidity, the exhaust air temperature and the outside air relative humidity are now summarized in the form of the outside air temperature limit value.
  • the outside air temperature limit value is a function of the relative humidity of the exhaust air, the temperature of the exhaust air and the relative humidity of the outside air.
  • One aim of the method according to the invention is to reduce the relative humidity of the room air or the relative humidity of the exhaust air, or at least limit it upwards.
  • the exhaust air relative humidity exceeds the exhaust air relative humidity limit value, then it is desirable to increase the exhaust air mass flow and / or the outside air mass flow in order to remove moist air from the room and / or to supply dry air to the room.
  • the relative humidity and therefore the relative humidity of the air can only be reduced if the absolute humidity of the outside air is less than the absolute humidity of the extract air.
  • the exhaust air relative humidity must exceed the exhaust air relative humidity limit value, i.e. be greater than this.
  • the outside air temperature must be lower than the outside air temperature limit value, which was determined from the extract air relative humidity, the extract air temperature and the outside air relative humidity.
  • the exhaust air relative humidity limit value is preferably adjustable on the ventilation device, in particular ex works and / or by the user of the ventilation device.
  • the increase in the exhaust air mass flow and / or the outside air mass flow occurs, for example, as follows: First, a default exhaust air mass flow and / or default outside air mass flow is determined, which is set, for example, by the user on the ventilation device.
  • the default exhaust air mass flow and / or the default external air mass flow can, however, also result in the course of an automatic operation of the ventilation device, whereby they are determined as a function of at least one parameter.
  • the exhaust air relative humidity is determined by means of at least one humidity sensor.
  • the humidity sensor can either be provided in the ventilation device, in particular in an exhaust air flow from the ventilation device, or alternatively in the room, at a distance from the ventilation device.
  • the relative humidity of the exhaust air essentially corresponds to the relative humidity of the room air.
  • the relative humidity of the exhaust air is set equal to the largest humidity reading of the humidity sensors.
  • the multiple humidity sensors are arranged as desired, for example at least one of the humidity sensors or, alternatively, multiple humidity sensors are located in the ventilation device, in particular in the exhaust air flow. Additionally or alternatively, at least one further humidity sensor, in particular a plurality of further humidity sensors, can be arranged in the room, in particular at a distance from the ventilation device.
  • Each of these humidity sensors now supplies a measured humidity value which indicates the relative humidity of the exhaust air or the relative humidity of the room air at the location of the respective humidity sensor.
  • the exhaust air mass flow corresponds to the outside air mass flow, that is to say as much air is extracted from the room by means of the ventilation device as is supplied to it.
  • the exhaust air mass flow can be different from the outside air mass flow, that is to say either larger or smaller than it. Accordingly, more exhaust air is extracted from the room than is supplied to it, or vice versa.
  • the exhaust air mass flow or the outside air mass flow is set to zero, i.e. in the former case only supply air is supplied to the room and in the latter case only exhaust air is extracted from the room.
  • An outside air mass flow that differs from the exhaust air mass flow is set in particular when at least one open room closure element and / or building closure element is detected.
  • the room locking element or building locking element is, for example, a door, a window or the like.
  • the room closure element or building closure element In its open state, the room closure element or building closure element preferably provides a flow connection from the room to the external environment, so that either air can escape from the room into the external environment or can enter the room from the external environment.
  • the first temperature variable ⁇ 1 is a constant value which is set in particular invariably on the ventilation device, for example ex works. In this case, the first temperature variable cannot be changed or set by a user of the ventilation device. Of course, this can also be provided in an alternative embodiment.
  • the first temperature variable is given, for example, in the unit ° C and has a value from 10 ° C to 20 ° C, preferably 12 ° C to 16 ° C, preferably 14 ° C to 15 ° C or 14 ° C to 14.5 ° C on.
  • the first temperature variable has the value 14 ° C, 14.1 ° C, 14.2 ° C, 14.3 ° C, 14.4 ° C or 14.5 ° C.
  • the absolute humidity x AB corresponds, for example, to the absolute humidity of the exhaust air, so to that extent an exhaust air absolute humidity.
  • the second temperature variable is determined from the relative humidity of the outside air, in this respect from a function of the relative humidity of the outside air.
  • the second temperature variable is determined using a mathematical relationship, a characteristic diagram and / or a table from the outside air relative humidity.
  • the second temperature variable ⁇ 2 is preferably given in the unit ° C. For example, it has a relative humidity outside the room of 60% a value between 10 ° C and 11 ° C, in particular between 10.5 ° C and 11 ° C. With a relative humidity of the outside air of 70%, the second temperature variable has a value from 12 ° C to 14 ° C, in particular from 12.5 ° C to 13.5 ° C. If the relative humidity of the outside air is 80%, the second temperature variable can have a value between 14 ° C and 15 ° C, in particular a value between 14.5 ° C and 15 ° C.
  • a preferred embodiment of the invention provides that a constant value is used as the first temperature variable. This has already been pointed out above.
  • the first temperature variable is stored permanently or unchangeably in the ventilation device and cannot be changed by the user of the ventilation device.
  • the absolute humidity used in the equation given above is available as a function of the maximum humidity and the relative humidity of the exhaust air.
  • the maximum humidity indicates the maximum absolute humidity and can in this respect also be referred to as the maximum absolute humidity.
  • the second temperature variable is determined from the assumed relative humidity of the outside air by means of a mathematical relationship, a characteristic field and / or a table. This has already been pointed out above.
  • the second temperature variable is specified for several different values of the relative humidity of the outside air.
  • the second temperature variable for which the outside air relative humidity assigned in the table is closest to the assumed outside air relative humidity is read from the table.
  • the second temperature variable can also be determined by interpolation or extrapolation from the table, for example by linear interpolation.
  • the exhaust air mass flow and / or the outside air mass flow are / is only increased when the outside air temperature is lower than the outside air temperature limit by an activation temperature difference.
  • outside air temperature corresponds at least essentially to the outside air temperature limit value
  • the air present in the outside environment has a similar absolute humidity to the exhaust air or room air.
  • increasing the exhaust air mass flow or the outside air mass flow cannot reduce the humidity in the room.
  • the outside air temperature is at least the activation temperature difference lower than the outside air temperature limit value, it can be assumed that the outside air is drier than the exhaust air or room air.
  • the exhaust air mass flow and / or the outside air mass flow are / is reduced again when the exhaust air relative humidity falls below an exhaust air relative humidity limit value by a certain deactivation humidity difference.
  • the aim of the method is to reduce the humidity in the room.
  • the exhaust air mass flow or the outside air mass flow are increased if the exhaust air relative humidity exceeds the exhaust air relative humidity limit value and the outside air temperature is also lower than the outside air temperature limit value.
  • the exhaust air mass flow and / or the outside air mass flow can be reduced again, in particular to their respective levels Baseline they were on before they increased.
  • the exhaust air mass flow corresponds to the aforementioned default exhaust air mass flow
  • the outside air mass flow corresponds to the default outside air mass flow.
  • the deactivation humidity difference is specified, which is different from zero, in particular at least 2 percentage points, at least 4 percentage points, at least 6 percentage points, at least 8 percentage points or at least 10 percentage points.
  • the outside air temperature limit value is determined periodically, the exhaust air mass flow and / or the outside air mass flow being reduced again when the outside air temperature is greater than or equal to the outside air temperature limit value. While the ventilation device is operated with the increased exhaust air mass flow and / or outside air mass flow, the conditions in the outside environment can change. This should be responded to adequately by periodically redetermining the outside air temperature limit value and the outside air temperature.
  • the exhaust air mass flow or the outside air mass flow should be reduced again, in particular to the default exhaust air mass flow or the default outside air mass flow, if the humidity in the room can no longer be reduced by the increased exhaust air mass flow or outside air mass flow, because the humidity in the outside environment, now changed at least similar to that there is humidity in the room.
  • a further development of the invention provides that the exhaust air mass flow and / or the outside air mass flow are only increased when a winter operating mode is set on the ventilation device.
  • several different operating modes can be set on the ventilation device, for example a summer operating mode and the winter operating mode.
  • the setting can preferably be made by the user of the ventilation device. Suitable input means are provided for this purpose, for example.
  • the air humidity present in the room or the relative humidity of the exhaust air can take place particularly efficiently with cold and therefore dry outside air. This is particularly the case in winter. In summer, on the other hand, the outside air is usually more humid due to the higher temperature, so that reducing the humidity in the room cannot be carried out as efficiently as in winter.
  • a switchover is made between a summer operating mode and the winter operating mode as a function of a current season.
  • the current time of year is determined, for example, by means of a clock in the ventilation device or is specified by a central point.
  • a target exhaust air mass flow and / or a target external air mass flow are / is determined from the exhaust air relative humidity and the exhaust air mass flow is / is set to the target exhaust air mass flow and / or the external air mass flow is / is set to the target external air mass flow.
  • the target exhaust air mass flow or the target outside air mass flow is therefore available as a function of the exhaust air relative humidity. For example, it is provided that at a first value of the relative humidity of the exhaust air, the target exhaust air mass flow rate is set to a first target exhaust air mass flow rate and / or the target external air mass flow rate is set to a first target external air mass flow rate.
  • the target exhaust air mass flow should be set to a second target exhaust air mass flow and / or the target external air mass flow should be set to a second target external air mass flow, the second target exhaust air mass flow being greater than the first target exhaust air mass flow or the second Setpoint outside air mass flow is greater than the first setpoint outside air mass flow.
  • a fixed relationship is defined between values of the relative humidity of the exhaust air on the one hand and the target exhaust air mass flow rate and / or the target outside air mass flow rate on the other hand.
  • a linear relationship is provided here.
  • relationships of higher or lower order can of course also be used.
  • a default exhaust air mass flow and / or a default outside air mass flow are determined, for example, the larger value is selected from the default outside air mass flow and the set outside air mass flow and the outside air mass flow is applied to the ventilation device this set. Additionally or alternatively, the default exhaust air mass flow rate and the target exhaust air mass flow rate can be used.
  • a further advantageous embodiment of the invention provides that the target exhaust air mass flow and / or the target outside air mass flow are selected to be higher, the higher the relative humidity of the exhaust air. This has already been discussed above.
  • the determination of the target exhaust air mass flow and / or the target external air mass flow can be determined by means of a mathematical relationship, a characteristic field and / or a table, in particular from the exhaust air relative humidity.
  • a further development of the invention provides that the exhaust air and / or supply air are passed through a heat exchanger or heat exchanger for temperature control.
  • the heat exchanger is provided to extract heat from the exhaust air and / or to supply heat to the supply air.
  • both the exhaust air and the supply air are passed through the heat exchanger, so that the heat extracted from the exhaust air can be used for tempering, in particular heating, the supply air.
  • provision can also be made for only part of the exhaust air and / or only part of the supply air to be passed through the heat exchanger, but this is preferably the case for all of the exhaust air or all of the supply air.
  • an enthalpy exchanger is used as the heat exchanger. While the heat exchanger can of course be designed as a sensible heat exchanger, it is particularly advantageous if it is available as an enthalpy exchanger.
  • the enthalpy exchanger like the sensitive heat exchanger, has means for transferring heat, in particular from the exhaust air to the supply air. In addition, however, the enthalpy exchanger has means by means of which moisture can be exchanged, in particular transferred from the exhaust air to the supply air.
  • a film or membrane through which water vapor can diffuse for example due to osmosis, is provided in the enthalpy exchanger, for example for fluidic separation of the supply air from the exhaust air.
  • the film or membrane consists for example of a polymer.
  • the exhaust air mass flow and / or the outside air mass flow are increased during an intensive ventilation mode.
  • the ventilation device is therefore normally operated, for example, in a normal operating mode. As soon as it is determined that the exhaust air relative humidity exceeds the exhaust air relative humidity limit value and the outside air temperature is lower than the outside air temperature limit value, a switch is made to the intensive ventilation mode, in particular from the normal mode.
  • the exhaust air mass flow and / or the outside air mass flow are increased, for example the increase occurs with or shortly after switching to the intensive ventilation operating mode. After the increase, it can be provided that the increased exhaust air mass flow and / or the increased outside air mass flow during the further course of the intensive ventilation operating mode remain constant until the intensive ventilation mode is ended.
  • the exhaust air relative humidity is temporarily stored as an initial value at the beginning of the intensive ventilation operating mode. Immediately when switching to the intensive ventilation mode, the output value of the relative humidity of the exhaust air is set equal to and saved. The output value remains saved for the entire duration of the intensive ventilation mode and is therefore constant.
  • a preferred embodiment of the invention provides that, during the intensive ventilation mode, the currently present exhaust air relative humidity is compared with a comparison value determined from the initial value, a bypass around the heat exchanger being at least partially opened if the exhaust air relative humidity is greater than or equal to the comparison value.
  • the comparison value corresponds to the initial value.
  • the comparison value can also be selected to be smaller than the output value, for example by a certain offset.
  • the comparison between the relative humidity of the exhaust air and the reference value is made either continuously or at defined time intervals. If, in the context of the comparison, it is found that the relative humidity of the exhaust air is greater than or equal to the comparison value, i.e. that the humidity in the room is greater than the humidity present at the start of the intensive ventilation mode, the bypass is opened at least partially, in particular completely.
  • the bypass preferably serves to guide the outside air or supply air at least partially, in particular completely, around the heat exchanger.
  • the heat exchanger is designed as an enthalpy exchanger.
  • moisture can also be transferred in the enthalpy exchanger.
  • this can be undesirable if the humidity in the room is too high or should be reduced.
  • it makes sense to open the bypass when the humidity in the outside environment is greater than or equal to the humidity in the room.
  • Another embodiment of the invention provides that when the bypass is at least partially open, the supply air supplied to the room is heated by means of a heating device. If the supply air is routed through the bypass and the heat exchanger, it cannot be heated in this. It is therefore necessary to adjust the temperature of the supply air accordingly.
  • the heating device is provided for this purpose. For example, with the aid of the heating device, the supply air is set to a certain temperature, in particular a default temperature which is predetermined by the user of the ventilation device, in particular set in a controlling and / or regulating manner.
  • the room has several ventilation zones from which exhaust air with a certain proportion of the exhaust air mass flow is taken and / or supply air with a certain proportion of the outside air mass flow is supplied.
  • the room is divided into several ventilation zones. Each of the ventilation zones is separate Exhaust air can be taken from other ventilation zones and / or supply air can be supplied.
  • the exhaust air taken from all ventilation zones together has the exhaust air mass flow, while the supply air supplied to all ventilation zones has the outside air mass flow.
  • the number of ventilation zones from which exhaust air is taken is different from or corresponds to the number of ventilation zones into which supply air is supplied.
  • the number of ventilation zones from which exhaust air is extracted is greater or smaller than the number of those ventilation zones into which supply air is supplied.
  • a reverse configuration can also be provided.
  • Another embodiment of the invention provides that humidity is determined in each of the ventilation zones and the proportion of the exhaust air mass flow and / or the proportion of the outside air mass flow are / is increased for the ventilation zone in which the higher humidity is present. It is therefore not only intended to increase the exhaust air mass flow and / or the outside air mass flow globally. Rather, the exhaust air mass flow or the outside air mass flow is specifically distributed locally to the ventilation zones. In this way, the air between the ventilation zones can be homogenized.
  • the ventilation zones do not have to be arranged directly connected in terms of fluid technology.
  • the ventilation zones can be in different rooms of a building, which in their entirety describe the room to which the ventilation device is assigned.
  • the multiple ventilation zones can of course also be present in a single room, which can accordingly be viewed as the room having the ventilation device.
  • the invention also relates to a ventilation device having the features of claim 8.
  • the invention naturally also relates to a room which has a ventilation device according to the above statements.
  • the space can be a room in a building or the building itself.
  • the figure shows a flow diagram in which a method for operating a ventilation device for a room is shown.
  • the ventilation device is designed to take exhaust air with a specific exhaust air mass flow from the room during a ventilation process by means of the ventilation device and / to take outside air with a specific outside air mass flow from the outside environment and supply it to the room in the form of supply air.
  • an exhaust air relative humidity limit value is set, for example by a user of the ventilation device.
  • the exhaust air relative humidity is the Exhaust air measured.
  • the measured relative exhaust air humidity is then compared with the set exhaust air relative humidity limit value. If it is smaller, the method is ended in step 4.
  • an outside air temperature limit value is determined from an exhaust air temperature measured in a step 5 in a step 6. This describes the temperature in the outside environment at which the air humidity in the outside environment corresponds at most to the air humidity in the room, in particular is lower than this.
  • a step 7 an outside air temperature is now measured. This is compared in a step 8 with the outside air temperature limit value. If it is determined that the outside air temperature is greater than or equal to the outside air temperature limit value, the method is ended in a step 9. Otherwise, a step 10 is initiated.
  • the exhaust air mass flow and / or the outside air mass flow are increased in order to remove more air from the room and / or to supply more air to it. In this way, the humidity in the room can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Lüftungseinrichtung für einen Raum, wobei während eines Lüftungsvorgangs mittels der Lüftungseinrichtung dem Raum Abluft mit einem bestimmten Abluftmassenstrom entnommen wird und/oder der Außenumgebung Außenluft mit einem bestimmten Außenluftmassenstrom entnommen und in Form von Zuluft dem Raum zugeführt wird, wobei eine Abluftrelativfeuchte und eine Ablufttemperatur der Abluft sowie eine Außenlufttemperatur der Außenluft gemessen werden. Die Erfindung betrifft weiterhin eine Lüftungseinrichtung.
  • Die Lüftungseinrichtung dient vorzugsweise dem Lüften und/oder Klimatisieren des Raums. Der Raum ist beispielsweise ein Wohnraum, kann jedoch selbstverständlich auch anderer Natur sein. Insbesondere ist unter dem Raum nicht lediglich ein einzelnes Zimmer zu verstehen, wenngleich dies selbstverständlich der Fall sein kann. Bevorzugt beschreibt der Raum ganz allgemein ein Luftvolumen. Dieses kann in einem einzigen Zimmer eines Gebäudes beziehungsweise Hauses vorliegen oder sich alternativ auf mehrere Zimmer, insbesondere das ganze Gebäude, verteilen.
  • Die Lüftungseinrichtung kann als dezentrale Lüftungseinrichtung oder als zentrale Lüftungseinrichtung ausgestaltet sein beziehungsweise Bestandteil einer dezentralen Lüftungsanlage oder einer zentralen Lüftungsanlage sein. Die Lüftungseinrichtung kann dabei dem Abführen von Abluft aus dem Raum, dem Zuführen von Zuluft in den Raum oder sowohl dem Abführen von Abluft als auch dem Zuführen von Zuluft dienen. Ist die Lüftungseinrichtung in Betrieb, wird also der Lüftungsvorgang durchgeführt, so wird dem Raum Abluft mit dem bestimmten Abluftmassenstrom entnommen. Die Abluft wird nachfolgend vorzugsweise in Form von Fortluft der Außenumgebung zugeführt. Zusätzlich oder alternativ wird der Außenumgebung Außenluft entnommen, wobei dies mit dem bestimmten Außenluftmassenstrom erfolgt. Anschließend wird die Außenluft in Form der Zuluft dem Raum zugeführt.
  • Die Luft in dem Luftstrom aus dem Raum bis hin zu der Lüftungseinrichtung wird insoweit als Abluft bezeichnet, während die von der Lüftungseinrichtung in Richtung der Außenumgebung abgeführte Luft Fortluft genannt wird. Die Luft in dem Luftstrom von der Außenumgebung zu der Lüftungseinrichtung wird gemäß Vorstehendem als Außenluft bezeichnet, während die Luft in dem Luftstrom von der Lüftungseinrichtung in den Raum hinein Zuluft genannt wird. In dem Raum vorliegende Luft kann als Raumluft bezeichnet werden.
  • Die von der Lüftungseinrichtung der Außenumgebung zugeführte Fortluft weist einen bestimmten Fortluftmassenstrom auf, welcher vorzugsweise dem Abluftmassenstrom entspricht. Umgekehrt erfolgt das Zuführen der Zuluft von der Lüftungseinrichtung in den Raum mit einem bestimmten Zuluftmassenstrom, welcher bevorzugt dem Außenluftmassenstrom entspricht. Der Abluftmassenstrom und/oder der Außenluftmassenstrom werden anhand wenigstens eines Parameters bestimmt und an der Lüftungseinrichtung eingestellt.
  • Die Lüftungseinrichtung weist vorzugsweise wenigstens eine Luftfördereinrichtung, insbesondere einen Ventilator, auf. Mithilfe der Luftfördereinrichtung wird dem Raum die Abluft oder der Außenumgebung die Außenluft entnommen. Selbstverständlich können mehrere Luftfördereinrichtungen vorgesehen sein, wobei beispielsweise mittels einer ersten der Luftfördereinrichtungen dem Raum Abluft und mittels einer zweiten der Luftfördereinrichtungen der Außenumgebung Außenluft entnommen wird.
  • Die Luftfördereinrichtung beziehungsweise die Luftfördereinrichtungen werden nun derart eingestellt, dass der bestimmte Abluftmassenstrom und/oder der bestimmte Außenluftmassenstrom vorliegen. Beispielsweise ist zu diesem Zweck eine Steuerung und/oder Regelung der Luftfördereinrichtung vorgesehen, wobei insbesondere eine Drehzahl der wenigstens einen Luftfördereinrichtung als Stellgröße dient.
  • Beispielsweise ist aus der Druckschrift EP 1 878 979 A1 ein Verfahren zum kontrollierten Lüften bekannt. Um ein Kondensieren der Feuchtigkeit aus der Rauminnenluft und langfristig Feuchtigkeitsschäden und Schimmelbildung zu vermeiden, werden mittels Messeinheiten die Temperaturen innerhalb und außerhalb des Raumes sowie die relative Luftfeuchtigkeit innerhalb des Raumes gemessen. Die Messergebnisse werden an eine Steuereinheit weitergegeben und dort ausgewertet, indem unter Berücksichtigung der minimalen Oberflächentemperatur die maximal zulässige relative Luftfeuchtigkeit berechnet wird, bei der Kondensation vermieden werden kann, und mit dem gemessenen Wert verglichen wird. Falls die gemessene relative Luftfeuchtigkeit über der berechneten relativen Luftfeuchtigkeit liegt, wird eine Einheit zum Veranlassen eines Lüftvorgangs aktiviert. Die EP 1 878 979 A1 offenbart somit ein Verfahren zum Betreiben einer Lüftungseinrichtung gemäß dem Oberbegriff von Anspruch 1 sowie eine Lüftungseinrichtung gemäß dem Oberbegriff von Anspruch 8.
  • Weiterhin zeigt die Druckschrift DE 10 2008 044 439 A1 eine Regelungsvorrichtung und ein Verfahren zur automatischen Belüftung von Kellerräumen, die Druckschrift DE 199 52 519 1 eine temperatur- und feuchtigkeitsabhängige Ventilatorsteuerung sowie die Druckschrift DE 10 2011 013 944 A1 ein Lüftungsgerät mit taupunktgesteuerter Zwangslüftung.Es ist nun Aufgabe der Erfindung, ein Verfahren zum Betreiben einer Lüftungseinrichtung für einen Raum vorzuschlagen, welcher gegenüber dem Stand der Technik Vorteile aufweist, insbesondere ein zuverlässiges Entfeuchten des Raums ermöglicht.
  • Dies wird erfindungsgemäß mit einem Verfahren mit den Merkmalen des Anspruchs 1 erreicht. Dabei ist vorgesehen, dass aus der Abluftrelativfeuchte, der Ablufttemperatur sowie einer konstanten und manuell vorgebbaren angenommenen Außenluftrelativfeuchte anhand der Gleichung ϑ AU , max = ϑ 1 ln x AB ϑ 2
    Figure imgb0001
    ein Außenlufttemperaturgrenzwert bestimmt wird, wobei ϑ1 eine erste Temperaturgröße, xAB eine aus der Abluftrelativfeuchte und der Ablufttemperatur ermittelte Absolutfeuchte und ϑ2 eine aus der angenommenen Außenluftrelativfeuchte ermittelte zweite Temperaturgröße ist, wobei der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht werden/wird, wenn die Abluftrelativfeuchte einen Abluftrelativfeuchtegrenzwert übersteigt und die Außenlufttemperatur kleiner als der Außenlufttemperaturgrenzwert ist.
  • Zur Durchführung des Verfahrens werden die Abluftrelativfeuchte sowie die Ablufttemperatur der Abluft gemessen. Zudem wird die Außenlufttemperatur der Außenluft bestimmt, insbesondere gemessen. Die Abluftrelativfeuchte entspricht der relativen Luftfeuchtigkeit der dem Raum entnommenen Abluft beziehungsweise der relativen Luftfeuchtigkeit der in dem Raum vorliegenden Raumluft. Die Ablufttemperatur ist analog hierzu die Temperatur der dem Raum entnommenen Abluft oder die Temperatur der in dem Raum vorliegenden Raumluft.
  • Die Außenluftrelativfeuchte wird im Rahmen des erfindungsgemäßen Verfahrens festgelegt oder abgeschätzt. Beispielsweise ist die Außenluftrelativfeuchte an der Lüftungseinrichtung einstellbar, insbesondere ab Werk oder durch einen Benutzer der Lüftungseinrichtung. Insoweit ist die Außenluftrelativfeuchte ein konstanter Wert, welcher manuell vorgegeben werden kann. Alternativ kann die Außenluftrelativfeuchte selbstverständlich abgeschätzt oder gemessen werden. Die Abluftrelativfeuchte, die Ablufttemperatur sowie die Außenluftrelativfeuchte werden nun in Form des Außenlufttemperaturgrenzwerts zusammengefasst. Der Außenlufttemperaturgrenzwert ist insoweit eine Funktion aus der Abluftrelativfeuchte, der Ablufttemperatur und der Außenluftrelativfeuchte.
  • Bei hohen Raumluftrelativfeuchten und niedrigen Außentemperaturen kann es zu Kondensatbildung an kalten Stellen, insbesondere an kalten Außenwänden, des Raums kommen. Weiterhin wird eine zu hohe Raumluftrelativfeuchte als stickig empfunden. Ein Ziel des erfindungsgemäßen Verfahrens ist es insoweit, die Raumluftrelativfeuchte beziehungsweise die Abluftrelativfeuchte zu verringern beziehungsweise zumindest nach oben zu begrenzen.
  • Übersteigt nun die Abluftrelativfeuchte den Abluftrelativfeuchtegrenzwert, so ist es wünschenswert, den Abluftmassenstrom und/oder den Außenluftmassenstrom zu vergrößern, um feuchte Luft aus dem Raum abzuführen und/oder dem Raum trockene Luft zuzuführen. Entsprechend kann durch das Erhöhen des Abluftmassenstroms und/oder des Außenluftmassenstroms nur dann die Abluftrelativfeuchte und mithin die Raumluftrelativfeuchte verringert werden, wenn die Außenluftabsolutfeuchte kleiner ist als die Abluftabsolutfeuchte.
  • Daraus ergeben sich zwei Bedingungen, welche erfüllt sein müssen, damit der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht werden. Zum einen muss die Abluftrelativfeuchte den Abluftrelativfeuchtegrenzwert übersteigen, also größer sein als dieser. Zum anderen muss die Außenlufttemperatur kleiner sein als der Außenlufttemperaturgrenzwert, welcher aus der Abluftrelativfeuchte, der Ablufttemperatur sowie der Außenluftrelativfeuchte ermittelt wurde. Der Abluftrelativfeuchtegrenzwert ist dabei vorzugsweise an der Lüftungseinrichtung einstellbar, insbesondere ab Werk und/oder durch den Benutzer der Lüftungseinrichtung.
  • Das Erhöhen des Abluftmassenstroms und/oder des Außenluftmassenstroms erfolgt beispielsweise wie folgt: Zunächst wird ein Vorgabeabluftmassenstrom und/oder Vorgabeaußenluftmassenstrom ermittelt, welcher beispielsweise von dem Benutzer an der Lüftungseinrichtung eingestellt wird. Der Vorgabeabluftmassenstrom und/oder der Vorgabeaußenluftmassenstrom können sich jedoch auch im Zuge eines Automatikbetriebs der Lüftungseinrichtung ergeben, wobei sie in Abhängigkeit von wenigstens einem Parameter ermittelt werden.
  • Ausgehend von diesem Vorgabeabluftmassenstrom und/oder Vorgabeaußenluftmassenstrom erfolgt nun die Erhöhung des Abluftmassenstroms und/oder des Außenluftmassenstroms, sodass der tatsächlich an der Lüftungseinrichtung eingestellte Abluftmassenstrom größer ist als der Vorgabeabluftmassenstrom und/oder der eingestellte Außenluftmassenstrom größer ist als der Vorgabeaußenluftmassenstrom.
  • Gemäß den vorstehenden Ausführungen kann es vorgesehen sein, dass die Abluftrelativfeuchte mittels wenigstens eines Feuchtesensors ermittelt wird. Der Feuchtesensor kann entweder in der Lüftungseinrichtung, insbesondere in einem Abluftstrom der Lüftungseinrichtung vorgesehen sein oder alternativ in dem Raum, beabstandet von der Lüftungseinrichtung, angeordnet sein. Wie bereits vorstehend erläutert, entspricht die Abluftrelativfeuchte im Wesentlichen der Raumluftrelativfeuchte.
  • In einer bevorzugten Ausgestaltung der Erfindung kann es vorgesehen sein, dass bei Verwendung mehrerer Feuchtesensoren die Abluftrelativfeuchte gleich dem größten Feuchtemesswert der Feuchtesensoren gesetzt wird. Insoweit ist nicht lediglich ein einziger Feuchtesensor vorgesehen, wobei dies selbstverständlich der Fall sein kann. Die mehreren Feuchtesensoren sind beliebig angeordnet, beispielsweise befinden sich wenigstens einer der Feuchtesensoren oder alternativ mehrere Feuchtesensoren in der Lüftungseinrichtung, insbesondere in dem Abluftstrom. Zusätzlich oder alternativ können wenigstens ein weiterer Feuchtesensor, insbesondere mehrere weitere Feuchtesensoren, in dem Raum, insbesondere beabstandet von der Lüftungseinrichtung, angeordnet sein.
  • Jeder dieser Feuchtesensoren liefert nun einen Feuchtemesswert, welcher die an der Stelle des jeweiligen Feuchtesensors vorliegende Abluftrelativfeuchte beziehungsweise Raumluftrelativfeuchte angibt.
  • Die Abluftrelativfeuchte, aus welcher der Außenlufttemperaturgrenzwert bestimmt wird, entspricht nun dem größten Feuchtemesswert der Feuchtesensoren.
  • In einem Normalbetrieb der Lüftungseinrichtung kann es vorgesehen sein, dass der Abluftmassenstrom dem Außenluftmassenstrom entspricht, dem Raum mittels der Lüftungseinrichtung also ebenso viel Luft entnommen wird, wie ihm zugeführt wird. Dies muss jedoch nicht der Fall sein. In wenigstens einer Betriebsart der Lüftungseinrichtung kann der Abluftmassenstrom von dem Außenluftmassenstrom verschieden sein, also entweder größer oder kleiner sein als dieser. Entsprechend wird dem Raum mehr Abluft entnommen als ihm Zuluft zugeführt wird oder umgekehrt. Im Extremfall kann es vorgesehen sein, dass der Abluftmassenstrom oder der Außenluftmassenstrom auf Null eingestellt wird, also in ersterem Fall dem Raum lediglich Zuluft zugeführt und in letzterem Fall dem Raum lediglich Abluft entnommen wird.
  • Ein von dem Abluftmassenstrom verschiedener Außenluftmassenstrom wird insbesondere dann eingestellt, wenn auf wenigstens ein geöffnetes Raumverschlusselement und/oder Gebäudeverschlusselement erkannt wird. Das Raumverschlusselement beziehungsweise Gebäudeverschlusselement ist beispielsweise eine Tür, ein Fenster oder dergleichen. Vorzugsweise liegt durch das Raumverschlusselement beziehungsweise Gebäudeverschlusselement in seinem geöffneten Zustand eine Strömungsverbindung aus dem Raum in die Außenumgebung vor, sodass entweder Luft aus dem Raum in die Außenumgebung entweichen oder aus der Außenumgebung in den Raum gelangen kann.
  • Die Erfindung sieht vor, dass der Außenlufttemperaturgrenzwert ϑAU,max anhand der Gleichung ϑ AU , max = ϑ 1 ln x AB ϑ 2
    Figure imgb0002
    ermittelt wird, wobei ϑ1 eine erste Temperaturgröße, xAB eine Absolutfeuchte und ϑ2 eine aus der angenommenen Außenluftrelativfeuchte ermittelte zweite Temperaturgröße ist.
  • Die erste Temperaturgröße ϑ1 ist ein konstanter Wert, welcher insbesondere unveränderlich an der Lüftungseinrichtung eingestellt ist, beispielsweise ab Werk. In diesem Fall kann die erste Temperaturgröße nicht durch einen Benutzer der Lüftungseinrichtung verändert beziehungsweise eingestellt werden. Selbstverständlich kann auch dies in einer alternativen Ausgestaltung jedoch vorgesehen sein. Die erste Temperaturgröße wird beispielsweise in der Einheit °C angegeben und weist einen Wert von 10 °C bis 20 °C, vorzugsweise 12 °C bis 16 °C, bevorzugt 14 °C bis 15 °C oder 14 °C bis 14,5 °C auf. Beispielsweise hat die erste Temperaturgröße den Wert 14 °C, 14,1 °C, 14,2 °C, 14,3 °C, 14,4 °C oder 14,5 °C.
  • Die Absolutfeuchte xAB entspricht beispielsweise der Absolutfeuchte der Abluft, insoweit also einer Abluftabsolutfeuchte. Die zweite Temperaturgröße wird aus der Außenluftrelativfeuchte ermittelt, insoweit also aus einer Funktion der Außenluftrelativfeuchte. Beispielsweise wird die zweite Temperaturgröße anhand einer mathematischen Beziehung, eines Kennfelds und/oder einer Tabelle aus der Außenluftrelativfeuchte bestimmt.
  • Die zweite Temperaturgröße ϑ2 wird vorzugsweise in der Einheit °C angegeben. Sie hat beispielsweise bei einer Außenluftrelativfeuchte von 60 % einen Wert zwischen 10 °C und 11 °C, insbesondere zwischen 10,5 °C und 11 °C. Bei einer Außenluftrelativfeuchte von 70 % weist die zweite Temperaturgröße einen Wert von 12 °C bis 14 °C, insbesondere von 12,5 °C bis 13,5 °C auf. Beträgt die Außenluftrelativfeuchte 80 %, so kann die zweite Temperaturgröße einen Wert zwischen 14 °C und 15 °C aufweisen, insbesondere einen Wert von 14,5 °C bis 15 °C.
  • Um sicherzustellen, dass der Außenlufttemperaturgrenzwert anhand der Gleichung ermittelt werden kann, kann es zudem vorgesehen sein, die Absolutfeuchte nach unten auf einen Wert von Null zu begrenzen. In diesem Fall kann die Gleichung als ϑ AU , max = ϑ 1 ln max 0 x AB ϑ 2
    Figure imgb0003
    angegeben werden. Auch eine Normalisierung der Absolutfeuchte auf eine einheitenlose Größe kann vorgesehen sein.
  • Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass als erste Temperaturgröße ein konstanter Wert verwendet wird. Hierauf wurde bereits vorstehend hingewiesen. Die erste Temperaturgröße ist insoweit fest beziehungsweise unveränderbar in der Lüftungseinrichtung hinterlegt und kann durch den Benutzer der Lüftungseinrichtung nicht verändert werden.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Absolutfeuchte anhand der Beziehung x AB = x max ρ AB
    Figure imgb0004
    ermittelt wird, wobei xmax eine Maximalfeuchte und ρAB die Abluftrelativfeuchte ist. Die in der vorstehend angegebenen Gleichung verwendete Absolutfeuchte liegt insoweit als Funktion aus der Maximalfeuchte und der Abluftrelativfeuchte vor. Die Maximalfeuchte gibt dabei die maximale absolute Feuchtigkeit an und kann insoweit auch als Maximalabsolutfeuchte bezeichnet werden.
  • Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die Maximalfeuchte aus der Ablufttemperatur ermittelt wird, wobei die Beziehung x max = a x ϑ x AB
    Figure imgb0005
    (mit x=0..m)
    oder anders ausgedrückt x max = x = 0 m a x ϑ AB x
    Figure imgb0006
    verwendet wird. Die Beziehung zur Ermittlung der Maximalfeuchte kann insoweit beliebiger Ordnung, in den zuletzt angegeben Gleichungen als m bezeichnet, sein. Beispielsweise wird eine Beziehung erster Ordnung, zweiter Ordnung oder dritter Ordnung verwendet, wobei in letzterem Fall die Beziehung als x max = a 3 ϑ 3 AB + a 2 ϑ 2 AB + a 1 ϑ AB + a 0
    Figure imgb0007
    angegeben werden kann.
  • Die Koeffizienten werden dabei vorzugsweise derart gewählt, dass die Beziehung die Sättigungsmenge von Wasserdampf in der Luft möglichst genau wiedergibt, insbesondere in einem Einsatztemperaturbereich der Lüftungseinrichtung, welcher sich insbesondere von - 20 °C bis +40 °C erstreckt. Beispielsweise haben die Koeffizienten folgende Werte:
    • a3 = 0,000212680975552423,
    • a2 = 0,0095118829163135,
    • a1 = 0,260953396021405, und
    • a0 = 3,71104339859367.
  • Eine Weiterbildung der Erfindung sieht vor, dass die zweite Temperaturgröße aus der angenommenen Außenluftrelativfeuchte mittels einer mathematischen Beziehung, einem Kennfeld und/oder einer Tabelle ermittelt wird. Hierauf wurde vorstehend bereits hingewiesen. In letzterem Fall ist beispielsweise für mehrere unterschiedliche Werte der Außenluftrelativfeuchte jeweils die zweite Temperaturgröße angegeben. Aus der Tabelle wird nun beispielsweise diejenige zweite Temperaturgröße ausgelesen, für welche die in der Tabelle zugeordnete Außenluftrelativfeuchte der angenommenen Außenluftrelativfeuchte am nächsten liegt. Alternativ kann die zweite Temperaturgröße auch durch Interpolation oder Extrapolation aus der Tabelle bestimmt werden, beispielsweise durch lineare Interpolation.
  • In einer weiteren bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass der Abluftmassenstrom und/oder der Außenluftmassenstrom erst dann erhöht werden/wird, wenn die Außenlufttemperatur um eine Aktivierungstemperaturdifferenz kleiner als der Außenlufttemperaturgrenzwert ist. Bei einer derartigen Ausgestaltung ist es also nicht ausreichend, wenn die Außenlufttemperatur kleiner ist als der Außenlufttemperaturgrenzwert. Vielmehr muss zwischen der Außenlufttemperatur und dem Außenlufttemperaturgrenzwert zumindest die Aktivierungstemperaturdifferenz vorliegen.
  • Entspricht die Außenlufttemperatur dem Außenlufttemperaturgrenzwert zumindest im Wesentlichen, so kann davon ausgegangen werden, dass die in der Außenumgebung vorliegende Luft eine ähnliche Absolutfeuchte aufweist wie die Abluft beziehungsweise Raumluft. Entsprechend kann auch durch das Erhöhen des Abluftmassenstroms beziehungsweise des Außenluftmassenstroms keine Verringerung der Luftfeuchtigkeit in dem Raum erzielt werden. Ist jedoch die Außenlufttemperatur mindestens um die Aktivierungstemperaturdifferenz kleiner als der Außenlufttemperaturgrenzwert, so kann davon ausgegangen werden, dass die Außenluft trockener ist als die Abluft beziehungsweise Raumluft.
  • In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass der Abluftmassenstrom und/oder der Außenluftmassenstrom wieder verringert werden/wird, wenn die Abluftrelativfeuchte einen Abluftrelativfeuchtegrenzwert um eine bestimmte Deaktivierungsfeuchtedifferenz unterschreitet. Wie bereits eingangs erwähnt, ist es das Ziel des Verfahrens, die Luftfeuchtigkeit in dem Raum zu verringern. Entsprechend werden der Abluftmassenstrom beziehungsweise der Außenluftmassenstrom erhöht, wenn die Abluftrelativfeuchte den Abluftrelativfeuchtegrenzwert übersteigt und zudem die Außenlufttemperatur kleiner als der Außenlufttemperaturgrenzwert ist.
  • Kann durch dieses Erhöhen die Luftfeuchtigkeit in dem Raum beziehungsweise die Abluftrelativfeuchte ausreichend verringert werden, so können der Abluftmassenstrom und/oder der Außenluftmassenstrom wieder verringert werden, insbesondere auf ihren jeweiligen Ausgangswert, den sie vor dem Erhöhen aufwiesen. Beispielsweise entspricht in diesem Fall der Abluftmassenstrom dem vorstehend erwähnten Vorgabeabluftmassenstrom und der Außenluftmassenstrom dem Vorgabeaußenluftmassenstrom. Um sicherzugehen, dass tatsächlich die Luftfeuchtigkeit in dem Raum verringert wurde, wird die Deaktivierungsfeuchtedifferenz vorgegeben, welche von Null verschieden ist, insbesondere mindestens 2 Prozentpunkte, mindestens 4 Prozentpunkte, mindestens 6 Prozentpunkte, mindestens 8 Prozentpunkte oder mindestens 10 Prozentpunkte beträgt.
  • Weiterhin kann in einer bevorzugten Ausgestaltung der Erfindung vorgesehen sein, dass der Außenlufttemperaturgrenzwert periodisch ermittelt wird, wobei der Abluftmassenstrom und/oder der Außenluftmassenstrom wieder verringert werden/wird, wenn die Außenlufttemperatur größer oder gleich dem Außenlufttemperaturgrenzwert ist. Während die Lüftungseinrichtung mit dem erhöhten Abluftmassenstrom und/oder Außenluftmassenstrom betrieben wird, können sich die Bedingungen in der Außenumgebung ändern. Hierauf soll adäquat reagiert werden, indem der Außenlufttemperaturgrenzwert und die Außenlufttemperatur periodisch neu bestimmt werden.
  • So soll der Abluftmassenstrom beziehungsweise der Außenluftmassenstrom wieder verringert werden, insbesondere auf den Vorgabeabluftmassenstrom beziehungsweise den Vorgabeaußenluftmassenstrom, wenn die Luftfeuchtigkeit in dem Raum durch den erhöhten Abluftmassenstrom beziehungsweise Außenluftmassenstrom nicht mehr verringert werden kann, weil die in der Außenumgebung vorliegende, nunmehr veränderte Luftfeuchtigkeit zumindest ähnlich der in dem Raum vorliegenden Luftfeuchtigkeit ist.
  • Eine Weiterbildung der Erfindung sieht vor, dass der Abluftmassenstrom und/oder der Außenluftmassenstrom nur dann erhöht werden, wenn eine Winterbetriebsart an der Lüftungseinrichtung eingestellt ist. An der Lüftungseinrichtung können insoweit mehrere unterschiedliche Betriebsarten eingestellt werden, beispielsweise eine Sommerbetriebsart und die Winterbetriebsart. Das Einstellen kann vorzugsweise durch den Benutzer der Lüftungseinrichtung erfolgen. Zu diesem Zweck sind beispielsweise geeignete Eingabemittel vorgesehen. Die in dem Raum vorliegende Luftfeuchtigkeit beziehungsweise die Abluftrelativfeuchte kann besonders effizient bei kalter und mithin trockener Außenluft erfolgen. Diese liegt insbesondere im Winter vor. Im Sommer dagegen ist die Außenluft üblicherweise aufgrund der höheren Temperatur feuchter, sodass das Verringern der Luftfeuchtigkeit in dem Raum nicht so effizient erfolgen kann wie im Winter.
  • Es kann zusätzlich oder alternativ vorgesehen sein, dass in Abhängigkeit von einer momentanen Jahreszeit zwischen einer Sommerbetriebsart und der Winterbetriebsart umgeschaltet wird. Die momentane Jahreszeit wird beispielsweise mittels einer Uhr der Lüftungseinrichtung ermittelt oder von einer Zentralstelle vorgegeben.
  • In einer weiteren bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass aus der Abluftrelativfeuchte ein Sollabluftmassenstrom und/oder ein Sollaußenluftmassenstrom ermittelt werden/wird und der Abluftmassenstrom auf den Sollabluftmassenstrom und/oder der Außenluftmassenstrom auf den Sollaußenluftmassenstrom eingestellt werden/wird. Insoweit wird aus der Abluftrelativfeuchte beziehungsweise der Raumluftrelativfeuchte nicht lediglich ermittelt, ob der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht werden sollen. Vielmehr findet die Abluftrelativfeuchte direkt Eingang in den Sollabluftmassenstrom beziehungsweise den Sollaußenluftmassenstrom.
  • Der Sollabluftmassenstrom beziehungsweise der Sollaußenluftmassenstrom liegt also als Funktion von der Abluftrelativfeuchte vor. Beispielsweise ist es dabei vorgesehen, dass bei einem ersten Wert der Abluftrelativfeuchte der Sollabluftmassenstrom auf einen ersten Sollabluftmassenstrom und/oder der Sollaußenluftmassenstrom auf einen ersten Sollaußenluftmassenstrom gesetzt werden. Weist die Abluftrelativfeuchte dagegen einen zweiten Wert auf, welcher größer ist als der erste Wert, so soll der Sollabluftmassenstrom auf einen zweiten Sollabluftmassenstrom und/oder der Sollaußenluftmassenstrom auf einen zweiten Sollaußenluftmassenstrom gesetzt werden, wobei der zweite Sollabluftmassenstrom größer ist als der erste Sollabluftmassenstrom beziehungsweise der zweite Sollaußenluftmassenstrom größer ist als der erste Sollaußenluftmassenstrom.
  • Besonders bevorzugt wird ein fester Zusammenhang zwischen Werten der Abluftrelativfeuchte einerseits und dem Sollabluftmassenstrom und/oder dem Sollaußenluftmassenstrom andererseits definiert. Beispielsweise ist hierbei eine lineare Beziehung vorgesehen. Alternativ können selbstverständlich auch Beziehungen höherer oder niedriger Ordnung herangezogen werden.
  • Werden gemäß den vorstehenden Ausführungen ein Vorgabeabluftmassenstrom und/oder ein Vorgabeaußenluftmassenstrom bestimmt, so wird beispielsweise aus dem Vorgabeaußenluftmassenstrom und dem Sollaußenluftmassenstrom der größere Wert ausgewählt und an der Lüftungseinrichtung der Außenluftmassenstrom auf diesen eingestellt. Zusätzlich oder alternativ kann für den Vorgabeabluftmassenstrom und den Sollabluftmassenstrom verfahren werden.
  • Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der Sollabluftmassenstrom und/oder der Sollaußenluftmassenstrom umso höher gewählt werden/wird, je höher die Abluftrelativfeuchte ist. Hierauf wurde vorstehend bereits eingegangen. Das Ermitteln des Sollabluftmassenstroms und/oder der Sollaußenluftmassenstroms kann mittels einer mathematischen Beziehung, eines Kennfelds und/oder einer Tabelle bestimmt werden, insbesondere aus der Abluftrelativfeuchte.
  • Eine Weiterbildung der Erfindung sieht vor, dass die Abluft und/oder Zuluft zum Temperieren durch einen Wärmeübertrager beziehungsweise Wärmetauscher geführt werden. Der Wärmeübertrager ist insoweit dazu vorgesehen, der Abluft Wärme zu entnehmen und/oder der Zuluft Wärme zuzuführen. Besonders bevorzugt werden sowohl die Abluft als auch die Zuluft durch den Wärmeübertrager geführt, sodass die der Abluft entnommene Wärme zum Temperieren, insbesondere Erwärmen, der Zuluft verwendet werden kann. Selbstverständlich kann es auch vorgesehen sein, lediglich einen Teil der Abluft und/oder lediglich einen Teil der Zuluft durch den Wärmeübertrager zu führen, bevorzugt ist dies jedoch für die gesamte Abluft beziehungsweise die gesamte Zuluft der Fall.
  • In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass als Wärmeübertrager ein Enthalpietauscher verwendet wird. Während selbstverständlich der Wärmeübertrager als sensibler Wärmeübertrager ausgeführt sein kann, ist es besonders vorteilhaft, wenn er als Enthalpietauscher vorliegt. Der Enthalpietauscher weist ebenso wie der sensible Wärmeübertrager Mittel zum Übertragen von Wärme, insbesondere von der Abluft auf die Zuluft, auf. Zusätzlich verfügt der Enthalpietauscher jedoch über Mittel, mittels welchen Feuchtigkeit ausgetauscht, insbesondere von der Abluft auf die Zuluft übertragen werden kann.
  • Zu diesem Zweck ist in dem Enthalpietauscher beispielsweise zur fluidtechnischen Trennung der Zuluft von der Abluft eine Folie beziehungsweise Membran vorgesehen, durch welche Wasserdampf hindurchdiffundieren kann, beispielsweise aufgrund von Osmose. Die Folie beziehungsweise Membran besteht beispielsweise aus einem Polymer.
  • In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass der Abluftmassenstrom und/oder der Außenluftmassenstrom während einer Intensivlüftungsbetriebsart erhöht sind. Normalerweise wird also die Lüftungseinrichtung beispielsweise in einer Normalbetriebsart betrieben. Sobald festgestellt wird, dass die Abluftrelativfeuchte den Abluftrelativfeuchtegrenzwert übersteigt und die Außenlufttemperatur kleiner als der Außenlufttemperaturgrenzwert ist, wird in die Intensivlüftungsbetriebsart gewechselt, insbesondere aus der Normalbetriebsart.
  • In der Intensivlüftungsbetriebsart werden der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht, beispielsweise erfolgt das Erhöhen mit oder kurz nach dem Umschalten in die Intensivlüftungsbetriebsart. Nach dem Erhöhen kann es vorgesehen sein, dass während des weiteren Verlaufs der Intensivlüftungsbetriebsart der erhöhte Abluftmassenstrom und/oder der erhöhte Außenluftmassenstrom konstant beibehalten werden, bis die Intensivlüftungsbetriebsart beendet wird.
  • In einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass zu Beginn der Intensivlüftungsbetriebsart die Abluftrelativfeuchte als Ausgangswert zwischengespeichert wird. Unmittelbar bei dem Umschalten in die Intensivlüftungsbetriebsart wird also der Ausgangswert der Abluftrelativfeuchte gleichgesetzt und abgespeichert. Der Ausgangswert bleibt während der gesamten Dauer der Intensivlüftungsbetriebsart gespeichert und ist mithin konstant.
  • Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass während der Intensivlüftungsbetriebsart die momentan vorliegende Abluftrelativfeuchte mit einem aus dem Ausgangswert ermittelten Vergleichswert verglichen wird, wobei ein Bypass um den Wärmeübertrager zumindest teilweise geöffnet wird, wenn die Abluftrelativfeuchte größer oder gleich dem Vergleichswert ist. Beispielsweise entspricht der Vergleichswert dem Ausgangswert. Alternativ kann der Vergleichswert auch kleiner gewählt werden als der Ausgangswert, beispielsweise um einen bestimmten Offset.
  • Der Vergleich zwischen der Abluftrelativfeuchte und dem Vergleichswert wird entweder kontinuierlich oder in definierten Zeitabständen vorgenommen. Wird im Rahmen des Vergleichens festgestellt, dass die Abluftrelativfeuchte größer oder gleich dem Vergleichswert ist, dass also die Luftfeuchtigkeit in dem Raum größer ist als die zu Beginn der Intensivlüftungsbetriebsart vorliegende Luftfeuchtigkeit, so wird der Bypass zumindest teilweise, insbesondere vollständig, geöffnet.
  • Der Bypass dient bevorzugt dazu, die Außenluft beziehungsweise Zuluft wenigstens teilweise, insbesondere vollständig, um den Wärmeübertrager herumzuführen. Eine derartige Vorgehensweise ist vor allem sinnvoll, falls der Wärmeübertrager als Enthalpietauscher ausgebildet ist. Wie bereits vorstehend erläutert, kann in dem Enthalpietauscher neben Wärme auch Feuchtigkeit übertragen werden. Dies kann jedoch unerwünscht sein, wenn die Luftfeuchtigkeit in dem Raum zu hoch ist beziehungsweise reduziert werden soll. Insbesondere ist es sinnvoll, den Bypass zu öffnen, wenn die Luftfeuchtigkeit in der Außenumgebung größer oder gleich der Luftfeuchtigkeit in dem Raum ist.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass bei zumindest teilweise geöffnetem Bypass die dem Raum zugeführte Zuluft mittels einer Heizeinrichtung erwärmt wird. Wenn die Zuluft durch den Bypass und den Wärmeübertrager herumgeführt wird, kann sie nicht in diesem erwärmt werden. Entsprechend ist es notwendig, die Zuluft entsprechend zu temperieren. Zu diesem Zweck ist die Heizeinrichtung vorgesehen. Beispielsweise wird die Zuluft mithilfe der Heizeinrichtung auf eine bestimmte Temperatur, insbesondere eine Vorgabetemperatur, welche von dem Benutzer der Lüftungseinrichtung vorgegeben wird, eingestellt, insbesondere steuernd und/oder regelnd eingestellt.
  • In einer weiteren bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass der Raum mehrere Lüftungszonen aufweist, welchen jeweils Abluft mit einem bestimmten Anteil des Abluftmassenstroms entnommen wird und/oder jeweils Zuluft mit einem bestimmten Anteil des Außenluftmassenstroms zugeführt wird. Der Raum ist insoweit in mehrere Lüftungszonen unterteilt. Jeder der Lüftungszonen ist separat von anderen Lüftungszonen Abluft entnehmbar und/oder Zuluft zuführbar. Die aus allen Lüftungszonen zusammen entnommene Abluft weist insoweit den Abluftmassenstrom auf, während die allen Lüftungszonen zugeführte Zuluft den Außenluftmassenstrom aufweist. Selbstverständlich kann es vorgesehen sein, dass die Anzahl der Lüftungszonen, aus welchen Abluft entnommen wird, von der Anzahl der Lüftungszonen, in welche Zuluft zugeführt wird, verschieden ist oder ihr entspricht. Beispielsweise ist die Anzahl der Lüftungszonen, aus welchen Abluft entnommen wird, größer oder kleiner als die Anzahl derjenigen Lüftungszonen, in welche Zuluft zugeführt wird. Auch eine umgekehrte Ausgestaltung kann vorgesehen sein.
  • In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass in den Lüftungszonen jeweils eine Luftfeuchtigkeit ermittelt wird und der Anteil des Abluftmassenstroms und/oder der Anteil des Außenluftmassenstroms für diejenige Lüftungszone vergrößert werden/wird, in der die höhere Luftfeuchtigkeit vorliegt. Es ist also nicht lediglich vorgesehen, den Abluftmassenstrom und/oder den Außenluftmassenstrom global zu erhöhen. Vielmehr wird der Abluftmassenstrom beziehungsweise der Außenluftmassenstrom gezielt lokal auf die Lüftungszonen verteilt. Auf diese Art und Weise kann eine Homogenisierung der Luft zwischen den Lüftungszonen vorgenommen werden.
  • Zu beachten ist hierbei, dass die Lüftungszonen fluidtechnisch nicht unmittelbar zusammenhängend angeordnet sein müssen. So können beispielsweise die Lüftungszonen in unterschiedlichen Zimmern eines Gebäudes vorliegen, welche insoweit in ihrer Gesamtheit den Raum beschreiben, welchem die Lüftungseinrichtung zugeordnet ist.
  • Selbstverständlich können alternativ die mehreren Lüftungszonen auch in einem einzigen Zimmer vorliegen, welches entsprechend als der die Lüftungseinrichtung aufweisende Raum angesehen werden kann.
  • Die Erfindung betrifft weiterhin eine Lüftungseinrichtung mit den Merkmalen des Anspruchs 8.
  • Die Erfindung betrifft selbstverständlich ebenso einen Raum, welcher eine Lüftungseinrichtung gemäß den vorstehenden Ausführungen aufweist. Der Raum kann beispielsweise als Zimmer eines Gebäudes oder als das Gebäude selbst vorliegen.
  • Die Erfindung wird nachfolgend anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert, ohne dass eine Beschränkung der Erfindung erfolgt. Dabei zeigt die einzige
  • Figur
    ein Ablaufdiagramm eines Verfahrens zum Betreiben einer Lüftungseinrichtung für einen Raum.
  • Die Figur zeigt ein Ablaufdiagramm, in welchem ein Verfahren zum Betreiben einer Lüftungseinrichtung für einen Raum dargestellt ist. Die Lüftungseinrichtung ist dazu ausgebildet, während eines Lüftungsvorgangs mittels der Lüftungseinrichtung dem Raum Abluft mit einem bestimmten Abluftmassenstrom zu entnehmen und/der Außenumgebung Außenluft mit einem bestimmten Außenluftmassenstrom zu entnehmen und in Form von Zuluft dem Raum zuzuführen.
  • Zunächst wird in einem ersten Schritt 1 ein Abluftrelativfeuchtegrenzwert festgelegt, beispielsweise durch einen Benutzer der Lüftungseinrichtung. In einem Schritt 2 wird die Abluftrelativfeuchte der Abluft gemessen. In einem Vergleich 3 wird anschließend die gemessene Abluftrelativfeuchte mit dem eingestellten Abluftrelativfeuchtegrenzwert verglichen. Ist sie kleiner, so wird das Verfahren in einem Schritt 4 beendet.
  • Ist die Abluftrelativfeuchte dagegen größer als der Abluftrelativfeuchtegrenzwert, so wird aus einer in einem Schritt 5 gemessenen Ablufttemperatur im Rahmen eines Schritts 6 ein Außenlufttemperaturgrenzwert ermittelt. Diese beschreibt diejenige Temperatur in der Außenumgebung, bei welcher die Luftfeuchtigkeit in der Außenumgebung höchstens der Luftfeuchtigkeit in dem Raum entspricht, insbesondere geringer ist als diese.
  • In einem Schritt 7 wird nun eine Außenlufttemperatur gemessen. Diese wird in einem Schritt 8 mit dem Außenlufttemperaturgrenzwert verglichen. Wird festgestellt, dass die Außenlufttemperatur größer oder gleich dem Außenlufttemperaturgrenzwert ist, so wird das Verfahren in einem Schritt 9 beendet. Anderenfalls wird ein Schritt 10 eingeleitet. In dessen Rahmen werden der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht, um mehr Luft aus dem Raum abzuführen und/oder ihm mehr Luft zuzuführen. Auf diese Art kann die Luftfeuchtigkeit in dem Raum gesenkt werden.

Claims (8)

  1. Verfahren zum Betreiben einer Lüftungseinrichtung für einen Raum, wobei während eines Lüftungsvorgangs mittels der Lüftungseinrichtung dem Raum Abluft mit einem bestimmten Abluftmassenstrom entnommen wird und/oder der Außenumgebung Außenluft mit einem bestimmten Außenluftmassenstrom entnommen und in Form von Zuluft dem Raum zugeführt wird, wobei eine Abluftrelativfeuchte und eine Ablufttemperatur der Abluft sowie eine Außenlufttemperatur der Außenluft gemessen werden, dadurch gekennzeichnet, dass aus der Abluftrelativfeuchte, der Ablufttemperatur sowie einer konstanten und manuell vorgebbaren angenommenen Außenluftrelativfeuchte anhand der Gleichung ϑ AU , max = ϑ 1 ln x AB ϑ 2
    Figure imgb0008
    ein Außenlufttemperaturgrenzwert bestimmt wird, wobei ϑ1 eine konstante erste Temperaturgröße, xAB eine aus der Abluftrelativfeuchte und der Ablufttemperatur ermittelte Absolutfeuchte der Abluft und ϑ2 eine aus der angenommenen Außenluftrelativfeuchte ermittelte zweite Temperaturgröße ist, wobei der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht werden/wird, wenn die Abluftrelativfeuchte einen Abluftrelativfeuchtegrenzwert übersteigt und die Außenlufttemperatur kleiner als der Außenlufttemperaturgrenzwert ist.
  2. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Absolutfeuchte anhand der Beziehung x AB = x max ρ AB
    Figure imgb0009
    ermittelt wird, wobei xmax eine Maximalfeuchte und ρAB die Abluftrelativfeuchte ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Maximalfeuchte aus der Ablufttemperatur ermittelt wird, wobei die Beziehung x max = a x ϑ x AB
    Figure imgb0010
    verwendet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Temperaturgröße aus der angenommenen Außenluftrelativfeuchte mittels einer mathematischen Beziehung, einem Kennfeld und/oder einer Tabelle ermittelt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abluftmassenstrom und/oder der Außenluftmassenstrom erst dann erhöht werden/wird, wenn die Außenlufttemperatur um eine Aktivierungstemperaturdifferenz kleiner als der Außenlufttemperaturgrenzwert ist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abluftmassenstrom und/oder der Außenluftmassenstrom wieder verringert werden/wird, wenn die Abluftrelativfeuchte einen Abluftrelativfeuchtegrenzwert um eine bestimmte Deaktivierungsfeuchtedifferenz unterschreitet.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Außenlufttemperaturgrenzwert periodisch ermittelt wird, wobei der Abluftmassenstrom und/oder der Außenluftmassenstrom wieder verringert werden/wird, wenn die Außenlufttemperatur größer oder gleich dem Außenlufttemperaturgrenzwert ist.
  8. Lüftungseinrichtung für einen Raum, insbesondere zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche, wobei die Lüftungseinrichtung dazu ausgebildet ist, während eines Lüftungsvorgangs dem Raum Abluft mit einem bestimmten Abluftmassenstrom zu entnehmen und/oder der Außenumgebung Außenluft mit einem bestimmten Außenluftmassenstrom zu entnehmen und in Form von Zuluft dem Raum zuzuführen, wobei eine Abluftrelativfeuchte und eine Ablufttemperatur der Abluft sowie eine Außenlufttemperatur der Außenluft gemessen werden, dadurch gekennzeichnet, dass die Lüftungseinrichtung dazu ausgebildet ist, aus der Abluftrelativfeuchte, der Ablufttemperatur sowie einer konstanten und manuell vorgebbaren angenommenen Außenluftrelativfeuchte anhand der Gleichung ϑ AU , max = ϑ 1 ln x AB ϑ 2
    Figure imgb0011
    einen Außenlufttemperaturgrenzwert zu bestimmen, wobei ϑ1 eine konstante erste Temperaturgröße, xAB eine aus der Abluftrelativfeuchte und der Ablufttemperatur ermittelte Absolutfeuchte der Abluft und ϑ2 eine aus der angenommenen Außenluftrelativfeuchte ermittelte zweite Temperaturgröße ist, wobei der Abluftmassenstrom und/oder der Außenluftmassenstrom erhöht werden/wird, wenn die Abluftrelativfeuchte einen Abluftrelativfeuchtegrenzwert übersteigt und die Außenlufttemperatur kleiner als der Außenlufttemperaturgrenzwert ist.
EP16158064.2A 2015-03-03 2016-03-01 Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung Active EP3098527B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015203806.8A DE102015203806A1 (de) 2015-03-03 2015-03-03 Verfahren zum Betreiben einer Lüftungseinrichtung für einen Raum sowie entsprechende Lüftungseinrichtung

Publications (2)

Publication Number Publication Date
EP3098527A1 EP3098527A1 (de) 2016-11-30
EP3098527B1 true EP3098527B1 (de) 2020-09-02

Family

ID=55650059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16158064.2A Active EP3098527B1 (de) 2015-03-03 2016-03-01 Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung

Country Status (2)

Country Link
EP (1) EP3098527B1 (de)
DE (1) DE102015203806A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844195B (zh) * 2018-06-25 2020-06-09 广州白云山医药集团股份有限公司白云山制药总厂 一种温湿度设定值控制装置及控制方法
CN111947283B (zh) * 2020-08-10 2021-12-07 海信(山东)空调有限公司 一种空调器和温度补偿的控制方法
DE102021127067A1 (de) 2021-10-19 2023-04-20 Viessmann Climate Solutions Se Verfahren zum Betrieb einer Lüftungsvorrichtung
EP4425063A1 (de) 2023-03-03 2024-09-04 Schwab Technik GmbH Lüftungsverfahren und vorrichtung dazu

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082173A (en) * 1989-02-22 1992-01-21 Mcmaster University Environmental controller for a sealed structure
DE19549392C2 (de) * 1995-03-02 1998-10-08 Herbert Scheel Verfahren zum Verhindern von Kondenswasserbildung
DE19952519A1 (de) * 1999-10-30 2001-06-07 Stahl Thomas Friedemann Temperatur- und Feuchtigkeitsabhängige Ventilatorsteuerung
DE102006032858B4 (de) * 2006-07-14 2008-09-11 Josef Penning Verfahren und Vorrichtung zum kontrollierten Lüften
DE102008044439A1 (de) * 2008-08-17 2010-02-18 Wolfram Pilz Regelungsvorrichtung und Verfahren zur automatischen Belüftung von Kellerräumen
DE102011013944A1 (de) * 2011-03-14 2012-09-20 Stiebel Eltron Gmbh & Co. Kg Lüftungsgerät mit taupunktgesteuerter Zwangslüftung
DE102014107119A1 (de) * 2014-05-20 2015-11-26 Schwille Elektronik Produktions- Und Vertriebs Gmbh Verfahren zum Belüften eines Raumes sowie Lüftungsanlage hierfür

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3098527A1 (de) 2016-11-30
DE102015203806A1 (de) 2016-09-08

Similar Documents

Publication Publication Date Title
EP3098527B1 (de) Verfahren zum betreiben einer lüftungseinrichtung für einen raum sowie entsprechende lüftungseinrichtung
EP2491639B1 (de) Sicherheitssteuerung für ein stellglied
DE4205735C2 (de) Verfahren zur Regelung der Luftfeuchtigkeit eines Innenraumes
DE19654955C2 (de) Klimatisierungsvorrichtung
DE2149548B2 (de) Klimaanlage für Eisenbahnfahrzeuge
DE102012204865A1 (de) Belüftungsvorrichtung
DE102010050726A1 (de) Gebäudeautomationssystem
EP2947396B1 (de) Verfahren zum belüften eines raumes sowie lüftungsanlage hierfür
EP2136147B1 (de) Verfahren und Einrichtung zur Regelung der Temperatur, der Feuchtigkeit und des Kohlendioxidanteils der Luft in Räumen
EP2642213B1 (de) Verfahren zur Steuerung eines Lüftungssystems mindestens eines Raums sowie entsprechendes Lüftungssystem
EP2095028B1 (de) Temperierregelsystem sowie verfahren zum kühl- und heizbetrieb eines derartigen temperierregelsystems
DE102011013944A1 (de) Lüftungsgerät mit taupunktgesteuerter Zwangslüftung
DE19728578C2 (de) Verfahren zur außentaupunktabhängigen Verdampfertemperatursteuerung
DE102005032042B4 (de) Vorrichtung und Verfahren zur Ermittlung des Energieeintrags in einen Raum durch eine Strahlungsquelle
DE102014211416B4 (de) Verfahren zur Regelung einer Ventilatoreinheit, Regelungseinrichtung für eine Ventilatoreinheit eines Lüftungsgerätes, Lüftungsgerät, Lüftungssystem und Computerprogramm
WO2017020889A2 (de) VERFAHREN ZUM BETRIEB EINER DEZENTRALEN VORRICHTUNG ZUR KONTROLLIERTEN WOHNRAUMLÜFTUNG SOWIE VERFAHRENSGEMÄß AUSGEBILDETE WOHNRAUMLÜFTUNGSVORRICHTUNG
EP3225928B1 (de) Vorrichtung und verfahren zur kontrolle des raumklimas und damit ausgestattetes gebäude
EP3683512A1 (de) Regelungseinheit für eine lüftungsanlage, vorzugsweise für eine kontrollierte wohnraumlüftungsanlage
EP2117855B1 (de) Verfahren zur steuerung und/oder regelung der verdampfertemperatur einer klimaanlage in einem kraftfahrzeug
EP2372264B1 (de) Verfahren zum Betreiben eines lufttechnischen Geräts, lufttechnisches Gerät und Raum mit lufttechnischem Gerät
WO2017182326A1 (de) Vorrichtung und verfahren zur einstellung der temperatur in einem raum, insbesondere in einem fahrzeug-innenraum
EP3480529A1 (de) Verfahren zur klimatisierung von raumeinheiten eines gebäudes
DE202010001277U1 (de) Regeleinrichtung, Datenträger mit darauf gespeicherten Daten und Daten repräsentierende Signalfolge
DE102005057769B4 (de) Temperatur-Steuervorrichtung und Verfahren zum Betreiben eines Heiz- und/oder Kühlsystems
EP4036341B1 (de) Verfahren und system zum automatischen trocknen einer feuchten bodenschicht eines mehrschichtigen bodenaufbaus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170530

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEISSNER, JOHANNES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016010985

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24F0011000000

Ipc: F24F0011300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 110/22 20180101ALI20200110BHEP

Ipc: F24F 110/20 20180101ALI20200110BHEP

Ipc: F24F 11/00 20180101ALI20200110BHEP

Ipc: F24F 110/12 20180101ALI20200110BHEP

Ipc: F24F 110/10 20180101ALI20200110BHEP

Ipc: F24F 11/30 20180101AFI20200110BHEP

INTG Intention to grant announced

Effective date: 20200217

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200728

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1309287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010985

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OFFICE ERNEST T. FREYLINGER S.A., CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010985

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210301

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1309287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902