EP3096897B1 - Method for producing a beverage can, a bottle-can or an aerosol can from aluminium alloy - Google Patents
Method for producing a beverage can, a bottle-can or an aerosol can from aluminium alloy Download PDFInfo
- Publication number
- EP3096897B1 EP3096897B1 EP15705040.2A EP15705040A EP3096897B1 EP 3096897 B1 EP3096897 B1 EP 3096897B1 EP 15705040 A EP15705040 A EP 15705040A EP 3096897 B1 EP3096897 B1 EP 3096897B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blank
- metal
- beverage
- profile
- rolling direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000013361 beverage Nutrition 0.000 title claims description 21
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000443 aerosol Substances 0.000 title description 11
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 238000005096 rolling process Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 9
- 210000005069 ears Anatomy 0.000 claims 3
- 239000007921 spray Substances 0.000 claims 2
- 238000005452 bending Methods 0.000 claims 1
- 238000010409 ironing Methods 0.000 claims 1
- 240000008042 Zea mays Species 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 229940082150 encore Drugs 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007688 edging Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 241001249696 Senna alexandrina Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 239000004479 aerosol dispenser Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D28/00—Shaping by press-cutting; Perforating
- B21D28/02—Punching blanks or articles with or without obtaining scrap; Notching
- B21D28/06—Making more than one part out of the same blank; Scrapless working
Definitions
- the invention relates to the field of aluminum alloy beverage cans, also known to those skilled in the art under the name of “cans” or “beverage cans”, but also metal bottles or “bottle-cans” and aerosol cans, manufactured by stamping-stretching, that is to say according to a process including in particular these two basic steps.
- the invention relates more particularly to a stamping process optimized for this type of application and having in particular the advantage of avoiding the so-called “pinched horns” phenomenon, well known to those skilled in the art, with the risk of breakage. that it involves during subsequent stretching.
- Aluminum alloys are used more and more in the manufacture of beverage cans, also known under the name of “cans” or “beverage cans”, but also of metal bottles or “bottle-cans” and boxes of. aerosol, because of their very good aesthetic appearance, in particular compared to plastics and steels, their ability to be recycled and their good resistance to corrosion. All the aluminum alloys referred to in what follows are designated, unless otherwise specified, according to the designations defined by the “Aluminum Association” in the “Registration Record Series” that it publishes regularly.
- Beverage cans or cans, also known to those skilled in the art under the name of “cans” or “beverage cans”, are usually manufactured by stamping-drawing from alloy sheets of the type 3104 in the state. metallurgical H19.
- the sheet undergoes a first operation of cutting into blanks and stamping into cups or "cups”; more precisely, during this step, the sheet coil feeds a press, also called a “cupper”, which cuts discs called blanks and performs a first stamping operation to produce cups also known as “cups”. ".
- a press also called a “cupper”
- the cups are then conveyed to a second press or "bodymaker” where they undergo at least a second stamping and several successive drawing operations; these consist in passing the stamped blank through drawing rings in order to lengthen the metal and thin it. In this way, boxes are gradually obtained whose walls are thinner than the bottom. These boxes are then processed in a machine which gives them a rotary motion while a shear cuts them to the desired height.
- beverage cans are then conveyed to a shrinking and flanging station (or edging) also known as the “necker flanger” where the upper part of the preform undergoes several successive diameter shrinkages and edging intended for the. subsequent fitting of the cover.
- a shrinking and flanging station also known as the “necker flanger” where the upper part of the preform undergoes several successive diameter shrinkages and edging intended for the. subsequent fitting of the cover.
- Metal bottles and aerosol cans or aerosol cans, made of aluminum alloy, are traditionally manufactured by impact spinning, from pins resulting from casting on a wheel.
- Patent applications testify JP 7060386 by Toyo Rikagaku Kenkyusho from 1993 and EP 0740971 de Hoogovens under priority of 1995.
- These bottles are not, however, a one-piece structure. Indeed, the vertical walls and neck of the bottle are made from the bottom of the preform and a cover is crimped on the top of the preform.
- This type of solution is also used in series, particularly in the United States. However, it has the drawback of non-optimum formability with respect to stamping, and also, moreover, of shrinking or “necking”.
- the shape of the developed perimeter known to those skilled in the art under the name of “horn profile”, is not favorable. This is in fact a profile with six lugs, two of which are positioned respectively at 0 and 180 ° from the rolling direction and four at 45 ° on either side of said direction, in accordance with the figure 1 .
- the design and use in production of non-circular blanks for the manufacture of beverage cans form part of the state of the art.
- the objective is to compensate for the anisotropy of the metal by varying the diameter of the blank according to its orientation with respect to the rolling direction. This technology is advantageous because it increases the ratio between the quantity of metal actually used in the beverage can and the quantity of metal engaged on the flat metal, or strip.
- the invention aims to resolve these difficulties by providing a non-circular blank eliminating any risk of pinched horn (s) during the stamping of the cups or "cups".
- the figure 1 represents the "horn profile", that is to say the shape of the perimeter developed from the top of the "cups" at the end of the first stamping, with, on the ordinate, the ratio of the height of the horn to the average height of the cup and, on the abscissa, the angle ⁇ with respect to the rolling direction.
- This is in fact a profile with six lugs, two of which are positioned respectively at 0 and 180 ° from the rolling direction and four at 45 ° on either side of said direction.
- the figure 2 represents the starting strip of metal A as well as its virtual division into regular hexagons B from which the blanks C.
- the rolling direction is marked D while the strip width is marked E.
- the figure 3 provides the same indications, with, in addition, the areas of the hexagon left free at F, G, H and I.
- the figure 4 represents a curve of the flat outer profile of the uniform circular blank with a radius of 69.3 mm (solid line) and non-circular optimized to take account of the anisotropic behavior of the metal according to the prior art (curve in dotted lines).
- the radius R in mm On the ordinate, the radius R in mm and, on the abscissa, the angle ⁇ formed with the direction of rolling.
- the figure 5 represents a curve (continuous with the addition of cross patterns) of the flat outer profile of the non-circular blank according to the invention, designed by adding to the previous variant four horns with a relative height equal to 0.35% of the radius of said variant.
- the constant radius variant is always represented there in a solid line and the blank of the prior art said to be optimal in dotted lines as in figure 4 .
- the figure 6 represents a curve (continuous with the addition of cross patterns) of the flat outer profile of the non-circular blank according to the invention, designed by adding to the “optimized” variant of the figure 4 , four horns with a relative height equal to 0.57% of the radius of said variant.
- the constant radius variant is always represented there in a solid line and the blank of the prior art said to be optimal in dotted lines as in figure 5 .
- the figure 7 represents the profile curves of the cups obtained from the 4 variants of blank, with, on the ordinate the height H of the cup at the corresponding point with a step of 0.1 mm and on the abscissa the angle ⁇ formed with the rolling direction: On the curve full, the profile of the cups obtained with a uniform circular blank with a radius equal to 69.3 mm, In dotted curve, the profile of the cups with a non-circular blank of the so-called “optimal” prior art, On a curve with a cross, the profile of the cups with a non-circular blank optimized according to the invention with 4 horns at 0.35%, Curved with circles, the profile of the cups with a non-circular blank optimized according to the invention with 4 horns at 0.57%.
- the invention consists in a judicious choice of the design of the non-circular blank, optimized in two stages:
- a first step of compensating for the anisotropy according to the prior art It consists in compensating for the effect of the anisotropy of the metal by varying the diameter of the blank as a function of its orientation with respect to the rolling direction, typically, and schematically, by increasing the radius of the blank in the directions corresponding to hollows on the profile of the cup, due to the anisotropy of behavior of the metal during the first stamping step, and reducing it in the directions corresponding to horns or bumps on said profile.
- the typical width at mid-height is equal to the length of the segment perpendicular to the radius joining the center of the blank and the top of the horn, and delimited by the intersection of the horn with a corner sector of approximately 30 ° from the center of the blank.
- An alloy plate of the 3104 type was cast by continuous vertical casting. It was scalped and then homogenized at a temperature of approximately 580 ° C. for approximately 3 hours before undergoing hot rolling and then cold rolling to the final thickness of 0.264 mm is in the metallurgical state H19. "Cups" were made from this sheet with a diameter of the stamping punch of the cups of 88.9 mm from flat profile blanks according to the variants below, all cut by laser:
- Variant 1 corresponds to a constant blank radius of 69.3 mm as shown in solid lines on the figure 4 or a circular blank without any optimization.
- Variant 2 corresponds to a so-called “optimal” blank, that is to say “perfectly” compensating for the anisotropy of behavior of the metal, according to a method known to those skilled in the art, such as that mentioned above reported in item “Convolute Cut-Edge Design for an Earless Cup in Cup Drawing” by RE Dick, JW Yoon and F. Barlat, CP778 Volume A, Numishet 2005 . She is represented on this same figure 4 by a dotted line curve.
- Variant 3 according to the invention :
- Variant 3 corresponds to a blank according to the invention, designed by adding to the preceding variant 2 four horns at 35 °, 145 °, 215 ° and 325 °, with a relative height equal to 0.35% of the radius of said variant 2 and a width at mid-height corresponding to a sector of 30 °. She is pictured on the figure 5 by a curve in a continuous line supplemented with cross patterns.
- Variant 1 is still shown there in a solid line and the blank of the prior art said to be optimal in dotted lines as in figure 4 .
- Variant 4 according to the invention :
- Variant 4 corresponds to a blank according to the invention, designed by adding to the preceding variant 2 four horns at 35 °, 145 °, 215 ° and 325 °, with a relative height equal to 0.57% of the radius of said variant 2 and a width at mid-height corresponding to a sector of 30 °. She is pictured on the figure 6 by a curve in a continuous line supplemented with cross patterns. Variant 1 is still shown there in a solid line and the blank of the prior art said to be optimal in dotted lines as in figure 4 .
- the so-called “optimal” prior art blank compensates for the anisotropy of the metal because the amplitude of the profile curve goes from approximately 0.9 mm to less than 0.2 mm.
- the 4 additional horns are clearly visible on the profile curves with crosses and with circles. The difference in height of the additional horns is correctly related to the difference in the initial horn heights.
- the height of the artificial horns in the case of the profile of horns at 0.57% (curve with circles), largely exceeds the height of the horns linked to the anisotropy (solid curve) and also meets it in the case of horns.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
Description
L'invention concerne le domaine des boîtes-boissons en alliage d'aluminium, encore connues de l'homme du métier sous l'appellation de « cans » ou « beverage cans », mais aussi des bouteilles métalliques ou « bottle-cans » et boîtiers d'aérosol, fabriqués par emboutissage-étirage, c'est à dire selon un procédé incluant notamment ces deux étapes de base.
L'invention concerne plus particulièrement un procédé d'emboutissage optimisé pour ce type d'application et présentant notamment l'avantage d'éviter le phénomène dit de « cornes pincées », bien connu de l'homme de métier, avec le risque de casse qu'il implique lors des étirages ultérieurs.The invention relates to the field of aluminum alloy beverage cans, also known to those skilled in the art under the name of “cans” or “beverage cans”, but also metal bottles or “bottle-cans” and aerosol cans, manufactured by stamping-stretching, that is to say according to a process including in particular these two basic steps.
The invention relates more particularly to a stamping process optimized for this type of application and having in particular the advantage of avoiding the so-called “pinched horns” phenomenon, well known to those skilled in the art, with the risk of breakage. that it involves during subsequent stretching.
Les alliages d'aluminium sont de plus en plus utilisés dans la fabrication des boîtes-boissons, encore connues sous l'appellation de « cans » ou « beverage cans », mais aussi des bouteilles métalliques ou « bottle-cans » et boîtiers d'aérosol, en raison de leur très bon aspect esthétique, notamment par rapport aux matières plastiques et aux aciers, de leur aptitude au recyclage et de leur bonne résistance à la corrosion.
Tous les alliages d'aluminium dont il est question dans ce qui suit sont désignés, sauf mention contraire, selon les désignations définies par l' « Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement.Aluminum alloys are used more and more in the manufacture of beverage cans, also known under the name of “cans” or “beverage cans”, but also of metal bottles or “bottle-cans” and boxes of. aerosol, because of their very good aesthetic appearance, in particular compared to plastics and steels, their ability to be recycled and their good resistance to corrosion.
All the aluminum alloys referred to in what follows are designated, unless otherwise specified, according to the designations defined by the “Aluminum Association” in the “Registration Record Series” that it publishes regularly.
Les boîtes-boissons, ou canettes, encore connues de l'homme de métier sous l'appellation de « cans » ou « beverage cans », sont usuellement fabriquées par emboutissage-étirage à partir de tôles en alliage du type 3104 à l'état métallurgique H19.Beverage cans, or cans, also known to those skilled in the art under the name of “cans” or “beverage cans”, are usually manufactured by stamping-drawing from alloy sheets of the type 3104 in the state. metallurgical H19.
La tôle subit une première opération de découpage en flans et emboutissage en coupelles ou « cups » ; plus précisément, au cours de cette étape, la bobine de tôle alimente une presse, également appelée « cupper », qui découpe des disques appelés flans et effectue une première opération d'emboutissage pour produire des coupelles aussi connues sous l'appellation de « cups ». Il s'agit là de l'étape concernée au premier chef par l'invention.
Les coupelles sont ensuite acheminées vers une deuxième presse ou « bodymaker » où elles subissent au moins un second emboutissage et plusieurs étirages successifs ; ceux-ci consistent à faire passer l'ébauche emboutie par des bagues d'étirage afin d'allonger le métal et l'amincir.
On obtient ainsi progressivement des boîtes dont les parois sont plus minces que le fond. Ces boîtes sont alors traitées dans une machine qui leur imprime un mouvement rotatif pendant qu'une cisaille les coupe à la hauteur voulue.
Celles-ci sont ensuite lavées dans plusieurs bains de nettoyage et rinçage puis séchées.
Après revêtement, les boîtes boissons sont ensuite acheminées vers un poste de rétreint et bordage (ou bordurage) encore connu sous l'appellation de « necker flanger » où la partie supérieure de la préforme subit plusieurs rétrécissements de diamètre successifs et un bordurage destiné à la pose ultérieure du couvercle.The sheet undergoes a first operation of cutting into blanks and stamping into cups or "cups"; more precisely, during this step, the sheet coil feeds a press, also called a “cupper”, which cuts discs called blanks and performs a first stamping operation to produce cups also known as “cups”. ". This is the step primarily concerned by the invention.
The cups are then conveyed to a second press or "bodymaker" where they undergo at least a second stamping and several successive drawing operations; these consist in passing the stamped blank through drawing rings in order to lengthen the metal and thin it.
In this way, boxes are gradually obtained whose walls are thinner than the bottom. These boxes are then processed in a machine which gives them a rotary motion while a shear cuts them to the desired height.
These are then washed in several cleaning and rinsing baths and then dried.
After coating, the beverage cans are then conveyed to a shrinking and flanging station (or edging) also known as the “necker flanger” where the upper part of the preform undergoes several successive diameter shrinkages and edging intended for the. subsequent fitting of the cover.
Les bouteilles métalliques et boîtiers d'aérosol ou bombes-aérosol, en alliage d'aluminium, sont traditionnellement fabriqués par filage par choc, à partir de pions issus de coulée sur roue.
Les premières bouteilles en alliage d'aluminium, ou « bottle-cans », fabriquées par emboutissage-étirage puis rétreint ou « necking », sont apparues au Japon en 1993 et en Europe en 1995.
En témoignent les demandes de brevet
Ces bouteilles ne sont toutefois pas de structure monobloc. En effet, les parois verticales et goulot de la bouteille sont fabriqués à partir du fond de la préforme et un couvercle est serti sur le haut de la préforme.Metal bottles and aerosol cans or aerosol cans, made of aluminum alloy, are traditionally manufactured by impact spinning, from pins resulting from casting on a wheel.
The first aluminum alloy bottles, or “bottle-cans”, made by drawing-drawing and then shrinking or “necking”, appeared in Japan in 1993 and in Europe in 1995.
Patent applications testify
These bottles are not, however, a one-piece structure. Indeed, the vertical walls and neck of the bottle are made from the bottom of the preform and a cover is crimped on the top of the preform.
Ainsi en est il également dans le cas de la demande
La fabrication de boîtes-boissons, de bouteilles du type « bottle can » ou de boîtiers d'aérosol en alliage d'aluminium par essentiellement emboutissage-étirage et rétreint nécessite en effet un matériau capable notamment de:
- subir des emboutissages profonds, c'est-à-dire de formation de coupelles à parois verticales et fond horizontal, avec des rapports d'emboutissage, c'est à dire le rapport du diamètre du flan au diamètre du poinçon, jusqu'à 1.9 voire plus, avec des déformations en rétreint élevées, afin d'obtenir une réduction de diamètre importante en deux passes d'emboutissage (emboutissage et emboutissage de reprise) seulement,
- et surtout, objet de cet invention, fournir des coupelles ou « cups » de bonne qualité, c'est-à-dire ne présentant pas de défauts connus de l'homme de métier sous l'appellation de « cornes pincées » ni de plis, afin d'éviter toute casse lors de l'étirage ultérieur.
The manufacture of beverage cans, bottles of the “bottle can” type or aerosol cans made of aluminum alloy by essentially drawing-stretching and shrinking indeed requires a material capable in particular of:
- undergo deep drawing, that is to say of forming cups with vertical walls and horizontal bottom, with stamping ratios, that is to say the ratio of the diameter of the blank to the diameter of the punch, up to 1.9 or even more, with high shrinkage deformations, in order to obtain a significant reduction in diameter in just two stamping passes (stamping and reworking),
- and above all, object of this invention, to provide cups or "cups" of good quality, that is to say not exhibiting defects known to those skilled in the art under the name of "pinched horns" or pleats. , to avoid breakage during subsequent stretching.
Les premières bouteilles en alliage d'aluminium, ou « bottle-cans », de structure monobloc, et fabriquées essentiellement par emboutissage-étirage puis rétreint ou « necking », ont vu le jour au Japon dans les années 2000. En témoigne la demande
Il en va de même pour la demande
Ce type de solution est également utilisé en série notamment aux Etats-Unis. Cependant il présente l'inconvénient d'une formabilité non optimale vis-à-vis de l'emboutissage, et aussi d'ailleurs du rétreint ou « necking ».
En particulier, après emboutissage des coupelles ou « cups », à partir de flans circulaires, la forme du périmètre développé, connue de l'homme de métier sous l'appellation de « profil de cornes », n'est pas favorable.
Il s'agit en effet d'un profil à six cornes, dont deux positionnées respectivement à 0 et 180° de la direction de laminage et quatre à 45° de part et d'autre de ladite direction, conformément à la
The same goes for demand
This type of solution is also used in series, particularly in the United States. However, it has the drawback of non-optimum formability with respect to stamping, and also, moreover, of shrinking or “necking”.
In particular, after stamping of the cups or “cups”, from circular blanks, the shape of the developed perimeter, known to those skilled in the art under the name of “horn profile”, is not favorable.
This is in fact a profile with six lugs, two of which are positioned respectively at 0 and 180 ° from the rolling direction and four at 45 ° on either side of said direction, in accordance with the
Il se trouve qu'une telle configuration, du fait des cornes à 0 et 180°, présente un sérieux risque de donner lieu au phénomène dit de « cornes pincées » bien connu de l'homme de métier, avec le risque de casse lors des étirages ultérieurs.
Pour pallier ce problème, la conception et l'utilisation en production de flans non circulaires pour la fabrication de boîtes boisson font partie de l'état de la technique. Dans ce contexte, l'objectif est de compenser l'anisotropie du métal en faisant varier le diamètre du flan en fonction de son orientation par rapport à la direction de laminage. Cette technologie est avantageuse car elle augmente le ratio entre la quantité de métal réellement utilisée dans la boîte boisson et la quantité de métal engagé sur le métal à plat, ou bande.
Une telle conception typique est parfaitement décrite notamment dans l'article
To overcome this problem, the design and use in production of non-circular blanks for the manufacture of beverage cans form part of the state of the art. In this context, the objective is to compensate for the anisotropy of the metal by varying the diameter of the blank according to its orientation with respect to the rolling direction. This technology is advantageous because it increases the ratio between the quantity of metal actually used in the beverage can and the quantity of metal engaged on the flat metal, or strip.
Such a typical design is fully described in particular in the article
L'utilisation de ce type de flan non circulaire a hélas pour inconvénient majeur de rendre le procédé d'emboutissage bien plus sensible à la moindre variabilité d'anisotropie de métal. En effet, la coupelle ou « cup » emboutie, réalisée à partir d'un flan non circulaire, présente théoriquement un profil « plat » car les creux et bosses ont été compensés par les variations de diamètre du flan de départ. Dans ce cas, toute variation de l'anisotropie du métal va fatalement générer un profil présentant des cornes de taille et orientation non maîtrisées. Ainsi, une modification de l'anisotropie du métal suivant l'axe de laminage ou orthogonalement à cet axe, favorisera l'apparition de 2 cornes diamétralement opposées, ce qui est propice au phénomène de « cornes pincées » que l'homme du métier cherche absolument à éviter.
Ainsi, le profil de la coupelle présente toujours des creux et des cornes au détriment du ratio entre la quantité de métal réellement utilisée dans la boîte boisson et la quantité de métal initiale sur le métal à plat.The use of this type of non-circular blank unfortunately has the major drawback of making the stamping process much more sensitive to the slightest variability of metal anisotropy. In fact, the stamped cup or “cup”, made from a non-circular blank, theoretically has a “flat” profile because the hollows and bumps have been compensated for by the variations in diameter of the starting blank. In this case, any variation in the anisotropy of the metal will inevitably generate a profile having horns of uncontrolled size and orientation. Thus, a modification of the anisotropy of the metal along the rolling axis or orthogonally to this axis, will promote the appearance of 2 diametrically opposed horns, which is conducive to the phenomenon of "pinched horns" that a person skilled in the art seeks. absolutely to be avoided.
Thus, the profile of the cup always has hollows and horns to the detriment of the ratio between the quantity of metal actually used in the beverage can and the initial quantity of metal on the flat metal.
L'invention vise à résoudre ces difficultés en proposant un flan non circulaire éliminant tout risque de corne(s) pincée(s) lors de l'emboutissage des coupelles ou « cups ».The invention aims to resolve these difficulties by providing a non-circular blank eliminating any risk of pinched horn (s) during the stamping of the cups or "cups".
L'invention a pour objet un procédé de fabrication d'une boîte-boisson, une bouteille ou un boîtier d'aérosol en alliage d'aluminium, par emboutissage-étirage suivi de rétreint et/ou pliage, à partir d'un flan non circulaire, selon lequel :
- La bande de métal dans laquelle est prélevé chaque flan est virtuellement divisée en hexagones réguliers identiques dont deux côtés opposés sont sensiblement perpendiculaires à la direction de laminage de la dite bande et constituant un système hexagonal compact plan,
- Le périmètre dudit flan est calculé par ajustement à partir d'un cercle concentrique et de rayon inférieur à celui du cercle inscrit de l'hexagone correspondant, pour compenser, lors de l'emboutissage, l'anisotropie de comportement du métal, selon une méthode connue de l'homme du métier, typiquement telle que décrite dans l'article
« Convolute Cut-Edge Design for an Earless Cup in Cup Drawing » de R. E. Dick, J. W. Yoon et F. Barlat , CP778 Volume A, Numishet 2005
et caractérisé en ce que - Au moins quatre cornes sont ajoutées au-delà et à partir dudit périmètre, dans les zones de l'hexagone laissées libres, soit dont l'axe principal forme un angle respectivement de sensiblement 35°, 145°, 215° et 325° avec la direction de laminage, chacune d'une hauteur relative de 0.3 à 0.8% par rapport audit cercle concentrique de départ, et d'une largeur maximum compte-tenu de l'espace disponible, soit typiquement correspondant, à mi-hauteur de ladite corne, à un secteur angulaire minimum de sensiblement 25° ayant pour sommet le centre du flan. L'invention porte également sur un flan d'emboutissage de boîte boisson, bouteille métallique ou boîtier d'aérosol, fabriqué par un procédé tel que décrit ci-dessus.
- The metal strip from which each blank is taken is virtually divided into identical regular hexagons, two opposite sides of which are substantially perpendicular to the rolling direction of said strip and constituting a compact hexagonal system,
- The perimeter of said blank is calculated by adjustment from a concentric circle with a radius smaller than that of the inscribed circle of the corresponding hexagon, to compensate, during stamping, for the anisotropy of behavior of the metal, according to a method known to those skilled in the art, typically as described in the article
“Convolute Cut-Edge Design for an Earless Cup in Cup Drawing” by RE Dick, JW Yoon and F. Barlat, CP778 Volume A, Numishet 2005
and characterized in that - At least four horns are added beyond and from said perimeter, in the areas of the hexagon left free, i.e. whose main axis forms an angle of approximately 35 °, 145 °, 215 ° and 325 ° respectively with the rolling direction, each with a relative height of 0.3 to 0.8% with respect to said starting concentric circle, and of a maximum width taking into account the available space, i.e. typically corresponding, at mid-height of said horn, at a minimum angular sector of substantially 25 ° having the center of the blank as its apex. The invention also relates to a beverage can, metal bottle or aerosol can stamping blank manufactured by a process as described above.
La
Ce profil, avec des cornes notamment pour α = 0 et 180°, correspond à une coupelle de l'art antérieur sans optimisation. Il s'agit en effet d'un profil à six cornes, dont deux positionnées respectivement à 0 et 180° de la direction de laminage et quatre à 45° de part et d'autre de ladite direction.The
This profile, with horns in particular for α = 0 and 180 °, corresponds to a cup of the prior art without optimization. This is in fact a profile with six lugs, two of which are positioned respectively at 0 and 180 ° from the rolling direction and four at 45 ° on either side of said direction.
La
La direction de laminage porte le repère D alors que la largeur de bande porte le repère E.The
The rolling direction is marked D while the strip width is marked E.
La
La
La
La variante à rayon constant y est toujours représentée en un trait plein et le flan de l'art antérieur dit optimal en traits pointillés comme à la
The constant radius variant is always represented there in a solid line and the blank of the prior art said to be optimal in dotted lines as in
La
La variante à rayon constant y est toujours représentée en un trait plein et le flan de l'art antérieur dit optimal en traits pointillés comme à la
The constant radius variant is always represented there in a solid line and the blank of the prior art said to be optimal in dotted lines as in
La
En courbe pointillée, le profil des coupelles avec un flan non circulaire de l'art antérieur dit « optimal »,
En courbe avec croix, le profil des coupelles avec un flan non circulaire optimisé selon l'invention avec 4 cornes à 0.35%,
En courbe avec ronds, le profil des coupelles avec un flan non circulaire optimisé selon l'invention avec 4 cornes à 0.57%.The
In dotted curve, the profile of the cups with a non-circular blank of the so-called “optimal” prior art,
On a curve with a cross, the profile of the cups with a non-circular blank optimized according to the invention with 4 horns at 0.35%,
Curved with circles, the profile of the cups with a non-circular blank optimized according to the invention with 4 horns at 0.57%.
L'invention consiste dans un choix judicieux de la conception du flan non circulaire, optimisée en deux étapes :
Une première étape de compensation de l'anisotropie selon l'art antérieur : Elle consiste à compenser l'effet de l'anisotropie du métal en faisant varier le diamètre du flan en fonction de son orientation par rapport à la direction de laminage, typiquement, et schématiquement, en augmentant le rayon du flan suivant les directions correspondant à des creux sur le profil de la coupelle, dus à l'anisotropie de comportement du métal lors de la première étape d'emboutissage, et en le réduisant suivant les directions correspondant à des cornes ou bosses sur ledit profil. Une telle conception typique est parfaitement décrite notamment dans l'article
Une deuxième étape au cours de laquelle on ajoute au moins quatre cornes au-delà et à partir dudit périmètre, en augmentant le rayon du flan dans les zones au-delà des flans sans cornes additionnelles et à l'intérieur de l'hexagone correspondant, suivant quatre directions symétriques par rapport à la direction de laminage, comme indiqué en
Plus précisément, si on décompose virtuellement la bande de métal dans laquelle est prélevé chaque flan en hexagones réguliers identiques dont deux côtés opposés sont sensiblement perpendiculaires à la direction de laminage, constituant ainsi un système hexagonal compact plan, comme le montre la
Plus précisément, la largeur typique à mi-hauteur est égale à la longueur du segment perpendiculaire au rayon joignant le centre du flan et le sommet de la corne, et délimité par l'intersection de la corne avec un secteur d'angle de sensiblement 30° issu du centre du flan.The invention consists in a judicious choice of the design of the non-circular blank, optimized in two stages:
A first step of compensating for the anisotropy according to the prior art: It consists in compensating for the effect of the anisotropy of the metal by varying the diameter of the blank as a function of its orientation with respect to the rolling direction, typically, and schematically, by increasing the radius of the blank in the directions corresponding to hollows on the profile of the cup, due to the anisotropy of behavior of the metal during the first stamping step, and reducing it in the directions corresponding to horns or bumps on said profile. Such a typical design is fully described in particular in the article
A second step during which at least four horns are added beyond and from said perimeter, increasing the radius of the blank in the areas beyond the blanks without additional horns and inside the corresponding hexagon, in four directions symmetrical with respect to the rolling direction, as indicated in
More precisely, if we virtually decompose the strip of metal from which each blank is taken into identical regular hexagons, two opposite sides of which are substantially perpendicular to the rolling direction, thus constituting a compact hexagonal system, as shown in
More precisely, the typical width at mid-height is equal to the length of the segment perpendicular to the radius joining the center of the blank and the top of the horn, and delimited by the intersection of the horn with a corner sector of approximately 30 ° from the center of the blank.
La demanderesse a constaté que cette optimisation avait pour effet tout à fait répétitif de limiter au maximum le risque de défauts connus de l'homme de métier sous l'appellation de « cornes pincées » ainsi que de plis, afin d'éviter toute casse lors de l'étirage ultérieur.The Applicant has observed that this optimization had the completely repetitive effect of limiting as much as possible the risk of defects known to those skilled in the art under the name of “pinched horns” as well as of folds, in order to avoid any breakage during the process. subsequent stretching.
Dans ses détails, l'invention sera mieux comprise à l'aide des exemples ci-après, qui n'ont toutefois pas de caractère limitatif.In its details, the invention will be better understood with the aid of the examples below, which are not, however, limiting in nature.
On a coulé par coulée continue verticale une plaque d'alliage du type 3104. Elle a été scalpée puis homogénéisée à une température d'environ 580°C pendant environ 3 heures avant de subir le laminage à chaud puis le laminage à froid jusqu'à l'épaisseur finale de 0.264 mm soit à l'état métallurgique H19.
Des « coupelles » ont été réalisées à partir de cette tôle avec un diamètre du poinçon d'emboutissage des coupelles de 88.9 mm à partir de flans de profil à plat selon les variantes ci-dessous, tous découpés par laser:An alloy plate of the 3104 type was cast by continuous vertical casting. It was scalped and then homogenized at a temperature of approximately 580 ° C. for approximately 3 hours before undergoing hot rolling and then cold rolling to the final thickness of 0.264 mm is in the metallurgical state H19.
"Cups" were made from this sheet with a diameter of the stamping punch of the cups of 88.9 mm from flat profile blanks according to the variants below, all cut by laser:
La variante 1 correspond à un rayon de flan constant de 69.3 mm comme représenté en trait plein à la
La variante 2 correspond à un flan dit « optimal », c'est-à-dire compensant « parfaitement » l'anisotropie de comportement du métal, selon une méthode connue de l'homme du métier, telle que celle précitée rapportée dans l'article
Elle est représentée sur cette même
She is represented on this same
La variante 3 correspond à un flan selon l'invention, conçu en ajoutant à la variante 2 précédente quatre cornes à 35°, 145°, 215° et 325°, d'une hauteur relative égale à 0.35 % du rayon de ladite variante 2 et d'une largeur à mi-hauteur correspondant à un secteur de 30°.
Elle est représentée sur la
She is pictured on the
La variante 1 y est toujours représentée en un trait plein et le flan de l'art antérieur dit optimal en traits pointillés comme à la
La variante 4 correspond à un flan selon l'invention, conçu en ajoutant à la variante 2 précédente quatre cornes à 35°, 145°, 215° et 325°, d'une hauteur relative égale à 0.57% du rayon de ladite variante 2 et d'une largeur à mi-hauteur correspondant à un secteur de 30°.
Elle est représentée sur la
La variante 1 y est toujours représentée en un trait plein et le flan de l'art antérieur dit optimal en traits pointillés comme à la
She is pictured on the
A partir de ces quatre variantes de flans, nous avons réalisé des coupelles par emboutissage avec un diamètre du poinçon d'emboutissage de 88.9 mm pour une hauteur moyenne des coupelles de 32 mm.
La
- En courbe pleine, le profil des coupelles obtenues avec un flan circulaire uniforme de rayon égal à 69.3 mm.
- En courbe pointillée, le profil des coupelles avec un flan non circulaire de l'art antérieur dit « optimal ».
- En courbe avec croix, le profil des coupelles avec un flan non circulaire optimisé selon l'invention avec 4 cornes à 0.35% selon la variante 3.
- En courbe avec ronds, le profil des coupelles avec un flan non circulaire optimisé selon l'invention avec 4 cornes à 0.57% selon la variante 4.
The
- In full curve, the profile of the cups obtained with a uniform circular blank of radius equal to 69.3 mm.
- In dotted curve, the profile of the cups with a non-circular blank of the so-called “optimal” prior art.
- Curved with a cross, the profile of the cups with a non-circular blank optimized according to the invention with 4 horns at 0.35% according to variant 3.
- Curved with circles, the profile of the cups with a non-circular blank optimized according to the invention with 4 horns at 0.57% according to variant 4.
On y observe sans ambiguïté que le flan de l'art antérieur dit « optimal » (courbe en pointillés) compense l'anisotropie du métal car l'amplitude de la courbe de profil passe de 0.9 mm environ à moins de 0.2 mm.
Sur la base des profils optimisés selon l'invention, les 4 cornes additionnelles sont bien visibles sur les courbes de profil avec croix et avec ronds. La différence de hauteur des cornes additionnelles est correctement liée à la différence des hauteurs de cornes initiales.
On observe également que la hauteur des cornes artificielles, dans le cas du profil de cornes à 0.57% (courbe avec ronds), dépasse largement la hauteur des cornes liées à l'anisotropie (courbe pleine) et la rejoint aussi dans le cas des cornes à 0.35% (courbe avec croix). Ainsi, le risque de voir apparaître un système à 2 cornes, système plus sensible au phénomène des « cornes pincées », est clairement réduit, y compris par rapport au cas correspondant à la courbe pointillée de l'optimisation selon l'art antérieur, mais aussi, des valeurs négatives (creux du profil supérieur de coupelle) ne sont pas relevées.It can be seen without ambiguity that the so-called “optimal” prior art blank (dotted curve) compensates for the anisotropy of the metal because the amplitude of the profile curve goes from approximately 0.9 mm to less than 0.2 mm.
On the basis of the profiles optimized according to the invention, the 4 additional horns are clearly visible on the profile curves with crosses and with circles. The difference in height of the additional horns is correctly related to the difference in the initial horn heights.
We also observe that the height of the artificial horns, in the case of the profile of horns at 0.57% (curve with circles), largely exceeds the height of the horns linked to the anisotropy (solid curve) and also meets it in the case of horns. at 0.35% (curve with cross). Thus, the risk of seeing a system with 2 horns appear, a system more sensitive to the phenomenon of "pinched horns", is clearly reduced, including compared to the case corresponding to the dotted curve of the optimization according to the prior art, but also, negative values (hollow of the upper cup profile) are not recorded.
Claims (2)
- Method for manufacturing a beverage can, a bottle or a spray can made of aluminium alloy, by means of drawing-ironing followed by necking and/or bending, from a non-circular blank, whereby:- The metal strip from which each blank is taken is virtually divided into identical regular hexagons wherein two opposite sides are substantially perpendicular to the rolling direction of said strip and forming a plane compact hexagonal system- The perimeter of said blank is calculated by adjustment using a concentric circle having a radius less than that of the inscribed circle of the corresponding hexagon, to compensate, during drawing, for the anisotropic behaviour of the metal, by varying the blank diameter according to the orientation thereof with respect to the rolling direction, by increasing the radius of the blank along the directions corresponding to hollows on the cup profile, due to the anisotropic behaviour of the metal during the first drawing step, and reducing same along the directions corresponding to ears or bumps on said profile,
and characterised in that- At least four ears are added beyond and from said perimeter, in the zones of the hexagon left free, either wherein the primary axis forms an angle respectively of substantially 35°, 145°, 215° and 325° with the rolling direction, each having a relative height of 0.3 to 0.8% with respect to said initial concentric circle, and a maximum width in view of the space available, or typically corresponding, at the mid-height of said ear, to a minimum angular sector of substantially 25° having the centre of the blank as the vertex thereof. - Drawing blank of a beverage can, metal bottle or spray can, characterised in that it is manufactured by means of a method according to claim 1, i.e. in that it comprises at least four ears, added beyond and from said perimeter, in the zones of the hexagon left free, either wherein the primary axis forms an angle respectively of substantially 35°, 145°, 215° and 325° with the rolling direction, each having a relative height of 0.3 to 0.8% with respect to said initial concentric circle, and a maximum width in view of the space available, or typically corresponding, at the mid-height of said ear, to a minimum angular sector of substantially 25° having the centre of the blank as the vertex thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL15705040T PL3096897T3 (en) | 2014-01-20 | 2015-01-15 | Method for producing a beverage can, a bottle-can or an aerosol can from aluminium alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1400104A FR3016538B1 (en) | 2014-01-20 | 2014-01-20 | PROCESS FOR MANUFACTURING A BOX, METAL BOTTLE OR AEROSOL BOX OF ALUMINUM ALLOY |
PCT/FR2015/000017 WO2015107284A1 (en) | 2014-01-20 | 2015-01-15 | Method for producing a beverage can, a bottle-can or an aerosol can from aluminium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3096897A1 EP3096897A1 (en) | 2016-11-30 |
EP3096897B1 true EP3096897B1 (en) | 2020-07-22 |
Family
ID=50483088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15705040.2A Active EP3096897B1 (en) | 2014-01-20 | 2015-01-15 | Method for producing a beverage can, a bottle-can or an aerosol can from aluminium alloy |
Country Status (9)
Country | Link |
---|---|
US (1) | US10675669B2 (en) |
EP (1) | EP3096897B1 (en) |
CN (1) | CN105916609B (en) |
BR (1) | BR112016016067B1 (en) |
ES (1) | ES2818082T3 (en) |
FR (1) | FR3016538B1 (en) |
PL (1) | PL3096897T3 (en) |
RU (1) | RU2684986C2 (en) |
WO (1) | WO2015107284A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112024975A (en) * | 2020-08-26 | 2020-12-04 | 云嘉集团有限公司 | Processing method of cold stamping drawing piece material sheet |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU390856A1 (en) * | 1972-05-22 | 1973-07-25 | В. Г. Кондратенко , Э. А. Назар Московское высшее техническое училище Н. Э. Баумана | SHEET PREPARATION FOR EXTRACTING CYLINDRICAL |
JPS50143777A (en) * | 1974-05-08 | 1975-11-19 | ||
US4603571A (en) * | 1984-08-07 | 1986-08-05 | Wessels Ewald J H | Apparatus for drawing circular cups from non-circular blanks |
US4711611A (en) * | 1986-07-23 | 1987-12-08 | Dayton Reliable Tool & Mfg. Co. | Method and apparatus for fabricating a can body |
JPH0760386B2 (en) | 1987-10-20 | 1995-06-28 | 三菱電機株式会社 | Data processing device having branch prediction function |
GB8917049D0 (en) * | 1989-07-26 | 1989-09-13 | Metal Box Plc | An apparatus for,and a method of,cutting a blank |
RU2056199C1 (en) * | 1993-02-03 | 1996-03-20 | Тульский государственный технический университет | Blank for drawing cylindrical semifinished product |
EP0740971A1 (en) | 1995-05-04 | 1996-11-06 | Hoogovens Staal B.V. | Method of manufacturing a bottle-shaped metal container |
US5630337A (en) * | 1995-09-07 | 1997-05-20 | Werth; Elmer D. | Apparatus and method for forming a container |
JPH11309517A (en) * | 1998-04-23 | 1999-11-09 | Toyo Kohan Co Ltd | Punching die and punch of blank for cup drawing |
US6499329B1 (en) | 1999-08-30 | 2002-12-31 | Daiwa Can Company | Production method for bottle type can and form-working tool |
AU779821B2 (en) * | 1999-09-30 | 2005-02-10 | Daiwa Can Company Limited | Method of manufacturing bottle type can |
JP2003082429A (en) | 2001-09-11 | 2003-03-19 | Kobe Steel Ltd | Aluminum alloy sheet for bottle can |
WO2003101845A2 (en) * | 2002-06-03 | 2003-12-11 | Alcan International Limited | Two piece container |
WO2005072887A1 (en) * | 2004-01-28 | 2005-08-11 | Glud & Marstrand A/S | A method of forming a metal sheet blank |
EP1870481A4 (en) | 2005-03-25 | 2008-05-28 | Kobe Steel Ltd | Aluminum alloy sheet with excellent high-temperature property for bottle can |
RU2317170C2 (en) * | 2005-07-07 | 2008-02-20 | Открытое акционерное общество "Калужский завод автомобильного электрооборудования" (ОАО "КЗАЭ") | Method for making deep cylindrical products of square blanks |
JP2009037980A (en) * | 2007-08-03 | 2009-02-19 | Panasonic Corp | Blank for battery can and metal can and manufacturing method for battery can and metal can using the same |
JP6151000B2 (en) * | 2012-10-10 | 2017-06-21 | 東洋鋼鈑株式会社 | Manufacturing method of cylindrical container |
-
2014
- 2014-01-20 FR FR1400104A patent/FR3016538B1/en active Active
-
2015
- 2015-01-15 EP EP15705040.2A patent/EP3096897B1/en active Active
- 2015-01-15 US US15/112,455 patent/US10675669B2/en active Active
- 2015-01-15 CN CN201580005138.3A patent/CN105916609B/en active Active
- 2015-01-15 PL PL15705040T patent/PL3096897T3/en unknown
- 2015-01-15 BR BR112016016067-3A patent/BR112016016067B1/en active IP Right Grant
- 2015-01-15 RU RU2016133985A patent/RU2684986C2/en active
- 2015-01-15 ES ES15705040T patent/ES2818082T3/en active Active
- 2015-01-15 WO PCT/FR2015/000017 patent/WO2015107284A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
RU2016133985A (en) | 2018-02-22 |
CN105916609A (en) | 2016-08-31 |
US10675669B2 (en) | 2020-06-09 |
US20160332208A1 (en) | 2016-11-17 |
PL3096897T3 (en) | 2021-02-08 |
BR112016016067A2 (en) | 2017-08-08 |
RU2016133985A3 (en) | 2018-08-01 |
FR3016538B1 (en) | 2016-07-15 |
WO2015107284A1 (en) | 2015-07-23 |
CN105916609B (en) | 2017-12-22 |
FR3016538A1 (en) | 2015-07-24 |
BR112016016067B1 (en) | 2022-11-08 |
RU2684986C2 (en) | 2019-04-16 |
EP3096897A1 (en) | 2016-11-30 |
ES2818082T3 (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2997171B1 (en) | Aluminium alloy sheet for metallic bottle or can or aerosol bottle | |
DK2359954T3 (en) | Expansion Matrix for molding containers | |
JP6414957B2 (en) | Manufacturing method of can, bottom reforming mechanism, and top support member used therefor | |
EP0983129B1 (en) | Method for making aluminium alloy strips by continuous thin gauge twin-roll casting | |
EP3188855B1 (en) | Method of manufacturing textured - smooth hybrid metal closure caps | |
FR2499884A1 (en) | CONTAINER MADE BY STAMPING | |
EP3096897B1 (en) | Method for producing a beverage can, a bottle-can or an aerosol can from aluminium alloy | |
EP2688694B1 (en) | A novel method of manufacturing wheel disc | |
EP0733414A1 (en) | Method of manufacture of a metal container in form | |
JP6988180B2 (en) | Pure aluminum seamless can | |
JP2015039712A (en) | Manufacturing method of vehicle wheel disc | |
FR2713137A1 (en) | Metalloplastic complex box components obtained by stamping. | |
JP2007084098A (en) | Forming and working method of aluminum can | |
EP0524098B1 (en) | Method and punch for deep-drawing containers with a continuous wall | |
WO2015064290A1 (en) | Aluminum alloy plate for can ends, and method for manufacturing same | |
JP2016030279A (en) | Di can, and di can manufacturing method | |
JP2008240099A (en) | Aluminum alloy sheet for packaging container and method for producing the same | |
FR2739581A1 (en) | METHOD FOR MANUFACTURING A METAL BOX OF THE BEVERAGE BOX TYPE | |
JP5005374B2 (en) | DI can | |
US20130098905A1 (en) | Three-piece can | |
EP3752313A2 (en) | Sheet material providing reduction in cost of scrap materials in process of sheet metal materials and method to obtain such sheet material | |
EP1399321A1 (en) | Method of producing a light alloy wheel rim and an improved light alloy wheel rim for a motor vehicle | |
FR2710611A1 (en) | Outer cap with thinned skirt and manufacturing method | |
JPH10249461A (en) | Method for trimming aluminum di can | |
CN1398731A (en) | Wheel rim assembly for automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190628 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200306 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015056086 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1292933 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201022 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201123 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201022 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201122 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2818082 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210409 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015056086 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
26N | No opposition filed |
Effective date: 20210423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1292933 Country of ref document: AT Kind code of ref document: T Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150115 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20231221 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231219 Year of fee payment: 10 Ref country code: NL Payment date: 20240126 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240201 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20231220 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 10 Ref country code: GB Payment date: 20240129 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240122 Year of fee payment: 10 Ref country code: FR Payment date: 20240125 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200722 |