EP3096067A1 - Verfahren zur oberflächenbehandlung einer gasflasche - Google Patents

Verfahren zur oberflächenbehandlung einer gasflasche Download PDF

Info

Publication number
EP3096067A1
EP3096067A1 EP16169697.6A EP16169697A EP3096067A1 EP 3096067 A1 EP3096067 A1 EP 3096067A1 EP 16169697 A EP16169697 A EP 16169697A EP 3096067 A1 EP3096067 A1 EP 3096067A1
Authority
EP
European Patent Office
Prior art keywords
gas cylinder
steel
microns
coating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16169697.6A
Other languages
English (en)
French (fr)
Other versions
EP3096067B1 (de
Inventor
Hendrik Fritzsche
Hans Jürgen Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmitt Prof Mohlmann & Collegen Wirtschaftskanzlei Insolvenzverwalter AG
Schmitt Prof Moehlmann and Collegen Wirtschaftskanzlei Insolvenzverwalter AG
Original Assignee
Schmitt Prof Mohlmann & Collegen Wirtschaftskanzlei Insolvenzverwalter AG
Schmitt Prof Moehlmann and Collegen Wirtschaftskanzlei Insolvenzverwalter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmitt Prof Mohlmann & Collegen Wirtschaftskanzlei Insolvenzverwalter AG, Schmitt Prof Moehlmann and Collegen Wirtschaftskanzlei Insolvenzverwalter AG filed Critical Schmitt Prof Mohlmann & Collegen Wirtschaftskanzlei Insolvenzverwalter AG
Priority to PL16169697T priority Critical patent/PL3096067T3/pl
Publication of EP3096067A1 publication Critical patent/EP3096067A1/de
Application granted granted Critical
Publication of EP3096067B1 publication Critical patent/EP3096067B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2172Polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0745Gas bottles

Definitions

  • the invention relates to a method for surface treatment of a lightweight gas cylinder from a dual-phase steel, in which the gas cylinder is blasted to a minimum weigth of 30 microns, then powder coated with paint and finally heat treated in an oven at a temperature of 150 ° C to 250 ° C. becomes.
  • the invention further relates to gas bottles produced by this process.
  • Liquid gas cylinders in particular propane gas bottles are widely used for commercial and private purposes, especially for the operation of grill stations. These are portable, refillable, welded steel cylinders, which have to withstand a test pressure of 30 bar and, for example, have a diameter of 300 mm with a capacity of, for example, 12.5 to 27.2 I. Such gas cylinders are on as ownership and rental bottles the market, are often refillable and require regular maintenance and testing for safety of use.
  • the weight of the gas bottle makes up a significant part of the total weight. This has a disadvantageous effect on the handling and transportability.
  • Dual-phase steel or DP steel are steels whose microstructure consists of a ferritic matrix in which a predominantly martensitic second phase is incorporated.
  • the ferritic matrix is rather soft, the martensitic second phase with a content of, for example, about 20% brings about an increased tensile strength.
  • DP steels are significantly stronger than conventional steels and thus allow the use of thinner sheets without loss of strength in various applications, for example in the automotive industry, but also in the production of gas cylinders.
  • Dual phase steels are available, for example, from the companies ThyssenKrupp and ArcelorMittal under the name DP 600.
  • Conventional gas cylinders are made, for example, from P 310 sheet steel with a thickness of 2.3 mm.
  • sheets of 1.6 mm can be used, which results in a weight saving of around 30%.
  • Gas cylinders are made from appropriately cut sheets by cold forming (deep drawing).
  • the DP steel has the advantage of a very good cold workability with solidification and improvement of the mechanical properties that are important for the gas cylinder. In particular, the yield point is improved compared to the starting steel.
  • Gas cylinders must be protected against corrosion especially on their outer side and are therefore usually painted. The painting must be sufficient to withstand a standardized salt spray test over 480 hours (corrosion protection category C4). For gas cylinders made of DP steel, however, a higher stability is required in the salt spray test over 720 h. This is not with a simple coating, as used for standard gas bottles (polyester paint coating) not represented. As a rule, this requires a higher layer thickness of the coating or even a multilayer structure.
  • the object of the invention is therefore to provide a surface treatment process, can be permanently and corrosion resistant coated with the manufactured from dual-phase steel LPG bottles.
  • Powder coatings are used in particular for the coating of coatings.
  • the inventive method for surface treatment and compensation of lightweight gas cylinders from dual-phase steel includes in a first step, the roughening of the surface.
  • a minimum roughness of 30 microns, preferably 40 microns must be achieved to allow a durable coating that meets the required salt spray test.
  • a blasting method with coarse-grained steel particles (GK-rays) is used, which detects all coming into contact with the paint parts of the bottle.
  • At least one lacquer layer is applied, preferably at least two.
  • the application of a primer and then a topcoat has proven successful.
  • the primer in particular an epoxy powder coating in question, which has a compared to polyester powder coating significantly improved adhesion.
  • the epoxy powder coating is first gelled at elevated temperature before the topcoat layer is then applied.
  • the topcoat is preferably a polyester powder coating.
  • the two paint layers are then subjected to a heat treatment at 150 C to 200 ° C, wherein it is important that the object (the gas cylinder) reaches this temperature.
  • this thermal treatment takes place at a temperature of 170 ° C to 220 ° C for 15 to 30 minutes and in particular at about 180 ° C for 20 minutes. At this temperature setting, the solidification effect has also been shown for the steel jacket of the gas cylinder.
  • the layer thickness is in particular 120 to 180 ⁇ m, for two lacquer layers 40 to 60 ⁇ m for the primer, 50 to 100 ⁇ m for the cover layer.
  • the invention further relates to a lightweight dual-phase steel gas cylinder having a corrosion protection coating as described above.
  • this anticorrosive coating is applied to a roughened surface with a minimum weigth of 30 microns, preferably 40 microns, at least one coating layer.
  • the gas cylinder preferably has a primer and a cover layer, the primer consisting of an epoxy lacquer layer and the cover layer being a polyester lacquer layer. Due to the heat treatment of the powder-coated lightweight gas cylinder, there is a further increase in strength of the DP steel used for the gas cylinder.
  • the dome for the upper part is transported in a hole tool and prepared for the determination of the valve device.
  • a fit for the plastic cap and for the neck ring is formed in the upper part.
  • the drawing oil is washed down from the calotte.
  • a threaded sleeve is welded on and internally equipped with a kronic thread to receive the valve. Possibly. becomes a steel collar and steel handles are welded on, as far as a plastic collar is used for valve safety. In this case, the handles can be integrated in the plastic collar.
  • the bottle blanks are blasted to a minimum roughness of about 40 microns.
  • a GK process is used, which works with steel particles.
  • the pressure resistance of the gas cylinder preferably with air, is tested up to a pressure of 30 bar.
  • a conventional powder coating method is used, in which initially an epoxide powder layer is applied to the gas cylinders. This powder layer is gelled in an oven at a relatively low temperature to improve the application and adhesion of a topcoat layer.
  • a polyester powder layer is applied for the topcoat. Both layers of paint are then crosslinked in an oven at a temperature of 180 ° C (object temperature) for about 20 minutes.
  • the DP 600 material undergoes a further increase in firmness via so-called bake hardening.
  • the gas cylinders are completed with a plastic collar, a valve, the safety sticker, if necessary a screen imprint with customer logo and a print on the dead weight and date of manufacture.
  • this example method may be deviated from.
  • gas bottles with only one coat or more than 2 layers of paint are possible.
  • only one coat of lacquer is needed, it is preferably an epoxy coating.

Abstract

Die Erfindung betrifft ein Verfahren zur Oberflächenvergütung einer Leichtbau-Gasflasche aus einem Dualphasenstahl, bei dem die Gasflasche auf eine Mindestrautiefe von 30 µm gestrahlt wird, danach mit Lack pulverbeschichtet wird und schließlich in einem Ofen bei einer Temperatur von 150 bis 250°C wärmebehandelt wird, sowie eine danach hergestellte Gasflasche.

Description

  • Die Erfindung betrifft ein Verfahren zur Oberflächenbehandlung einer Leichtbau-Gasflasche aus einem Dualphasenstahl, bei dem die Gasflasche auf eine Mindestrautiefe von 30 µm gestrahlt wird, danach mit Lack pulverbeschichtet wird und schließlich in einem Ofen bei einer Temperatur von 150°C bis 250°C wärmebehandelt wird.
  • Die Erfindung betrifft ferner nach diesem Verfahren hergestellte Gasflaschen.
  • Flüssiggasflaschen, insbesondere Propangasflaschen werden vielfältig für gewerbliche und private Zwecke eingesetzt, insbesondere auch für den Betrieb von Grillstationen. Es handelt sich um ortsveränderliche, wiederbefüllbare, geschweißte Stahlflaschen, die einem Prüfdruck von 30 bar standhalten müssen und beispielsweise einen Durchmesser von 300 mm aufweisen bei einem Fassungsvolumen von beispielsweise 12,5 bis 27,2 I. Derartige Gasflaschen sind als Eigentums- und Leihflaschen auf dem Markt, sind vielfach wiederbefüllbar und bedürfen einer regelmäßigen Wartung und Prüfung auf Gebrauchssicherheit.
  • Insbesondere bei kleineren Füllvolumina macht das Eigengewicht der Gasflasche einen erheblichen Teil des Gesamtgewichts aus. Dies wirkt sich nachteilig auf die Handhabbarkeit und Transportierbarkeit aus.
  • Zur Verminderung des Eigengewichts der Flüssiggasflaschen wurden eine Reihe von Maßnahmen getroffen. So wurden beispielsweise die Ventilschutzkragen auf Kunststoff umgestellt. Gleichzeitig wurden die metallenen Haltegriffe in den Kunststoffkragen integriert. Der Großteil des Eigengewichts ergibt sich aber aus dem Metallkörper der Gasflasche selbst.
  • Hier schafft eine neue Stahlqualität Abhilfe, der sogenannte Dualphasenstahl. Als Dualphasenstahl oder DP-Stahl werden Stähle bezeichnet, deren Gefüge aus einer ferritischen Matrix besteht, in die eine überwiegend martensitische Zweitphase eingelagert ist. Die ferritische Matrix ist eher weich, die martensitische Zweitphase mit einem Anteil von beispielsweise etwa 20% bringt eine gesteigerte Zugfestigkeit mit sich. DP-Stähle sind erheblich fester als herkömmliche Stähle und erlauben damit bei verschiedenen Einsatzzwecken, beispielsweise im Automobilbau, aber auch bei der Herstellung von Gasflaschen, die Verwendung von dünneren Blechen ohne Festigkeitsverlust.
  • Dualphasenstähle sind beispielsweise von den Firmen ThyssenKrupp und ArcelorMittal unter der Bezeichnung DP 600 erhältlich.
  • Herkömmliche Gasflaschen werden beispielsweise aus Stahlblechen der Qualität P 310 mit einer Dicke von 2,3 mm hergestellt. Für die Gasflaschen aus DP 600-Stahl können Bleche von 1,6 mm verwandt werden, was eine Gewichtsersparnis von rund 30% mit sich bringt.
  • Gasflaschen werden aus entsprechend zugeschnittenen Blechen durch Kaltumformung (Tiefziehen) hergestellt. Der DP-Stahl hat den Vorteil einer sehr guten Kaltverformbarkeit unter Verfestigung und Verbesserung der mechanischen Eigenschaften, die für die Gasflasche wichtig sind. Insbesondere ist gegenüber dem Ausgangsstahl die Streckegrenze verbessert.
  • Gasflaschen müssen insbesondere an ihrer Außenseite gegen Korrosion geschützt werden und werden daher in der Regel lackiert. Die Lackierung muss ausreichen, einen genormten Salzsprühtest über 480 h Stand zu halten (Korrosionsschutz Kategorie C4). Für aus DP-Stahl gefertigte Gasflaschen wird allerdings eine darüber hinausgehende Standfestigkeit im Salzsprühtest über 720 h verlangt. Dies ist mit einer einfachen Beschichtung, wie sie für Standardgasflaschen verwandt wird (Polyesterlackbeschichtung) nicht darstellbar. In der Regel erfordert dies eine höhere Schichtdicke der Lackierung oder gar einen mehrschichtigen Aufbau.
  • Der Korrosion ist auch insoweit problematisch, als auf den sehr glatten DP-Stahloberflächen die herkömmlichen Lacke schlecht haften. Auch diesem Sachverhalt muss Rechnung getragen werden.
  • Aufgabe der Erfindung ist damit die Bereitstellung eines Oberflächenbehandlungsverfahrens, mit dem aus Dualphasenstahl gefertigte Flüssiggasflaschen dauerhaft und korrosionsfest beschichtet werden können.
  • Diese Aufgabe wird mit einem Verfahren gemäß Anspruch 1 gelöst. Eine entsprechend gefertigte Flüssiggasflasche ist Gegenstand des Anspruchs 8. Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Für die Lackbeschichtung werden insbesondere Pulverlacke verwandt.
  • In der Praxis hat sich gezeigt, dass das Beschichtungsverfahren mit einer finalen Wärmebehandlung zu einem auch hinsichtlich der Stahlqualität weiter verbesserten Produkt führt. Messungen haben ergeben, dass eine Wärmebehandlung im Bereich von 150 bis 250°C (Objekttemperatur) über eine definierte Zeit die mechanische Festigkeit des verwandten Stahls weiter verbessert. Insbesondere bei der Stahlqualität DP 600 erfolgt bei dieser nachfolgenden Wärmebehandlung ein sogenanntes Bake Hardening also eine nochmalige Festigkeitssteigerung.
  • Das erfindungsgemäße Verfahren zur Oberflächenbehandlung und Vergütung von Leichtbau-Gasflaschen aus Dualphasenstahl beinhaltet in einem ersten Schritt die Aufrauung der Oberfläche. Dabei muss eine Mindestrautiefe von 30 µm, vorzugsweise von 40 µm erreicht werden, um eine dauerhafte Beschichtung zu ermöglichen, die dem geforderten Salzsprühtest gerecht wird. Für die Aufrauung wird insbesondere ein Strahlverfahren mit grobkörnigen Stahlpartikeln (GK-Strahlen) eingesetzt, das alle mit dem Lack in Berührung kommenden Teile der Flasche erfasst.
  • Nach dem Strahlen der Oberfläche wird zumindest eine Lackschicht aufgebracht, vorzugsweise wenigstens zwei. Dabei hat sich das Aufbringen zunächst einer Grundierung und anschließend eines Decklacks bewährt. Für die Grundierung kommt insbesondere ein Epoxidpulverlack in Frage, der ein gegenüber Polyesterpulverlack deutlich verbessertes Haftungsvermögen hat. Der Epoxidpulverlack wird nach dem Aufbringen zunächst bei erhöhter Temperatur geliert, bevor dann die Decklackschicht aufgebracht wird. Bei dem Decklack handelt es sich vorzugsweise um einen Polyesterpulverlack. Die beiden Lackschichten werden dann einer Wärmebehandlung bei 150 C bis 200°C unterzogen, wobei wichtig ist, dass das Objekt (die Gasflasche) diese Temperatur erreicht. Vorzugsweise findet diese thermische Behandlung bei einer Temperatur von 170°C bis 220°C über 15 bis 30 Minuten statt und insbesondere bei etwa 180°C über 20 Minuten. Bei dieser Temperatureinstellung hat sich der Verfestigungseffekt auch für den Stahlmantel der Gasflasche gezeigt.
  • Wird nur eine Lackschicht aufgebracht, beträgt die Schichtdicke insbesondere 120 bis 180 µm, bei zwei Lackschichten 40 bis 60 µm für die Grundierung, 50 bis 100 µm für die Deckschicht.
  • Die Erfindung betrifft ferner eine Leichtbau-Gasflasche aus einem Dualphasenstahl, die eine Korrosionsschutzbeschichtung, wie vorstehend beschrieben aufweist. Bei dieser Korrosionsschutzbeschichtung ist auf eine aufgeraute Oberfläche mit einer Mindestrautiefe von 30 µm, vorzugsweise 40 µm wenigstens eine Lackschicht aufgebracht. Vorzugsweise weist die Gasflasche eine Grundierung und eine Deckschicht auf, wobei die Grundierung aus einer Epoxidlackschicht besteht und die Deckschicht eine Polyesterlackschicht ist. Aufgrund der Wärmebehandlung der pulverlackierten Leichtbau-Gasflasche kommt es zu einer weiteren Festigkeitssteigerung des für die Gasflasche verwandten DP-Stahls.
  • Nachstehend wird die Herstellung einer Gasflasche aus DP-Stahl näher erläutert.
  • Aus einem Ausgangsstahl der Firma ArcelorMittal mit einer Blechstärke von 1,6 mm werden Ronden geschnitten, die mit einem herkömmlichen Ziehöl benetzt werden. Die Ronden werden mit einem Stempel in einem Ziehring zur Kalotte kalt umgeformt. Nach der Umformung wird der Kalottenrand vergleichmäßigt und jede zweite Kalotte zusätzlich am Rand eingesickt. Aus den Kalotten entstehen Ober- und Unterteil der Gasflasche, wobei die Sicke das Positionieren der Bauteile zueinander erleichtert und der Schweißbadsicherung dient.
  • Anschließend wird die Kalotte für das Oberteil in ein Lochwerkzeug transportiert und für die Festlegung der Ventileinrichtung hergerichtet. Zugleich wird im Oberteil noch eine Passung für die Kunststoffkappe und für den Halsring angeformt. Das Ziehöl wird von den Kalotten herunter gewaschen.
  • Im Anschluss an die Vorbereitung und Reinigung werden die Schweißarbeiten vorgenommen. Eine Gewindemuffe wird aufgeschweißt und innen mit einem kronischen Gewinde ausgerüstet, zur Aufnahme des Ventils. Ggf. wird ein Stahlkragen und werden Stahlgriffe aufgeschweißt, soweit nicht ein Kunststoffkragen zur Ventilsicherung verwandt wird. In diesem Fall können die Griffe in den Kunststoffkragen integriert sein.
  • Im Anschluss an das Aufschweißen der Ventilaufnahme werden Oberteil, Unterteil und Fußring miteinander durch Schweißen verbunden. Für die Fußringe können hier herkömmliche StahlquaGSlitäten verwandt werden. Bei Gasflaschen mit Kunststoffkragen werden die Herstellungsdaten in den Fußring eingeprägt, ansonsten auf den Tragegriffen bzw. dem Stahlkragen ausgewiesen.
  • Zur Vorbereitung der Lackierung werden die Flaschenrohlingen auf eine Mindestrautiefe von ca. 40 µm gestrahlt. Für die Strahlung wird ein GK-Verfahren verwandt, das mit Stahlpartikeln arbeitet. Im Anschluss wird die Druckhaltigkeit der Gasflasche, vorzugsweise mit Luft, bis zu einem Druck von 30 bar geprüft.
  • Für die Beschichtung wird ein übliches Pulverbeschichtungsverfahren verwandt, bei dem zunächst eine Epoxidpulverschicht auf die Gasflaschen aufgebracht wird. Diese Pulverschicht wird in einem Ofen bei einer relativ niedrigen Temperatur geliert, um das Aufbringen und die Haftung einer Decklackschicht zu verbessern. Für den Decklack wird eine Polyesterpulverschicht aufgebracht. Beide Lackschichten werden dann in einem Ofen bei einer Temperatur von 180°C (Objekttemperatur) ca. 20 Minuten vernetzt.
  • Durch das Wärmebehandlungsverfahren bei 180°C erfährt das DP 600-Material über das sogenannte Bake Hardening eine nochmalige Festigungssteigerung.
  • Bei der Endmontage werden die Gasflaschen mit einem Kunststoffkragen, einem Ventil, den Sicherheitsaufkleber, ggf. einem Siebaufdruck mit Kundenlogo und einem Aufdruck zum Eigengewicht und Herstellungsdatum komplettiert.
  • Es versteht sich, dass in einigen Produkten von diesem beispielhaften Verfahren abgewichen werden kann. Beispielsweise sind Gasflaschen mit nur einer Lackschicht oder mehr als 2 Lackschichten möglich. Für den Fall, dass nur eine Lackschicht benötigt wird, handelt es sich dabei vorzugsweise um eine Epoxidbeschichtung.

Claims (13)

  1. Verfahren zur Oberflächenbehandlung einer Leichtbau-Gasflasche, hergestellt unter Verwendung eines Dualphasenstahls, bei dem die Gasflasche auf eine Mindestrautiefe von 30 µm gestrahlt wird, danach mit Lack pulverbeschichtet wird und schließlich in einem Ofen bei einer Temperatur von 150°C bis 250°C wärmebehandelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mindestrautiefe 40 µm beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rautiefe durch GK-Strahlen erzeugt wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch das Aufbringen zunächst einer Grundierung und anschließend eines Decklacks.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass für die Grundierung ein Epoxidpulverlack verwandt wird, der bei erhöhter Temperatur geliert wird.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass für den Decklack ein Polyesterpulverlack verwandt wird, der auf den gelierten Epoxipulverlack aufgebracht wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Lackbeschichtung bei einer Temperatur von 170°C bis 220°C über 15 bis 30 Minuten gehärtet wird.
  8. Leichtbau-Gasflasche aus einem Dualphasenstahl, gekennzeichnet durch eine Oberflächenbehandlung, bei der auf eine aufgeraute Oberfläche mit einer Mindestrautiefe von 30 µm wenigstens eine Lackschicht aufgebracht ist, die bei einer Temperatur von 150 bis 250°C wärmebehandelt wurde.
  9. Leichtbau-Gasflasche nach Anspruch 8, gekennzeichnet durch eine Mindestrautiefe von 40 µm.
  10. Leichtbau-Gasflasche nach Anspruch 8 oder 9, gekennzeichnet durch eine Grundierungsschicht und eine Decklackschicht.
  11. Leichtbau-Gasflasche nach Anspruch 10, dadurch gekennzeichnet dass die Grundierung aus einer Epoxipulverlackbeschichtung besteht.
  12. Leichtbau-Gasflasche nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Deckschicht aus einer Polyesterpulverlackbeschichtung besteht.
  13. Leichtbau-Gasflasche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die beschichtete Gasflasche bei 170°C bis 220°C über 15 bis 30 Minuten wärmebehandelt wurde.
EP16169697.6A 2015-05-19 2016-05-13 Verfahren zur oberflächenbehandlung einer gasflasche Active EP3096067B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16169697T PL3096067T3 (pl) 2015-05-19 2016-05-13 Sposób obróbki powierzchniowej butli gazowej

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015107871.6A DE102015107871A1 (de) 2015-05-19 2015-05-19 Verfahren zur Oberflächenbehandlung einer Gasflasche

Publications (2)

Publication Number Publication Date
EP3096067A1 true EP3096067A1 (de) 2016-11-23
EP3096067B1 EP3096067B1 (de) 2019-10-02

Family

ID=56263471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16169697.6A Active EP3096067B1 (de) 2015-05-19 2016-05-13 Verfahren zur oberflächenbehandlung einer gasflasche

Country Status (5)

Country Link
EP (1) EP3096067B1 (de)
DE (1) DE102015107871A1 (de)
DK (1) DK3096067T3 (de)
PL (1) PL3096067T3 (de)
PT (1) PT3096067T (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575765A1 (fr) * 1985-01-10 1986-07-11 Schneider Ind Protection de supports metalliques par depot de zinc, et procede de realisation de la protection
WO1998059164A2 (en) * 1997-06-20 1998-12-30 Exxon Production Research Company Lng fuel storage and delivery systems for natural gas powered vehicles
US6089399A (en) * 1997-01-14 2000-07-18 Chatwins Group, Inc. Inert-metal lined, seamless steel-body cylinder
DE10022541A1 (de) * 2000-02-24 2001-09-13 Hartmut Belis Verfahren zur Oberflächenbearbeitung von Stahlteilen und damit hergestellte Stahlteile
WO2011039463A1 (fr) * 2009-10-01 2011-04-07 Gaz Liquefies Industrie Bouteille de gaz dual-phase ou complex-phase
US8733581B1 (en) * 2012-07-16 2014-05-27 Michael A. Olson Boss seal for composite overwrapped pressure vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575765A1 (fr) * 1985-01-10 1986-07-11 Schneider Ind Protection de supports metalliques par depot de zinc, et procede de realisation de la protection
US6089399A (en) * 1997-01-14 2000-07-18 Chatwins Group, Inc. Inert-metal lined, seamless steel-body cylinder
WO1998059164A2 (en) * 1997-06-20 1998-12-30 Exxon Production Research Company Lng fuel storage and delivery systems for natural gas powered vehicles
DE10022541A1 (de) * 2000-02-24 2001-09-13 Hartmut Belis Verfahren zur Oberflächenbearbeitung von Stahlteilen und damit hergestellte Stahlteile
WO2011039463A1 (fr) * 2009-10-01 2011-04-07 Gaz Liquefies Industrie Bouteille de gaz dual-phase ou complex-phase
US8733581B1 (en) * 2012-07-16 2014-05-27 Michael A. Olson Boss seal for composite overwrapped pressure vessel

Also Published As

Publication number Publication date
DK3096067T3 (da) 2020-01-13
PL3096067T3 (pl) 2020-06-15
PT3096067T (pt) 2020-01-15
EP3096067B1 (de) 2019-10-02
DE102015107871A1 (de) 2016-11-24

Similar Documents

Publication Publication Date Title
EP2836354B1 (de) Verfahren zur herstellung eines halbzeugs oder bauteils umfassend einen metallträger und eine aushärtbare beschichtung mit faserverstärktem kunststoff
DE69627431T2 (de) Innenwandbschichteten Metallbehälter mit ausgezeichneter Beständigkeit gegenüber dem Zuhalt
EP3558677B1 (de) Verfahren zur herstellung eines verbundwerkstoff-bauteils
DE102016113782B4 (de) Verfahren zum Herstellen eines Hochdrucktanks
EP3096067B1 (de) Verfahren zur oberflächenbehandlung einer gasflasche
CH701032B1 (de) Widerstandspressschweissverfahren und -vorrichtung.
DE102011051266A1 (de) Presskörper zur Herstellung eines Laminats sowie Verfahren zur Herstellung eines Presskörpers
EP2198982A3 (de) Korrosionsschutzsystem zur Beschichtung von Metalloberflächen und Verfahren zu seiner Herstellung
WO2016074915A1 (de) Verbundwerkstoff, verbundwerkstoffprodukt, verfahren zu deren herstellung und verwendungen dafür
DE102007020822A1 (de) Zweischichtiges lösungsmittelarmes, organisches Korrosionsschutzsystem für Metalloberflächen
CH702116B1 (de) Verfahren zur Beschichtung respektive Dekoration von Oberflächen sowie entsprechend beschichte Oberflächen.
EP1991865B1 (de) Vorrichtung zur prüfung der qualität einer metallischen beschichtung
DE102013000866A1 (de) Vorrichtung und Verfahren zum Prüfen der Haftung einer Beschichtung in einer Zylinderbohrung
DE112008001117T5 (de) Vorbeschichtetes Metallblech
AT512703A1 (de) Kolben-Zylindereinheit
DE102010043399A1 (de) Verfahren zur Prüfung der Haft- und Schichtfestigkeit einer Oberflächenschicht
DE102019113433A1 (de) Bauteil mit einer Beschichtung und Verfahren zum Beschichten
DE19911477A1 (de) Sandwichanordnung, insbesondere bestehend aus einem geprägten metallischen Kennzeichnungsschild und einer Rückseitenbeschichtung, sowie Verfahren zum Herstellen einer derartigen Sandwichanordnung
DE102022103245A1 (de) Rohrabschnitt, Rohranordnung, Herstellverfahren für Rohrabschnitt und Rohranordnung und Verwendung einer Rohranordnung
DE102004040259A1 (de) Verfahren zum Schützen eines Bauteils vor Korrosion
EP2257389A2 (de) Verfahren zum herstellen von fertig lackierten umformbaren blechen und nach dem verfahren lackiertes blech
AT103905B (de) Verfahren zur Herstellung von nichtmetallischen Überzugsschichten, vornehmlich Gefäßüberzügen und -Auskleidungen, u. zw. insbesondere mit Hilfe von Kunstharzen.
EP3006591B1 (de) Verfahren zum Herstellen einer beschichteten Walze und beschichtete Walze
EP3339020A1 (de) Komposit-folie als verpackungsmaterial für lebensmittel
EP3882371A3 (de) Korrosionsschützende beschichtung und mit einer korrosionsschützenden beschichtung beschichteter gegenstand insbesondere für die verwendung an einem flugzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170522

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WERNER, HANS JUERGEN

Inventor name: FRITZSCHE, HENDRIK

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1186576

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006862

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200107

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3096067

Country of ref document: PT

Date of ref document: 20200115

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191230

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006862

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

26N No opposition filed

Effective date: 20200703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200513

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230519

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230504

Year of fee payment: 8

Ref country code: NO

Payment date: 20230523

Year of fee payment: 8

Ref country code: NL

Payment date: 20230519

Year of fee payment: 8

Ref country code: FR

Payment date: 20230526

Year of fee payment: 8

Ref country code: DK

Payment date: 20230524

Year of fee payment: 8

Ref country code: DE

Payment date: 20230519

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230509

Year of fee payment: 8

Ref country code: CH

Payment date: 20230605

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230511

Year of fee payment: 8

Ref country code: SE

Payment date: 20230519

Year of fee payment: 8

Ref country code: PL

Payment date: 20230505

Year of fee payment: 8

Ref country code: FI

Payment date: 20230523

Year of fee payment: 8

Ref country code: AT

Payment date: 20230522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230519

Year of fee payment: 8