EP3097370B1 - Heat pump with storage tank - Google Patents

Heat pump with storage tank Download PDF

Info

Publication number
EP3097370B1
EP3097370B1 EP15702673.3A EP15702673A EP3097370B1 EP 3097370 B1 EP3097370 B1 EP 3097370B1 EP 15702673 A EP15702673 A EP 15702673A EP 3097370 B1 EP3097370 B1 EP 3097370B1
Authority
EP
European Patent Office
Prior art keywords
working fluid
condenser
heat pump
working
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15702673.3A
Other languages
German (de)
French (fr)
Other versions
EP3097370A1 (en
Inventor
Vladimir Danov
Florian REISSNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3097370A1 publication Critical patent/EP3097370A1/en
Application granted granted Critical
Publication of EP3097370B1 publication Critical patent/EP3097370B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Definitions

  • the invention relates to a device and a method for regulating a fluid level of a working fluid of a heat pump.
  • working fluids In refrigerating machines, in particular in heat pumps, fluids are typically used as working media (working fluids).
  • the working fluid circulates within a working circuit of the heat pump.
  • the working fluid is typically introduced into the working circuit of the heat pump when the heat pump is started up for the first time and the heat pump is thus filled.
  • the working cycle of the working fluid is closed during the operation of the heat pump.
  • the working fluid of the heat pump circulates within a closed working circuit.
  • no influence can be exerted on the working cycle of the working fluid, in particular on a temperature profile of the working fluid.
  • Any leaked working fluid is topped up solely during maintenance work on the heat pump, which is usually carried out once a year.
  • the heat pump is not in operation during maintenance work.
  • heat pumps transfer the heat absorbed by a heat source to a heat sink.
  • fluctuations in the temperature of the heat sink as well as the Temperature of the heat source.
  • Known heat pumps can only react inadequately to temperature fluctuations in the heat sink and / or the heat source.
  • the efficiency (coefficient of performance; COP) of the heat pump is reduced by such temperature fluctuations, depending on the application.
  • the present invention is therefore based on the object of enabling a heat pump to be adapted to temperature fluctuations in a heat sink.
  • the device comprises a storage tank and a heat pump, which heat pump has at least one condenser, an expansion valve, an evaporator and a compressor, the heat pump comprising a working circuit for a circulating working fluid, the storage tank being arranged with respect to the working circuit between the condenser and the evaporator and the reservoir for regulating a fluid level of the working fluid in the condenser comprises a piston.
  • the fluid level of the working fluid in the condenser of the heat pump can advantageously be regulated.
  • the fluid level of the working fluid in the condenser of the heat pump is regulated by the piston, for example by a translational movement of the piston in the storage container.
  • the device according to the invention enables the fluid level to be regulated during operation of the heat pump.
  • a height or a level of the fluid column (liquid column) of the working fluid in the condenser can be used as a measure of the fluid level.
  • condensed working fluid collects at the bottom of the condenser, the condensed working fluid being supercooled in the condenser by the thermal contact with a heat sink.
  • the fluid level is given by the height of the liquid column of the working fluid accumulated in the condenser.
  • the subcooling of the working fluid can thus be regulated by increasing or decreasing the fluid level. According to the invention, it is possible to react to temperature fluctuations in the heat sink by regulating the subcooling of the working fluid in the condenser. In other words, the subcooling of the working fluid in the condenser can be adapted to the temperature fluctuations of the heat sink, the adaptation being carried out in such a way that the heat pump always works as efficiently as possible.
  • heat pumps known from the prior art have non-controllable undercooling of the working fluid, since the fluid level in the condenser is approximately constant. An adaptation to the temperature fluctuations of the heat sink consequently does not take place according to the prior art.
  • the fluid level by regulating the fluid level, it is possible to react directly to fluctuations in the heat sink and / or a heat source by regulating the subcooling of the working fluid.
  • Increased subcooling of the working fluid can be advantageous here, since the enthalpy difference in the condenser is increased by the increased subcooling of the working fluid. This advantageously increases the coefficient of performance (COP) and consequently the efficiency of the heat pump.
  • COP coefficient of performance
  • Another advantage of the invention is that large temperature fluctuations of the heat source and / or the heat sink can be regulated by means of a small change in the amount of fluid in the working fluid. As a result, it is possible to dispense with an oversized filling quantity of the working fluid within the working circuit of the heat pump.
  • overheating of a suction gas can advantageously be regulated via the undercooling of the working fluid.
  • the fluid level of the working fluid in the condenser of the heat pump is regulated by means of a piston, whereby the subcooling of the working fluid is regulated and consequently the efficiency of the heat pump is improved in the event of temperature fluctuations in the heat sink.
  • a working fluid circulating within a working circuit of the heat pump is condensed by means of a condenser, expanded by means of an expansion valve, evaporated by means of an evaporator and compressed by means of a compressor, the working fluid increasing with respect to the working circuit between the condenser and the evaporator a storage container is passed, wherein a fluid level of the working fluid in the condenser is regulated by means of a piston of the storage container.
  • the fluid level of the working fluid in the heat pump can be regulated by means of a translational movement of the piston.
  • the storage container which comprises a piston, is fluidly coupled to the heat pump via an outlet and inlet valve, the outlet valve being arranged between the condenser and the expansion valve and the inlet valve between the expansion valve and the evaporator with respect to the working circuit.
  • Working fluid is thus advantageously conducted to the storage container after the condenser and before the expansion valve. This is advantageous because the working fluid has a high pressure after the condenser and before the expansion valve. It is consequently possible to remove large amounts of working fluid from the working circuit of the heat pump during a short period of time and to conduct it to the storage tank.
  • the working fluid of the heat pump is temporarily stored in the storage tank in its liquid state.
  • the working fluid is introduced into the storage container preferably with the outlet valve open and the inlet valve closed.
  • the fluid level is regulated by increasing and / or reducing the storage volume (volume that is available for the working fluid in the storage container) by means of a linear displacement of the piston. By increasing the storage volume, more working fluid can consequently be received in the storage container, so that the fluid level in the condenser is reduced and there is less undercooling of the working fluid.
  • a storage container which is designed as a hydraulic cylinder is particularly preferred here.
  • the storage container can advantageously be realized in a technically simple manner by a hydraulic cylinder, preferably by a double-acting hydraulic cylinder.
  • a pressure within the hydraulic cylinder of at most 20 MPa is preferred here.
  • the said valves each include a further expansion valve and a check valve.
  • the fluid level can be regulated by means of the piston of the working fluid if a fluid level threshold value of the working fluid in the condenser is exceeded or not reached. Since the fluid level of the working fluid in the condenser is positively correlated with the subcooling of the working fluid, the subcooling of the working fluid is advantageously controlled by regulating the fluid level. If a certain fluid level, which for example corresponds to the fluid level threshold value, is exceeded, the working fluid may be excessively undercooled. As a control, the fluid level of the working fluid must therefore be reduced. In the opposite case, if the fluid level falls below the threshold value, the fluid level of the working fluid in the condenser can be increased by regulating, so that the desired increased subcooling of the working fluid is established.
  • the fluid level of the working fluid is regulated if a temperature threshold value of the working fluid is exceeded or not reached.
  • the temperature of the working fluid in the condenser is typically indirectly proportional to the fluid level of the working fluid in the condenser. At a high fluid level, there is a high level of subcooling and thus a low temperature of the working fluid, while at a low fluid level there is a higher temperature and thus less subcooling of the working fluid.
  • the temperature of the working fluid is consequently advantageously measured within the condenser of the heat pump.
  • FIG. 1 shows a device 1 which comprises a heat pump 4 and a storage tank 2, the heat pump 4 having a condenser 6, an expansion valve 8, an evaporator 10 and a compressor 12.
  • the heat pump 4 is fluidly coupled to the storage container 2 via an outlet valve 18 and an inlet valve 20 via a working fluid 24 of the heat pump 4.
  • the working fluid 24 circulates in the heat pump 4 in a working circuit 42.
  • the reservoir 2 is designed as a hydraulic cylinder 2 and comprises a piston 14.
  • a control of a storage volume 30 of the hydraulic cylinder 2 takes place here via a straight movement of the piston 14, the straight movement in Figure 1 is illustrated by the directional arrows 32, 33.
  • a first partial volume 30, which is available to the working fluid 24 in the hydraulic cylinder 2 is increased (directional arrow 33) or decreased (directional arrow 32) by means of the linear movement of the piston 14.
  • the working fluid 24 condensed in the condenser 6 is introduced into the hydraulic cylinder 2 with respect to the working circuit 42 or with respect to a direction of the working circuit 42 after the condenser 6 and before the expansion valve 8.
  • the working fluid 24 is advantageously introduced into the hydraulic cylinder 2 upstream of the expansion valve 8, so that the working fluid 24 is introduced into the hydraulic cylinder 2 under high pressure, for example in the range from 10 MPa to 20 MPa. Due to the increased pressure, large Quantities of working fluid 24 can be removed from the working circuit 42 of the heat pump 4 and introduced into the hydraulic cylinder 2 in only a short time. In other words, the mass flow of the working fluid 24 in the outlet valve 18 is increased by the increased pressure.
  • further expansion valves 21 and check valves 22 are provided for the outlet and inlet valves 18, 20.
  • the outlet valve 18 is closed and the inlet valve 20 is opened.
  • the Working fluid 24 is pressed out of the hydraulic cylinder 2 by a straight movement - indicated by the directional arrow 32.
  • the return of the working fluid 24 takes place with respect to the working circuit 42 preferably downstream of the expansion valve 8 at a low pressure level. In this way, the working fluid 24 can advantageously be made to evaporate directly.
  • the device 1 shown makes it possible to regulate the fluid level of the working fluid 24 in the condenser 6 of the heat pump 4, so that the subcooling of the working fluid 24 in the condenser 6 can be regulated.
  • Working fluids known from the prior art for example R134a and / or R245fa, can be used as working fluids 24 can be used.
  • Working fluids containing at least one of the substances 1,1,1,2,2,4,5,5,5-nonafluoro-4- (trifluoromethyl) -3-pentanones (trade name Novec TM 649), perfluoromethylbutanone, 1 -Chloro-3,3,3-trifluoro-1-propene, cis-1,1,1,4,4,4-hexafluoro-2-butenes and / or cyclopentane.
  • the use of R134a, R400c and / or R410a can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Regelung eines Fluidstandes eines Arbeitsfluides einer Wärmepumpe.The invention relates to a device and a method for regulating a fluid level of a working fluid of a heat pump.

In Kältemaschinen, insbesondere in Wärmepumpen, werden typischerweise Fluide als Arbeitsmittel (Arbeitsfluide) eingesetzt. Hierbei zirkuliert das Arbeitsfluid innerhalb eines Arbeitskreislaufes der Wärmepumpe. Typischerweise wird das Arbeitsfluid bei der Erstinbetriebnahme der Wärmepumpe in den Arbeitskreislauf der Wärmepumpe eingeleitet und somit die Wärmepumpe befüllt.In refrigerating machines, in particular in heat pumps, fluids are typically used as working media (working fluids). The working fluid circulates within a working circuit of the heat pump. The working fluid is typically introduced into the working circuit of the heat pump when the heat pump is started up for the first time and the heat pump is thus filled.

In nach dem Stand der Technik bekannten Wärmepumpen ist der Arbeitskreislauf des Arbeitsfluides während des Betriebes der Wärmepumpe geschlossen. Mit anderen Worten zirkuliert das Arbeitsfluid der Wärmepumpe innerhalb eines geschlossenen Arbeitskreislaufes. Dadurch kann auf den Arbeitskreislauf des Arbeitsfluides, insbesondere auf einen Temperaturverlauf des Arbeitsfluides, kein Einfluss genommen werden. Allein bei Wartungsarbeiten der Wärmepumpe, die in der Regel einmal pro Jahr erfolgen, wird eventuell entwichenes Arbeitsfluid nachgefüllt. Während der Wartungsarbeiten ist die Wärmepumpe jedoch nicht in Betrieb.In heat pumps known from the prior art, the working cycle of the working fluid is closed during the operation of the heat pump. In other words, the working fluid of the heat pump circulates within a closed working circuit. As a result, no influence can be exerted on the working cycle of the working fluid, in particular on a temperature profile of the working fluid. Any leaked working fluid is topped up solely during maintenance work on the heat pump, which is usually carried out once a year. However, the heat pump is not in operation during maintenance work.

Aus der EP 0 274 727 A2 ist ein Wärmepumpenkreislauf einer Fahrzeug-Klimaanlage bekannt. Zur Schonung der Kompressorkupplung wird bei unzulässig hohen Drücken innerhalb des Wärmepumpenkreislaufes eine Teilmenge eines Kältemittels entzogen und in einem Behälter mit einem Kolben gespeichert.From the EP 0 274 727 A2 a heat pump circuit of a vehicle air conditioning system is known. To protect the compressor clutch, in the event of impermissibly high pressures within the heat pump circuit, a partial amount of a refrigerant is withdrawn and stored in a container with a piston.

Generell geben Wärmepumpen die von einer Wärmequelle aufgenommene Wärme an eine Wärmesenke ab. Hierbei können Schwankungen der Temperatur der Wärmesenke als auch der Temperatur der Wärmequelle auftreten. Bekannte Wärmepumpen können nur ungenügend auf Temperaturschwankungen der Wärmesenke und/oder der Wärmequelle reagieren. Insbesondere wird die Effizienz (Leistungszahl, eng. Coefficient of Performance; COP) der Wärmepumpe, je nach Einsatz, durch solche Temperaturschwankungen verringert.In general, heat pumps transfer the heat absorbed by a heat source to a heat sink. Here fluctuations in the temperature of the heat sink as well as the Temperature of the heat source. Known heat pumps can only react inadequately to temperature fluctuations in the heat sink and / or the heat source. In particular, the efficiency (coefficient of performance; COP) of the heat pump is reduced by such temperature fluctuations, depending on the application.

Der vorliegenden Erfindung liegt folglich die Aufgabe zugrunde, eine Anpassung einer Wärmepumpe an Temperaturschwankungen einer Wärmesenke zu ermöglichen.The present invention is therefore based on the object of enabling a heat pump to be adapted to temperature fluctuations in a heat sink.

Die Aufgabe wird durch eine Vorrichtung mit den Merkmalen des unabhängigen Anspruches 1 und durch ein Verfahren mit den Merkmalen des unabhängigen Anspruches 4 gelöst. In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung angegeben.The object is achieved by a device with the features of independent claim 1 and by a method with the features of independent claim 4. Advantageous embodiments and developments of the invention are specified in the dependent claims.

Die erfindungsgemäße Vorrichtung umfasst einen Vorratsbehälter und eine Wärmepumpe, welche Wärmepumpe wenigstens einen Kondensator, ein Expansionsventil, einen Verdampfer und einen Kompressor aufweist, wobei die Wärmepumpe einen Arbeitskreislauf für ein zirkulierendes Arbeitsfluid umfasst, wobei der Vorratsbehälter bezüglich des Arbeitskreislaufes zwischen dem Kondensator und dem Verdampfer angeordnet ist und der Vorratsbehälter zur Regelung eines Fluidstandes des Arbeitsfluides im Kondensator einen Kolben umfasst.The device according to the invention comprises a storage tank and a heat pump, which heat pump has at least one condenser, an expansion valve, an evaporator and a compressor, the heat pump comprising a working circuit for a circulating working fluid, the storage tank being arranged with respect to the working circuit between the condenser and the evaporator and the reservoir for regulating a fluid level of the working fluid in the condenser comprises a piston.

Durch die erfindungsgemäße Anordnung eines Vorratsbehälter, der einen Kolben umfasst, im Arbeitskreislauf der Wärmepumpe, kann der Fluidstand des Arbeitsfluides im Kondensator der Wärmepumpe vorteilhafterweise geregelt werden. Erfindungsgemäß erfolgt hierbei die Regelung des Fluidstandes des Arbeitsfluides im Kondensator der Wärmepumpe durch den Kolben, beispielsweise durch eine translatorische Bewegung des Kolbens, im Vorratsbehälter. Insbesondere wird durch die erfindungsgemäße Vorrichtung eine Regelung des Fluidstandes während des Betriebs der Wärmepumpe ermöglicht. Hierbei kann als Maß für den Fluidstand eine Höhe bzw. ein Stand der Fluidsäule (Flüssigkeitssäule) des Arbeitsfluides im Kondensator herangezogen werden. Typischerweise sammelt sich während des Betriebes der Wärmepumpe kondensiertes Arbeitsfluid am Boden des Kondensators an, wobei das kondensierte Arbeitsfluid im Kondensator durch den thermischen Kontakt mit einer Wärmesenke unterkühlt wird. Der Fluidstand ist hierbei durch die Höhe der Flüssigkeitssäule des im Kondensator angesammelten Arbeitsfluides gegeben.The inventive arrangement of a storage container, which comprises a piston, in the working circuit of the heat pump, the fluid level of the working fluid in the condenser of the heat pump can advantageously be regulated. According to the invention, the fluid level of the working fluid in the condenser of the heat pump is regulated by the piston, for example by a translational movement of the piston in the storage container. In particular, the device according to the invention enables the fluid level to be regulated during operation of the heat pump. A height or a level of the fluid column (liquid column) of the working fluid in the condenser can be used as a measure of the fluid level. Typically, during the operation of the heat pump, condensed working fluid collects at the bottom of the condenser, the condensed working fluid being supercooled in the condenser by the thermal contact with a heat sink. The fluid level is given by the height of the liquid column of the working fluid accumulated in the condenser.

Bei einem erhöhten Fluidstand liegt mehr kondensiertes Arbeitsfluid am Boden des Kondensators vor, so dass insgesamt mehr Arbeitsfluid mit der Wärmesenke im thermischen Kontakt steht und folglich das Arbeitsfluid stärker unterkühlt wird. Es kann somit durch eine Erhöhung oder Verringerung des Fluidstandes die Unterkühlung des Arbeitsfluides geregelt werden. Erfindungsgemäß kann durch die Regelung der Unterkühlung des Arbeitsfluides im Kondensator auf Temperaturschwankungen der Wärmesenke reagiert werden. Mit anderen Worten kann die Unterkühlung des Arbeitsfluides im Kondensator an die Temperaturschwankungen der Wärmesenke angepasst werden, wobei die Anpassung derart erfolgt, dass die Wärmepumpe stets möglichst effizient arbeitet.With an increased fluid level, there is more condensed working fluid at the bottom of the condenser, so that overall more working fluid is in thermal contact with the heat sink and consequently the working fluid is more strongly subcooled. The subcooling of the working fluid can thus be regulated by increasing or decreasing the fluid level. According to the invention, it is possible to react to temperature fluctuations in the heat sink by regulating the subcooling of the working fluid in the condenser. In other words, the subcooling of the working fluid in the condenser can be adapted to the temperature fluctuations of the heat sink, the adaptation being carried out in such a way that the heat pump always works as efficiently as possible.

Nach dem Stand der Technik bekannte Wärmepumpen weisen hingegen eine nicht regelbare Unterkühlung des Arbeitsfluides auf, da der Fluidstand im Kondensator annähernd konstant ist. Eine Anpassung an die Temperaturschwankungen der Wärmsenke erfolgt folglich nach dem Stand der Technik nicht.In contrast, heat pumps known from the prior art have non-controllable undercooling of the working fluid, since the fluid level in the condenser is approximately constant. An adaptation to the temperature fluctuations of the heat sink consequently does not take place according to the prior art.

Erfindungsgemäß ist es durch die Regelung des Fluidstandes möglich, auf' Schwankungen der Wärmesenke und/oder einer Wärmequelle durch eine Regelung der Unterkühlung des Arbeitsfluides unmittelbar zu reagieren. Hierbei kann eine erhöhte Unterkühlung des Arbeitsfluides von Vorteil sein, da die Enthalpiedifferenz im Kondensator durch die erhöhte Unterkühlung des Arbeitsfluides vergrößert wird. Vorteilhafterweise wird dadurch die Leistungszahl (COP) und folglich die Effizienz der Wärmepumpe gesteigert.According to the invention, by regulating the fluid level, it is possible to react directly to fluctuations in the heat sink and / or a heat source by regulating the subcooling of the working fluid. Increased subcooling of the working fluid can be advantageous here, since the enthalpy difference in the condenser is increased by the increased subcooling of the working fluid. This advantageously increases the coefficient of performance (COP) and consequently the efficiency of the heat pump.

Ein weiterer Vorteil der Erfindung ist, dass große Temperaturschwankungen der Wärmequelle und/oder der Wärmesenke mittels einer geringen Änderung der Fluidmenge des Arbeitsfluides reguliert werden können. Dadurch kann auf eine überdimensionierte Fluidfüllmenge des Arbeitsfluides innerhalb des Arbeitskreislaufes der Wärmepumpe verzichtet werden.Another advantage of the invention is that large temperature fluctuations of the heat source and / or the heat sink can be regulated by means of a small change in the amount of fluid in the working fluid. As a result, it is possible to dispense with an oversized filling quantity of the working fluid within the working circuit of the heat pump.

Weiterhin kann vorteilhafterweise bei einem Betrieb mit Rekuperatoren eine Überhitzung eines Sauggases über die Unterkühlung des Arbeitsfluides geregelt werden.In addition, during operation with recuperators, overheating of a suction gas can advantageously be regulated via the undercooling of the working fluid.

Insgesamt wird mittels eines Kolbens der Fluidstand des Arbeitsfluides im Kondensator der Wärmepumpe geregelt, wodurch eine Regulierung der Unterkühlung des Arbeitsfluides erfolgt und folglich die Effizienz der Wärmepumpe bei Temperaturschwankungen der Wärmesenke verbessert wird.Overall, the fluid level of the working fluid in the condenser of the heat pump is regulated by means of a piston, whereby the subcooling of the working fluid is regulated and consequently the efficiency of the heat pump is improved in the event of temperature fluctuations in the heat sink.

Bei dem erfindungsgemäßen Verfahren zum Betrieb einer Wärmepumpe wird ein innerhalb eines Arbeitskreislaufes der Wärmepumpe zirkulierendes Arbeitsfluides mittels eines Kondensators kondensiert, mittels eines Expansionsventils expandiert, mittels eines Verdampfers verdampft und mittels eines Kompressors verdichtet, wobei das Arbeitsfluid bezüglich des Arbeitskreislaufes zwischen dem Kondensator und dem Verdampfer zu einem Vorratsbehälter geleitet wird, wobei ein Fluidstand des Arbeitsfluides im Kondensator mittels eines Kolbens des Vorratsbehälters geregelt wird.In the method according to the invention for operating a heat pump, a working fluid circulating within a working circuit of the heat pump is condensed by means of a condenser, expanded by means of an expansion valve, evaporated by means of an evaporator and compressed by means of a compressor, the working fluid increasing with respect to the working circuit between the condenser and the evaporator a storage container is passed, wherein a fluid level of the working fluid in the condenser is regulated by means of a piston of the storage container.

Insbesondere kann der Fluidstand des Arbeitsfluides in der Wärmepumpe mittels einer translatorischen Bewegung des Kolbens reguliert werden. Es ergeben sich zur bereits diskutierten erfindungsgemäßen Vorrichtung gleichwertige und gleichartige Vorteile.In particular, the fluid level of the working fluid in the heat pump can be regulated by means of a translational movement of the piston. This results in advantages that are equivalent and similar to the device according to the invention already discussed.

Erfindungsgemäß ist der Vorratsbehälter, welcher einen Kolben umfasst, über ein Auslass- und Einlassventil fluidisch mit der Wärmepumpe gekoppelt, wobei das Auslassventil bezüglich des Arbeitskreislaufes zwischen dem Kondensator und dem Expansionsventil und das Einlassventil zwischen dem Expansionsventil und dem Verdampfer angeordnet ist.According to the invention, the storage container, which comprises a piston, is fluidly coupled to the heat pump via an outlet and inlet valve, the outlet valve being arranged between the condenser and the expansion valve and the inlet valve between the expansion valve and the evaporator with respect to the working circuit.

Vorteilhafterweise wird somit Arbeitsfluid nach dem Kondensator und vor dem Expansionsventil zum Vorratsbehälter geleitet. Das ist deshalb von Vorteil, da das Arbeitsfluid nach dem Kondensator und vor dem Expansionsventil einen hohen Druck aufweist. Es ist folglich möglich, große Mengen an Arbeitsfluid während eines geringen Zeitraums aus dem Arbeitskreislauf der Wärmepumpe zu entnehmen und zum Vorratsbehälter zu leiten.Working fluid is thus advantageously conducted to the storage container after the condenser and before the expansion valve. This is advantageous because the working fluid has a high pressure after the condenser and before the expansion valve. It is consequently possible to remove large amounts of working fluid from the working circuit of the heat pump during a short period of time and to conduct it to the storage tank.

Im Vorratsbehälter wird das Arbeitsfluid der Wärmepumpe im flüssigen Aggregatzustand zwischengespeichert. Hierbei erfolgt die Einleitung des Arbeitsfluides in den Vorratsbehälter bevorzugt bei offenem Auslassventil und geschlossenem Einlassventil. Die Regelung des Fluidstandes erfolgt durch eine Vergrößerung und/oder Verkleinerung des Vorratsvolumens (Volumen das dem Arbeitsfluid im Vorratsbehälter zur Verfügung steht) mittels einer geradlinigen Verschiebung des Kolbens. Durch eine Vergrößerung des Vorratsvolumens kann folglich mehr Arbeitsfluid im Vorratsbehälter aufgenommen werden, so dass der Fluidstand im Kondensator verringert wird und es zu einer verringerten Unterkühlung des Arbeitsfluides kommt.The working fluid of the heat pump is temporarily stored in the storage tank in its liquid state. In this case, the working fluid is introduced into the storage container preferably with the outlet valve open and the inlet valve closed. The fluid level is regulated by increasing and / or reducing the storage volume (volume that is available for the working fluid in the storage container) by means of a linear displacement of the piston. By increasing the storage volume, more working fluid can consequently be received in the storage container, so that the fluid level in the condenser is reduced and there is less undercooling of the working fluid.

Wird nun das Vorratsvolumen des Vorratsbehälter mittels einer geradlinigen Verschiebung des Kolbens verkleinert, so wird Arbeitsfluid aus dem Vorratsbehälter über das Einlassventil zurück in den Arbeitskreislauf der Wärmepumpe geleitet, so dass der Fluidstand im Kondensator vergrößert wird und es folglich zu einer vergrößerten Unterkühlung des Arbeitsfluides kommt. Bei der Einleitung des Arbeitsfluides vom Vorratsbehälter zurück in den Arbeitskreislauf der Wärmepumpe ist es zweckmäßig, das Auslassventil zu schließen und das Einlassventil zu öffnen. Vorteilhafterweise kann das Arbeitsfluid bei der Rückführung in den Arbeitskreislauf der Wärmepumpe durch eine Verschiebung des Kolbens direkt zur Verdampfung gebracht werden.If the storage volume of the storage tank is now reduced by means of a linear displacement of the piston, working fluid is passed from the storage tank via the inlet valve back into the working circuit of the heat pump, so that the fluid level in the condenser is increased and consequently the working fluid is undercooled. When the working fluid is introduced from the reservoir back into the working cycle of the Heat pump, it is advisable to close the outlet valve and open the inlet valve. Advantageously, when the working fluid is returned to the working circuit of the heat pump, it can be vaporized directly by shifting the piston.

Besonders bevorzugt ist hierbei ein Vorratsbehälter, der als Hydraulikzylinder ausgebildet ist.A storage container which is designed as a hydraulic cylinder is particularly preferred here.

Vorteilhafterweise kann der Vorratsbehälter durch einen Hydraulikzylinder, vorzugsweise durch einen doppelwirkenden Hydraulikzylinder, technisch in einfacher Weise realisiert werden. Hierbei ist ein Druck innerhalb des Hydraulikzylinders von höchstens 20 MPa bevorzugt.The storage container can advantageously be realized in a technically simple manner by a hydraulic cylinder, preferably by a double-acting hydraulic cylinder. A pressure within the hydraulic cylinder of at most 20 MPa is preferred here.

Weiterhin kann vorgesehen sein, eine obere Seite des Kolbens mit einem Kompressoröl zu schmieren, so dass Undichtigkeiten am Kolben des Hydraulikzylinders unkritisch sind. Durch die vorteilhafte Verwendung eines Hydraulikzylinders können bei gleicher Verdampfungs- und Kondensationstemperatur des Arbeitsfluides Unterkühlungen im Bereich von 5 K bis 15 K mittels einer Variation des Fluidstandes des Arbeitsfluides innerhalb des Kondensators erreicht werden.Furthermore, it can be provided to lubricate an upper side of the piston with a compressor oil, so that leaks on the piston of the hydraulic cylinder are not critical. Due to the advantageous use of a hydraulic cylinder, with the same evaporation and condensation temperature of the working fluid, subcooling in the range of 5 K to 15 K can be achieved by varying the fluid level of the working fluid within the condenser.

Zur Regelung des Arbeitsfluides im Auslass- oder Einlassventil kann es vorgesehen sein, dass die genannten Ventile jeweils ein weiteres Expansionsventil und ein Rückschlagventil umfassen.To regulate the working fluid in the outlet or inlet valve, it can be provided that the said valves each include a further expansion valve and a check valve.

Vorteilhafterweise können dadurch Druckunterschiede zwischen dem Arbeitskreislauf der Wärmepumpe und dem Vorratsbehälter ausgeglichen werden.In this way, pressure differences between the working circuit of the heat pump and the storage container can advantageously be compensated for.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung kann eine Regelung des Fluidstandes mittels des Kolbens des Arbeitsfluides erfolgen, falls ein Fluidstandschwellwert des Arbeitsfluides im Kondensator über- oder unterschritten wird. Da der Fluidstand des Arbeitsfluides im Kondensator mit der Unterkühlung des Arbeitsfluides positiv korreliert ist, erfolgt vorteilhafterweise über die Regelung des Fluidstandes eine Regelung der Unterkühlung des Arbeitsfluides. Wird ein bestimmter Fluidstand, welcher beispielsweise dem Fluidstandschwellwert entspricht, überschritten, so wird das Arbeitsfluid möglicherweise zu stark unterkühlt. Als Regelung muss somit eine Verringerung des Fluidstandes des Arbeitsfluides erfolgen. Im gegenteiligen Fall einer Unterschreitung des Fluidstandschwellwertes kann durch eine Regelung der Fluidstand des Arbeitsfluides im Kondensator erhöht werden, so dass sich die erwünschte vergrößerte Unterkühlung des Arbeitsfluides einstellt.According to an advantageous embodiment of the invention, the fluid level can be regulated by means of the piston of the working fluid if a fluid level threshold value of the working fluid in the condenser is exceeded or not reached. Since the fluid level of the working fluid in the condenser is positively correlated with the subcooling of the working fluid, the subcooling of the working fluid is advantageously controlled by regulating the fluid level. If a certain fluid level, which for example corresponds to the fluid level threshold value, is exceeded, the working fluid may be excessively undercooled. As a control, the fluid level of the working fluid must therefore be reduced. In the opposite case, if the fluid level falls below the threshold value, the fluid level of the working fluid in the condenser can be increased by regulating, so that the desired increased subcooling of the working fluid is established.

Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung erfolgt eine Regelung des Fluidstandes des Arbeitsfluides, falls ein Temperaturschwellwert des Arbeitsfluides über- oder unterschritten wird.According to a further advantageous embodiment of the invention, the fluid level of the working fluid is regulated if a temperature threshold value of the working fluid is exceeded or not reached.

Beispielsweise ist es möglich, die Temperatur des Arbeitsfluides und folglich die Unterkühlung des Arbeitsfluides direkt durch eine Messung der Temperatur im Kondensator zu erfassen. Hierbei ist typischerweise die Temperatur des Arbeitsfluides im Kondensator indirekt proportional zum Fluidstand des Arbeitsfluides im Kondensator. Bei einem hohen Fluidstand liegt eine große Unterkühlung und somit eine geringe Temperatur des Arbeitsfluides vor, während bei einem niedrigen Fluidstand eine höhere Temperatur und somit eine geringere Unterkühlung des Arbeitsfluides vorliegt. Die Messung der Temperatur des Arbeitsfluides erfolgt folglich vorteilhafterweise innerhalb des Kondensators der Wärmepumpe.For example, it is possible to detect the temperature of the working fluid and consequently the subcooling of the working fluid directly by measuring the temperature in the condenser. Here, the temperature of the working fluid in the condenser is typically indirectly proportional to the fluid level of the working fluid in the condenser. At a high fluid level, there is a high level of subcooling and thus a low temperature of the working fluid, while at a low fluid level there is a higher temperature and thus less subcooling of the working fluid. The temperature of the working fluid is consequently advantageously measured within the condenser of the heat pump.

Weitere Messpunkte der Temperatur und/oder des Fluidstandes im Arbeitskreislauf des Arbeitsfluides können vorgesehen sein.Further measuring points of the temperature and / or the fluid level in the working circuit of the working fluid can be provided.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Dabei zeigt:

Figur 1
eine Wärmepumpe mit einem Vorratsbehälter, der als Hydraulikzylinder ausgebildet ist;
Further advantages, features and details of the invention emerge from what is described below Embodiments and based on the drawing. It shows:
Figure 1
a heat pump with a reservoir which is designed as a hydraulic cylinder;

Figur 1 zeigt eine Vorrichtung 1, die eine Wärmepumpe 4 und einen Vorratsbehälter 2 umfasst, wobei die Wärmepumpe 4 einen Kondensator 6, ein Expansionsventil 8, einen Verdampfer 10 und einen Kompressor 12 aufweist. Hierbei ist die Wärmepumpe 4 über ein Auslassventil 18 und über ein Einlassventil 20 mit dem Vorratsbehälter 2 fluidisch über ein Arbeitsfluid 24 der Wärmepumpe 4 gekoppelt. Das Arbeitsfluid 24 zirkuliert in der Wärmepumpe 4 in einem Arbeitskreislauf 42. Figure 1 shows a device 1 which comprises a heat pump 4 and a storage tank 2, the heat pump 4 having a condenser 6, an expansion valve 8, an evaporator 10 and a compressor 12. In this case, the heat pump 4 is fluidly coupled to the storage container 2 via an outlet valve 18 and an inlet valve 20 via a working fluid 24 of the heat pump 4. The working fluid 24 circulates in the heat pump 4 in a working circuit 42.

In dem in Figur 1 dargestellten Ausführungsbeispiel der Vorrichtung 1 ist der Vorratsbehälter 2 als Hydraulikzylinder 2 ausgebildet und umfasst einen Kolben 14. Eine Regelung eines Vorratsvolumens 30 des Hydraulikzylinders 2 erfolgt hierbei über eine geradlinige Bewegung des Kolbens 14, wobei die geradlinige Bewegung in Figur 1 durch die Richtungspfeile 32, 33 verdeutlicht wird. Mit anderen Worten wird ein erstes Teilvolumen 30, welches dem Arbeitsfluid 24 im Hydraulikzylinder 2 zur Verfügung steht, mittels der geradlinigen Bewegung des Kolbens 14 vergrößert (Richtungspfeil 33) oder verringert (Richtungspfeil 32).In the in Figure 1 The illustrated embodiment of the device 1, the reservoir 2 is designed as a hydraulic cylinder 2 and comprises a piston 14. A control of a storage volume 30 of the hydraulic cylinder 2 takes place here via a straight movement of the piston 14, the straight movement in Figure 1 is illustrated by the directional arrows 32, 33. In other words, a first partial volume 30, which is available to the working fluid 24 in the hydraulic cylinder 2, is increased (directional arrow 33) or decreased (directional arrow 32) by means of the linear movement of the piston 14.

Bei geöffnetem Auslassventil 18 und geschlossenem Einlassventil 20 wird das im Kondensator 6 kondensierte Arbeitsfluid 24 bezüglich des Arbeitskreislaufes 42 bzw. bezüglich einer Richtung des Arbeitskreislaufes 42 nach dem Kondensator 6 und vor dem Expansionsventil 8 in den Hydraulikzylinder 2 eingeleitet. Hierbei erfolgt vorteilhafterweise die Einleitung des Arbeitsfluides 24 in den Hydraulikzylinder 2 vor dem Expansionsventil 8, so dass das Arbeitsfluid 24 unter hohem Druck, beispielsweise im Bereich von 10 MPa bis 20 MPa, in den Hydraulikzylinder 2 eingeleitet wird. Durch den erhöhten Druck können große Mengen an Arbeitsfluid 24 in nur geringer Zeit aus dem Arbeitskreislauf 42 der Wärmepumpe 4 entnommen und in den Hydraulikzylinder 2 eingeleitet werden. Mit anderen Worten wird durch den erhöhten Druck der Massenstrom des Arbeitsfluides 24 im Auslassventil 18 erhöht. Zur Regelung sind für das Auslass- und Einlassventil 18, 20 weitere Expansionsventile 21 und Rückschlagventile 22 vorgesehen.With the outlet valve 18 open and the inlet valve 20 closed, the working fluid 24 condensed in the condenser 6 is introduced into the hydraulic cylinder 2 with respect to the working circuit 42 or with respect to a direction of the working circuit 42 after the condenser 6 and before the expansion valve 8. In this case, the working fluid 24 is advantageously introduced into the hydraulic cylinder 2 upstream of the expansion valve 8, so that the working fluid 24 is introduced into the hydraulic cylinder 2 under high pressure, for example in the range from 10 MPa to 20 MPa. Due to the increased pressure, large Quantities of working fluid 24 can be removed from the working circuit 42 of the heat pump 4 and introduced into the hydraulic cylinder 2 in only a short time. In other words, the mass flow of the working fluid 24 in the outlet valve 18 is increased by the increased pressure. For control purposes, further expansion valves 21 and check valves 22 are provided for the outlet and inlet valves 18, 20.

Für die Rückleitung des Arbeitsfluides 24 in den Arbeitskreislauf 42 der Wärmepumpe 4 wird das Auslassventil 18 geschlossen und das Einlassventil 20 geöffnet. Hierbei wird das
Arbeitsfluid 24 durch eine geradlinigen Bewegung - angedeutet durch den Richtungspfeil 32 - aus dem Hydraulikzylinder 2 gedrückt. Die Rückleitung des Arbeitsfluides 24 erfolgt bezüglich des Arbeitskreislaufes 42 bevorzugt nach dem Expansionsventil 8 auf einem niedrigen Druckniveau. Vorteilhafterweise kann dadurch das Arbeitsfluid 24 direkt zur Verdampfung gebracht werden.
To return the working fluid 24 to the working circuit 42 of the heat pump 4, the outlet valve 18 is closed and the inlet valve 20 is opened. Here is the
Working fluid 24 is pressed out of the hydraulic cylinder 2 by a straight movement - indicated by the directional arrow 32. The return of the working fluid 24 takes place with respect to the working circuit 42 preferably downstream of the expansion valve 8 at a low pressure level. In this way, the working fluid 24 can advantageously be made to evaporate directly.

Wird nun durch eine Vergrößerung des Vorratsvolumens 30 mittels einer Bewegung des Kolbens 14 - angedeutet durch den Richtungspfeil 33 - mehr Arbeitsfluid 24 im Hydraulikzylinder 2 gesammelt, so sinkt der Fluidstand des Arbeitsfluides 24 im Kondensator 6. Je geringer der Fluidstand des Arbeitsfluides 24 im Kondensator 6 desto geringer die Unterkühlung. Das Arbeitsfluid 24 verlässt somit den Kondensator 6 annähernd auf der Siedelinie und ist somit im thermodynamischen Gleichgewicht mit seiner Dampfphase. Mit anderen Worten wird das Arbeitsfluid 24 nicht bzw. nur geringfügig unterkühlt.If more working fluid 24 is now collected in the hydraulic cylinder 2 by increasing the storage volume 30 by means of a movement of the piston 14 - indicated by the directional arrow 33 - the fluid level of the working fluid 24 in the condenser 6 falls. The lower the fluid level of the working fluid 24 in the condenser 6 the lower the hypothermia. The working fluid 24 thus leaves the condenser 6 approximately on the boiling line and is thus in thermodynamic equilibrium with its vapor phase. In other words, the working fluid 24 is not or only slightly undercooled.

Insgesamt ermöglicht es die dargestellte Vorrichtung 1 den Fluidstand des Arbeitsfluides 24 im Kondensator 6 der Wärmepumpe 4 zu regeln, so dass die Unterkühlung des Arbeitsfluides 24 im Kondensator 6 reguliert werden kann.Overall, the device 1 shown makes it possible to regulate the fluid level of the working fluid 24 in the condenser 6 of the heat pump 4, so that the subcooling of the working fluid 24 in the condenser 6 can be regulated.

Als Arbeitsfluide 24 können nach dem Stand der Technik bekannte Arbeitsfluide, beispielsweise R134a und/oder R245fa eingesetzt werden. Bevorzugt können auch Arbeitsfluide sein, die wenigstens einen der Stoffe 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(Trifluoromethyl)-3-Pentanone (Handelsname Novec™ 649), Perfluormethylbutanon, 1-Chloro-3,3,3-trifluoro-1-propene, Cis-1,1,1,4,4,4-hexafluoro-2-butene und/oder Cyclopentan umfassen. Auch die Verwendung von R134a, R400c und/oder R410a kann vorgesehen sein.Working fluids known from the prior art, for example R134a and / or R245fa, can be used as working fluids 24 can be used. Working fluids containing at least one of the substances 1,1,1,2,2,4,5,5,5-nonafluoro-4- (trifluoromethyl) -3-pentanones (trade name Novec ™ 649), perfluoromethylbutanone, 1 -Chloro-3,3,3-trifluoro-1-propene, cis-1,1,1,4,4,4-hexafluoro-2-butenes and / or cyclopentane. The use of R134a, R400c and / or R410a can also be provided.

Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiel eingeschränkt oder andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in more detail by the preferred exemplary embodiments, the invention is not restricted by the disclosed examples or other variations can be derived from them by the person skilled in the art without departing from the scope of protection of the invention.

Claims (7)

  1. Device (1) comprising a storage tank (2, 3) and a heat pump (4), which heat pump (4) has at least a condenser (6), an expansion valve (8), an evaporator (10) and a compressor (12), wherein the heat pump (4) comprises a working circuit (42) for a circulating working fluid (24), wherein, with respect to the working circuit (42), the storage tank (2, 3) is arranged between the condenser (6) and the evaporator (10), and the storage tank (2, 3) comprises a piston (14) for regulating a fluid level of the working fluid (24) in the condenser (6), characterized in that the storage tank (2, 3) is fluidically coupled to the heat pump (4) via an outlet valve and inlet valve (18, 20), wherein, with respect to the working circuit (42), the outlet valve (18) is arranged between the condenser (6) and the expansion valve (8), and the inlet valve (20) is arranged between the expansion valve (8) and the evaporator (10).
  2. Device (1) according to Claim 1, characterized in that the storage tank (2, 3) is in the form of a hydraulic cylinder (2) .
  3. Device (1) according to Claim 1 or 2, characterized in that the outlet valve and/or inlet valve (18, 20) comprise(s) a further expansion valve (21) and a check valve (22).
  4. Method for operating a heat pump (4) with a working fluid (24) circulating within a working circuit (42), in which the working fluid (24) is condensed by means of a condenser (6), is expanded by means of an expansion valve (8), is evaporated by means of an evaporator (10) and is compressed by means of a compressor (12), in which, with respect to the working circuit (42), between the condenser (6) and the evaporator (10), the working fluid (24) is conducted to a storage tank (2, 3), wherein a fluid level of the working fluid (24) in the condenser (6) is regulated by means of a piston (14) of the storage tank (2, 3), and in which, with respect to the working circuit (42), between the condenser (6) and the expansion valve (21), the working fluid (24) is conducted to the storage tank (2, 3) by means of an outlet valve (18), characterized in that, with respect to the working circuit (42), between the expansion valve (8) and the evaporator (10), the working fluid (24) is conducted from the storage tank (2, 3) back to the heat pump (4) by means of an inlet valve (20), wherein the outlet valve (18) is closed.
  5. Method according to Claim 4, in which the fluid level of the working fluid (24) is regulated if a fluid level threshold value of the working fluid (24) in the condenser (6) is exceeded or fallen below.
  6. Method according to either of Claims 4 and 5, in which the fluid level of the working fluid (24) is regulated if a temperature threshold value of the working fluid (24) is exceeded or fallen below.
  7. Method according to Claim 6, in which the temperature of the working fluid (24) is measured within the condenser (6) of the heat pump (4).
EP15702673.3A 2014-02-27 2015-01-21 Heat pump with storage tank Active EP3097370B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014203578.3A DE102014203578A1 (en) 2014-02-27 2014-02-27 Heat pump with storage tank
PCT/EP2015/051138 WO2015128122A1 (en) 2014-02-27 2015-01-21 Heat pump with storage tank

Publications (2)

Publication Number Publication Date
EP3097370A1 EP3097370A1 (en) 2016-11-30
EP3097370B1 true EP3097370B1 (en) 2020-09-23

Family

ID=52450063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15702673.3A Active EP3097370B1 (en) 2014-02-27 2015-01-21 Heat pump with storage tank

Country Status (8)

Country Link
US (1) US20160370044A1 (en)
EP (1) EP3097370B1 (en)
JP (1) JP2017510781A (en)
KR (2) KR20180021935A (en)
CN (1) CN105899890B (en)
CA (1) CA2940740A1 (en)
DE (1) DE102014203578A1 (en)
WO (1) WO2015128122A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10830515B2 (en) * 2015-10-21 2020-11-10 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling refrigerant in vapor compression system
CN105485991B (en) * 2016-01-04 2018-07-24 珠海格力电器股份有限公司 A kind of positive displacement compressor system and control method, air-conditioning
CN105650926B (en) * 2016-03-21 2018-12-07 珠海格力电器股份有限公司 Coolant circulating system and air conditioner with it
US11112156B2 (en) * 2016-10-31 2021-09-07 Hefei Hualing Co., Ltd. Refrigeration apparatus
KR20180135882A (en) * 2017-04-01 2018-12-21 이동원 A heat pump having refrigerant storage means
DE102017206547A1 (en) * 2017-04-19 2018-10-25 Robert Bosch Gmbh Method for filling a piping circuit of a heat pump with a refrigerant, container therefor and heat pump
CN107763890B (en) * 2017-09-26 2020-04-24 国网浙江省电力公司杭州供电公司 High-temperature heat pump system based on high-pressure liquid storage tank control and control method
KR20190117344A (en) 2018-04-08 2019-10-16 이동원 heat pump with refrigerant storage tank
EP3839382B1 (en) * 2019-12-19 2023-09-27 Carrier Corporation Refrigeration system and method for operating a refrigeration system
DE102022100918A1 (en) 2022-01-17 2023-07-20 Schaeffler Technologies AG & Co. KG Active filling quantity control of automotive refrigerant systems

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248040Y2 (en) * 1973-05-11 1977-11-01
JPS5369963A (en) * 1976-12-03 1978-06-21 Hitachi Ltd Refrigerant flow control in refrigeration cycle
JPS5610269U (en) * 1979-07-03 1981-01-28
JPS57114361U (en) * 1981-01-07 1982-07-15
DE3701086A1 (en) * 1987-01-16 1988-08-04 Bayerische Motoren Werke Ag AIR CONDITIONING REFRIGERANT CIRCUIT
JPS63233251A (en) * 1987-03-20 1988-09-28 アイシン精機株式会社 Chilling unit
JPH0158055U (en) * 1987-10-02 1989-04-11
NO915127D0 (en) * 1991-12-27 1991-12-27 Sinvent As VARIABLE VOLUME COMPRESSION DEVICE
JPH06331224A (en) * 1993-05-24 1994-11-29 Nippondenso Co Ltd Refrigerating cycle device
JPH07120082A (en) * 1993-10-29 1995-05-12 Nippondenso Co Ltd Refrigerating cycle apparatus
DE9406879U1 (en) * 1994-04-25 1995-08-24 Liebherr-Hausgeräte GmbH, 88416 Ochsenhausen Device for filling refrigeration circuits of refrigerators and / or freezers with a refrigerant
US5611211A (en) * 1994-09-07 1997-03-18 General Electric Company Refirgeration system with electrically controlled refrigerant storage device
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2001296075A (en) * 2000-04-13 2001-10-26 Shimadzu Corp Gas cooling apparatus
JP2002156166A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Multi-chamber type air conditioner
US6672084B2 (en) * 2001-07-05 2004-01-06 Vai Holdings, Llc Energy saving refrigeration system using composition control with mixed refrigerants
LU90945B1 (en) * 2002-08-05 2004-02-06 Delphi Tech Inc Bidirectional receiver dryer
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
US7370483B2 (en) * 2005-02-22 2008-05-13 Carrier Corporation Refrigerant cycle with three-way service valve for environmentally friendly refrigerant
ITMO20060418A1 (en) * 2006-12-21 2008-06-22 Teklab S A S Di Barbieri Mauro E C REFRIGERATION PLANT
JP5422899B2 (en) * 2008-02-29 2014-02-19 ダイキン工業株式会社 Air conditioner
DE102009031293A1 (en) * 2008-07-02 2010-01-07 Tkr Spezialwerkzeuge Gmbh Fluid e.g. oil, system e.g. motor vehicle-air conditioning system, filling device for use in workshop, has pressure container provided with volume-changeable cavities for receiving fluids, respectively
WO2011016264A1 (en) * 2009-08-07 2011-02-10 三菱重工業株式会社 Air conditioning system for vehicle
CN102109237A (en) * 2009-12-28 2011-06-29 付继平 Refrigerant conveying device and refrigerating machine applying same
DE102011005749B4 (en) * 2011-03-18 2013-08-14 Bayerische Motoren Werke Aktiengesellschaft Collector for cooling and / or heating systems and cooling and / or heating system
CN202254452U (en) * 2011-06-14 2012-05-30 合肥天鹅制冷科技有限公司 Liquid level control and oil return system of refrigerating system evaporator
DE102011052775B4 (en) * 2011-08-17 2013-09-05 Thermofin Gmbh Arrangement and method for refrigerant level monitoring and control in refrigeration systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20160129029A (en) 2016-11-08
KR20180021935A (en) 2018-03-05
CN105899890A (en) 2016-08-24
JP2017510781A (en) 2017-04-13
EP3097370A1 (en) 2016-11-30
US20160370044A1 (en) 2016-12-22
CN105899890B (en) 2018-10-23
CA2940740A1 (en) 2015-09-03
WO2015128122A1 (en) 2015-09-03
DE102014203578A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
EP3097370B1 (en) Heat pump with storage tank
EP1789732B1 (en) Refrigeration circuit and method for operating a refrigeration circuit
DE2545606C2 (en) Method for operating a cooling system and cooling system for carrying out the method
EP3004754B1 (en) Heat pumps for use of environmentally safe refrigerants
WO2015158600A1 (en) Device and method for recognizing leaks in closed circular processes
DE102011086476A1 (en) High temperature heat pump and method of using a working medium in a high temperature heat pump
DE602005004310T2 (en) COOLING DEVICE AND CONTROL PROCEDURE
EP3730873A2 (en) Method for operating a heat pump with a vapour compression system
DE10159892A1 (en) A heat pump circuit has a compressor temperture control system which automatically reduces the operating temperature when the outside temperature reaches abnormally low values.
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
DE102015111183A1 (en) Circulation method for refrigeration with carbon dioxide as refrigerant and refrigeration system for carrying out the method
AT515455A1 (en) Automatic detection of refrigerant charge in refrigeration circuits
DE102007043162B4 (en) Air conditioning with automatic refrigerant shift
DE102015007564A1 (en) Air conditioning and method of operating an air conditioner
DE102008021488A1 (en) Filling cooling circuits with liquid refrigerant
DE102012004801B4 (en) Arrangement for a heat pump with screw compressor
DE102019135437B4 (en) Process for indirectly determining pressure in refrigeration circuits
DE19829335C2 (en) Refrigeration system
DE102014102005A1 (en) Method for operating a heat pump
DE102011112911A1 (en) refrigeration plant
EP2674698A1 (en) Heat pump assembly
EP3922932B1 (en) Compression cooling system and method for operating a compression cooling system
DE102015121588A1 (en) Device for returning oil in a refrigerant circuit and method for operating the device
DE102020115267A1 (en) Method for regulating a compression refrigeration system and a compression refrigeration system
DE102011053073B4 (en) heat pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316798

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013501

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015013501

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013501

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210624

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1316798

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Effective date: 20221018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 10