EP3095510B1 - Stirrer and container with a stirrer - Google Patents

Stirrer and container with a stirrer Download PDF

Info

Publication number
EP3095510B1
EP3095510B1 EP16165741.6A EP16165741A EP3095510B1 EP 3095510 B1 EP3095510 B1 EP 3095510B1 EP 16165741 A EP16165741 A EP 16165741A EP 3095510 B1 EP3095510 B1 EP 3095510B1
Authority
EP
European Patent Office
Prior art keywords
rotor
container
stirrer
agitator
spokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16165741.6A
Other languages
German (de)
French (fr)
Other versions
EP3095510A3 (en
EP3095510A2 (en
Inventor
Stefan Steverding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stefan Steverding Sondermaschinen -Und Vorrichtungsbau GmbH
Original Assignee
Stefan Steverding Sondermaschinen -Und Vorrichtungsbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stefan Steverding Sondermaschinen -Und Vorrichtungsbau GmbH filed Critical Stefan Steverding Sondermaschinen -Und Vorrichtungsbau GmbH
Publication of EP3095510A2 publication Critical patent/EP3095510A2/en
Publication of EP3095510A3 publication Critical patent/EP3095510A3/en
Application granted granted Critical
Publication of EP3095510B1 publication Critical patent/EP3095510B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0723Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis oblique with respect to the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0726Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis having stirring elements connected to the stirrer shaft each by a single radial rod, other than open frameworks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0727Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis having stirring elements connected to the stirrer shaft each by two or more radial rods, e.g. the shaft being interrupted between the rods, or of crankshaft type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/09Stirrers characterised by the mounting of the stirrers with respect to the receptacle
    • B01F27/093Stirrers characterised by the mounting of the stirrers with respect to the receptacle eccentrically arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1123Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades sickle-shaped, i.e. curved in at least one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1145Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1145Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis
    • B01F27/11451Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections ribbon shaped with an open space between the helical ribbon flight and the rotating axis forming open frameworks or cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/23Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis
    • B01F27/232Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis with two or more rotation axes
    • B01F27/2322Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by the orientation or disposition of the rotor axis with two or more rotation axes with parallel axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/61Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis about an inclined axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/71Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/40Mounting or supporting mixing devices or receptacles; Clamping or holding arrangements therefor
    • B01F35/41Mounting or supporting stirrer shafts or stirrer units on receptacles
    • B01F35/412Mounting or supporting stirrer shafts or stirrer units on receptacles by supporting both extremities of the shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • B01F35/531Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components with baffles, plates or bars on the wall or the bottom
    • B01F35/5312Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components with baffles, plates or bars on the wall or the bottom with vertical baffles mounted on the walls

Definitions

  • the invention relates to a container with an agitator for mixing and moving substrates in the container in the form of liquids or liquid-solid mixtures, with at least one rotor having one or more stirring blades, arranged in the container and mounted in at least one rotor bearing, the is rotatable about an axis of rotation, and with a drive that drives the rotor, wherein the / each rotor of the agitator in the container containing the substrates to be mixed and moved occupies only a fraction of the volume of the container and wherein by means of the agitator a substrate flow outside the Movement range of the rotor or rotors can be brought about in the container, the rotor being designed with at least two rotor areas with different conveying effects on the substrate, seen along its axis of rotation, a first rotor area with a predominantly axial conveying effect in the direction of the axis of rotation and a second Rotor area is designed with a stronger radial conveying effect transversely to the direction of the axi
  • WO 2008/145 729 A1 shows a reactor with a stirring system with at least one radial flow impeller and at least one axial flow impeller. Elements that extend outward from a central shaft and can be designed in different ways represent the stirring tool.
  • the document US 2014/0 086 006 A1 shows an agitator with a shaft and two agitator blades arranged directly on the shaft at an axial distance, the two agitator blades having opposite axial conveying directions.
  • the document DE 10 2004 027 077 A1 shows an agitator with a heatable agitator shaft, with heat conducting plates attached to the agitator shaft and with stirring blades attached to the heat conducting plates.
  • the angle of the stirrer blades can be adjusted against the heat conducting plates using hole circles.
  • the document DE 20 2013 006 429 U1 shows a device for mixing the contents of substrate containers by means of an agitator, in which the substrate container comprises at least one circumferential wall and a base, wherein the circumferential wall is oriented on a vertical main axis, and the agitator comprises a shaft which is below one of the vertical and horizontally different installation angle protrudes into the substrate container.
  • the agitator comprises at least two agitator blades which each extend radially on both sides of the shaft and are rotated relative to one another and are arranged on the shaft at a distance from one another in the longitudinal extension of the shaft.
  • the entire substrate within the fermentation vessel is set in rotation by means of the stirring paddles.
  • the document WO 87/00449 A1 shows a device for mixing building materials, with two helically curved mixing arms and with a coupling strut connecting the mixing arms in the center, which runs in the radial direction and which is oriented obliquely when viewed in cross section and thus has an axial conveying effect.
  • the document JP 2004 105 892 A shows a kneading machine with a housing and with a shaft which is vertically immersed in the housing and has a top drive.
  • Two parallel transverse arms are connected to the shaft at the top and bottom, the free ends of which are connected by connecting elements parallel to the shaft.
  • two strip-shaped stirring blades are provided, each starting from the upper cross arm, extending in an arc downward and in the circumferential direction and ending at the lower cross arm.
  • the shape of the stirring blade and the direction of rotation of the shaft are designed so that material to be kneaded is conveyed upwards by means of the stirring blades when the kneading machine is in operation.
  • the document EP 0 598 253 A1 shows a mixing device with an upright cylindrical housing into which a shaft with rotary drive dips from above. Two mixing blades are attached to the shaft via cross struts, which, starting from the upper cross strut, run downwards in a helical manner and then in a spiral shape radially inwards.
  • the document DE 30 12 707 A1 shows a mixer for trough mixers, with at least two horizontal, counter-rotating mixing shafts for mixing powdery, granular or plastic mix, in particular building material mixtures, with two helical screw flights in opposite directions being arranged on each mixing shaft and with the helical screw flights of each mixing shaft having different system lengths and a Form asymmetrical spiral screw mixer.
  • the long helix is used to transport the mix in the longitudinal direction of the mixing trough and the short helix for transporting mix in the transverse direction of the mixing trough, so that a cyclical mix movement is created.
  • the helical screw flights can be designed to be interrupted with individual helical blades which are attached to the arms of the respective mixing shaft and lie one behind the other in helical lines.
  • the agitator comprises at least one drive, an agitator shaft bearing attached to the wall of the container, an agitator shaft bearing supported on the bottom of the container via at least one support and at least one rotor with an agitator shaft with at least one agitator blade attached to the agitator shaft.
  • the agitator shaft extends parallel to the bottom of the container from the wall of the container in the direction of the main axis of the container.
  • a plurality of agitator blades are preferably attached to the agitator shaft, the agitator blades further preferably being attached to the agitator shaft, offset from one another along the agitator shaft axis, pointing radially outward.
  • the stirring blades preferably each comprise two side parts and at least one bridge profile, the two side parts being connected to one another by the bridge profile. The radial length of the stirring blades is significantly greater than the axial width of the stirring blades.
  • the document DE 102 60 972 B4 shows another agitator for circulating liquid manure and / or waste water in a storage tank, in particular an agitator for stimulating liquid manure circulation in a liquid manure storage tank in biogas plants.
  • the agitator has a shaft running along an axis of rotation, which is rotatably mounted on parts of the container via bearing devices and can be driven by a drive device.
  • the agitator has agitator elements extending transversely to the axis of rotation, which are arranged on the shaft in several mutually parallel planes along the longitudinal extent of the shaft transversely to its axis of rotation and are opposite one another within the plane.
  • the shaft equipped with stirring elements extends radially into the storage container and the stirring elements are designed as blades in the form of paddles, which can be rotated and adjusted about their own longitudinal axis and are arranged on the shaft in such a way that the stirring elements of a plane are each at an angle are attached, which differs from the mounting bracket of the stirring elements of the other level.
  • inclined paddles only a predominantly axial flow parallel to the shaft can be generated, depending on the rotational position of the paddles and the direction of rotation of the shaft in one direction or the other.
  • the agitator here comprises a rotor with a shaft that is rotatable about an axis of rotation, and at least two stirring paddles that are spaced apart from one another in the axial direction and in the circumferential direction of the shaft.
  • the stirring paddles are each connected to the shaft at their radially inner end, so that the stirring paddles move in the circumferential direction during operation.
  • the agitator further comprises a connector which extends between the agitator paddles, the connector being spaced radially inward from the outer end of the agitator paddles. The connector connects the stirring paddles along a helical line.
  • a disadvantage of the known agitators is that their efficiency, i.e. the achieved mixing and movement of the substrates located in the container in relation to the drive power used on the agitator is low, which causes an unfavorably high energy consumption.
  • the task is therefore to create a container with an agitator, in which an improved efficiency and thus a lower energy consumption can be achieved with intensive mixing and movement of the substrates in the container, even if the rotor or rotors of the agitator are only a fraction of the Volume of the container occupies / occupy.
  • the solution of the first part of the task concerning the agitator is achieved according to the invention with an agitator of the type mentioned at the beginning, which is characterized in that the spokes are designed as conveying elements for the substrate, that in the first rotor area arranged first spokes with a predominantly axial conveying effect in Direction of the axis of rotation of the rotor and that arranged in the second rotor area second spokes are designed with a predominantly radial conveying effect transverse to the direction of the axis of rotation of the rotor or with a predominantly axial conveying effect counter to the axial conveying effect of the first spokes.
  • the invention creates a container with an agitator, the rotor or rotors of which, with their different conveying effects or directions, bring about a particularly effective movement and mixing of the substrate in the container which is large in relation to the rotor or rotors.
  • the different rotor areas are appropriately selected and determined depending on the arrangement of the rotor in the container and the geometry of the container with the aim of generating the desired flow as effectively as possible, with an effective substrate flow also being generated outside the range of motion of the rotor or rotors .
  • the / each stirring blade is designed as a flat, continuous or segmented strip of material running along a helical line over the full axial length of the rotor, carried by at least two spokes of the rotor, and that the / each stirring blade, viewed in the longitudinal direction of the stirring blade, extends from one end of the rotor having changing the orientation of its blade surface relative to the radial direction of the rotor at the other end of the rotor, the rotor areas with different conveying effects on the substrate can be produced in a technically relatively simple but effective manner, which keeps the production of the agitator, in particular the rotor, relatively inexpensive.
  • the strips of material that form the stirring blades are of constant width over their length.
  • the spokes are designed as conveying elements for the substrate, that first spokes arranged in the first rotor area are designed with a predominantly axial conveying effect in the direction of the axis of rotation of the rotor and that second spokes arranged in the second rotor area with a predominantly radial conveying effect transverse to the direction of the Axis of rotation of the rotor or with a predominantly axial conveying action are designed against the axial conveying action of the first spokes, the spokes are also involved in generating the flow of the substrate and thus support the flow generation by the agitator blades, whereby the efficiency of the agitator is increased.
  • parts of an older agitator such as the bearings and possibly the drive, can continue to be used while the rotor is being replaced.
  • the rotor Seen in its axial direction, expediently extends only over part of the diameter, for example approximately a quarter of the diameter, of the container, so it only takes up a small part of the volume of the container.
  • the rotor is mounted or mountable at one end in a first container-side rotor bearing supported by a support in the container and at its second end in a second, on or in a container wall or near a container wall outside or inside of this wall-side rotor bearing.
  • the substrate can be conveyed by the rotor with its axially inner, container-side rotor area predominantly in the radial direction of the container from the inside to the outside and with its axially outer, wall-side rotor area away from the rotor radially in the circumferential direction of the container.
  • the centrifugal force effect on the substrate generated by the rotation of the rotor is particularly advantageously used for conveying in the axially outer, wall-side rotor area away from the rotor, radially in the circumferential direction of the container.
  • a reversed flow can also be generated.
  • the axis of rotation of the rotor can run in a horizontal direction or in a direction from the container wall to the container interior at an angle of up to 30 ° obliquely downwards or upwards.
  • the rotor can be fixed at a certain angle or, alternatively, can also be arranged in an angle-adjustable manner.
  • the axis of rotation of the rotor extends at an angle of up to 30 ° obliquely to the radial direction of the container.
  • the rotor can be fixed at a certain angle or, alternatively, can also be arranged in an angle-adjustable manner.
  • the at least one rotor is arranged upright in the axial direction of the container or in a direction inclined to it and eccentrically or centrally in the container.
  • the rotor at its one, upper end in a first upper rotor bearing arranged in or above the container and at its second, lower end in a second one below in the container or on one Container bottom arranged lower rotor bearing is stored or storable.
  • the substrate can advantageously be conveyed by the rotor with the axially upper rotor area predominantly in the axial direction of the container from top to bottom and with the axially lower rotor area away from the rotor in the radial direction of the rotor outwards. Components floating on the substrate are conveyed downwards and effectively mixed into the substrate.
  • the centrifugal force effect on the substrate generated by the rotation of the rotor is also advantageously used here for the conveyance in the axially lower rotor area away from the rotor in order to generate an intensive substrate flow even outside the range of motion of the rotor, whereby the entire substrate volume in the container is intensively circulated and is mixed.
  • a reversed flow can also be generated here.
  • the agitator is designed for a horizontal, round or polygonal container, the at least one rotor then in a direction running parallel or transversely or obliquely to the axial direction of the container is arranged in the container.
  • intensive mixing and movement of the substrate can thus also be brought about in a horizontal container, with the rotor or each rotor expediently taking up only a fraction of the volume of the container.
  • a further contribution to achieving good efficiency and generating favorable flow conditions is that the rotor areas with different conveying effects are preferably designed to continuously merge into one another.
  • a preferred further development of the agitator provides that the / each agitator blade has an alignment of its blade surface pointing in the radial direction of the rotor at one end of the rotor and an alignment of its blade surface that is tilted to the radial direction of the rotor at the other end of the rotor.
  • the rotor area, in which the helical stirring blades have an orientation of their blade surface in the radial direction of the rotor thus has a predominantly axial conveying effect, while the rotor area, in which the stirring blades have an orientation of their blade surface that is tilted to the radial direction of the rotor, has a stronger radial one Has promotional effect.
  • the helical line along which the / each agitator blade runs can have a constant helical pitch. This is then associated with an essentially uniform conveying effect in the axial direction of the rotor over the axial length of the rotor.
  • the helical line along which the / each agitator blade runs can have a changing helical pitch as viewed in the direction of the axis of rotation of the rotor. In this way, an axial conveying effect that changes over the axial length of the rotor can be generated.
  • the helical line along which the / each agitator blade runs preferably has a smaller helical pitch in one rotor area than in the other rotor area, whereby correspondingly different conveying effects are generated in the rotor areas.
  • Another embodiment of the agitator provides that the helical line along which the / each agitator blade extends has a constant distance from the axis of rotation of the rotor.
  • the helical line along which the / each agitator blade extends can have a distance from the axis of rotation of the rotor that changes when viewed in the direction of the axis of rotation of the rotor.
  • the helical line along which the / each agitator blade runs is at a smaller distance from the axis of rotation of the rotor in one rotor area than in the other rotor area.
  • This type of rotor can e.g. be advantageous if the axis of rotation of the rotor of the agitator in the container has an inclination to the horizontal direction.
  • the invention further provides that the / each rotor has a continuous rotor shaft, each supported at the end in a rotor bearing, or that the / each rotor has two end-side shaft stubs which are each supported in a rotor bearing.
  • the choice between the two versions specified here depends in particular on the loads that occur when the agitator is in operation.
  • a stationary flow guide element can be arranged on the container wall in front of the rotor bearing on the wall side or on the container bottom in front of the rotor bearing on the bottom side or can be arranged on the rotor
  • a rotating flow guide body can be arranged in front of the wall-side or the bottom-side rotor bearing. This reduces the load on the bearings from the oncoming substrate, which simplifies the sealing of the bearings and extends their service life.
  • Such flow-guiding bodies can also be used sensibly in connection with shaft bushings through a wall of the container.
  • the spokes that carry the stirring blades of the agitator are preferably designed to run in a straight line or curved to the radial direction of the rotor, depending on what effect the spokes are to exert on the substrate when the rotor rotates.
  • the rotor has a single agitator blade, that the agitator blade extends over a helical angle of 360 ° or an integral multiple thereof, and that the rotor has at least two spokes that support the agitator blade at least at the end.
  • the fact that the stirring blade extends over a helix angle of 360 ° or an integral multiple thereof ensures that even at a low level of the substrate in the container, in which the rotor is partially above the substrate surface, a completely uniform moment of resistance at the rotating Rotor accumulates, whereby torque fluctuations or surges, which are harmful to the bearings and drive of the rotor, are avoided.
  • the agitator it is provided for the agitator that the rotor has a number of n agitator blades, where n> 1, that the agitator blades are evenly distributed over the circumference of the rotor, that each agitator blade extends over a helix angle of 360 ° / n or a an integral multiple thereof and that the rotor per agitator blade has at least two spokes which support the agitator blade at least at the end.
  • the advantage of a uniform resistance or torque is achieved when the rotor is partially above the substrate level or surface.
  • the rotor axially behind the second rotor area which has a predominantly radial conveying effect transverse to the direction of the axis of rotation of the rotor, also has a third rotor area with a conveying effect of the first rotor area with the predominantly axial conveying effect in the direction of the axis of rotation of the Rotor has opposite predominantly axial conveying effect.
  • agitators with one or more rotors can be provided, whereby in the case of several rotors these can be arranged in the container in the circumferential direction of the container or in the axial direction of the container.
  • the agitator can be used particularly advantageously in fermenter containers, for example in biogas plants, but also in other applications in which substrates in a container are in the form of liquids or liquid-solid mixtures have to be mixed and moved, for example in liquid manure tanks of agricultural businesses or in waste water basins of sewage treatment plants.
  • FIG. 1 the drawing shows an agitator 1 in a first embodiment, in a standing, only partially shown container 3, in a view obliquely from above.
  • the standing container 3 has an annular, circumferential wall 31 and a bottom 32 and is shown open at the top so that the agitator 1 arranged inside the container 3 is visible.
  • the container 3 is, for example, a fermentation container of a biogas plant in which a substrate consisting of liquid and solids is to be moved and mixed.
  • a known roof not shown here, is provided in such a container 3, which covers the container 3 on the top in a gas-tight manner, the roof being, for example, a plastic membrane.
  • the rotor 2 furthermore comprises a continuous rotor shaft 21 which runs horizontally and essentially in the radial direction of the container 3. At its end on the container side, the rotor shaft 21 is rotatably mounted in a rotor bearing 22.1, which in turn is arranged in a support 23 standing on the bottom 32 of the container 3. The other end of the rotor shaft 21 is led out of the container 3 through a shaft duct 38 in the container peripheral wall 31 and is supported there by means of a further rotor bearing.
  • a drive, not visible here, such as an electric motor or hydraulic motor, for the rotor 2 is also arranged there.
  • the rotor 2 each has four first spokes 24.1 and second spokes 24.2, which are attached to the rotor shaft 21, aligned at right angles to the latter.
  • the ends 25.1, 25.2 of the stirring blades 25 are held at the free ends of the spokes 24.1, 24.2.
  • the stirring blades 25 each consist of a flat, narrow strip of material, preferably made of steel, and have a relatively small width relative to their length. Furthermore, the stirring blades 25 are connected to the spokes 24.1, 24.2 in such a way that the stirring blades 25 on the one hand run along a helical line and that, on the other hand, the alignment of the surface of the stirring blades 25 changes relative to the radial direction of the rotor 2 in its course. The stirring blades 25 are therefore twisted to a certain extent. In the embodiment according to Figure 1 the plane of the agitator blades 25 is at their first end 25.1 in the longitudinal direction of the spokes 24.1 there, i.e. in the radial direction of the rotor 2.
  • the rotor 2 receives two areas 2 'and 2 "with different conveying effects on a substrate located in the container 3.
  • the rotor 2 predominantly exercises a in the axial direction of the rotor 2 pointing conveying effect on the substrate, while the rotor 2 in the rotor area 2 ′′ exerts a greater conveying effect pointing in the radial direction of the rotor 2 on the substrate.
  • each stirring blade 21 runs has a helical angle of 90 ° here.
  • the helical line along which each stirring blade 21 runs has a helical angle of 90 ° here.
  • four stirring blades 25, each extending over a helical angle of 90 ° there is advantageously always uniform engagement of the rotor 2 with its stirring blades 25 in the substrate in the container 3, independent of the respective rotational position of the rotor 2, even when the mirror of the substrate is so low that an upper part of the rotor 2 lies above the substrate mirror.
  • irregularities are applied in the rotation of the rotor 2 by a drive motor Torque and the bearings of the rotor 2 avoiding impacts or shocks during operation of the agitator 1.
  • a reverse direction of rotation of the drive of the rotor 2 is also possible; this inevitably results in a conveying effect of the rotor 2 on the substrate which is opposite to the conveying effect described above.
  • Figure 2 shows the agitator 1 from Figure 1 together with the container 3 in plan view. It is particularly clear here that the container 3 has a circular outline with the container peripheral wall 31 and the circular base 32. Alternatively, the container 3 can also have a polygonal or polygonal outline.
  • the rotor shaft 21 runs here in the radial direction of the container 3 and is mounted in the support 23 at its end pointing towards the center of the container 3. By means of the shaft bushing 38, the other end of the rotor shaft 21 is passed through the container peripheral wall 31 in a sealing manner.
  • the drive 28, here an electric motor, for the rotor 2 of the agitator 1 is arranged outside the container 3.
  • the number and arrangement of the stirring blades 25 of the rotor 2 in Figure 2 corresponds to the example below Figure 1 .
  • Figure 3 shows the agitator 1 from Figure 2 with the flow of a substrate in the container 3 indicated by flow arrows, also in plan view, with the agitator 1 in operation.
  • the rotating arrow on the rotor shaft 21 indicates the working direction of rotation 20 'of the rotor 2 here. Due to the above-described different conveying effects of the rotor regions 2 'and 2 ", the flow illustrated by the flow arrows 30' and 30" occurs in the container 3 within the substrate 30 located therein.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • Figure 4 shows the agitator 1 in a modified version, in the same representation as in FIG Figure 2 .
  • the rotor area 2' with the conveying effect pointing predominantly in the axial direction of the rotor 2 is here near the container circumferential wall 31, while the rotor area 2" with the predominantly or more strongly in the radial direction of the rotor 2 is the conveying action on the side of the rotor 2 remote from the container peripheral wall 31.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • Figure 5 shows the agitator 1 from Figure 4 seen in an end view in the radial direction of the container 3 from the inside to the outside. Facing the viewer is the support 23, which carries the rotor bearing 22.1, in which the rotor shaft of the rotor 2 (not visible here) is mounted.
  • the spokes 24.1 here extend in a straight line from the rotor shaft 21 to the outside.
  • the stirring blades 25 are connected in the orientation described above to the respective outer end area of the spokes 24.1.
  • Far left and far right in Figure 5 the peripheral wall 31 of the container 3 is visible.
  • the container 3 is delimited at the bottom by the container base 32.
  • Figure 6 shows the agitator 1 in a further embodiment in plan view.
  • the rotor 2 with the rotor shaft 21 and the stirring blades 25 here corresponds to the example according to FIG Figures 1 and 2 executed.
  • the following example is different Figure 6 that here, as part of the agitator 1, a flow guide body 36 is arranged on the inner surface of the container peripheral wall 31 of the container 3 to support the flow of the substrate in the container 3, to avoid flow-free dead areas and to close the shaft duct 38 in the container peripheral wall 31 relieve.
  • the flow guide body 36 has a rounded wedge shape, the tip of the wedge pointing to the side of the rotor 2 facing the container peripheral wall 31 and the concavely rounded wedge surfaces on both sides of the tip merging tangentially into the inner surface of the container peripheral wall 31.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • FIG. 7 shows the agitator 1 in a further embodiment in plan view.
  • the rotor 2 corresponds to the example according to FIGS Figures 1 and 2 executed.
  • a characteristic of this exemplary embodiment is a flow guide body 26 which is attached to the rotor shaft 21 and rotates together with the rotor 2 when the agitator 1 is in operation.
  • the flow guide body 26 is here a rotationally symmetrical body, its side facing the rotor 2 forming a concavely rounded cone shape.
  • the substrate flow generated by the rotor 2 during operation of the agitator 1 is favorably directed and supported and at the same time the shaft feed-through 38 in the container peripheral wall 31 is also relieved of the flow pressure of the substrate.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • Figure 8 shows the agitator 1 in a further embodiment, in front view, as a modification of the example according to Figure 5 .
  • Characteristic of the agitator 1 according to Figure 8 is that its spokes 24.1 do not run in a straight line in the radial direction of the rotor 2, but each have a curved shape. In addition to the spokes 24.1, this curved shape can also be used in Figure 8 have invisible spokes 24.2. This shape of the spokes 24.1, 24.2 can be used to generate a conveying effect serve and be favorable for absorbing the mechanical loads occurring on the spokes 24.1, 24.2 during operation of the agitator 1.
  • Figure 9 shows the agitator 1 in a further embodiment in a plan view, together with a standing container 3, which is round again here.
  • the rotor shaft 21 of the rotor 2 of the agitator 1 is inclined in relation to the radial direction of the container 3 extending direction is arranged.
  • the agitator 1 corresponds to Figure 9 the embodiment according to Figures 1 and 2 .
  • the inclined alignment of the rotor shaft 21 can be fixed or, alternatively, also variable, the change in the alignment of the rotor shaft 21 being able to take place when the agitator 1 is at a standstill or also while the agitator is in operation.
  • Figure 10 shows the agitator 1 from Figure 9 with the flow of a substrate 30 in the container 3 indicated by flow arrows, in plan view.
  • the agitator 1 in the rotor area 2 produces a conveying effect that runs predominantly in the axial direction of the rotor 2 in the direction of the flow arrows 30' in the substrate, while the rotor area 2 "facing the container peripheral wall 31 has a stronger conveying effect in the radial direction of the rotor 2 and thus the flow 30 ′′ running in the circumferential direction of the container 3 is generated in the substrate.
  • two flow circles of different sizes result here, the substrate 30 being mixed and exchanged between the flow circles in the area of the rotor 2.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets and mixes the entire substrate volume in the container 3 in motion.
  • Figure 11 shows the agitator 1 in a further embodiment, in side view.
  • Two features are characteristic of this agitator 1, namely on the one hand that the rotor shaft 21 runs at an inclination to the horizontal direction, and on the other hand that the radial distance between the agitator blades 25 and the rotor shaft 21 is different over its axial length.
  • the inclination of the rotor shaft 21 here runs downwards as seen from the container peripheral wall 31 in the direction of the interior of the container.
  • the inner end of the rotor shaft 21 is mounted and supported in a support 23.
  • the radial distance between the agitator blades 25 and the rotor shaft 21 is smaller at the end of the rotor 2 facing the interior of the container 3 and larger at the end of the rotor 2 facing the container peripheral wall 31. Accordingly, the first spokes 24.1 of the rotor 2 are also shorter than the spokes 24.2 close to the wall.
  • the stirring blades 25 of the rotor 2 can be moved relatively close over the container base 32 over their entire length in order to prevent solids from the substrate from settling on the container base 32.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • spokes 24.1, 24.2 can be seen as flat, inclined webs and thus designed as conveying elements for the substrate within the meaning of claim 1.
  • the rotor 2 of the agitator 1 can be designed differently in various respects, in particular with regard to its shaft and the number of its agitator blades, as will be explained below with reference to several corresponding exemplary embodiments.
  • the Figure 12 shows a rotor 2 of the agitator 1 with a single agitator blade 25, in a first embodiment, in side view.
  • the stirring blade 25 runs along a helical line over a helical line angle of 360 °.
  • the rotor 2 has two stub shafts 21.1, 21.2 at its two rotor ends 2.1, 2.2.
  • a spoke 24.1, 24.2 is connected to each stub shaft 21.1, 21.2.
  • the stirring blade 25, which here also has the shape of a narrow strip of material, is connected at its ends 25.1, 25.2.
  • This rotor 2 which has only a single agitator blade 25, forms two rotor areas 2 'and 2 "with different conveying effects, with the rotor area 2' having a stronger conveying effect in the axial direction of the rotor 2 and the rotor area 2" having a stronger conveying effect due to the respective alignment of the surface plane of the agitating blade 25 having in the radial direction of the rotor 2.
  • the rotor 2 By means of its stub shafts 21.1, 21.2, the rotor 2 can be rotatably supported about an axis of rotation 20 and can be set in rotation by means of a drive engaging one of the stub shafts 21.1, 21.2.
  • Figure 13 shows the rotor 2 with a single stirring blade 25 in a second embodiment, in side view. What differs from the previously described exemplary embodiment is that the rotor 2 has a continuous rotor shaft 21 instead of the two stub shafts. With regard to the other parts and properties, the rotor 2 corresponds to FIG Figure 13 following the example Figure 12 .
  • Figure 14 shows the rotor 2 with two stirring blades 25 in a first embodiment in a side view.
  • the two stirring blades 25 are arranged offset from one another by 180 ° in the circumferential direction in the rotor 2 and again each run along a helical line, which here describes a helical angle of 180 °.
  • Two stub shafts 21.1 and 21.2 are again used here for the rotatable mounting of the rotor 2.
  • Two first spokes 24.1 extend from the stub shaft 21.1 and two second spokes 24.2 extend from the stub shaft 21.2 in the radial direction, the spokes 24.1, 24.2 each being offset from one another by 180 ° in the circumferential direction of the rotor 2.
  • the ends 25.1 and 25.2 of the stirring blades 25 are attached.
  • the surface plane of the agitator blades 25 lies at its end 25.1 in the radial direction of the rotor 2, while at the other end of the rotor 2 at the end 25.2 of the agitator blades 25, the surface plane thereof is oriented obliquely to the radial direction of the rotor 2.
  • Figure 15 shows the rotor 2 with two stirring blades 25 in a second embodiment, in a side view.
  • the rotor 2 has a continuous rotor shaft 21 instead of two stub shafts. Otherwise, the rotor 2 corresponds to in Figure 15 following the example Figure 14 .
  • Figure 16 shows the rotor 2 with four stirring blades 25 in a first embodiment in a side view.
  • the rotor 2 here again has two shaft stubs 21.1, 21.2 arranged in alignment with one another, from which four spokes 24.1, 24.2 each extend in the radial direction at an angular distance of 90 ° from one another.
  • the stirring blades 25 are again connected to the free ends of the spokes 24.1, 24.2 by means of their ends 25.1, 25.2.
  • the stirring blades 25 run along a helical line, which here each describe a helical line angle of only 90 °.
  • the stirring blades 25 are twisted over their length, the surface plane of the stirring blades 25 running in the radial direction at their end 25.1 and at an angle to the radial direction of the rotor 2 at their end 25.2.
  • the two rotor regions 2 ′ and 2 ′′ which differ in terms of their respective conveying effect result, as already described above.
  • Figure 17 shows the rotor 2 with four stirring blades 25 in a second embodiment, in a side view, the difference to the example according to Figure 16 consists in the fact that here the rotor 2 has a continuous rotor shaft 21. With regard to the other parts and properties of the rotor 2 in Figure 17 if this matches the example Figure 16 match.
  • FIG 18 shows the rotor 2 with six stirring blades 25, in a first embodiment, in a side view.
  • This rotor 2 has two stub shafts 21.1, 21.2 for its rotatable mounting.
  • six spokes 24.1, 24.2 are connected, which extend outwardly from the stub shaft 21.1, 21.2 at a respective angular distance of 60 ° from one another in the radial direction.
  • the stirring blades 25 are again connected to the free ends of the spokes 24.1, 24.2 by means of their ends 25.1, 25.2.
  • the stirring blades 25 run along a helical line, each of which describes a helical angle of 60 ° here.
  • the stirring blades 25 are twisted over their length, the surface plane of the stirring blades 25 running in the radial direction at their end 25.1 and at an angle to the radial direction of the rotor 2 at their end 25.2.
  • the two rotor areas 2 ′ and 2 ′′ which are different in terms of their respective conveying effect, result, as already described above.
  • Figure 19 shows the rotor 2 with six agitator blades 25 in a second embodiment, in side view, with here in comparison to the example Figure 18 Instead of two stub shafts, a continuous rotor shaft 21 is provided in the rotor 2.
  • Figure 20 shows the rotor 2 with eight stirring blades 25, in a first embodiment, in a side view.
  • Two stub shafts 21.1 and 21.2 are again used here for the rotatable mounting of the rotor 2.
  • eight spokes 24.1, 24.2 are connected to each stub shaft 21.1, 21.2 at an angular distance of 45 ° from one another and extend outward in the radial direction from the respective stub shaft 21.1, 21.2.
  • the ends 25.1, 25.2 of the stirring blades 25 are each connected to the end region of one of the spokes 24.1, 24.2.
  • the stirring blades 25 are arranged to run along a helical line, the helical lines here each extending over a helical angle of 60 °.
  • the stirring blades 25, viewed in their longitudinal direction have such a twist that the surface plane of the stirring blades 25 at their end 25.1 is aligned in the radial direction of the rotor and at their end 25.2 at an angle to the radial direction of the rotor 2.
  • This rotor 2 thus also has the two rotor areas 2 'and 2 "of different conveying effects.
  • Figure 21 shows the rotor 2 with eight stirring blades 25, in a second embodiment, in a side view, the difference to the example according to Figure 20 consists in that the rotor 2 here has a continuous rotor shaft 21 instead of stub shafts.
  • the other parts and properties of the rotor 2 according to Figure 21 correspond to those in the example Figure 20 .
  • Figure 22 shows the rotor 2 in an embodiment with four agitator blades 25, now with two groups of additional spokes 24.3 between the end spokes 24.1 and 24.2, in a side view.
  • the four stirring blades 25 again each run along a helical line which each covers a helical angle of 90 °.
  • the pitch of the helical line is not constant, seen over the axial length of the rotor 2, but increases from right to left as seen in the axial direction of the rotor 2.
  • the spokes 24.1, 24.2, 24.3 are here again each connected to a continuous rotor shaft 21 and extend outward from the rotor shaft 21 in the radial direction at an angular distance of 90 ° from one another.
  • the stirring blades 25 are connected to the axially outer first spokes 24.1 and at their ends 25.2 to the axially outer second spokes 24.2.
  • the stirring blades 21 are also twisted here, the surface plane of the stirring blades 25 being aligned at their first end 25.1 in the radial direction of the rotor 2 and at their second end 25.2 obliquely to the radial direction of the rotor 2.
  • rotor areas 2 'and 2 "of different conveying effects are formed.
  • the agitator blades 24 are connected to the two additional groups of spokes 24.3 to increase the stability and resilience of the rotor 2, with the spokes 24.1 and 24.3 the stirring blades 25 are not yet twisted; the twisting of the stirring blades 25 here only extends over the rotor area 2 ′′.
  • FIG 23 shows the rotor 2 from Figure 22 in cross section according to section line AA in Figure 22 .
  • the cut rotor shaft 21 is visible, from which the spokes 24.3 extend outward in the radial direction.
  • the four stirring blades 25 are connected to the radially outer end region of the spokes 24.3 Figure 23 the front group of spokes 24.3 facing the viewer begins; behind the in Figure 23 The group of spokes 24.3 lying in front, the stirring blades 25 do not yet have any torsion. It can also be seen here that each stirring blade 25 extends along a helical line over a helical line angle of 90 °.
  • Figure 24 shows the rotor 2 from Figure 22 in cross section according to section line BB in Figure 22 , wherein this section runs through a torsion-free portion of the stirring blades 25 of the rotor 2, like the Figure 24 clearly shows. Behind the spokes 24.3 of the rear additional spoke group, the spokes 24.1 which are offset in the circumferential direction on the end face of the rotor 2 facing away from the viewer are visible.
  • Figure 25 shows the rotor 2 from Figure 22 in cross section according to section line CC in Figure 22 , this section running shortly before the end of the rotor 2 facing away from the viewer.
  • Figure 25 only the spokes 24.1 on the end face, which are attached to the rotor shaft 21, and a short piece of the stirring blades 25 attached there at each end region of the spokes 24.1 are visible.
  • Figure 26 shows a rotor 2 with four stirring blades 25 in one compared to the example according to Figure 22 slightly modified version, in side view.
  • the change here is that the in Figure 26 Left-hand end 2.2 of the rotor 2 is a disk-shaped, flat flow guide body 26, which is connected to the rest of the rotor 2, specifically to its continuous rotor shaft 21, and thus rotates with the rotor 2 during operation.
  • the flow guide body 26 supports the guidance of the substrate flow in the radial direction of the rotor 2, which flow is generated by its rotor area 2 ′′.
  • FIG. 27 again shows the rotor 2 with four stirring blades 25 in a side view, as in FIG Figure 26 , but now with a modified flow guide body 26.
  • the flow guide body 26 here has a three-dimensional shape in the form of a cone arranged concentrically to the rotor shaft 21 and connected to it with a concavely rounded outer surface, which means that when the rotor 2 is driven counterclockwise as seen from its left end a flow deflection of the substrate from a flow in the rotor area 2 'directed from right to left in the axial direction of the rotor 2 into a direction in the rotor area 2 "in the radial direction of the rotor 2 from the inside to the outside is supported.
  • Figure 28 shows a rotor 2 with four stirring blades 25, in a further modified embodiment, in a side view.
  • a characteristic of this version of the rotor 2 is that it, in Figure 28 seen from right to left, axially behind the second rotor area 2 ′′, which has a predominantly radial conveying effect transversely to the direction of the axis of rotation 20 of rotor 2, additionally has a third rotor area 2 ′′ ′′.
  • This third rotor area 2 ′′ ′′ is with one of the conveying effect of the first rotor area 2 'with the predominantly axial conveying effect in the direction of the rotor shaft 21 of the rotor 2, the predominantly axial conveying effect opposite.
  • spokes 24.1, 24.2, 24.3 are shown with a round cross-section, in practice the spokes 24.1, 24.2, 24.3 are designed so that they have a conveying effect according to claim 1.
  • Figure 29 shows a section of a rotor shaft 21 with a spoke 24.1 visible in section in a first embodiment. It is characteristic of the spoke 24.1 shown here that it is formed from a flat, inclined strip of material, such as a flat steel profile, whereby the spoke 24.1 itself exerts a conveying effect on the substrate in the manner of a propeller when the rotor shaft 21 rotates and thus supports the conveying effect of the rest of the rotor 2.
  • Figure 30 also shows a section of the rotor shaft 21 with the spoke 24.1 visible in section, in a second embodiment, which consists in that the spoke 24.1 here is designed as a rectangular hollow profile and thus has a higher mechanical load capacity.
  • the spoke 24.1 here also has an orientation that is inclined to the circumferential direction of the rotor shaft 21, so that it itself also exerts a conveying effect on the substrate.
  • spokes 24.1, 24.2, 24.3 can also have other cross-sectional shapes, for example the shape of curved blades or of wing profiles, in order to increase their conveying effect.
  • Figure 31 shows the agitator 1 in a further modified embodiment, in side view, in a standing container. It is characteristic of this embodiment of the agitator 1 that the agitator blades 25 are not designed here as continuous strips of material, but segmented, that is, in the form of agitator blade segments 25 'arranged one behind the other with gaps. At least one spoke 24.1, 24.2, 24.3 is assigned to each agitating blade segment 25 'so that all agitating blade segments 25' are held.
  • the agitator 1 corresponds to Figure 31 the example according to the Figures 1 and 2 .
  • the rotor 2 occupies a range of motion in the container 3, which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • Figure 32 shows the agitator 1 in a further modified version, in a side view, in a standing container 3, it being characteristic of this version of the agitator 1 that its rotor shaft 21 runs vertically here.
  • the rotor 2 of the agitator 1 has four agitator blades 25, which are attached to four spokes 24.1 extending from the rotor shaft 21 on the first, upper rotor end 2.1 and to four spokes 24.2 extending from the rotor shaft 21 on the second, here lower rotor end 2.2 are.
  • the stirring blades 25 again each run along a helical line, which here each extends over a helical angle of 90 °.
  • the agitator blades 25 are twisted in themselves, the agitator blades 25 running at their first, upper end 25.1 with their blade surface in the radial direction of the rotor 2, while at their second, lower end 25.2 the blade surface of the agitator blades 25 is inclined to the radial direction of the rotor 2 runs.
  • the rotor 2 has two rotor areas 2 ′ and 2 ′′ with different conveying effects on a substrate located in the container 3.
  • An upper rotor bearing 22.1 which is arranged in a support 23 protruding from the container wall 31 into the container 3, and a lower rotor bearing 22.2, which is arranged on the container bottom 32, serve for the rotatable mounting of the rotor 2 and the rotor shaft 21.
  • the arrangement of a single rotor 2 is sufficient in practice.
  • An example of this is shown by the Figure 34 33 with three rotors 2 arranged in a standing container 3 in a plan view.
  • the rotors 2 and rotor shafts 21 of the agitator 1 each have a vertical orientation and are evenly spaced from one another in the circumferential direction of the container 3 in order to ensure a complete and uniform movement and mixing of the substrates in the container 3 as seen over the volume of the container 3 cause.
  • an operating mode of the rotors 2 can be selected in which either one, two or all three rotors 2 are put into operation.
  • Each rotor 2 can have its own drive, but it is also possible that all rotors 2 are coupled or can be coupled to a common drive.
  • each rotor 2 within the container 3 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless the rotors 2 generate a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • the Figure 34 shows an agitator 1 in a side view in a lying container 3, in a first embodiment.
  • the container 3 here has a cylindrical shape with a peripheral wall 31 and two front ends 33 and is, for example, part of a so-called plug flow fermenter.
  • the agitator 1 here has a vertically arranged rotor 2 with a correspondingly vertically extending rotor shaft 21 which is rotatably supported at the bottom of the container 3 in a lower rotor bearing 22.1 and at the top in the area of a shaft passage 38 through the container wall 31 in a second rotor bearing 22.2.
  • a drive (not shown here) for the rotor 2 is to be coupled on top of the container 3 to the rotor shaft 21 protruding from the container 3 there.
  • the rotor 2 here again has four stirring blades 25, which are attached with their lower end 25.1 to four lower spokes 24.1 and with their upper end 25.2 to four upper spokes 24.2.
  • the stirring blades 25 again run along helical lines which each describe a helical angle of 90 ° here.
  • the agitator blades 25 are in the radial direction of the rotor 2 extending blade surface, while at the second, here upper rotor end 2.2, the stirring blades 25 are arranged with the blade surface tilted relative to the radial direction of the rotor 2.
  • This rotor 2 thus also has the two rotor sections 2 'and 2 "which differ in terms of their conveying effect on a substrate located in the container 3.
  • the rotor area 2' has a predominantly axial conveying effect, while the rotor area 2" has a stronger one Has radial conveying effect.
  • the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.
  • the agitator 1 good mixing and movement of a substrate with a high degree of efficiency can also be produced in a lying hollow cylindrical container 3.
  • Figure 35 shows one opposite the Figure 34 Modified embodiment with an agitator 1 with two rotors 2 arranged next to one another and a horizontal container 3, in a perspective view, with a cut-open container 3.
  • An arrangement of several rotors 2 in a horizontal container 3 can be particularly useful for particularly large containers 3 and / or for particularly high containers Requirements for the movement and mixing of the substrate in the container 3 may be appropriate.
  • the two rotors 2 of the agitator 1 are identical to one another, but are each arranged vertically in the container 3 with a different orientation.
  • the rotor 2 arranged on the left in the container 3 has its rotor area 2 'with a predominantly axial conveying effect at the bottom, while this rotor area 2' is at the top in the rotor 2 arranged on the right.
  • the rotor area 2 ′′ with the stronger radial conveying effect is on top, while in the right rotor 2 this rotor area 2 ′′ is located below.
  • Figure 36 finally, shows an agitator 1 in a side view in a horizontal container 3, in a further embodiment.
  • the rotor 2 of the agitator 1 is aligned horizontally, so that the rotor shaft 21 here also runs horizontally and parallel to the longitudinal center axis of the horizontal container 3.
  • the rotor shaft 21 is rotatably supported at its end facing the interior of the container 3 in a first rotor bearing 23.1, which is arranged in a support 23 which, in turn, is connected to the container 3 at the bottom.
  • the other end of the rotor shaft 21 is connected to the in FIG Figure 36 left end wall 33 of the container 3 outwards, so that a drive of the rotor 2, not visible here, can be arranged outside of the container 3 on its left end wall 33.
  • the rotor 2 corresponds to in Figure 36 the embodiment according to Figure 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

Die Erfindung betrifft einen Behälter mit einem Rührwerk zum Durchmischen und Bewegen von in dem Behälter befindlichen Substraten in Form von Flüssigkeiten oder Flüssigkeits-Feststoff-Gemischen, mit wenigstens einem ein oder mehrere Rührblätter aufweisenden, im Behälter angeordneten, in wenigstens einem Rotorlager gelagerten Rotor, der um eine Drehachse drehbar ist, und mit einem den Rotor antreibenden Antrieb, wobei der/jeder Rotor des Rührwerks in dem das zu durchmischende und zu bewegende Substrate enthaltenden Behälter nur einen Bruchteil des Volumens des Behälters einnimmt und wobei mittels des Rührwerks eine Substratströmung auch außerhalb des Bewegungsbereichs des Rotors oder der Rotoren in dem Behälter bewirkbar ist, wobei der Rotor entlang seiner Drehachse gesehen mit wenigstens zwei Rotorbereichen unterschiedlicher Förderwirkung auf das Substrat ausgeführt ist, wobei ein erster Rotorbereich mit einer überwiegend axialen Förderwirkung in Richtung der Drehachse und ein zweiter Rotorbereich mit einer stärkeren radialen Förderwirkung quer zur Richtung der Drehachse ausgeführt ist, wobei das/jedes Rührblatt als flacher, entlang einer Schraubenlinie über die volle axiale Länge des Rotors verlaufender, von wenigstens zwei Speichen des Rotors getragener, durchgehender oder segmentierter Materialstreifen ausgeführt ist und wobei das/jedes Rührblatt in Rührblattlängsrichtung gesehen eine sich vom einen Rotorende zum anderen Rotorende verändernde Ausrichtung seiner Blattfläche relativ zur Radialrichtung des Rotors aufweist.The invention relates to a container with an agitator for mixing and moving substrates in the container in the form of liquids or liquid-solid mixtures, with at least one rotor having one or more stirring blades, arranged in the container and mounted in at least one rotor bearing, the is rotatable about an axis of rotation, and with a drive that drives the rotor, wherein the / each rotor of the agitator in the container containing the substrates to be mixed and moved occupies only a fraction of the volume of the container and wherein by means of the agitator a substrate flow outside the Movement range of the rotor or rotors can be brought about in the container, the rotor being designed with at least two rotor areas with different conveying effects on the substrate, seen along its axis of rotation, a first rotor area with a predominantly axial conveying effect in the direction of the axis of rotation and a second Rotor area is designed with a stronger radial conveying effect transversely to the direction of the axis of rotation, wherein the / each agitator blade is designed as a flat, continuous or segmented strip of material running along a helical line over the full axial length of the rotor, carried by at least two spokes of the rotor, and wherein the / each stirring blade, viewed in the longitudinal direction of the stirring blade, has an orientation of its blade surface that changes from one rotor end to the other rotor end relative to the radial direction of the rotor.

Das Dokument WO 2008/145 729 A1 zeigt einen Reaktor mit einem Rührsystem mit wenigstens einem Radialfluss-Impeller und wenigstens einem Axialfluss-Impeller. Sich von einer zentralen Welle nach außen erstreckende Elemente, die unterschiedlich ausgeführt sein können, stellen dabei das Rührwerkzeug dar.The document WO 2008/145 729 A1 shows a reactor with a stirring system with at least one radial flow impeller and at least one axial flow impeller. Elements that extend outward from a central shaft and can be designed in different ways represent the stirring tool.

Das Dokument US 2014/0 086 006 A1 zeigt ein Rührwerk mit einer Welle und zwei im axialen Abstand unmittelbar auf der Welle angeordneten Rührflügeln, wobei die beiden Rührflügel zueinander entgegengesetzte axiale Förderrichtungen aufweisen.The document US 2014/0 086 006 A1 shows an agitator with a shaft and two agitator blades arranged directly on the shaft at an axial distance, the two agitator blades having opposite axial conveying directions.

Das Dokument DE 10 2004 027 077 A1 zeigt ein Rührwerk mit einer beheizbaren Rührwelle, mit an der Rührwelle befestigten Wärmeleitblechen und mit an den Wärmeleitblechen befestigten Rührblättern. Die Aufstellwinkel der Rührblätter können über Lochkreise gegen die Wärmeleitbleche eingestellt werden.The document DE 10 2004 027 077 A1 shows an agitator with a heatable agitator shaft, with heat conducting plates attached to the agitator shaft and with stirring blades attached to the heat conducting plates. The angle of the stirrer blades can be adjusted against the heat conducting plates using hole circles.

Das Dokument DE 20 2013 006 429 U1 zeigt eine Vorrichtung zum Durchmischen des Inhalts von Substratbehältern mittels eines Rührwerks, bei der der Substratbehälter zumindest eine umlaufende Wand und einen Boden umfasst, wobei sich die umlaufende Wand an einer vertikalen Hauptachse orientiert, und das Rührwerk eine Welle umfasst, die unter einem von der Vertikalen und Horizontalen abweichenden Einbauwinkel in den Substratbehälter hineinragt. Das Rührwerk umfasst wenigstens zwei Rührschaufeln, die sich jeweils radial beidseits der Welle erstrecken und zueinander verdreht sowie in Längserstreckung der Welle voneinander beabstandet auf der Welle angeordnet sind. Mittels der Rührschaufeln wird die Gesamtheit des Substrats innerhalb des Fermentationsbehälters in Rotation versetzt.The document DE 20 2013 006 429 U1 shows a device for mixing the contents of substrate containers by means of an agitator, in which the substrate container comprises at least one circumferential wall and a base, wherein the circumferential wall is oriented on a vertical main axis, and the agitator comprises a shaft which is below one of the vertical and horizontally different installation angle protrudes into the substrate container. The agitator comprises at least two agitator blades which each extend radially on both sides of the shaft and are rotated relative to one another and are arranged on the shaft at a distance from one another in the longitudinal extension of the shaft. The entire substrate within the fermentation vessel is set in rotation by means of the stirring paddles.

Das Dokument WO 87/00449 A1 zeigt eine Vorrichtung zum Mischen von Baustoffen, mit zwei schneckenförmig gekrümmten Mischarmen und mit einer die Mischarme mittig verbindenden Koppelstrebe, die in Radialrichtung verläuft und die im Querschnitt gesehen schräg ausgerichtet ist und somit eine axiale Förderwirkung aufweist.The document WO 87/00449 A1 shows a device for mixing building materials, with two helically curved mixing arms and with a coupling strut connecting the mixing arms in the center, which runs in the radial direction and which is oriented obliquely when viewed in cross section and thus has an axial conveying effect.

Das Dokument JP 2004 105 892 A zeigt eine Knetmaschine mit einem Gehäuse und mit einer vertikal in das Gehäuse eintauchenden Welle mit oberseitigem Antrieb. Oben und unten sind mit der Welle zwei parallele Querarme verbunden, deren freie Enden über wellenparallele Verbindungselemente verbunden sind. Weiterhin sind zwei streifenförmige Rührblätter vorgesehen, die jeweils von dem oberen Querarm ausgehend sich in einem Bogen nach unten und in Umfangsrichtung erstrecken und am unteren Querarm enden. Die Rührblattform und die Drehrichtung der Welle sind so getroffen, dass im Betrieb der Knetmaschine zu knetendes Material mittels der Rührblätter nach oben hin gefördert wird.The document JP 2004 105 892 A shows a kneading machine with a housing and with a shaft which is vertically immersed in the housing and has a top drive. Two parallel transverse arms are connected to the shaft at the top and bottom, the free ends of which are connected by connecting elements parallel to the shaft. Furthermore, two strip-shaped stirring blades are provided, each starting from the upper cross arm, extending in an arc downward and in the circumferential direction and ending at the lower cross arm. The shape of the stirring blade and the direction of rotation of the shaft are designed so that material to be kneaded is conveyed upwards by means of the stirring blades when the kneading machine is in operation.

Das Dokument EP 0 598 253 A1 zeigt eine Mischvorrichtung mit einem stehenden zylindrischen Gehäuse, in das eine Welle mit Drehantrieb von oben her eintaucht. An der Welle sind über Querstreben zwei Mischblätter angebracht, die von der oberen Querstrebe ausgehend schraubenlinienförmig nach unten und dann spiralförmig nach radial innen verlaufen.The document EP 0 598 253 A1 shows a mixing device with an upright cylindrical housing into which a shaft with rotary drive dips from above. Two mixing blades are attached to the shaft via cross struts, which, starting from the upper cross strut, run downwards in a helical manner and then in a spiral shape radially inwards.

Das Dokument DE 30 12 707 A1 zeigt ein Mischwerk für Trogmischer, mit mindestens zwei horizontalen, sich gegenläufig drehenden Mischwellen zum Vermischen von pulvrigem, körnigem oder plastischem Mischgut, insbesondere von Baustoffmischungen, wobei auf jeder Mischwelle zwei gegenläufig gewendelte Wendelschneckengänge angeordnet sind und wobei die Wendelschneckengänge jeder Mischwelle unterschiedliche Systemlängen aufweisen und ein asymmetrisches Wendelschneckenmischwerk bilden. Die lange Wendel dient zum Mischguttransport in Längsrichtung des Mischtroges und die kurze Wendel zum Mischguttransport in Querrichtung des Mischtroges, so dass eine zyklische Mischgutbewegung entsteht. Die Wendelschneckengänge können unterbrochen ausgebildet sein mit einzelnen, an Armen der jeweiligen Mischwelle befestigten, in Schraubenlinie hintereinander liegenden, wendelartigen Schaufeln.The document DE 30 12 707 A1 shows a mixer for trough mixers, with at least two horizontal, counter-rotating mixing shafts for mixing powdery, granular or plastic mix, in particular building material mixtures, with two helical screw flights in opposite directions being arranged on each mixing shaft and with the helical screw flights of each mixing shaft having different system lengths and a Form asymmetrical spiral screw mixer. The long helix is used to transport the mix in the longitudinal direction of the mixing trough and the short helix for transporting mix in the transverse direction of the mixing trough, so that a cyclical mix movement is created. The helical screw flights can be designed to be interrupted with individual helical blades which are attached to the arms of the respective mixing shaft and lie one behind the other in helical lines.

Ein weiteres Rührwerk ist aus dem Dokument DE 20 2006 004 982 U1 bekannt. Das Rührwerk umfasst zumindest einen Antrieb, ein an der Wand des Behälters befestigtes wandseitiges Rührwellenlager, ein über zumindest eine Abstützung sich am Boden des Behälters abstützendes Rührwellenlager und zumindest einen Rotor mit einer Rührwelle mit zumindest einem an der Rührwelle befestigten Rührblatt. Dabei erstreckt sich die Rührwelle parallel zum Boden des Behälters von der Wand des Behälters in Richtung der Hauptachse des Behälters. Bevorzugt sind an der Rührwelle mehrere Rührblätter befestigt, wobei die Rührblätter weiter bevorzugt entlang der Rührwellenachse versetzt zueinander radial nach außen weisend an der Rührwelle befestigt sind. Die Rührblätter umfassen bevorzugt jeweils zwei Seitenteile und zumindest ein Brückenprofil, wobei die beiden Seitenteile durch das Brückenprofil miteinander verbunden sind. Die radiale Länge der Rührblätter ist dabei wesentlich größer als die axiale Breite der Rührblätter.Another agitator is from the document DE 20 2006 004 982 U1 known. The agitator comprises at least one drive, an agitator shaft bearing attached to the wall of the container, an agitator shaft bearing supported on the bottom of the container via at least one support and at least one rotor with an agitator shaft with at least one agitator blade attached to the agitator shaft. The agitator shaft extends parallel to the bottom of the container from the wall of the container in the direction of the main axis of the container. A plurality of agitator blades are preferably attached to the agitator shaft, the agitator blades further preferably being attached to the agitator shaft, offset from one another along the agitator shaft axis, pointing radially outward. The stirring blades preferably each comprise two side parts and at least one bridge profile, the two side parts being connected to one another by the bridge profile. The radial length of the stirring blades is significantly greater than the axial width of the stirring blades.

Das Dokument DE 102 60 972 B4 zeigt ein weiteres Rührwerk zum Umwälzen von Flüssigmist und/oder Abwasser in einem Vorratsbehälter, insbesondere ein Rührwerk zum Anregen einer Güllezirkulation in einem Güllevorratsbehälter bei Biogasanlagen. Das Rührwerk weist eine entlang einer Drehachse verlaufende Welle auf, die über Lagervorrichtungen an Teilen des Behälters drehbar gelagert und von einer Antriebsvorrichtung antreibbar ist. Weiter besitzt das Rührwerk sich quer zur Drehachse erstreckende Rührelemente, welche in mehreren zueinander parallelen Ebenen entlang der Längserstreckung der Welle quer zu deren Drehachse auf der Welle angeordnet sind und sich innerhalb der Ebene gegenüberliegen. Die mit Rührelementen bestückte Welle erstreckt sich radial in den Vorratsbehälter hinein und die Rührelemente sind als Schaufeln in Form von Paddeln ausgebildet, die um ihre eigene Längsachse verdrehbar und verstellbar sind und so an der Welle angeordnet sind, dass die Rührelemente einer Ebene jeweils in einem Winkel befestigt sind, welcher sich vom Befestigungswinkel der Rührelemente der anderen Ebene unterscheidet. Mit derartigen schräg gestellten Paddeln kann nur eine überwiegend axiale, zur Welle parallele Strömung erzeugt werden, je nach Verdrehstellung der Paddel und Drehrichtung der Welle in der einen oder der anderen Richtung.The document DE 102 60 972 B4 shows another agitator for circulating liquid manure and / or waste water in a storage tank, in particular an agitator for stimulating liquid manure circulation in a liquid manure storage tank in biogas plants. The agitator has a shaft running along an axis of rotation, which is rotatably mounted on parts of the container via bearing devices and can be driven by a drive device. Furthermore, the agitator has agitator elements extending transversely to the axis of rotation, which are arranged on the shaft in several mutually parallel planes along the longitudinal extent of the shaft transversely to its axis of rotation and are opposite one another within the plane. The shaft equipped with stirring elements extends radially into the storage container and the stirring elements are designed as blades in the form of paddles, which can be rotated and adjusted about their own longitudinal axis and are arranged on the shaft in such a way that the stirring elements of a plane are each at an angle are attached, which differs from the mounting bracket of the stirring elements of the other level. With such inclined paddles, only a predominantly axial flow parallel to the shaft can be generated, depending on the rotational position of the paddles and the direction of rotation of the shaft in one direction or the other.

Ein weiteres Rührwerk ist aus dem Dokument EP 2 656 909 B1 bekannt. Das Rührwerk umfasst hier einen Rotor mit einer Welle, die um eine Drehachse drehbar ist, und mindestens zwei Rührpaddel, die voneinander in Axialrichtung und in Umfangsrichtung der Welle beabstandet sind. Die Rührpaddel sind jeweils an ihrem radial inneren Ende mit der Welle verbunden, sodass sich die Rührpaddel im Betrieb in Umfangsrichtung bewegen. Weiter umfasst das Rührwerk einen Verbinder, welcher sich zwischen den Rührpaddeln erstreckt, wobei der Verbinder von dem äußeren Ende der Rührpaddel radial nach innen hin beabstandet ist. Dabei verbindet der Verbinder die Rührpaddel entlang einer Schraubenlinie.Another agitator is from the document EP 2 656 909 B1 known. The agitator here comprises a rotor with a shaft that is rotatable about an axis of rotation, and at least two stirring paddles that are spaced apart from one another in the axial direction and in the circumferential direction of the shaft. The stirring paddles are each connected to the shaft at their radially inner end, so that the stirring paddles move in the circumferential direction during operation. The agitator further comprises a connector which extends between the agitator paddles, the connector being spaced radially inward from the outer end of the agitator paddles. The connector connects the stirring paddles along a helical line.

Als nachteilig wird bei den bekannten Rührwerken angesehen, dass ihr Wirkungsgrad, d.h. die erzielte Durchmischung und Bewegung der in dem Behälter befindlichen Substrate im Verhältnis zur eingesetzten Antriebsleistung am Rührwerk, gering ist, wodurch ein ungünstig hoher Energieverbrauch verursacht wird.A disadvantage of the known agitators is that their efficiency, i.e. the achieved mixing and movement of the substrates located in the container in relation to the drive power used on the agitator is low, which causes an unfavorably high energy consumption.

Es stellt sich daher die Aufgabe, einen Behälter mit einem Rührwerk zu schaffen, bei denen ein verbesserter Wirkungsgrad und damit ein geringerer Energieverbrauch bei intensiver Durchmischung und Bewegung der Substrate im Behälter erreicht werden, auch wenn der Rotor oder die Rotoren des Rührwerks nur einen Bruchteil des Volumens des Behälters einnimmt/einnehmen.The task is therefore to create a container with an agitator, in which an improved efficiency and thus a lower energy consumption can be achieved with intensive mixing and movement of the substrates in the container, even if the rotor or rotors of the agitator are only a fraction of the Volume of the container occupies / occupy.

Die Lösung des ersten, das Rührwerk betreffenden Teils der Aufgabe gelingt erfindungsgemäß mit einem Rührwerk der eingangs genannten Art, welches dadurch gekennzeichnet ist, dass die Speichen als Förderelemente für das Substrat ausgebildet sind, dass im ersten Rotorbereich angeordnete erste Speichen mit einer überwiegend axialen Förderwirkung in Richtung der Drehachse des Rotors ausgeführt sind und dass im zweiten Rotorbereich angeordnete zweite Speichen mit einer überwiegend radialen Förderwirkung quer zur Richtung der Drehachse des Rotors oder mit einer überwiegend axialen Förderwirkung entgegen der axialen Förderwirkung der ersten Speichen ausgeführt sind.The solution of the first part of the task concerning the agitator is achieved according to the invention with an agitator of the type mentioned at the beginning, which is characterized in that the spokes are designed as conveying elements for the substrate, that in the first rotor area arranged first spokes with a predominantly axial conveying effect in Direction of the axis of rotation of the rotor and that arranged in the second rotor area second spokes are designed with a predominantly radial conveying effect transverse to the direction of the axis of rotation of the rotor or with a predominantly axial conveying effect counter to the axial conveying effect of the first spokes.

Mit der Erfindung wird ein Behälter mit einem Rührwerk geschaffen, dessen Rotor oder Rotoren mit ihren unterschiedlichen Förderwirkungen oder -richtungen eine besonders effektive Bewegung und Durchmischung des Substrats im in Relation zu dem Rotor oder den Rotoren großen Behälter bewirken. Die unterschiedlichen Rotorbereiche werden dabei in Abhängigkeit von der Anordnung des Rotors im Behälter und von der Geometrie des Behälters mit dem Ziel einer möglichst wirksamen Erzeugung der gewünschten Strömung zweckentsprechend ausgewählt und festgelegt, wobei eine wirksame Substratströmung auch außerhalb des Bewegungsbereichs des Rotors oder der Rotoren erzeugt wird. Dadurch, dass das/jedes Rührblatt als flacher, entlang einer Schraubenlinie über die volle axiale Länge des Rotors verlaufender, von wenigstens zwei Speichen des Rotors getragener, durchgehender oder segmentierter Materialstreifen ausgeführt ist und dass das/jedes Rührblatt in Rührblattlängsrichtung gesehen eine sich vom einen Rotorende zum anderen Rotorende verändernde Ausrichtung seiner Blattfläche relativ zur Radialrichtung des Rotors aufweist, können die Rotorbereiche unterschiedlicher Förderwirkung auf das Substrat technisch relativ einfach, aber wirksam, erzeugt werden, was die Fertigung des Rührwerks, insbesondere des Rotors, relativ kostengünstig hält. In einer einfachen Ausführung sind die die Rührblätter bildenden Materialstreifen über ihre Länge gesehen von gleichbleibender Breite. Es ist aber auch möglich, in Längsrichtung der Materialstreifen gesehen deren Breite gezielt zu variieren, um ortsabhängig unterschiedliche, jeweils gewünschte Förderwirkungen zu erzielen. Dadurch, dass die Speichen als Förderelemente für das Substrat ausgebildet sind, dass im ersten Rotorbereich angeordnete erste Speichen mit einer überwiegend axialen Förderwirkung in Richtung der Drehachse des Rotors ausgeführt sind und dass im zweiten Rotorbereich angeordnete zweite Speichen mit einer überwiegend radialen Förderwirkung quer zur Richtung der Drehachse des Rotors oder mit einer überwiegend axialen Förderwirkung entgegen der axialen Förderwirkung der ersten Speichen ausgeführt sind, sind auch die Speichen an der Erzeugung der Strömung des Substrats beteiligt und unterstützen somit die Strömungserzeugung durch die Rührblätter, wodurch der Wirkungsgrad des Rührwerks gesteigert wird.The invention creates a container with an agitator, the rotor or rotors of which, with their different conveying effects or directions, bring about a particularly effective movement and mixing of the substrate in the container which is large in relation to the rotor or rotors. The different rotor areas are appropriately selected and determined depending on the arrangement of the rotor in the container and the geometry of the container with the aim of generating the desired flow as effectively as possible, with an effective substrate flow also being generated outside the range of motion of the rotor or rotors . Because the / each stirring blade is designed as a flat, continuous or segmented strip of material running along a helical line over the full axial length of the rotor, carried by at least two spokes of the rotor, and that the / each stirring blade, viewed in the longitudinal direction of the stirring blade, extends from one end of the rotor having changing the orientation of its blade surface relative to the radial direction of the rotor at the other end of the rotor, the rotor areas with different conveying effects on the substrate can be produced in a technically relatively simple but effective manner, which keeps the production of the agitator, in particular the rotor, relatively inexpensive. In a simple embodiment, the strips of material that form the stirring blades are of constant width over their length. However, it is also possible to specifically vary the width of the material strips, viewed in the longitudinal direction, in order to achieve different, respectively desired conveying effects depending on the location. The fact that the spokes are designed as conveying elements for the substrate, that first spokes arranged in the first rotor area are designed with a predominantly axial conveying effect in the direction of the axis of rotation of the rotor and that second spokes arranged in the second rotor area with a predominantly radial conveying effect transverse to the direction of the Axis of rotation of the rotor or with a predominantly axial conveying action are designed against the axial conveying action of the first spokes, the spokes are also involved in generating the flow of the substrate and thus support the flow generation by the agitator blades, whereby the efficiency of the agitator is increased.

Beispielsweise bei einer Modernisierung können Teile eines älteren Rührwerks, wie die Lagerung und eventuell auch der Antrieb, weiter verwendet werden, während der Rotor ersetzt wird. Der Rotor erstreckt sich dabei in seiner Axialrichtung gesehen zweckmäßig nur über einen Teil des Durchmessers, beispielsweise etwa ein Viertel des Durchmessers, des Behälters, nimmt also nur einen kleinen Teil des Volumens des Behälters ein.For example, in the case of a modernization, parts of an older agitator, such as the bearings and possibly the drive, can continue to be used while the rotor is being replaced. Seen in its axial direction, the rotor expediently extends only over part of the diameter, for example approximately a quarter of the diameter, of the container, so it only takes up a small part of the volume of the container.

Der Rotor ist an seinem einen Ende in einem ersten, sich über eine Abstützung im Behälter abstützenden behälterseitigen Rotorlager und an seinem zweiten Ende in einem zweiten, an oder in einer Behälterwand oder nahe einer Behälterwand außen oder innen von dieser angeordneten wandseitigen Rotorlager gelagert oder lagerbar.The rotor is mounted or mountable at one end in a first container-side rotor bearing supported by a support in the container and at its second end in a second, on or in a container wall or near a container wall outside or inside of this wall-side rotor bearing.

Bevorzugt ist im Betrieb des Rührwerks das Substrat von dem Rotor mit dessen axial innerem, behälterseitigem Rotorbereich überwiegend in Radialrichtung des Behälters von innen nach außen und mit dessen axial äußerem, wandseitigem Rotorbereich vom Rotor radial weg in Umfangsrichtung des Behälters förderbar. Hiermit wird eine den gesamten Behälterinhalt wirksam bewegende und durchmischende Strömung erzeugt. Dabei wird besonders vorteilhaft die durch die Drehung des Rotors erzeugte Zentrifugalkraftwirkung auf das Substrat für die Förderung im axial äußeren, wandseitigen Rotorbereich vom Rotor radial weg in Umfangsrichtung des Behälters genutzt. Alternativ kann durch Umkehrung der Drehrichtung des Rotors bzw. der Rotoren auch eine umgekehrt verlaufende Strömung erzeugt werden.When the agitator is in operation, the substrate can be conveyed by the rotor with its axially inner, container-side rotor area predominantly in the radial direction of the container from the inside to the outside and with its axially outer, wall-side rotor area away from the rotor radially in the circumferential direction of the container. This creates a flow that effectively moves and mixes the entire contents of the container. The centrifugal force effect on the substrate generated by the rotation of the rotor is particularly advantageously used for conveying in the axially outer, wall-side rotor area away from the rotor, radially in the circumferential direction of the container. Alternatively, by reversing the direction of rotation of the rotor or rotors, a reversed flow can also be generated.

Je nach den gewünschten oder benötigten Strömungen im Behälter kann die Drehachse des Rotors in einer horizontalen Richtung oder in einer von der Behälterwand zum Behälterinneren hin unter einem Winkel von bis zu 30° schräg nach unten oder nach oben weisenden Richtung verlaufen. Der Rotor kann dabei in einem bestimmten Winkel fest oder alternativ auch winkelverstellbar angeordnet sein.Depending on the desired or required currents in the container, the axis of rotation of the rotor can run in a horizontal direction or in a direction from the container wall to the container interior at an angle of up to 30 ° obliquely downwards or upwards. The rotor can be fixed at a certain angle or, alternatively, can also be arranged in an angle-adjustable manner.

Eine weitere Möglichkeit der gezielten Strömungsbeeinflussung besteht darin, dass die Drehachse des Rotors unter einem Winkel von bis zu 30° schräg zu der Radialrichtung des Behälters verläuft. Der Rotor kann auch hier in einem bestimmten Winkel fest oder alternativ auch winkelverstellbar angeordnet sein.Another possibility of targeted influencing of the flow is that the axis of rotation of the rotor extends at an angle of up to 30 ° obliquely to the radial direction of the container. Here too, the rotor can be fixed at a certain angle or, alternatively, can also be arranged in an angle-adjustable manner.

In einer weiteren Ausgestaltung des Rührwerks, in der es ebenfalls für einen stehenden, runden oder vieleckigen Behälter ausgelegt ist, ist vorgesehen, dass der wenigstens eine Rotor stehend in Axialrichtung des Behälters oder einer dazu schräg verlaufenden Richtung und exzentrisch oder zentral im Behälter angeordnet ist. Auch mit dieser Anordnung des Rotors oder mehrerer Rotoren kann eine effektive Bewegung und Durchmischung des Substrats im Behälter erzeugt werden, auch wenn der Rotor oder jeder Rotor nur einen Bruchteil des Volumens des Behälters einnimmt.In a further embodiment of the agitator, in which it is also designed for a standing, round or polygonal container, it is provided that the at least one rotor is arranged upright in the axial direction of the container or in a direction inclined to it and eccentrically or centrally in the container. With this arrangement of the rotor or a plurality of rotors, an effective movement and thorough mixing of the substrate in the container can also be produced, even if the rotor or each rotor only takes up a fraction of the volume of the container.

Dabei ist zur Erzielung einer stabilen Lagerung des Rotors bevorzugt vorgesehen, dass der Rotor an seinem einen, oberen Ende in einem ersten, oben im oder über dem Behälter angeordneten oberen Rotorlager und an seinem zweiten, unteren Ende in einem zweiten unten im Behälter oder an einem Behälterboden angeordneten unteren Rotorlager gelagert oder lagerbar ist.To achieve stable mounting of the rotor, it is preferably provided that the rotor at its one, upper end in a first upper rotor bearing arranged in or above the container and at its second, lower end in a second one below in the container or on one Container bottom arranged lower rotor bearing is stored or storable.

Im Betrieb des zuletzt beschriebenen Rührwerks ist vorteilhaft das Substrat von dem Rotor mit dem axial oberen Rotorbereich überwiegend in Axialrichtung des Behälters von oben nach unten und mit dem axial unteren Rotorbereich vom Rotor weg in Radialrichtung des Rotors nach außen förderbar. Dabei werden auf dem Substrat schwimmende Bestandteile nach unten gefördert und wirksam in das Substrat eingemischt. Zudem wird auch hier vorteilhaft die durch die Drehung des Rotors erzeugte Zentrifugalkraftwirkung auf das Substrat für die Förderung im axial unteren Rotorbereich vom Rotor radial weg zur Erzeugung einer auch außerhalb des Bewegungsbereichs des Rotors intensiven Substratströmung genutzt, wodurch das gesamte im Behälter befindliche Substratvolumen intensiv umgewälzt und durchmischt wird. Alternativ kann durch Umkehrung der Drehrichtung des Rotors bzw. der Rotoren auch hier eine umgekehrt verlaufende Strömung erzeugt werden.During operation of the agitator described last, the substrate can advantageously be conveyed by the rotor with the axially upper rotor area predominantly in the axial direction of the container from top to bottom and with the axially lower rotor area away from the rotor in the radial direction of the rotor outwards. Components floating on the substrate are conveyed downwards and effectively mixed into the substrate. In addition, the centrifugal force effect on the substrate generated by the rotation of the rotor is also advantageously used here for the conveyance in the axially lower rotor area away from the rotor in order to generate an intensive substrate flow even outside the range of motion of the rotor, whereby the entire substrate volume in the container is intensively circulated and is mixed. Alternatively, by reversing the direction of rotation of the rotor or rotors, a reversed flow can also be generated here.

In einer alternativen Ausführungsform ist das Rührwerk für einen liegenden, runden oder vieleckigen Behälter ausgelegt, wobei dann der wenigstens eine Rotor in einer parallel oder quer oder schräg zur Axialrichtung des Behälters verlaufenden Richtung im Behälter angeordnet ist. Mit dem Rührwerk kann somit auch in einem liegenden Behälter eine intensive Durchmischung und Bewegung des Substrats bewirkt werden, wobei auch hier der Rotor oder jeder Rotor zweckmäßig nur einen Bruchteil des Volumens des Behälters einnimmt.In an alternative embodiment, the agitator is designed for a horizontal, round or polygonal container, the at least one rotor then in a direction running parallel or transversely or obliquely to the axial direction of the container is arranged in the container. With the agitator, intensive mixing and movement of the substrate can thus also be brought about in a horizontal container, with the rotor or each rotor expediently taking up only a fraction of the volume of the container.

Ein weiterer Beitrag zum Erreichen eines guten Wirkungsgrades und zum Erzeugen günstiger Strömungsverhältnisse besteht darin, dass vorzugsweise die Rotorbereiche unterschiedlicher Förderwirkung stetig ineinander übergehend ausgeführt sind.A further contribution to achieving good efficiency and generating favorable flow conditions is that the rotor areas with different conveying effects are preferably designed to continuously merge into one another.

Eine bevorzugte Weiterbildung des Rührwerks sieht vor, dass das/jedes Rührblatt am einen Rotorende eine in Radialrichtung des Rotors weisende Ausrichtung seiner Blattfläche und am anderen Rotorende eine zur Radialrichtung des Rotors gekippte Ausrichtung seiner Blattfläche aufweist. Der Rotorbereich, in dem die schraubenlinienförmig verlaufenden Rührblätter eine in Radialrichtung des Rotors weisende Ausrichtung ihrer Blattfläche aufweisen, weist damit eine überwiegend axiale Förderwirkung auf, während der Rotorbereich, in dem die Rührblätter eine zur Radialrichtung des Rotors gekippte Ausrichtung ihrer Blattfläche aufweisen, eine stärkere radiale Förderwirkung aufweist.A preferred further development of the agitator provides that the / each agitator blade has an alignment of its blade surface pointing in the radial direction of the rotor at one end of the rotor and an alignment of its blade surface that is tilted to the radial direction of the rotor at the other end of the rotor. The rotor area, in which the helical stirring blades have an orientation of their blade surface in the radial direction of the rotor, thus has a predominantly axial conveying effect, while the rotor area, in which the stirring blades have an orientation of their blade surface that is tilted to the radial direction of the rotor, has a stronger radial one Has promotional effect.

Bei dem Rührwerk kann die Schraubenlinie, entlang der das/ jedes Rührblatt verläuft, in Richtung der Drehachse des Rotors gesehen eine gleichbleibende Schraubensteigung aufweisen. Hiermit ist dann eine über die axiale Länge des Rotors in Wesentlichen gleichmäßige Förderwirkung in Rotoraxialrichtung verbunden.In the case of the agitator, the helical line along which the / each agitator blade runs, viewed in the direction of the axis of rotation of the rotor, can have a constant helical pitch. This is then associated with an essentially uniform conveying effect in the axial direction of the rotor over the axial length of the rotor.

Alternativ kann die Schraubenlinie, entlang der das/jedes Rührblatt verläuft, in Richtung der Drehachse des Rotors gesehen eine sich verändernde Schraubensteigung aufweisen. Hiermit kann eine über die axiale Länge des Rotors gesehen sich verändernde axiale Förderwirkung erzeugt werden.Alternatively, the helical line along which the / each agitator blade runs can have a changing helical pitch as viewed in the direction of the axis of rotation of the rotor. In this way, an axial conveying effect that changes over the axial length of the rotor can be generated.

In weiterer Ausgestaltung weist dabei bevorzugt die Schraubenlinie, entlang der das/jedes Rührblatt verläuft, im einen Rotorbereich eine kleinere Schraubensteigung als im anderen Rotorbereich auf, wodurch in den Rotorbereichen entsprechend unterschiedliche Förderwirkungen erzeugt werden.In a further embodiment, the helical line along which the / each agitator blade runs preferably has a smaller helical pitch in one rotor area than in the other rotor area, whereby correspondingly different conveying effects are generated in the rotor areas.

Eine weitere Ausführung des Rührwerks sieht vor, dass die Schraubenlinie, entlang der das/jedes Rührblatt verläuft, einen gleichbleibenden Abstand zur Drehachse des Rotors aufweist.Another embodiment of the agitator provides that the helical line along which the / each agitator blade extends has a constant distance from the axis of rotation of the rotor.

Alternativ kann die Schraubenlinie, entlang der das/jedes Rührblatt verläuft, einen sich in Richtung der Drehachse des Rotors gesehen verändernden Abstand zur Drehachse des Rotors aufweisen.Alternatively, the helical line along which the / each agitator blade extends can have a distance from the axis of rotation of the rotor that changes when viewed in the direction of the axis of rotation of the rotor.

Dabei ist dann bevorzugt vorgesehen, dass die Schraubenlinie, entlang der das/ jedes Rührblatt verläuft, im einen Rotorbereich einen kleineren Abstand zur Drehachse des Rotors als im anderen Rotorbereich aufweist. Diese Ausführung des Rotors kann z.B. dann vorteilhaft sein, wenn die Drehachse des Rotors des Rührwerks im Behälter eine Neigung zur Horizontalrichtung aufweist.It is then preferably provided that the helical line along which the / each agitator blade runs is at a smaller distance from the axis of rotation of the rotor in one rotor area than in the other rotor area. This type of rotor can e.g. be advantageous if the axis of rotation of the rotor of the agitator in the container has an inclination to the horizontal direction.

Weiter sieht die Erfindung vor, dass der/jeder Rotor eine durchgehende, endseitig in je einem Rotorlager gelagerte Rotorwelle aufweist oder dass der/jeder Rotor zwei stirnendseitige Wellenstümpfe aufweist, die in je einem Rotorlager gelagert sind. Die Auswahl zwischen den beiden hier angegebenen Ausführungen richtet sich insbesondere nach den auftretenden Belastungen im Betrieb des Rührwerks.The invention further provides that the / each rotor has a continuous rotor shaft, each supported at the end in a rotor bearing, or that the / each rotor has two end-side shaft stubs which are each supported in a rotor bearing. The choice between the two versions specified here depends in particular on the loads that occur when the agitator is in operation.

Bei Ausführungen des Rührwerks, bei denen ein oder mehrere Rotorlager an oder in einer Behälterwand oder an oder in einem Behälterboden vorgesehen sind, kann an der Behälterwand vor dem wandseitigen Rotorlager oder am Behälterboden vor dem bodenseitigen Rotorlager ein feststehender Strömungsleitkörper angeordnet sein oder kann an dem Rotor vor dem wandseitigen oder dem bodenseitigen Rotorlager ein mitdrehender Strömungsleitkörper angeordnet sein. Hiermit wird die Belastung der Lager durch anströmendes Substrat vermindert, was die Abdichtung der Lager vereinfacht und deren Lebensdauer verlängert. Auch in Verbindung mit Wellendurchführungen durch eine Wand des Behälters sind derartige Strömungsleitkörper sinnvoll einsetzbar.In designs of the agitator in which one or more rotor bearings are provided on or in a container wall or on or in a container bottom, a stationary flow guide element can be arranged on the container wall in front of the rotor bearing on the wall side or on the container bottom in front of the rotor bearing on the bottom side or can be arranged on the rotor A rotating flow guide body can be arranged in front of the wall-side or the bottom-side rotor bearing. This reduces the load on the bearings from the oncoming substrate, which simplifies the sealing of the bearings and extends their service life. Such flow-guiding bodies can also be used sensibly in connection with shaft bushings through a wall of the container.

Die Speichen, die die Rührblätter des Rührwerks tragen, sind vorzugsweise geradlinig in oder gebogen zur Radialrichtung des Rotors verlaufend ausgebildet, je nachdem, welche Wirkung die Speichen auf das Substrat bei der Drehung des Rotors entfalten sollen.The spokes that carry the stirring blades of the agitator are preferably designed to run in a straight line or curved to the radial direction of the rotor, depending on what effect the spokes are to exert on the substrate when the rotor rotates.

In einer Ausführung des Rührwerks ist vorgesehen, dass der Rotor ein einziges Rührblatt aufweist, dass sich das Rührblatt über einen Schraubenlinienwinkel von 360° oder ein ganzzahliges Vielfaches davon erstreckt und dass der Rotor wenigstens zwei das Rührblatt zumindest stirnendseitig tragende Speichen aufweist. Dadurch, dass sich das Rührblatt über einen Schraubenlinienwinkel von 360° oder ein ganzzahliges Vielfaches davon erstreckt, wird gewährleistet, dass auch bei einem niedrigen Pegel des Substrats im Behälter, bei dem der Rotor teilweise oberhalb des Substratspiegels liegt, ein vollkommen gleichmäßiges Widerstandsmoment am sich drehenden Rotor anfällt, wodurch Drehmomentschwankungen oder -stöße, die für Lager und Antrieb des Rotors schädlich sind, vermieden werden.In one embodiment of the agitator, it is provided that the rotor has a single agitator blade, that the agitator blade extends over a helical angle of 360 ° or an integral multiple thereof, and that the rotor has at least two spokes that support the agitator blade at least at the end. The fact that the stirring blade extends over a helix angle of 360 ° or an integral multiple thereof ensures that even at a low level of the substrate in the container, in which the rotor is partially above the substrate surface, a completely uniform moment of resistance at the rotating Rotor accumulates, whereby torque fluctuations or surges, which are harmful to the bearings and drive of the rotor, are avoided.

Alternativ ist für das Rührwerk vorgesehen, dass der Rotor eine Anzahl von n Rührblättern aufweist, wobei n>1 ist, dass die Rührblätter gleichmäßig über den Umfang des Rotors verteilt angeordnet sind, dass sich jedes Rührblatt über einen Schraubenlinienwinkel von 360°/n oder ein ganzzahliges Vielfaches davon erstreckt und dass der Rotor pro Rührblatt wenigstens zwei das Rührblatt zumindest stirnendseitig tragende Speichen aufweist. Auch in dieser Ausgestaltung wird der Vorteil eines gleichmäßigen Widerstands- bzw. Drehmoments bei teilweise über dem Substratpegel oder -spiegel liegendem Rotor erzielt.Alternatively, it is provided for the agitator that the rotor has a number of n agitator blades, where n> 1, that the agitator blades are evenly distributed over the circumference of the rotor, that each agitator blade extends over a helix angle of 360 ° / n or a an integral multiple thereof and that the rotor per agitator blade has at least two spokes which support the agitator blade at least at the end. In this embodiment, too, the advantage of a uniform resistance or torque is achieved when the rotor is partially above the substrate level or surface.

Eine weitere Ausführung des Rührwerks schlägt vor, dass der Rotor axial hinter dem mit einer überwiegend radialen Förderwirkung quer zur Richtung der Drehachse des Rotors ausgeführten zweiten Rotorbereich zusätzlich einen dritten Rotorbereich mit einer der Förderwirkung des ersten Rotorbereichs mit der überwiegend axialen Förderwirkung in Richtung der Drehachse des Rotors entgegengesetzten überwiegend axialen Förderwirkung aufweist.Another embodiment of the agitator suggests that the rotor axially behind the second rotor area, which has a predominantly radial conveying effect transverse to the direction of the axis of rotation of the rotor, also has a third rotor area with a conveying effect of the first rotor area with the predominantly axial conveying effect in the direction of the axis of rotation of the Rotor has opposite predominantly axial conveying effect.

Je nach Größe des Behälters, in dem Substrat bewegt und gemischt werden soll, können Rührwerke mit einem oder mehreren Rotoren vorgesehen sein, wobei im Fall mehrerer Rotoren diese in Umfangsrichtung des Behälters oder in Axialrichtung des Behälters voneinander beabstandet im Behälter angeordnet sein können.Depending on the size of the container in which the substrate is to be moved and mixed, agitators with one or more rotors can be provided, whereby in the case of several rotors these can be arranged in the container in the circumferential direction of the container or in the axial direction of the container.

Besonders vorteilhaft einsetzbar ist das Rührwerk in Fermenterbehältern, z.B. von Biogasanlagen, aber auch in anderen Anwendungen, bei denen in einem Behälter befindliche Substrate in Form von Flüssigkeiten oder Flüssigkeits-Feststoff-Gemischen zu durchmischen und zu bewegen sind, wie z.B. in Güllebehältern von landwirtschaftlichen Betrieben oder in Abwasserbecken von Kläranlagen.The agitator can be used particularly advantageously in fermenter containers, for example in biogas plants, but also in other applications in which substrates in a container are in the form of liquids or liquid-solid mixtures have to be mixed and moved, for example in liquid manure tanks of agricultural businesses or in waste water basins of sewage treatment plants.

Im Folgenden werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:

Figur 1
ein Rührwerk in einer ersten Ausführung, in einem stehenden, nur teilweise dargestellten Behälter, in Ansicht schräg von oben,
Figur 2
das Rührwerk aus Figur 1 zusammen mit dem Behälter, in Draufsicht,
Figur 3
das Rührwerk aus Figur 2 mit durch Strömungspfeile angedeuteter Strömung eines Substrats im Behälter, ebenfalls in Draufsicht,
Figur 4
das Rührwerk in einer geänderten Ausführung, in gleicher Darstellung wie in Figur 2,
Figur 5
das Rührwerk aus Figur 4 in einer Stirnansicht in Radialrichtung des Behälters von innen nach außen gesehen,
Figur 6
das Rührwerk in einer weiteren Ausführung, in Draufsicht,
Figur 7
das Rührwerk in einer weiteren Ausführung, in Draufsicht,
Figur 8
das Rührwerk in einer weiteren Ausführung, in Stirnansicht,
Figur 9
das Rührwerk in einer weiteren Ausführung, in Draufsicht,
Figur 10
das Rührwerk aus Figur 9 mit durch Strömungspfeile angedeuteter Strömung eines Substrats im Behälter, in Draufsicht,
Figur 11
das Rührwerk in einer weiteren Ausführung, in Seitenansicht,
Figur 12
einen Rotor des Rührwerks mit einem Rührblatt, in einer ersten Ausführung, in Seitenansicht,
Figur 13
den Rotor mit einem Rührblatt, in einer zweiten Ausführung, in Seitenansicht,
Figur 14
den Rotor mit zwei Rührblättern, in einer ersten Ausführung, in Seitenansicht,
Figur 15
den Rotor mit zwei Rührblättern, in einer zweiten Ausführung, in Seitenansicht,
Figur 16
den Rotor mit vier Rührblättern, in einer ersten Ausführung, in Seitenansicht,
Figur 17
den Rotor mit vier Rührblättern, in einer zweiten Ausführung, in Seitenansicht,
Figur 18
den Rotor mit sechs Rührblättern, in einer ersten Ausführung, in Seitenansicht,
Figur 19
den Rotor mit sechs Rührblättern, in einer zweiten Ausführung, in Seitenansicht,
Figur 20
den Rotor mit acht Rührblättern, in einer ersten Ausführung, in Seitenansicht,
Figur 21
den Rotor mit acht Rührblättern, in einer zweiten Ausführung, in Seitenansicht,
Figur 22
den Rotor mit vier Rührblättern, in einer geänderten Ausführung, in Seitenansicht,
Figur 23
den Rotor aus Figur 22 im Querschnitt gemäß der Schnittlinie A-A in Figur 22,
Figur 24
den Rotor aus Figur 22 im Querschnitt gemäß der Schnittlinie B-B in Figur 22,
Figur 25
den Rotor aus Figur 22 im Querschnitt gemäß der Schnittlinie C-C in Figur 22,
Figur 26
den Rotor mit vier Rührblättern, in einer geänderten Ausführung, in Seitenansicht,
Figur 27
den Rotor mit vier Rührblättern, in einer nochmals geänderten Ausführung, in Seitenansicht,
Figur 28
den Rotor mit vier Rührblättern, in einer weiteren geänderten Ausführung, in Seitenansicht,
Figur 29
einen Abschnitt einer Rotorwelle mit einer im Schnitt sichtbaren Speiche, in einer ersten Ausführung,
Figur 30
einen Abschnitt der Rotorwelle mit der im Schnitt sichtbaren Speiche, in einer zweiten Ausführung,
Figur 31
das Rührwerk in einer weiteren geänderten Ausführung, in Seitenansicht, in einem stehenden Behälter,
Figur 32
das Rührwerk in einer nochmals geänderten Ausführung, in Seitenansicht, in einem stehenden Behälter,
Figur 33
ein Rührwerk mit drei in einem stehenden Behälter angeordneten Rotoren, in einer Draufsicht,
Figur 34
ein Rührwerk in Seitenansicht in einem liegenden Behälter, in einer ersten Ausführung,
Figur 35
ein Rührwerk mit zwei nebeneinander angeordneten Rotoren in einem liegenden Behälter, in einer perspektivischen Ansicht, mit aufgeschnittenem Behälter, und
Figur 36
ein Rührwerk in Seitenansicht in einem liegenden Behälter, in einer weiteren Ausführung.
In the following, exemplary embodiments of the invention are explained using a drawing. The figures in the drawing show:
Figure 1
an agitator in a first version, in an upright, only partially shown container, viewed at an angle from above,
Figure 2
the agitator off Figure 1 together with the container, in plan view,
Figure 3
the agitator off Figure 2 with flow of a substrate in the container indicated by flow arrows, also in plan view,
Figure 4
the agitator in a modified version, in the same representation as in Figure 2 ,
Figure 5
the agitator off Figure 4 seen in an end view in the radial direction of the container from the inside to the outside,
Figure 6
the agitator in a further version, in plan view,
Figure 7
the agitator in a further version, in plan view,
Figure 8
the agitator in another version, in front view,
Figure 9
the agitator in a further version, in plan view,
Figure 10
the agitator off Figure 9 with flow of a substrate in the container indicated by flow arrows, in plan view,
Figure 11
the agitator in a further version, in side view,
Figure 12
a rotor of the agitator with an agitator blade, in a first embodiment, in side view,
Figure 13
the rotor with a stirring blade, in a second version, in side view,
Figure 14
the rotor with two stirring blades, in a first version, in side view,
Figure 15
the rotor with two stirring blades, in a second version, in side view,
Figure 16
the rotor with four stirring blades, in a first version, in side view,
Figure 17
the rotor with four stirring blades, in a second version, in side view,
Figure 18
the rotor with six stirring blades, in a first version, in side view,
Figure 19
the rotor with six stirring blades, in a second version, in side view,
Figure 20
the rotor with eight stirring blades, in a first version, in side view,
Figure 21
the rotor with eight stirring blades, in a second version, in side view,
Figure 22
the rotor with four stirring blades, in a modified design, in side view,
Figure 23
the rotor off Figure 22 in cross section according to section line AA in Figure 22 ,
Figure 24
the rotor off Figure 22 in cross section according to section line BB in Figure 22 ,
Figure 25
the rotor off Figure 22 in cross section according to section line CC in Figure 22 ,
Figure 26
the rotor with four stirring blades, in a modified design, in side view,
Figure 27
the rotor with four stirring blades, in a further modified version, in side view,
Figure 28
the rotor with four stirring blades, in another modified version, in side view,
Figure 29
a section of a rotor shaft with a spoke visible in section, in a first embodiment,
Figure 30
a section of the rotor shaft with the spoke visible in section, in a second version,
Figure 31
the agitator in another modified version, in side view, in a standing container,
Figure 32
the agitator in a further modified version, in side view, in a standing container,
Figure 33
an agitator with three rotors arranged in a standing container, in a top view,
Figure 34
an agitator in a side view in a horizontal container, in a first version,
Figure 35
an agitator with two rotors arranged next to one another in a horizontal container, in a perspective view, with the container cut open, and
Figure 36
an agitator in a side view in a horizontal container, in a further embodiment.

In der folgenden Figurenbeschreibung werden gleiche Teile in den verschiedenen Zeichnungsfiguren stets mit den gleichen Bezugsziffern bezeichnet, so dass nicht zu jeder Zeichnungsfigur alle Bezugsziffern neu erläutert werden müssen.In the following description of the figures, the same parts in the various drawing figures are always designated by the same reference numbers, so that not all reference numbers have to be explained anew for each drawing figure.

Figur 1 der Zeichnung zeigt ein Rührwerk 1 in einer ersten Ausführung, in einem stehenden, nur teilweise dargestellten Behälter 3, in Ansicht schräg von oben. Der stehende Behälter 3 besitzt eine ringförmige, umlaufende Umfangswand 31 und einen Boden 32 und ist oben offen dargestellt, damit das im Inneren des Behälters 3 angeordnete Rührwerk 1 sichtbar ist. Der Behälter 3 ist beispielsweise ein Fermentationsbehälter einer Biogasanlage, in welchem ein aus Flüssigkeit und Feststoffen bestehendes Substrat bewegt und durchmischt werden soll. In der Praxis ist bei einem solchen Behälter 3 ein hier nicht dargestelltes, an sich bekanntes Dach vorgesehen, welches den Behälter 3 oberseitig gasdicht abdeckt, wobei das Dach beispielsweise eine Kunststoffmembran sein kann. Figure 1 the drawing shows an agitator 1 in a first embodiment, in a standing, only partially shown container 3, in a view obliquely from above. The standing container 3 has an annular, circumferential wall 31 and a bottom 32 and is shown open at the top so that the agitator 1 arranged inside the container 3 is visible. The container 3 is, for example, a fermentation container of a biogas plant in which a substrate consisting of liquid and solids is to be moved and mixed. In practice, a known roof, not shown here, is provided in such a container 3, which covers the container 3 on the top in a gas-tight manner, the roof being, for example, a plastic membrane.

Zum Bewegen und Durchmischen des Substrats im Behälter 3 dient das Rührwerk 1, welches einen in Drehung versetzbaren Rotor 2 mit hier vier Rührblättern 25 aufweist. Der Rotor 2 umfasst weiterhin eine durchgehende Rotorwelle 21, die horizontal sowie im Wesentlichen in Radialrichtung des Behälters 3 verläuft. An ihrem behälterseitigen Ende ist die Rotorwelle 21 in einem Rotorlager 22.1 drehbar gelagert, welches seinerseits in einer auf dem Boden 32 des Behälters 3 stehenden Abstützung 23 angeordnet ist. Das andere Ende der Rotorwelle 21 ist durch eine Wellendurchführung 38 in der Behälterumfangswand 31 aus dem Behälter 3 herausgeführt und dort mittels eines weiteren Rotorlagers gelagert. Dort ist auch ein hier nicht sichtbarer Antrieb, wie Elektromotor oder Hydromotor, für den Rotor 2 angeordnet.The agitator 1, which has a rotatable rotor 2 with four agitator blades 25 here, is used to move and mix the substrate in the container 3. The rotor 2 furthermore comprises a continuous rotor shaft 21 which runs horizontally and essentially in the radial direction of the container 3. At its end on the container side, the rotor shaft 21 is rotatably mounted in a rotor bearing 22.1, which in turn is arranged in a support 23 standing on the bottom 32 of the container 3. The other end of the rotor shaft 21 is led out of the container 3 through a shaft duct 38 in the container peripheral wall 31 and is supported there by means of a further rotor bearing. A drive, not visible here, such as an electric motor or hydraulic motor, for the rotor 2 is also arranged there.

Weiterhin weist der Rotor 2 jeweils vier erste Speichen 24.1 und zweite Speichen 24.2 auf, die rechtwinklig zu der Rotorwelle 21 ausgerichtet an dieser angebracht sind. An den freien Enden der Speichen 24.1, 24.2 sind die Enden 25.1, 25.2 der Rührblätter 25 gehaltert.Furthermore, the rotor 2 each has four first spokes 24.1 and second spokes 24.2, which are attached to the rotor shaft 21, aligned at right angles to the latter. The ends 25.1, 25.2 of the stirring blades 25 are held at the free ends of the spokes 24.1, 24.2.

Die Rührblätter 25 bestehen jeweils aus einem flachen, schmalen Materialstreifen, vorzugsweise aus Stahl, und haben relativ zu ihrer Länge eine verhältnismäßig geringe Breite. Weiterhin sind die Rührblätter 25 so mit den Speichen 24.1, 24.2 verbunden, dass die Rührblätter 25 zum einen entlang einer Schraubenlinie verlaufen und dass sich zum anderen die Ausrichtung der Fläche der Rührblätter 25 relativ zur Radialrichtung des Rotors 2 in ihrem Verlauf verändert. Die Rührblätter 25 sind also um ein bestimmtes Maß in sich verwunden. In dem Ausführungsbeispiel nach Figur 1 liegt die Ebene der Rührblätter 25 an deren erstem Ende 25.1 in Längsrichtung der dortigen Speichen 24.1, also in Radialrichtung des Rotors 2. Am zweiten Ende 25.2 der Rührblätter 25 liegt deren Ebene nicht mehr in der Radialrichtung des Rotors 2, sondern in einer dazu verdrehten oder verkippten Ebene, wie die Figur 1 im Bereich der Verbindung zwischen den zweiten Speichen 24.2 und den dortigen Enden 25.2 der Rührblätter 25 veranschaulicht.The stirring blades 25 each consist of a flat, narrow strip of material, preferably made of steel, and have a relatively small width relative to their length. Furthermore, the stirring blades 25 are connected to the spokes 24.1, 24.2 in such a way that the stirring blades 25 on the one hand run along a helical line and that, on the other hand, the alignment of the surface of the stirring blades 25 changes relative to the radial direction of the rotor 2 in its course. The stirring blades 25 are therefore twisted to a certain extent. In the embodiment according to Figure 1 the plane of the agitator blades 25 is at their first end 25.1 in the longitudinal direction of the spokes 24.1 there, i.e. in the radial direction of the rotor 2. At the second end 25.2 of the agitator blades 25, their plane is no longer in the radial direction of the rotor 2, but in a twisted or rotated direction tilted level like that Figure 1 in the area of the connection between the second spokes 24.2 and the ends 25.2 of the stirring blades 25 there.

Mit dieser Ausführung und Anordnung der Rührblätter 25 des Rotors 2 wird erreicht, dass der Rotor 2 zwei Bereiche 2' und 2" mit unterschiedlicher Förderwirkung auf ein im Behälter 3 befindliches Substrat erhält. In dem Rotorbereich 2' übt der Rotor 2 im Betrieb eine überwiegend in Axialrichtung des Rotors 2 weisende Förderwirkung auf das Substrat aus, während der Rotor 2 in dem Rotorbereich 2" eine größere in Radialrichtung des Rotors 2 weisende Förderwirkung auf das Substrat ausübt. Bei einem beispielsweise rechtsdrehenden Antrieb des Rotors 2 erzeugt dessen Rotorbereich 2' eine dort in Axialrichtung des Rotors 2 und somit in Radialrichtung des Behälters 3 von innen nach außen weisende Förderwirkung, während der Rotorbereich 2" dort eine in Radialrichtung des Rotors 2 und somit in Umfangsrichtung des Behälters 3 vom Rotor 2 weg weisende Förderwirkung auf das Substrat erzeugt. Im Rotorbereich 2' wird dabei vorteilhaft die infolge der Drehung des Rotors 2 ohnehin entstehende, auf das Substrat wirkende Zentrifugalkraft zur Unterstützung der gewünschten Förderung des Substrats in Umfangsrichtung des Behälters 3 vom Rotor 2 weg ausgenutzt, was zu einem hohen Wirkungsgrad des Rührwerks 1 beiträgt.With this design and arrangement of the stirring blades 25 of the rotor 2 it is achieved that the rotor 2 receives two areas 2 'and 2 "with different conveying effects on a substrate located in the container 3. In the rotor area 2', the rotor 2 predominantly exercises a in the axial direction of the rotor 2 pointing conveying effect on the substrate, while the rotor 2 in the rotor area 2 ″ exerts a greater conveying effect pointing in the radial direction of the rotor 2 on the substrate. In the case of a clockwise drive of the rotor 2, for example, its rotor area 2 'generates a conveying effect there in the axial direction of the rotor 2 and thus in the radial direction of the container 3 from the inside to the outside, while the rotor area 2 "there a conveying effect in the radial direction of the rotor 2 and thus in the circumferential direction of the container 3 away from the rotor 2. In the rotor area 2 ', the centrifugal force acting on the substrate anyway as a result of the rotation of the rotor 2 is advantageously generated to support the desired conveyance of the substrate in the circumferential direction of the container 3 by the rotor 2 used away, which contributes to the high efficiency of the agitator 1.

Wie aus der Figur 1 weiter ersichtlich ist, weist die Schraubenlinie, entlang der jedes Rührblatt 21 verläuft, hier einen Schraubenlinienwinkel von 90° auf. Bei vier Rührblättern 25, die jeweils über einen Schraubenlinienwinkel von 90° verlaufen, ergibt sich mit Vorteil ein stets gleichmäßiges, von der jeweiligen Drehstellung des Rotors 2 unabhängiges Eingreifen des Rotors 2 mit seinen Rührblättern 25 in das Substrat in Behälter 3, auch wenn der Spiegel des Substrats so niedrig ist, dass ein oberer Teil des Rotors 2 über dem Substratspiegel liegt. Hierdurch werden Unregelmäßigkeiten im für das Drehen des Rotors 2 von einem Antriebsmotor aufzubringenden Drehmoment sowie die Lager des Rotors 2 belastende Schläge oder Stöße im Betrieb des Rührwerks 1 vermieden.As from the Figure 1 As can also be seen, the helical line along which each stirring blade 21 runs has a helical angle of 90 ° here. With four stirring blades 25, each extending over a helical angle of 90 °, there is advantageously always uniform engagement of the rotor 2 with its stirring blades 25 in the substrate in the container 3, independent of the respective rotational position of the rotor 2, even when the mirror of the substrate is so low that an upper part of the rotor 2 lies above the substrate mirror. As a result, irregularities are applied in the rotation of the rotor 2 by a drive motor Torque and the bearings of the rotor 2 avoiding impacts or shocks during operation of the agitator 1.

Eine umgekehrte Drehrichtung des Antriebes des Rotors 2 ist ebenfalls möglich; dabei ergibt sich zwangsläufig eine Förderwirkung des Rotors 2 auf das Substrat, die der zuvor beschriebenen Förderwirkung entgegengesetzt ist.A reverse direction of rotation of the drive of the rotor 2 is also possible; this inevitably results in a conveying effect of the rotor 2 on the substrate which is opposite to the conveying effect described above.

Figur 2 zeigt das Rührwerk 1 aus Figur 1 zusammen mit dem Behälter 3 in Draufsicht. Hier wird besonders deutlich, dass der Behälter 3 einen kreisförmigen Umriss mit der Behälterumfangswand 31 und dem kreisförmigen Boden 32 hat. Alternativ kann der Behälter 3 auch eine mehreckige oder vieleckige Umrissform aufweisen. Figure 2 shows the agitator 1 from Figure 1 together with the container 3 in plan view. It is particularly clear here that the container 3 has a circular outline with the container peripheral wall 31 and the circular base 32. Alternatively, the container 3 can also have a polygonal or polygonal outline.

In dem in Figur 2 linken Bereich des Behälters 3 ist das Rührwerk 1 mit dem Rotor 2 anordnet, dessen axiale Länge sich hier etwa über ein Viertel des Durchmessers des Behälters 3 erstreckt. Die Figur 2 veranschaulicht also besonders deutlich, dass der Rotor 2 des Rührwerks 1 nur einen Bruchteil des Volumens des Behälters 3 einnimmt.In the in Figure 2 The agitator 1 with the rotor 2 is arranged on the left-hand side of the container 3, the axial length of which here extends over approximately a quarter of the diameter of the container 3. The Figure 2 thus illustrates particularly clearly that the rotor 2 of the agitator 1 only takes up a fraction of the volume of the container 3.

Die Rotorwelle 21 verläuft hier in Radialrichtung des Behälters 3 und ist an ihrem zum Zentrum des Behälters 3 weisenden Ende in der Abstützung 23 gelagert. Mittels der Wellendurchführung 38 ist die Rotorwelle 21 an ihrem anderen Ende durch die Behälterumfangswand 31 dichtend hindurchgeführt. Außerhalb des Behälters 3 ist der Antrieb 28, hier ein Elektromotor, für den Rotor 2 des Rührwerks 1 angeordnet. Die Zahl und Anordnung der Rührblätter 25 des Rotors 2 in Figur 2 entspricht dem Beispiel nach Figur 1.The rotor shaft 21 runs here in the radial direction of the container 3 and is mounted in the support 23 at its end pointing towards the center of the container 3. By means of the shaft bushing 38, the other end of the rotor shaft 21 is passed through the container peripheral wall 31 in a sealing manner. The drive 28, here an electric motor, for the rotor 2 of the agitator 1 is arranged outside the container 3. The number and arrangement of the stirring blades 25 of the rotor 2 in Figure 2 corresponds to the example below Figure 1 .

Figur 3 zeigt das Rührwerk 1 aus Figur 2 mit durch Strömungspfeile angedeuteter Strömung eines Substrats im Behälter 3, ebenfalls in Draufsicht, bei im Betrieb befindlichem Rührwerk 1. Mit dem Drehpfeil an der Rotorwelle 21 ist die hier vorliegende Arbeitsdrehrichtung 20' des Rotors 2 angedeutet. Aufgrund der oben beschriebenen unterschiedlichen Förderwirkungen der Rotorbereiche 2' und 2" stellt sich im Behälter 3 innerhalb des darin befindlichen Substrats 30 die durch die Strömungspfeile 30' und 30" veranschaulichte Strömung ein. Dabei nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung. Figure 3 shows the agitator 1 from Figure 2 with the flow of a substrate in the container 3 indicated by flow arrows, also in plan view, with the agitator 1 in operation. The rotating arrow on the rotor shaft 21 indicates the working direction of rotation 20 'of the rotor 2 here. Due to the above-described different conveying effects of the rotor regions 2 'and 2 ", the flow illustrated by the flow arrows 30' and 30" occurs in the container 3 within the substrate 30 located therein. The rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

Im Rotorbereich 2' ergibt sich dabei eine Strömung, die im Wesentlichen in Axialrichtung des Rotors 2 und in Radialrichtung des Behälters 3 von innen nach außen verläuft, während im Rotorbereich 2" die Förderwirkung stärker in Radialrichtung des Rotors 2 wirkt, wodurch dort die in Umfangsrichtung des Behälters 3 weisende zirkulare Strömung 30" erzeugt wird. Wie in Figur 3 veranschaulicht, wird auch mit einem nur einen Rotor 2 aufweisenden Rührwerk 1 im Behälter 3 dessen gesamter Inhalt an Substrat 30 in Bewegung versetzt und werden die Bestandteile des Substrats 30 dabei intensiv durchmischt.In the rotor area 2 'there is a flow that runs essentially in the axial direction of the rotor 2 and in the radial direction of the container 3 from the inside to the outside, while in the rotor area 2 "the conveying effect acts more strongly in the radial direction of the rotor 2, whereby there the in the circumferential direction of the container 3 pointing circular flow 30 ″ is generated. As in Figure 3 illustrated, the entire contents of the substrate 30 are set in motion with an agitator 1 in the container 3, which has only one rotor 2, and the constituents of the substrate 30 are intensively mixed.

Figur 4 zeigt das Rührwerk 1 in einer geänderten Ausführung, in gleicher Darstellung wie in Figur 2. Unterschiedlich zu dem Beispiel nach Figur 1 und 2 ist hier, dass die Ausrichtung des Rotors 2 mit seinen beiden verschiedenen Rotorbereichen 2' und 2" umgekehrt ist. Der Rotorbereich 2' mit der überwiegend in Axialrichtung des Rotors 2 weisenden Förderwirkung liegt hier nahe der Behälterumfangswand 31, während der Rotorbereich 2" mit der überwiegend oder stärker in Radialrichtung des Rotors 2 weisenden Förderwirkung an der von der Behälterumfangswand 31 entfernt liegenden Seite des Rotors 2 liegt. Hierdurch ergeben sich, zusätzlich abhängig von der Drehrichtung des Rotors 2, weitere, geänderte Förderwirkungen auf ein Substrat im Behälter 3, welche, je nach den vorliegenden Betriebsbedingungen, vorteilhaft sein können. Auch bei diesem Ausführungsbeispiel nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung. Figure 4 shows the agitator 1 in a modified version, in the same representation as in FIG Figure 2 . Different from the example after Figure 1 and 2 is here that the orientation of the rotor 2 with its two different rotor areas 2 'and 2 "is reversed. The rotor area 2' with the conveying effect pointing predominantly in the axial direction of the rotor 2 is here near the container circumferential wall 31, while the rotor area 2" with the predominantly or more strongly in the radial direction of the rotor 2 is the conveying action on the side of the rotor 2 remote from the container peripheral wall 31. This results, additionally depending on the direction of rotation of the rotor 2, further, changed conveying effects on a substrate in the container 3, which, depending on the operating conditions present, can be advantageous. In this embodiment, too, the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

Figur 5 zeigt das Rührwerk 1 aus Figur 4 in einer Stirnansicht in Radialrichtung des Behälters 3 von innen nach außen gesehen. Dem Betrachter zugewandt ist die Abstützung 23, die das Rotorlager 22.1 trägt, in welchem die hier nicht sichtbare Rotorwelle des Rotors 2 gelagert ist. In Radialrichtung verlaufen hier die Speichen 24.1 geradlinig von der Rotorwelle 21 nach außen. Mit dem jeweils äußeren Endbereich der Speichen 24.1 sind die Rührblätter 25 in der zuvor beschriebenen Ausrichtung verbunden. Ganz links und ganz rechts in Figur 5 ist die Umfangswand 31 des Behälters 3 sichtbar. Nach unten ist der Behälter 3 durch den Behälterboden 32 begrenzt. Figure 5 shows the agitator 1 from Figure 4 seen in an end view in the radial direction of the container 3 from the inside to the outside. Facing the viewer is the support 23, which carries the rotor bearing 22.1, in which the rotor shaft of the rotor 2 (not visible here) is mounted. In the radial direction, the spokes 24.1 here extend in a straight line from the rotor shaft 21 to the outside. The stirring blades 25 are connected in the orientation described above to the respective outer end area of the spokes 24.1. Far left and far right in Figure 5 the peripheral wall 31 of the container 3 is visible. The container 3 is delimited at the bottom by the container base 32.

Figur 6 zeigt das Rührwerk 1 in einer weiteren Ausführung in Draufsicht. Der Rotor 2 mit der Rotorwelle 21 und den Rührblättern 25 ist hier übereinstimmend mit dem Beispiel gemäß den Figuren 1 und 2 ausgeführt. Unterschiedlich ist bei dem Beispiel nach Figur 6, dass hier als Teil des Rührwerks 1 ein Strömungsleitkörper 36 auf der inneren Oberfläche der Behälterumfangswand 31 des Behälters 3 angeordnet ist, um die Strömungsführung des Substrats im Behälter 3 zu unterstützen, um strömungsfreie Totbereiche zu vermeiden und um die Wellendurchführung 38 in der Behälterumfangswand 31 zu entlasten. Der Strömungsleitkörper 36 besitzt eine abgerundete Keilform, wobei die Spitze des Keils zu der der Behälterumfangswand 31 zugewandten Seite des Rotors 2 weist und wobei die konkav gerundeten Keilflächen beiderseits der Spitze tangential in die innere Oberfläche der Behälterumfangswand 31 übergehen. Auch bei diesem Ausführungsbeispiel nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung. Figure 6 shows the agitator 1 in a further embodiment in plan view. The rotor 2 with the rotor shaft 21 and the stirring blades 25 here corresponds to the example according to FIG Figures 1 and 2 executed. The following example is different Figure 6 that here, as part of the agitator 1, a flow guide body 36 is arranged on the inner surface of the container peripheral wall 31 of the container 3 to support the flow of the substrate in the container 3, to avoid flow-free dead areas and to close the shaft duct 38 in the container peripheral wall 31 relieve. The flow guide body 36 has a rounded wedge shape, the tip of the wedge pointing to the side of the rotor 2 facing the container peripheral wall 31 and the concavely rounded wedge surfaces on both sides of the tip merging tangentially into the inner surface of the container peripheral wall 31. In this embodiment, too, the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

Figur 7 zeigt das Rührwerk 1 in einer weiteren Ausführung in Draufsicht. Auch hier ist der Rotor 2 übereinstimmend mit dem Beispiel gemäß den Figuren 1 und 2 ausgeführt. Charakteristisch für dieses Ausführungsbeispiel ist ein Strömungsleitkörper 26, der auf der Rotorwelle 21 angebracht ist und sich im Betrieb des Rührwerks 1 zusammen mit dem Rotor 2 dreht. Der Strömungsleitkörper 26 ist hier ein rotationssymmetrischer Körper, wobei dessen zum Rotor 2 weisende Seite eine konkav ausgerundete Kegelform bildet. Auch hiermit wird die im Betrieb des Rührwerks 1 durch den Rotor 2 erzeugte Substratströmung günstig gelenkt und unterstützt und zugleich auch die Wellendurchführung 38 in der Behälterumfangswand 31 vom Strömungsdruck des Substrats entlastet. Auch bei diesem Ausführungsbeispiel nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung. Figure 7 shows the agitator 1 in a further embodiment in plan view. Here, too, the rotor 2 corresponds to the example according to FIGS Figures 1 and 2 executed. A characteristic of this exemplary embodiment is a flow guide body 26 which is attached to the rotor shaft 21 and rotates together with the rotor 2 when the agitator 1 is in operation. The flow guide body 26 is here a rotationally symmetrical body, its side facing the rotor 2 forming a concavely rounded cone shape. In this way, too, the substrate flow generated by the rotor 2 during operation of the agitator 1 is favorably directed and supported and at the same time the shaft feed-through 38 in the container peripheral wall 31 is also relieved of the flow pressure of the substrate. In this embodiment, too, the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

Figur 8 zeigt das Rührwerk 1 in einer weiteren Ausführung, in Stirnansicht, als Abwandlung des Beispiels nach Figur 5. Charakteristisch für das Rührwerk 1 gemäß Figur 8 ist, dass dessen Speichen 24.1 nicht geradlinig in Radialrichtung des Rotors 2 verlaufen, sondern jeweils eine gebogene Form aufweisen. Diese gebogene Form können außer den Speichen 24.1 auch die in Figur 8 nicht sichtbaren Speichen 24.2 aufweisen. Diese Form der Speichen 24.1, 24.2 kann zur Erzeugung einer Förderwirkung dienen sowie für die Aufnahme der im Betrieb des Rührwerks 1 an den Speichen 24.1, 24.2 auftretenden mechanischen Belastungen günstig sein. Figure 8 shows the agitator 1 in a further embodiment, in front view, as a modification of the example according to Figure 5 . Characteristic of the agitator 1 according to Figure 8 is that its spokes 24.1 do not run in a straight line in the radial direction of the rotor 2, but each have a curved shape. In addition to the spokes 24.1, this curved shape can also be used in Figure 8 have invisible spokes 24.2. This shape of the spokes 24.1, 24.2 can be used to generate a conveying effect serve and be favorable for absorbing the mechanical loads occurring on the spokes 24.1, 24.2 during operation of the agitator 1.

Figur 9 zeigt das Rührwerk 1 in einer weiteren Ausführung in Draufsicht, zusammen mit einem auch hier wieder runden stehenden Behälter 3. Unterschiedlich zu den zuvor beschriebenen Ausführungsbeispielen ist hier, dass die Rotorwelle 21 des Rotors 2 des Rührwerks 1 in einer gegenüber der Radialrichtung des Behälters 3 schräg verlaufenden Richtung angeordnet ist. Im Übrigen entspricht das Rührwerk 1 nach Figur 9 dem Ausführungsbeispiel nach den Figuren 1 und 2. Die schräge Ausrichtung der Rotorwelle 21 kann dabei fix oder alternativ auch veränderlich sein, wobei die Veränderung der Ausrichtung der Rotorwelle 21 bei Stillstand des Rührwerks 1 oder auch während eines laufenden Rührbetriebes erfolgen kann. Figure 9 shows the agitator 1 in a further embodiment in a plan view, together with a standing container 3, which is round again here. What differs from the previously described embodiments is that the rotor shaft 21 of the rotor 2 of the agitator 1 is inclined in relation to the radial direction of the container 3 extending direction is arranged. Otherwise, the agitator 1 corresponds to Figure 9 the embodiment according to Figures 1 and 2 . The inclined alignment of the rotor shaft 21 can be fixed or, alternatively, also variable, the change in the alignment of the rotor shaft 21 being able to take place when the agitator 1 is at a standstill or also while the agitator is in operation.

Figur 10 zeigt das Rührwerk 1 aus Figur 9 mit durch Strömungspfeile angedeuteter Strömung eines Substrats 30 im Behälter 3, in Draufsicht. Auch hier wird durch das Rührwerk 1 im Rotorbereich 2' eine überwiegend in Axialrichtung des Rotors 2 verlaufende Förderwirkung in Richtung der Strömungspfeile 30' im Substrat hervorgerufen, während der der Behälterumfangswand 31 zugewandte Rotorbereich 2" eine stärkere Förderwirkung in Radialrichtung des Rotors 2 aufweist und somit die in Umfangsrichtung des Behälters 3 verlaufende Strömung 30" im Substrat erzeugt. Insgesamt ergeben sich hier zwei Strömungskreise unterschiedlicher Größe, wobei im Bereich des Rotors 2 das Substrat 30 zwischen den Strömungskreisen vermischt und ausgetauscht wird. Auch bei dem Ausführungsbeispiel nach den Figuren 9 und 10 nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung. Figure 10 shows the agitator 1 from Figure 9 with the flow of a substrate 30 in the container 3 indicated by flow arrows, in plan view. Here, too, the agitator 1 in the rotor area 2 'produces a conveying effect that runs predominantly in the axial direction of the rotor 2 in the direction of the flow arrows 30' in the substrate, while the rotor area 2 "facing the container peripheral wall 31 has a stronger conveying effect in the radial direction of the rotor 2 and thus the flow 30 ″ running in the circumferential direction of the container 3 is generated in the substrate. Overall, two flow circles of different sizes result here, the substrate 30 being mixed and exchanged between the flow circles in the area of the rotor 2. Even in the embodiment according to Figures 9 and 10 the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets and mixes the entire substrate volume in the container 3 in motion.

Figur 11 zeigt das Rührwerk 1 in einer weiteren Ausführung, in Seitenansicht. Charakteristisch für dieses Rührwerk 1 sind zwei Merkmale, nämlich zum einen, dass die Rotorwelle 21 mit einer Neigung zur Horizontalrichtung verläuft, und zum anderen, dass der radiale Abstand der Rührblätter 25 von der Rotorwelle 21 über deren axiale Länge gesehen unterschiedlich ist. Figure 11 shows the agitator 1 in a further embodiment, in side view. Two features are characteristic of this agitator 1, namely on the one hand that the rotor shaft 21 runs at an inclination to the horizontal direction, and on the other hand that the radial distance between the agitator blades 25 and the rotor shaft 21 is different over its axial length.

Die Neigung der Rotorwelle 21 verläuft hier von der Behälterumfangswand 31 in Richtung zum Inneren des Behälters gesehen abwärts. Das Innere Ende der Rotorwelle 21 ist dabei auch hier in einer Abstützung 23 gelagert und abgestützt.The inclination of the rotor shaft 21 here runs downwards as seen from the container peripheral wall 31 in the direction of the interior of the container. Here, too, the inner end of the rotor shaft 21 is mounted and supported in a support 23.

Der radiale Abstand der Rührblätter 25 von der Rotorwelle 21 ist an dem zum Inneren des Behälters 3 weisenden Ende des Rotors 2 kleiner und an dem zur Behälterumfangswand 31 weisenden Ende des Rotors 2 größer. Dementsprechend sind auch die ersten Speichen 24.1 des Rotors 2 kürzer als die wandnahen Speichen 24.2. Hiermit wird erreicht, dass die Rührblätter 25 des Rotors 2 über ihre gesamte Länge relativ nahe über den Behälterboden 32 bewegt werden können, um ein Absetzen von Feststoffen aus dem Substrat auf dem Behälterboden 32 zu vermeiden. Auch bei diesem Ausführungsbeispiel nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung.The radial distance between the agitator blades 25 and the rotor shaft 21 is smaller at the end of the rotor 2 facing the interior of the container 3 and larger at the end of the rotor 2 facing the container peripheral wall 31. Accordingly, the first spokes 24.1 of the rotor 2 are also shorter than the spokes 24.2 close to the wall. What is achieved hereby is that the stirring blades 25 of the rotor 2 can be moved relatively close over the container base 32 over their entire length in order to prevent solids from the substrate from settling on the container base 32. In this exemplary embodiment, too, the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

In allen Ausführungsbeispielen nach den Figuren 1 bis 11 sind ersichtlich die Speichen 24.1, 24.2 als flache, schräg gestellte Stege und somit als Förderelemente für das Substrat im Sinne des Patentanspruchs 1 ausgebildet.In all embodiments according to Figures 1 to 11 the spokes 24.1, 24.2 can be seen as flat, inclined webs and thus designed as conveying elements for the substrate within the meaning of claim 1.

Der Rotor 2 des Rührwerks 1 kann in verschiedener Hinsicht unterschiedlich gestaltet werden, insbesondere hinsichtlich seiner Welle sowie der Anzahl seiner Rührblätter, wie nachfolgend anhand mehrerer entsprechender Ausführungsbeispiele erläutert wird.The rotor 2 of the agitator 1 can be designed differently in various respects, in particular with regard to its shaft and the number of its agitator blades, as will be explained below with reference to several corresponding exemplary embodiments.

Die Figur 12 zeigt einen Rotor 2 des Rührwerks 1 mit einem einzigen Rührblatt 25, in einer ersten Ausführung, in Seitenansicht. Das Rührblatt 25 verläuft auch hier entlang einer Schraubenlinie und zwar über einen Schraubenlinienwinkel von 360°. Zu seiner Lagerung besitzt der Rotor 2 hier zwei Wellenstümpfe 21.1, 21.2 an seinen beiden Rotorenden 2.1, 2.2. Mit jedem Wellenstumpf 21.1, 21.2 ist jeweils eine Speiche 24.1, 24.2 verbunden. Mit dem freien Ende der Speichen 24.1, 24.2 ist das Rührblatt 25, welches auch hier die Form eines schmalen Materialstreifens hat, an seinen Enden 25.1, 25.2 verbunden. An dem in Figur 12 rechten Ende 25.1 des Rührblatts 25 liegt dessen Flächenebene in der Radialrichtung des Rotors 2, also in Längsrichtung der radial verlaufenden rechten Speiche 24.1. An dem in Figur 12 linken Ende 25.2 des Rührblatts 25 verläuft dessen Flächenebene schräg zur Radialrichtung des Rotors 2 und damit auch schräg zur Längsrichtung der dort in Radialrichtung verlaufenden Speiche 24.2. Auch hier ist also das Rührblatt 25 in seinem Verlauf entlang der Schraubenlinie in sich verwunden. Hierdurch werden auch bei diesem nur ein einziges Rührblatt 25 aufweisenden Rotor 2 zwei Rotorbereiche 2' und 2" unterschiedlicher Förderwirkung gebildet, wobei aufgrund der jeweiligen Ausrichtung der Flächenebene des Rührblatts 25 der Rotorbereich 2' eine stärkere Förderwirkung in Axialrichtung des Rotors 2 und der Rotorbereich 2" eine stärkere Förderwirkung in Radialrichtung des Rotors 2 aufweist.The Figure 12 shows a rotor 2 of the agitator 1 with a single agitator blade 25, in a first embodiment, in side view. Here, too, the stirring blade 25 runs along a helical line over a helical line angle of 360 °. To support it, the rotor 2 has two stub shafts 21.1, 21.2 at its two rotor ends 2.1, 2.2. A spoke 24.1, 24.2 is connected to each stub shaft 21.1, 21.2. With the free end of the spokes 24.1, 24.2, the stirring blade 25, which here also has the shape of a narrow strip of material, is connected at its ends 25.1, 25.2. At the in Figure 12 right end 25.1 of the stirring blade 25, the surface plane of which lies in the radial direction of the rotor 2, that is to say in the longitudinal direction of the radially extending right spoke 24.1. At the in Figure 12 left end 25.2 of the stirring blade 25, its surface plane runs obliquely to the radial direction of the rotor 2 and thus also obliquely to the longitudinal direction of the spoke 24.2 extending there in the radial direction. Here too, the stirring blade 25 is twisted in its course along the helical line. This also helps with This rotor 2, which has only a single agitator blade 25, forms two rotor areas 2 'and 2 "with different conveying effects, with the rotor area 2' having a stronger conveying effect in the axial direction of the rotor 2 and the rotor area 2" having a stronger conveying effect due to the respective alignment of the surface plane of the agitating blade 25 having in the radial direction of the rotor 2.

Mittels seiner Wellenstümpfe 21.1, 21.2 ist der Rotor 2 um eine Drehachse 20 drehbar lagerbar und mittels eines an einem der Wellenstümpfe 21.1, 21.2 angreifenden Antriebs in Drehung versetzbar.By means of its stub shafts 21.1, 21.2, the rotor 2 can be rotatably supported about an axis of rotation 20 and can be set in rotation by means of a drive engaging one of the stub shafts 21.1, 21.2.

Figur 13 zeigt den Rotor 2 mit einem einzigen Rührblatt 25 in einer zweiten Ausführung, in Seitenansicht. Unterschiedlich zu dem zuvor beschriebenen Ausführungsbeispiel ist hier, dass der Rotor 2 eine durchgehende Rotorwelle 21 anstelle der zwei Wellenstümpfe aufweist. Hinsichtlich der weiteren Teile und Eigenschaften entspricht der Rotor 2 gemäß Figur 13 dem Beispiel nach Figur 12. Figure 13 shows the rotor 2 with a single stirring blade 25 in a second embodiment, in side view. What differs from the previously described exemplary embodiment is that the rotor 2 has a continuous rotor shaft 21 instead of the two stub shafts. With regard to the other parts and properties, the rotor 2 corresponds to FIG Figure 13 following the example Figure 12 .

Figur 14 zeigt den Rotor 2 mit zwei Rührblättern 25 in einer ersten Ausführung in Seitenansicht. Die beiden Rührblätter 25 sind zueinander um 180° in Umfangsrichtung versetzt im Rotor 2 angeordnet und verlaufen wieder jeweils entlang einer Schraubenlinie, die hier jeweils einen Schraubenlinienwinkel von 180° beschreibt. Zur drehbaren Lagerung des Rotors 2 dienen hier wieder zwei Wellenstümpfe 21.1 und 21.2. Von dem Wellenstumpf 21.1 gehen zwei erste Speichen 24.1 und von dem Wellenstumpf 21.2 zwei zweite Speichen 24.2 in Radialrichtung aus, wobei die Speichen 24.1, 24.2 jeweils zueinander um 180° in Umfangsrichtung des Rotors 2 versetzt sind. Am freien Ende der Speichen 24.1, 24.2 sind die Enden 25.1 und 25.2 der Rührblätter 25 angebracht. Wie bei dem Beispiel zuvor liegt die Flächenebene der Rührblätter 25 an deren Ende 25.1 in Radialrichtung des Rotors 2, während am anderen Ende des Rotors 2 am Ende 25.2 der Rührblätter 25 deren Flächenebene schräg zur Radialrichtung des Rotors 2 ausgerichtet sind. Somit ergeben sich auch hier die zuvor schon beschriebenen Rotorbereiche 2' und 2" mit bei der Drehung des Rotors 2 voneinander verschiedenen Förderwirkung auf ein Substrat. Figure 14 shows the rotor 2 with two stirring blades 25 in a first embodiment in a side view. The two stirring blades 25 are arranged offset from one another by 180 ° in the circumferential direction in the rotor 2 and again each run along a helical line, which here describes a helical angle of 180 °. Two stub shafts 21.1 and 21.2 are again used here for the rotatable mounting of the rotor 2. Two first spokes 24.1 extend from the stub shaft 21.1 and two second spokes 24.2 extend from the stub shaft 21.2 in the radial direction, the spokes 24.1, 24.2 each being offset from one another by 180 ° in the circumferential direction of the rotor 2. At the free end of the spokes 24.1, 24.2, the ends 25.1 and 25.2 of the stirring blades 25 are attached. As in the previous example, the surface plane of the agitator blades 25 lies at its end 25.1 in the radial direction of the rotor 2, while at the other end of the rotor 2 at the end 25.2 of the agitator blades 25, the surface plane thereof is oriented obliquely to the radial direction of the rotor 2. The previously described rotor regions 2 ′ and 2 ″ with different conveying effects on a substrate during the rotation of the rotor 2 thus result here as well.

Figur 15 zeigt den Rotor 2 mit zwei Rührblättern 25 in einer zweiten Ausführung, in Seitenansicht. Unterschiedlich zum Beispiel nach Figur 14 ist hier, dass der Rotor 2 eine durchgehende Rotorwelle 21 anstelle von zwei Wellenstümpfen aufweist. Im Übrigen entspricht der Rotor 2 in Figur 15 dem Beispiel nach Figur 14. Figure 15 shows the rotor 2 with two stirring blades 25 in a second embodiment, in a side view. Different for example after Figure 14 is here that the rotor 2 has a continuous rotor shaft 21 instead of two stub shafts. Otherwise, the rotor 2 corresponds to in Figure 15 following the example Figure 14 .

Figur 16 zeigt den Rotor 2 mit vier Rührblättern 25 in einer ersten Ausführung in Seitenansicht. Der Rotor 2 weist hier wieder zwei in Flucht zueinander angeordnete Wellenstümpfe 21.1, 21.2 auf, von denen hier jeweils vier Speichen 24.1, 24.2 in Radialrichtung in einem Winkelabstand von jeweils 90° zueinander ausgehen. Mit den freien Enden der Speichen 24.1, 24.2 sind wieder die Rührblätter 25 mittels ihrer Enden 25.1, 25.2 verbunden. Auch hier verlaufen die Rührblätter 25 entlang einer Schraubenlinie, die hier jeweils einen Schraubenlinienwinkel von nur 90° beschreiben. Auch hier sind die Rührblätter 25 über ihre Länge gesehen in sich verwunden, wobei die Flächenebene der Rührblätter 25 an deren Ende 25.1 in Radialrichtung und an deren Ende 25.2 schräg zur Radialrichtung des Rotors 2 verläuft. Somit ergeben sich auch bei dieser Ausführung des Rotors 2 die zwei hinsichtlich ihrer jeweiligen Förderwirkung unterschiedlichen Rotorbereiche 2' und 2", wie vorstehend schon beschrieben. Figure 16 shows the rotor 2 with four stirring blades 25 in a first embodiment in a side view. The rotor 2 here again has two shaft stubs 21.1, 21.2 arranged in alignment with one another, from which four spokes 24.1, 24.2 each extend in the radial direction at an angular distance of 90 ° from one another. The stirring blades 25 are again connected to the free ends of the spokes 24.1, 24.2 by means of their ends 25.1, 25.2. Here, too, the stirring blades 25 run along a helical line, which here each describe a helical line angle of only 90 °. Here, too, the stirring blades 25 are twisted over their length, the surface plane of the stirring blades 25 running in the radial direction at their end 25.1 and at an angle to the radial direction of the rotor 2 at their end 25.2. Thus, in this embodiment of the rotor 2, too, the two rotor regions 2 ′ and 2 ″ which differ in terms of their respective conveying effect result, as already described above.

Figur 17 zeigt den Rotor 2 mit vier Rührblättern 25 in einer zweiten Ausführung, in Seitenansicht, wobei der Unterschied zu dem Beispiel nach Figur 16 darin besteht, dass hier der Rotor 2 eine durchgehende Rotorwelle 21 besitzt. Hinsichtlich der weiteren Teile und Eigenschaften des Rotors 2 in Figur 17 stimmt dieser mit dem Beispiel gemäß Figur 16 überein. Figure 17 shows the rotor 2 with four stirring blades 25 in a second embodiment, in a side view, the difference to the example according to Figure 16 consists in the fact that here the rotor 2 has a continuous rotor shaft 21. With regard to the other parts and properties of the rotor 2 in Figure 17 if this matches the example Figure 16 match.

Figur 18 zeigt den Rotor 2 mit sechs Rührblättern 25, in einer ersten Ausführung, in Seitenansicht. Dieser Rotor 2 besitzt zwei Wellenstümpfe 21.1, 21.2 zu seiner drehbaren Lagerung. Mit jedem Wellenstumpf 21.1, 21.2 sind sechs Speichen 24.1, 24.2 verbunden, die sich unter einem jeweiligen Winkelabstand von 60° zueinander in Radialrichtung von dem Wellenstumpf 21.1, 21.2 nach außen erstrecken. Mit den freien Enden der Speichen 24.1, 24.2 sind wieder die Rührblätter 25 mittels ihrer Enden 25.1, 25.2 verbunden. Auch hier verlaufen die Rührblätter 25 entlang einer Schraubenlinie, die hier jeweils einen Schraubenlinienwinkel von 60° beschreiben. Auch hier sind die Rührblätter 25 über ihre Länge gesehen in sich verwunden, wobei die Flächenebene der Rührblätter 25 an deren Ende 25.1 in Radialrichtung und an deren Ende 25.2 schräg zur Radialrichtung des Rotors 2 verläuft. Somit ergeben sich auch bei dieser Ausführung des Rotors 2 mit sechs Rührblättern 25 die zwei hinsichtlich ihrer jeweiligen Förderwirkung unterschiedlichen Rotorbereiche 2' und 2", wie vorstehend schon beschrieben. Figure 18 shows the rotor 2 with six stirring blades 25, in a first embodiment, in a side view. This rotor 2 has two stub shafts 21.1, 21.2 for its rotatable mounting. With each stub shaft 21.1, 21.2 six spokes 24.1, 24.2 are connected, which extend outwardly from the stub shaft 21.1, 21.2 at a respective angular distance of 60 ° from one another in the radial direction. The stirring blades 25 are again connected to the free ends of the spokes 24.1, 24.2 by means of their ends 25.1, 25.2. Here, too, the stirring blades 25 run along a helical line, each of which describes a helical angle of 60 ° here. Here, too, the stirring blades 25 are twisted over their length, the surface plane of the stirring blades 25 running in the radial direction at their end 25.1 and at an angle to the radial direction of the rotor 2 at their end 25.2. In this embodiment of the rotor 2 with six agitator blades 25, the two rotor areas 2 ′ and 2 ″, which are different in terms of their respective conveying effect, result, as already described above.

Figur 19 zeigt den Rotor 2 mit sechs Rührblättern 25 in einer zweiten Ausführung, in Seitenansicht, wobei hier im Vergleich zum Beispiel nach Figur 18 anstelle von zwei Wellenstümpfen eine durchgehende Rotorwelle 21 im Rotor 2 vorgesehen ist. Figure 19 shows the rotor 2 with six agitator blades 25 in a second embodiment, in side view, with here in comparison to the example Figure 18 Instead of two stub shafts, a continuous rotor shaft 21 is provided in the rotor 2.

Figur 20 zeigt den Rotor 2 mit acht Rührblättern 25, in einer ersten Ausführung, in Seitenansicht. Zur drehbaren Lagerung des Rotors 2 dienen hier wieder zwei Wellenstümpfe 21.1 und 21.2. Entsprechend der Zahl der Rührblätter 25 sind hier mit jedem Wellenstumpf 21.1, 21.2 in einem Winkelabstand von jeweils 45° zueinander jeweils acht Speichen 24.1, 24.2 verbunden, die sich von dem jeweiligen Wellenstumpf 21.1, 21.2 in Radialrichtung nach außen erstrecken. Figure 20 shows the rotor 2 with eight stirring blades 25, in a first embodiment, in a side view. Two stub shafts 21.1 and 21.2 are again used here for the rotatable mounting of the rotor 2. Corresponding to the number of stirring blades 25, eight spokes 24.1, 24.2 are connected to each stub shaft 21.1, 21.2 at an angular distance of 45 ° from one another and extend outward in the radial direction from the respective stub shaft 21.1, 21.2.

Die Rührblätter 25 sind mit ihren Enden 25.1, 25.2 jeweils mit dem Endbereich einer der Speichen 24.1, 24.2 verbunden. Dabei sind die Rührblätter 25 auch hier entlang einer Schraubenlinie verlaufen angeordnet, wobei sich die Schraubenlinien hier jeweils über einen Schraubenlinienwinkel von 60° erstrecken. Zugleich weisen auch hier die Rührblätter 25 in deren Längsrichtung gesehen in sich eine solche Verwindung auf, dass die Flächenebene der Rührblätter 25 an deren Ende 25.1 in Radialrichtung des Rotors und an deren Ende 25.2 schräg zur Radialrichtung des Rotors 2 ausgerichtet ist. Damit weist auch dieser Rotor 2 die zwei Rotorbereiche 2' und 2" unterschiedlicher Förderwirkung auf.The ends 25.1, 25.2 of the stirring blades 25 are each connected to the end region of one of the spokes 24.1, 24.2. Here, too, the stirring blades 25 are arranged to run along a helical line, the helical lines here each extending over a helical angle of 60 °. At the same time, here too, the stirring blades 25, viewed in their longitudinal direction, have such a twist that the surface plane of the stirring blades 25 at their end 25.1 is aligned in the radial direction of the rotor and at their end 25.2 at an angle to the radial direction of the rotor 2. This rotor 2 thus also has the two rotor areas 2 'and 2 "of different conveying effects.

Figur 21 zeigt den Rotor 2 mit acht Rührblättern 25, in einer zweiten Ausführung, in Seitenansicht, wobei der Unterschied zu dem Beispiel nach Figur 20 darin besteht, dass der Rotor 2 hier eine durchgehende Rotorwelle 21 anstelle von Wellenstümpfe aufweist. Die weiteren Teile und Eigenschaften des Rotors 2 nach Figur 21 entsprechen denen des Beispiels gemäß Figur 20. Figure 21 shows the rotor 2 with eight stirring blades 25, in a second embodiment, in a side view, the difference to the example according to Figure 20 consists in that the rotor 2 here has a continuous rotor shaft 21 instead of stub shafts. The other parts and properties of the rotor 2 according to Figure 21 correspond to those in the example Figure 20 .

Figur 22 zeigt den Rotor 2 in einer Ausführung mit vier Rührblättern 25, nun mit zwei Gruppen zusätzlicher Speichen 24.3 zwischen den endseitigen Speichen 24.1 und 24.2, in Seitenansicht. Die vier Rührblätter 25 verlaufen wieder entlang je einer Schraubenlinie, die jeweils einen Schraubenlinienwinkel von 90° überdeckt. Dabei ist die Steigung der Schraubenlinie über die axiale Länge des Rotors 2 gesehen nicht konstant, sondern nimmt in Axialrichtung des Rotors 2 gesehen von rechts nach links zu. Die Speichen 24.1, 24.2, 24.3 sind hier wieder jeweils mit einer durchgehenden Rotorwelle 21 verbunden und erstrecken sich mit einem Winkelabstand von jeweils 90° zueinander von der Rotorwelle 21 in Radialrichtung nach außen. Mit ihren Enden 25.1 sind die Rührblätter 25 mit den axial äußeren ersten Speichen 24.1 und mit ihren Enden 25.2 mit den axial äußeren zweiten Speichen 24.2 verbunden. Die Rührblätter 21 sind auch hier in sich verwunden, wobei die Flächenebene der Rührblätter 25 an deren erstem Ende 25.1 in Radialrichtung des Rotors 2 und an deren zweitem Ende 25.2 schräg zur Radialrichtung des Rotors 2 ausgerichtet ist. So werden auch hier Rotorbereiche 2' und 2" unterschiedlicher Förderwirkung gebildet. Zwischen den stirnseitigen Speichen 24.1 und 24.2 sind die Rührblätter 24 zur Steigerung der Stabilität und Belastbarkeit des Rotors 2 mit den zwei zusätzlichen Gruppen von Speichen 24.3 verbunden, wobei im Bereich der Speichen 24.1 und 24.3 die Rührblätter 25 noch nicht in sich verwunden sind; die Verwindung der Rührblätter 25 erstreckt sich hier nur über den Rotorbereich 2". Figure 22 shows the rotor 2 in an embodiment with four agitator blades 25, now with two groups of additional spokes 24.3 between the end spokes 24.1 and 24.2, in a side view. The four stirring blades 25 again each run along a helical line which each covers a helical angle of 90 °. The pitch of the helical line is not constant, seen over the axial length of the rotor 2, but increases from right to left as seen in the axial direction of the rotor 2. The spokes 24.1, 24.2, 24.3 are here again each connected to a continuous rotor shaft 21 and extend outward from the rotor shaft 21 in the radial direction at an angular distance of 90 ° from one another. With At their ends 25.1 the stirring blades 25 are connected to the axially outer first spokes 24.1 and at their ends 25.2 to the axially outer second spokes 24.2. The stirring blades 21 are also twisted here, the surface plane of the stirring blades 25 being aligned at their first end 25.1 in the radial direction of the rotor 2 and at their second end 25.2 obliquely to the radial direction of the rotor 2. Here too, rotor areas 2 'and 2 "of different conveying effects are formed. Between the end-face spokes 24.1 and 24.2, the agitator blades 24 are connected to the two additional groups of spokes 24.3 to increase the stability and resilience of the rotor 2, with the spokes 24.1 and 24.3 the stirring blades 25 are not yet twisted; the twisting of the stirring blades 25 here only extends over the rotor area 2 ″.

Figur 23 zeigt den Rotor 2 aus Figur 22 im Querschnitt gemäß der Schnittlinie A-A in Figur 22. Im Zentrum der Figur 23 ist die geschnittene Rotorwelle 21 sichtbar, von der die Speichen 24.3 in Radialrichtung nach außen verlaufen. Mit dem radial äußeren Endbereich der Speichen 24.3 sind die vier Rührblätter 25 verbunden, deren Verwindung erst vor der in Figur 23 dem Betrachter zugewandten vorderen Gruppe von Speichen 24.3 beginnt; hinter der in Figur 23 vorne liegenden Gruppe von Speichen 24.3 weisen die Rührblätter 25 noch keine Verwindung auf. Zudem wird hier erkennbar, dass sich jedes Rührblatt 25 entlang einer Schraubenlinie über einen Schraubenlinienwinkel von 90° erstreckt. Figure 23 shows the rotor 2 from Figure 22 in cross section according to section line AA in Figure 22 . In the center of the Figure 23 the cut rotor shaft 21 is visible, from which the spokes 24.3 extend outward in the radial direction. The four stirring blades 25 are connected to the radially outer end region of the spokes 24.3 Figure 23 the front group of spokes 24.3 facing the viewer begins; behind the in Figure 23 The group of spokes 24.3 lying in front, the stirring blades 25 do not yet have any torsion. It can also be seen here that each stirring blade 25 extends along a helical line over a helical line angle of 90 °.

Figur 24 zeigt den Rotor 2 aus Figur 22 im Querschnitt gemäß der Schnittlinie B-B in Figur 22, wobei dieser Schnitt durch einen verwindungsfreien Abschnitt der Rührblätter 25 des Rotors 2 verläuft, wie die Figur 24 anschaulich zeigt. Hinter den Speichen 24.3 der hinteren zusätzlichen Speichengruppe sind die an der vom Betrachter abgewandten Stirnseite des Rotors 2 in Umfangsrichtung versetzt liegenden Speichen 24.1 sichtbar. Figure 24 shows the rotor 2 from Figure 22 in cross section according to section line BB in Figure 22 , wherein this section runs through a torsion-free portion of the stirring blades 25 of the rotor 2, like the Figure 24 clearly shows. Behind the spokes 24.3 of the rear additional spoke group, the spokes 24.1 which are offset in the circumferential direction on the end face of the rotor 2 facing away from the viewer are visible.

Figur 25 zeigt den Rotor 2 aus Figur 22 im Querschnitt gemäß der Schnittlinie C-C in Figur 22, wobei dieser Schnitt kurz vor dem vom Betrachter abgewandten Stirnende des Rotors 2 verläuft. Somit sind in Figur 25 nur die stirnseitigen Speichen 24.1, die an der Rotorwelle 21 angebracht sind, sowie an jedem Endbereich der Speichen 24.1 ein kurzes Stück der dort jeweils angebrachten Rührblätter 25 sichtbar. Figure 25 shows the rotor 2 from Figure 22 in cross section according to section line CC in Figure 22 , this section running shortly before the end of the rotor 2 facing away from the viewer. Thus, in Figure 25 only the spokes 24.1 on the end face, which are attached to the rotor shaft 21, and a short piece of the stirring blades 25 attached there at each end region of the spokes 24.1 are visible.

Figur 26 zeigt einen Rotor 2 mit vier Rührblättern 25 in einer gegenüber dem Beispiel nach Figur 22 etwas geänderten Ausführung, in Seitenansicht. Die Änderung besteht hier darin, dass an dem in Figur 26 links liegenden Ende 2.2 des Rotors 2 ein scheibenförmiger flacher Strömungsleitkörper 26 angeordnet ist, der mit dem übrigen Rotor 2, konkret mit dessen durchgehender Rotorwelle 21, verbunden ist und sich somit im Betrieb des Rotors 2 mit diesem dreht. Der Strömungsleitkörper 26 unterstützt die Führung der Substratströmung in Radialrichtung des Rotors 2, die durch dessen Rotorbereich 2" erzeugt wird. Figure 26 shows a rotor 2 with four stirring blades 25 in one compared to the example according to Figure 22 slightly modified version, in side view. The change here is that the in Figure 26 Left-hand end 2.2 of the rotor 2 is a disk-shaped, flat flow guide body 26, which is connected to the rest of the rotor 2, specifically to its continuous rotor shaft 21, and thus rotates with the rotor 2 during operation. The flow guide body 26 supports the guidance of the substrate flow in the radial direction of the rotor 2, which flow is generated by its rotor area 2 ″.

Figur 27 zeigt wieder den Rotor 2 mit vier Rührblättern 25 in Seitenansicht, wie in Figur 26, nun aber mit einem geänderten Strömungsleitkörper 26. Der Strömungsleitkörper 26 besitzt hier eine dreidimensionale Form in der Gestalt eines konzentrisch zur Rotorwelle 21 angeordneten, mit dieser verbundenen Kegels mit konkav gerundeter Mantelfläche, womit, wenn der Rotor 2 von seinem linken Ende aus gesehen linksdrehend angetrieben wird, eine Strömungsumlenkung des Substrats aus einer in Axialrichtung des Rotors 2 von rechts nach links gerichteten Strömung im Rotorbereich 2' in eine in Radialrichtung des Rotors 2 von innen nach außen weisende Richtung im Rotorbereich 2" unterstützt wird. Figure 27 again shows the rotor 2 with four stirring blades 25 in a side view, as in FIG Figure 26 , but now with a modified flow guide body 26. The flow guide body 26 here has a three-dimensional shape in the form of a cone arranged concentrically to the rotor shaft 21 and connected to it with a concavely rounded outer surface, which means that when the rotor 2 is driven counterclockwise as seen from its left end a flow deflection of the substrate from a flow in the rotor area 2 'directed from right to left in the axial direction of the rotor 2 into a direction in the rotor area 2 "in the radial direction of the rotor 2 from the inside to the outside is supported.

Figur 28 zeigt einen Rotor 2 mit vier Rührblättern 25, in einer weiteren geänderten Ausführung, in Seitenansicht. Charakteristisch für diese Ausführung des Rotors 2 ist, dass er, in Figur 28 von rechts nach links gesehen, axial hinter dem mit einer überwiegend radialen Förderwirkung quer zur Richtung der Drehachse 20 des Rotors 2 ausgeführten zweiten Rotorbereich 2" zusätzlich einen dritten Rotorbereich 2''' aufweist. Dieser dritte Rotorbereich 2''' ist mit einer der Förderwirkung des ersten Rotorbereichs 2' mit der überwiegend axialen Förderwirkung in Richtung der Rotorwelle 21 des Rotors 2 entgegengesetzten überwiegend axialen Förderwirkung ausgeführt. Auf diese Weise wird im dritten Rotorbereich 2''' eine Gegenströmung hervorgerufen, die zusammen mit dem zweiten Rotorbereich 2" eine besonders wirksame Strömungsumlenkung des Substrats aus der Axialrichtung von rechts nach links in die Radialrichtung vom Rotor 2 radial nach außen weg bewirkt. Figure 28 shows a rotor 2 with four stirring blades 25, in a further modified embodiment, in a side view. A characteristic of this version of the rotor 2 is that it, in Figure 28 seen from right to left, axially behind the second rotor area 2 ″, which has a predominantly radial conveying effect transversely to the direction of the axis of rotation 20 of rotor 2, additionally has a third rotor area 2 ″ ″. This third rotor area 2 ″ ″ is with one of the conveying effect of the first rotor area 2 'with the predominantly axial conveying effect in the direction of the rotor shaft 21 of the rotor 2, the predominantly axial conveying effect opposite. In this way, a counterflow is created in the third rotor area 2''' which, together with the second rotor area 2 ", is particularly effective Causes flow deflection of the substrate from the axial direction from right to left in the radial direction away from the rotor 2 radially outward.

Hinsichtlich der weiteren Einzelteile und Eigenschaften des Rotors 2 gemäß Figur 28 wird auf die vorhergehende Beschreibung, insbesondere der Figur 22, verwiesen, mit der insoweit Übereinstimmung besteht.With regard to the other items and properties of the rotor 2 according to Figure 28 reference is made to the preceding description, in particular the Figure 22 , with which there is agreement in this respect.

Auch bei den Ausführungsbeispielen nach den Figuren 12 bis 28, in denen die Speichen 24.1, 24.2, 24.3 mit einem runden Querschnitt dargestellt sind, sind in der Praxis die Speichen 24.1, 24.2, 24.3 so ausgeführt, dass sie eine Förderwirkung gemäß dem Patentanspruch 1 aufweisen.Even in the embodiments according to Figures 12 to 28 , in which the spokes 24.1, 24.2, 24.3 are shown with a round cross-section, in practice the spokes 24.1, 24.2, 24.3 are designed so that they have a conveying effect according to claim 1.

Figur 29 zeigt einen Abschnitt einer Rotorwelle 21 mit einer im Schnitt sichtbaren Speiche 24.1 in einer ersten Ausführung. Charakteristisch für die hier gezeigte Speiche 24.1 ist, dass diese aus einem flachen, schräg angeordneten Materialstreifen, wie Stahl-Flachprofil, gebildet ist, womit die Speiche 24.1 bei Drehung der Rotorwelle 21 ihrerseits nach Art eines Propellers selbst eine Förderwirkung auf das Substrat ausübt und damit die Förderwirkung des übrigen Rotors 2 unterstützt. Figure 29 shows a section of a rotor shaft 21 with a spoke 24.1 visible in section in a first embodiment. It is characteristic of the spoke 24.1 shown here that it is formed from a flat, inclined strip of material, such as a flat steel profile, whereby the spoke 24.1 itself exerts a conveying effect on the substrate in the manner of a propeller when the rotor shaft 21 rotates and thus supports the conveying effect of the rest of the rotor 2.

Figur 30 zeigt ebenfalls einen Abschnitt der Rotorwelle 21 mit der im Schnitt sichtbaren Speiche 24.1, in einer zweiten Ausführung, welche darin besteht, dass hier die Speiche 24.1 als Rechteck-Hohlprofil ausgeführt ist und somit eine höhere mechanische Belastbarkeit besitzt. Die Speiche 24.1 weist hier ebenfalls eine zur Umfangsrichtung der Rotorwelle 21 schräge Ausrichtung auf, womit sie ebenfalls selbst eine Förderwirkung auf das Substrat ausübt. Figure 30 also shows a section of the rotor shaft 21 with the spoke 24.1 visible in section, in a second embodiment, which consists in that the spoke 24.1 here is designed as a rectangular hollow profile and thus has a higher mechanical load capacity. The spoke 24.1 here also has an orientation that is inclined to the circumferential direction of the rotor shaft 21, so that it itself also exerts a conveying effect on the substrate.

Auch die in den Figuren 29 und 30 nicht gezeigten Speichen 24.2, 24.3 können entsprechend diesen Figuren ausgeführt sein. Außer den in den Figuren 30 und 31 gezeigten Querschnittsformen können die Speichen 24.1, 24.2, 24.3 auch andere Querschnittsformen, beispielsweise die Form von gekrümmten Schaufeln oder von Flügelprofilen, aufweisen, um ihre Förderwirkung zu steigern.Even those in the Figures 29 and 30th Spokes 24.2, 24.3 not shown can be designed according to these figures. Except for those in the Figures 30 and 31 The cross-sectional shapes shown, the spokes 24.1, 24.2, 24.3 can also have other cross-sectional shapes, for example the shape of curved blades or of wing profiles, in order to increase their conveying effect.

Figur 31 zeigt das Rührwerk 1 in einer weiteren geänderten Ausführung, in Seitenansicht, in einem stehenden Behälter. Charakteristisch für diese Ausführung des Rührwerks 1 ist, dass die Rührblätter 25 hier nicht als durchgehende Materialstreifen, sondern segmentiert, das heißt in Form von hintereinander mit Lücken angeordneten Rührblattsegmenten 25', ausgeführt sind. Jedem Rührblattsegment 25' ist dabei mindestens eine Speiche 24.1, 24.2, 24.3 zugeordnet, damit alle Rührblattsegmente 25' gehalten werden. Figure 31 shows the agitator 1 in a further modified embodiment, in side view, in a standing container. It is characteristic of this embodiment of the agitator 1 that the agitator blades 25 are not designed here as continuous strips of material, but segmented, that is, in the form of agitator blade segments 25 'arranged one behind the other with gaps. At least one spoke 24.1, 24.2, 24.3 is assigned to each agitating blade segment 25 'so that all agitating blade segments 25' are held.

In seinen übrigen Teilen und Eigenschaften entspricht das Rührwerk 1 gemäß Figur 31 dem Beispiel gemäß den Figuren 1 und 2. Auch bei dem Ausführungsbeispiel gemäß Figur 31 nimmt der Rotor 2 in dem Behälter 3 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung.In its other parts and properties, the agitator 1 corresponds to Figure 31 the example according to the Figures 1 and 2 . Also in the embodiment according to Figure 31 the rotor 2 occupies a range of motion in the container 3, which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

Figur 32 zeigt das Rührwerk 1 in einer nochmals geänderten Ausführung, in Seitenansicht, in einem stehenden Behälter 3, wobei für diese Ausführung des Rührwerks 1 charakteristisch ist, dass dessen Rotorwelle 21 hier vertikal verläuft. Neben der Rotorwelle 21 besitzt der Rotor 2 des Rührwerks 1 hier vier Rührblätter 25, die an vier von der Rotorwelle 21 ausgehenden Speichen 24.1 am ersten, oberen Rotorende 2.1 und an vier von der Rotorwelle 21 ausgehenden Speichen 24.2 am zweiten, hier unteren Rotorende 2.2 angebracht sind. Die Rührblätter 25 verlaufen wieder jeweils entlang einer Schraubenlinie, die sich hier jeweils über einen Schraubenlinienwinkel von 90° erstreckt. Außerdem weisen auch hier die Rührblätter 25 in sich eine Verwindung auf, wobei die Rührblätter 25 an ihrem ersten, oberen Ende 25.1 mit ihrer Blattfläche in Radialrichtung des Rotors 2 verlaufen, während an ihrem zweiten, unteren Ende 25.2 die Blattfläche der Rührblätter 25 schräg zur Radialrichtung des Rotors 2 verläuft. Somit weist auch hier der Rotor 2 zwei Rotorbereiche 2' und 2" unterschiedlicher Förderwirkung auf ein im Behälter 3 befindliches Substrat auf. Figure 32 shows the agitator 1 in a further modified version, in a side view, in a standing container 3, it being characteristic of this version of the agitator 1 that its rotor shaft 21 runs vertically here. In addition to the rotor shaft 21, the rotor 2 of the agitator 1 has four agitator blades 25, which are attached to four spokes 24.1 extending from the rotor shaft 21 on the first, upper rotor end 2.1 and to four spokes 24.2 extending from the rotor shaft 21 on the second, here lower rotor end 2.2 are. The stirring blades 25 again each run along a helical line, which here each extends over a helical angle of 90 °. In addition, the agitator blades 25 are twisted in themselves, the agitator blades 25 running at their first, upper end 25.1 with their blade surface in the radial direction of the rotor 2, while at their second, lower end 25.2 the blade surface of the agitator blades 25 is inclined to the radial direction of the rotor 2 runs. Thus, here too the rotor 2 has two rotor areas 2 ′ and 2 ″ with different conveying effects on a substrate located in the container 3.

Wenn der Rotor 2, von oben gesehen, linksdrehend angetrieben wird, fördert der obere Rotorbereich 2' mit einer überwiegend axialen Förderrichtung Substrat von oben nach unten, während der zweite Rotorbereich 2" das Substrat überwiegend in Radialrichtung des Rotors 2 nach außen fördert. Auch mit dieser vertikalen Anordnung des Rotors 2 des Rührwerks 1 wird also ein im Behälter 3 befindliches Substrat in seinem gesamten Volumen wirksam in Bewegung versetzt und durchmischt, obwohl auch hier der Rotor 2 in dem Behälter 3 einen Bewegungsbereich einnimmt, der klein ist in Relation zu dem Volumen des Behälters 3. Ein hier nicht dargestellter Antrieb des Rotors 2 kann günstig oberhalb eines Substratspiegels angeordnet werden, wobei eine aufwändige Wellendurchführung für die Rotorwelle 21 durch die Behälterwand 31 vermieden wird.When the rotor 2 is driven counterclockwise as seen from above, the upper rotor area 2 'conveys the substrate from top to bottom with a predominantly axial conveying direction, while the second rotor area 2 "conveys the substrate predominantly in the radial direction of the rotor 2 outwards In this vertical arrangement of the rotor 2 of the agitator 1, a substrate in the container 3 is effectively set in motion and mixed in its entire volume, although here too the rotor 2 in the container 3 occupies a range of motion that is small in relation to the volume of the container 3. A drive for the rotor 2, not shown here, can be conveniently arranged above a substrate surface, a complex shaft feed-through for the rotor shaft 21 through the container wall 31 being avoided.

Zur drehbaren Lagerung des Rotors 2 und der Rotorwelle 21 dienen hier ein oberes Rotorlager 22.1, das in einer von der Behälterwand 31 in den Behälter 3 vorkragenden Abstützung 23 angeordnet ist, und ein unteres Rotorlager 22.2, das auf dem Behälterboden 32 angeordnet ist.An upper rotor bearing 22.1, which is arranged in a support 23 protruding from the container wall 31 into the container 3, and a lower rotor bearing 22.2, which is arranged on the container bottom 32, serve for the rotatable mounting of the rotor 2 and the rotor shaft 21.

Bei Behältern 3 bis zu einer bestimmten Größe oder einem bestimmten Volumen reicht die Anordnung eines einzelnen Rotors 2 in der Praxis aus. Für besonders große Behälter 3 kann es auch zweckmäßig oder erforderlich sein, darin mehrere Rotoren 2 vorzusehen. Ein Beispiel dafür zeigt die Figur 34 33 mit drei in einem stehenden Behälter 3 angeordneten Rotoren 2 in einer Draufsicht. Die Rotoren 2 und Rotorwellen 21 des Rührwerks 1 weisen hier jeweils eine vertikaler Ausrichtung auf und sind in Umfangsrichtung des Behälters 3 gleichmäßig voneinander beabstandet angeordnet, um eine vollständige und über das Volumen des Behälters 3 gesehen gleichmäßige Bewegung und Durchmischung von im Behälter 3 befindlichen Substraten zu bewirken. Je nach Erfordernissen kann dabei auch eine Betriebsweise der Rotoren 2 gewählt werden, bei der wahlweise ein, zwei oder alle drei Rotoren 2 in Betrieb gesetzt werden. Jeder Rotor 2 kann dabei einen eigenen Antrieb aufweisen, es ist aber auch möglich, dass alle Rotoren 2 mit einem gemeinsamen Antrieb gekoppelt oder koppelbar sind.In the case of containers 3 up to a certain size or volume, the arrangement of a single rotor 2 is sufficient in practice. For particularly large containers 3, it may also be useful or necessary to provide several rotors 2 therein. An example of this is shown by the Figure 34 33 with three rotors 2 arranged in a standing container 3 in a plan view. The rotors 2 and rotor shafts 21 of the agitator 1 each have a vertical orientation and are evenly spaced from one another in the circumferential direction of the container 3 in order to ensure a complete and uniform movement and mixing of the substrates in the container 3 as seen over the volume of the container 3 cause. Depending on the requirements, an operating mode of the rotors 2 can be selected in which either one, two or all three rotors 2 are put into operation. Each rotor 2 can have its own drive, but it is also possible that all rotors 2 are coupled or can be coupled to a common drive.

Bei diesem Ausführungsbeispiel nach Figur 33 nimmt jeder Rotor 2 innerhalb des Behälters 3 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, aber dennoch erzeugen die Rotoren 2 eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung.In this embodiment according to Figure 33 each rotor 2 within the container 3 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless the rotors 2 generate a flow which sets the entire substrate volume in the container 3 in motion and mixes it.

Die Figur 34 zeigt ein Rührwerk 1 in Seitenansicht in einem liegenden Behälter 3, in einer ersten Ausführung. Der Behälter 3 hat hier eine zylindrische Form mit einer Umfangswand 31 und zwei Stirnenden 33 und ist beispielsweise ein Teil eines sogenannten Pfropfenstromfermenters. Das Rührwerk 1 besitzt hier einen vertikal angeordneten Rotor 2 mit einer entsprechend vertikal verlaufenden Rotorwelle 21, die unten im Behälter 3 in einem unteren Rotorlager 22.1 und oben im Bereich einer Wellendurchführung 38 durch die Behälterwand 31 in einem zweiten Rotorlager 22.2 drehbar gelagert ist. Ein hier nicht dargestellter Antrieb für den Rotor 2 ist oben auf dem Behälter 3 an die dort aus dem Behälter 3 vorragende Rotorwelle 21 anzukoppeln. Der Rotor 2 hat hier wieder vier Rührblätter 25, die mit ihrem unteren Ende 25.1 an vier unteren Speichen 24.1 und mit ihrem oberen Ende 25.2 an vier oberen Speichen 24.2 angebracht sind. Dabei verlaufen die Rührblätter 25 wieder entlang von Schraubenlinien, die hier jeweils einen Schraubenlinienwinkel von 90° beschreiben. An dem ersten, hier unteren Rotorende 2.1 sind die Rührblätter 25 mit in Radialrichtung des Rotors 2 verlaufender Blattfläche ausgerichtet, während am zweiten, hier oberen Rotorende 2.2 die Rührblätter 25 mit gegenüber der Radialrichtung des Rotors 2 gekippter Ausrichtung der Blattfläche angeordnet sind. Somit hat auch dieser Rotor 2 die zwei hinsichtlich ihrer Förderwirkung auf ein im Behälter 3 befindliches Substrat unterschiedlichen Rotorabschnitte 2' und 2". Wie weiter oben schon beschrieben, weist der Rotorbereich 2' eine überwiegend axiale Förderwirkung auf, während der Rotorbereich 2" eine stärkere radiale Förderwirkung besitzt.The Figure 34 shows an agitator 1 in a side view in a lying container 3, in a first embodiment. The container 3 here has a cylindrical shape with a peripheral wall 31 and two front ends 33 and is, for example, part of a so-called plug flow fermenter. The agitator 1 here has a vertically arranged rotor 2 with a correspondingly vertically extending rotor shaft 21 which is rotatably supported at the bottom of the container 3 in a lower rotor bearing 22.1 and at the top in the area of a shaft passage 38 through the container wall 31 in a second rotor bearing 22.2. A drive (not shown here) for the rotor 2 is to be coupled on top of the container 3 to the rotor shaft 21 protruding from the container 3 there. The rotor 2 here again has four stirring blades 25, which are attached with their lower end 25.1 to four lower spokes 24.1 and with their upper end 25.2 to four upper spokes 24.2. The stirring blades 25 again run along helical lines which each describe a helical angle of 90 ° here. At the first, here lower rotor end 2.1, the agitator blades 25 are in the radial direction of the rotor 2 extending blade surface, while at the second, here upper rotor end 2.2, the stirring blades 25 are arranged with the blade surface tilted relative to the radial direction of the rotor 2. This rotor 2 thus also has the two rotor sections 2 'and 2 "which differ in terms of their conveying effect on a substrate located in the container 3. As already described above, the rotor area 2' has a predominantly axial conveying effect, while the rotor area 2" has a stronger one Has radial conveying effect.

Auch bei diesem Ausführungsbeispiel nimmt der Rotor 2 einen Bewegungsbereich ein, der klein ist in Relation zu dem Volumen des Behälters 3, erzeugt aber dennoch eine das gesamte Substratvolumen in dem Behälter 3 in Bewegung versetzende und durchmischende Strömung. Mit dem Rührwerk 1 kann also auch in einem liegenden hohlzylindrischen Behälter 3 eine gute Durchmischung und Bewegung eines Substrats mit einem hohen Wirkungsgrad erzeugt werden.In this exemplary embodiment, too, the rotor 2 occupies a range of motion which is small in relation to the volume of the container 3, but nevertheless generates a flow which sets the entire substrate volume in the container 3 in motion and mixes it. With the agitator 1, good mixing and movement of a substrate with a high degree of efficiency can also be produced in a lying hollow cylindrical container 3.

Figur 35 zeigt ein gegenüber der Figur 34 abgewandeltes Ausführungsbeispiel mit einem Rührwerk 1 mit zwei nebeneinander angeordneten Rotoren 2 einem liegenden Behälter 3, in einer perspektivischen Ansicht, mit aufgeschnittenem Behälter 3. Eine Anordnung mehrerer Rotoren 2 in einem liegenden Behälter 3 kann insbesondere bei besonders großen Behältern 3 und/oder bei besonders hohen Anforderungen an die Bewegung und Durchmischung des Substrats im Behälter 3 zweckmäßig sein. Die beiden Rotoren 2 des Rührwerks 1 sind untereinander gleich ausgeführt, jedoch mit unterschiedlicher Ausrichtung jeweils vertikal im Behälter 3 angeordnet. So liegt bei dem in Figur 35 links im Behälter 3 angeordneten Rotor 2 dessen Rotorbereich 2' mit überwiegend axialer Förderwirkung unten, während dieser Rotorbereich 2' bei dem rechts angeordneten Rotor 2 oben liegt. Entsprechend liegt bei dem linken Rotor 2 der Rotorbereich 2" mit der stärker radialen Förderwirkung oben, während bei dem rechten Rotor 2 dieser Rotorbereich 2" unten liegt. Mit dieser Anordnung und Ausrichtung der Rotoren 2 kann im Inneren des Behälters 3 hier eine intensive, sich über die Arbeitsbereiche beider Rotoren 2 und über das gesamte Volumen des Behälters 3 erstreckende Strömung und gute Durchmischung des Substrats gewährleistet werden, obwohl jeder Rotor 2 innerhalb des Behälters 3 einen Bewegungsbereich einnimmt, der klein ist in Relation zu dem Volumen des Behälters 3. Figure 35 shows one opposite the Figure 34 Modified embodiment with an agitator 1 with two rotors 2 arranged next to one another and a horizontal container 3, in a perspective view, with a cut-open container 3. An arrangement of several rotors 2 in a horizontal container 3 can be particularly useful for particularly large containers 3 and / or for particularly high containers Requirements for the movement and mixing of the substrate in the container 3 may be appropriate. The two rotors 2 of the agitator 1 are identical to one another, but are each arranged vertically in the container 3 with a different orientation. So with the in Figure 35 The rotor 2 arranged on the left in the container 3 has its rotor area 2 'with a predominantly axial conveying effect at the bottom, while this rotor area 2' is at the top in the rotor 2 arranged on the right. Correspondingly, in the left rotor 2, the rotor area 2 ″ with the stronger radial conveying effect is on top, while in the right rotor 2 this rotor area 2 ″ is located below. With this arrangement and alignment of the rotors 2, an intensive flow and good mixing of the substrate can be ensured inside the container 3 over the working areas of both rotors 2 and over the entire volume of the container 3, although each rotor 2 is inside the container 3 occupies a range of motion which is small in relation to the volume of the container 3.

Figur 36 schließlich zeigt ein Rührwerk 1 in Seitenansicht in einem liegenden Behälter 3, in einer weiteren Ausführung. Bei diesem Ausführungsbeispiel ist der Rotor 2 des Rührwerks 1 horizontal ausgerichtet, womit auch die Rotorwelle 21 hier horizontal und parallel zur Längsmittelachse des liegenden Behälters 3 verläuft. Die Rotorwelle 21 ist an ihrem zum Inneren des Behälters 3 weisenden Ende in einem ersten Rotorlager 23.1 drehbar gelagert, welches in einer Abstützung 23 angeordnet ist, die ihrerseits unten im Behälter 3 mit diesem verbunden ist. Das andere Ende der Rotorwelle 21 ist mittels einer Wellendurchführung 38 in der in Figur 36 linken Stirnwand 33 des Behälters 3 nach außen geführt, so dass ein hier nicht sichtbarer Antrieb des Rotors 2 außerhalb des Behälters 3 an dessen linker Stirnwand 33 angeordnet sein kann. In seiner weiteren Gestaltung und Funktion entspricht der Rotor 2 in Figur 36 dem Ausführungsbeispiel gemäß der Figur 1. Figure 36 finally, shows an agitator 1 in a side view in a horizontal container 3, in a further embodiment. In this embodiment, the rotor 2 of the agitator 1 is aligned horizontally, so that the rotor shaft 21 here also runs horizontally and parallel to the longitudinal center axis of the horizontal container 3. The rotor shaft 21 is rotatably supported at its end facing the interior of the container 3 in a first rotor bearing 23.1, which is arranged in a support 23 which, in turn, is connected to the container 3 at the bottom. The other end of the rotor shaft 21 is connected to the in FIG Figure 36 left end wall 33 of the container 3 outwards, so that a drive of the rotor 2, not visible here, can be arranged outside of the container 3 on its left end wall 33. In its further design and function, the rotor 2 corresponds to in Figure 36 the embodiment according to Figure 1 .

Im Betrieb des Rührwerks 1 gemäß Figur 36 fördert dessen Rotor 2 bei rechtsdrehenden Antrieb mit dem Rotorbereich 2' Substrat im Wesentlichen in Axialrichtung des Rotors 2 von rechts nach links. Der zweite Rotorbereich 2" mit der stärker radialen Förderwirkung transportiert das Substrat in Radialrichtung des Rotors 2 nach außen in Richtung zur Umfangswand des Behälters 3. Hierdurch wird im Bereich nahe der Umfangswand 31 des Behälters 3 in dessen Innerem eine schraubenlinienförmige Substratströmung hervorgerufen, die eine Strömungskomponente in Längsrichtung des Behälters 3 von links nach rechts aufweist. An der in Figur 36 rechten Stirnwand 33 des Behälters 3 kehrt die Strömung um und verläuft dann im zentralen Bereich des Behälters 3 in dessen Längsrichtung von rechts nach links wieder in den Bereich des Rotors 2. Ersichtlich wird auch hier eine intensive Bewegung und Durchmischung von Substrat im gesamten Behälter 3 mittels des Rührwerks 1 erzielt, obwohl der Rotor 2 innerhalb des Behälters 3 einen Bewegungsbereich einnimmt, der klein ist in Relation zu dem Volumen des Behälters 3. Bezugszeichenliste: Zeichen Bezeichnung 1 Rührwerk 2 Rotor 2.1, 2.2 Rotorenden 2' Rotorbereich mit axialer Förderwirkung 2" Rotorbereich mit radialer Förderwirkung 2''' zusätzlicher Rotorbereich mit axialer Förderwirkung 20, 20' Drehachse, Arbeitsdrehrichtung 21 Rotorwelle 21.1, 21.2 Wellenstümpfe 22.1, 22.2 Rotorlager 23 Abstützung 24.1, 24.2 endseitige Speichen 24.3 zusätzliche Speichen (zwischen 24.1 und 24.2) 25 Rührblätter 25' Rührblattsegmente 25.1, 25.2 Enden von 25 26 Strömungsleitkörper an 2 28 Antrieb für 2 3 Behälter 30 Substrat in 3 30' axiale Strömung 30" radiale Strömung 31 Behälterumfangswand 32 Behälterboden 33 Behälterstirnwände 36 Strömungsleitkörper an 31 38 Wellendurchführung In operation of the agitator 1 according to Figure 36 conveys its rotor 2 with clockwise drive with the rotor area 2 'substrate essentially in the axial direction of the rotor 2 from right to left. The second rotor area 2 ″ with the stronger radial conveying effect transports the substrate in the radial direction of the rotor 2 outwards in the direction of the peripheral wall of the container 3. As a result, a helical substrate flow is created in the area near the peripheral wall 31 of the container 3, which is a flow component in the longitudinal direction of the container 3 from left to right Figure 36 right end wall 33 of the container 3 reverses the flow and then runs in the central area of the container 3 in its longitudinal direction from right to left back into the area of the rotor 2. Here, too, an intensive movement and mixing of substrate in the entire container 3 is evident of the agitator 1, although the rotor 2 occupies a range of motion within the container 3 which is small in relation to the volume of the container 3. <u> List of reference symbols: </u> character designation 1 Agitator 2 rotor 2.1, 2.2 Rotor ends 2 ' Rotor area with axial conveying effect 2 " Rotor area with radial conveying effect 2 ''' additional rotor area with axial conveying effect 20, 20 ' Axis of rotation, working direction of rotation 21st Rotor shaft 21.1, 21.2 Shaft stumps 22.1, 22.2 Rotor bearing 23 Support 24.1, 24.2 end spokes 24.3 additional spokes (between 24.1 and 24.2) 25th Stirring blades 25 ' Stirring blade segments 25.1, 25.2 Ends of 25 26th Flow guide body on 2 28 Drive for 2 3 container 30th Substrate in 3 30 ' axial flow 30 " radial flow 31 Container perimeter wall 32 Container bottom 33 Container end walls 36 Flow guide body on 31 38 Shaft feedthrough

Claims (13)

  1. Container (3) with a stirrer (1) for mixing and moving substrates (30) in the form of liquids or liquid-and-solid mixtures inside the container (3), comprising at least one rotor (2) with one or more stirrer blades (25), said rotor being mounted in at least one rotor bearing (22.1, 22.2) and arranged in the container (3) for rotary movement about an axis of rotation (20), and comprising a drive (28) powering the rotor (2), wherein the or each rotor (2) of the stirrer (1) in the container (3) holding the substrate (30) to be mixed and moved occupies only a fraction of the volume of the container (3), wherein a substrate flow may also be created by means of the stirrer (1) outside of the range of motion of the rotor (2) or rotors (2) in the container (3), wherein the rotor (2), when viewed along its rotary axis (20) is designed with at least two rotor areas (2', 2") having different conveying effects on the substate (30), with a first rotor area (2') having a predominantly axial conveying effect in the direction of the rotary axis (20) and a second rotor area (2") having a stronger radial conveying effect transverse to the direction of the rotary axis (20), wherein the or each stirrer blade (25) is provided as a continuous or segmented flat material strip extending along a helical line over the full axial length of the rotor (2) and being supported by at least two spokes (24.1, 24.2) of the rotor (2), and wherein the blade surface of the or each stirrer blade (25), when viewed in the longitudinal direction of the stirrer blade, has a varying orientation from one rotor end (2.1) to the other (2.2) relative to the radial direction of the rotor (2),
    characterized in
    that the spokes (24.1, 24.2) are embodied as conveying elements for the substrate (30), that first spokes (24.1) arranged in the first rotor area (2') are designed with a predominantly axial conveying effect in the direction of the rotary axis (20) of the rotor (2), and that second spokes (24.2) arranged in the second rotor area (2") are designed with a predominantly radial conveying effect transverse to the direction of the rotary axis (20) of the rotor (2) or with a predominantly axial conveying effect opposite to the axial conveying effect of the first spokes (24.1).
  2. The container (3) with a stirrer (1) according to claim 1, characterized in that the surface of the or each stirrer blade (25) is oriented at one rotor end (2.1) in the radial direction of the rotor (2) and at the other rotor end (2.2) in a tilted position relative to the radial direction of the rotor (2).
  3. The container (3) with a stirrer (1) according to claim 1 or 2, characterized in that the helical line along which the or each stirrer blade (25) extends has a uniform pitch when viewed in the direction of the rotary axis (20) of the rotor (2).
  4. The container (3) with a stirrer (1) according to claim 1 or 2, characterized in that the helical line along which the or each stirrer blade (25) extends has a varying pitch when viewed in the direction of the rotary axis (20) of the rotor (2).
  5. The container (3) with a stirrer (1) according to claim 4, characterized in that the helical line along which the or each stirrer blade (25) extends has a smaller pitch in one rotor area (2', 2") than in the other rotor area (2", 2').
  6. The container (3) with a stirrer (1) according to one of claims 1 to 5, characterized in that the helical line along which the or each stirrer blade (25) extends is evenly spaced from the rotary axis (20) of the rotor (2).
  7. The container (3) with a stirrer (1) according to one of claims 1 to 5, characterized in that the helical line along which the or each stirrer blade (25) extends is spaced at varying distances from the rotary axis (20) of the rotor (2) when viewed in the direction of the rotary axis (20) of the rotor (2).
  8. The container (3) with a stirrer (1) according to claim 7, characterized in that the helical line along which the or each stirrer blade (25) extends is more closely spaced from the rotary axis (20) of the rotor (2) in the one rotor area (2', 2") than in the other rotor area (2", 2').
  9. The container (3) with a stirrer (1) according to one of claims 1 to 8, characterized in that the or each rotor (2) has a continuous rotor shaft (21) mounted at each end in a rotor bearing (22.1, 22.2) or that the or each rotor (2) has two shaft stubs (21.1, 21.2) on its end faces, each one being mounted in a rotor bearing (22.1, 22.2).
  10. The container (3) with a stirrer (1) according to one of claims 1 to 9, characterized in that the spokes (24.1, 24.2) extend in a straight line or curved relative to the radial direction of the rotor (2).
  11. The container (3) with a stirrer (1) according to one of claims 1 to 10, characterized in that the rotor (2) has one single stirrer blade (25), that the stirrer blade (25) extends over a helical-line angle of 360° or a whole-number multiple thereof and that the rotor (2) has at least two spokes (24.1, 24.2) supporting the stirrer blade (25) at least at the face ends.
  12. The container (3) with a stirrer (1) according to one of claims 1 to 10, characterized in that the rotor (2) has a plurality of n stirrer blades (25), where n>1, that the stirrer blades (25) are distributed evenly around the circumference of the rotor (2), that each stirrer blade (25) extends over a helical-line angle of 360°/n or a whole-number multiple thereof, and that the rotor (2) has at least two spokes (24.1, 24.2) per stirrer blade (25) that support the stirrer blade (25) at least at the face ends.
  13. The container (3) with a stirrer (1) according to one of claims 1 to 12, characterized in that the rotor (2) additionally has a third rotor area (2''') situated axially behind the second rotor area (2") designed with a predominantly radial conveying effect transverse to the direction of the rotary axis (20) of the rotor (2), said third rotor area (2"') having a predominantly axial conveying effect opposite to the conveying effect of the first rotor area (2') with the predominantly axial conveying effect in the direction of the rotary axis (20) of the rotor (2).
EP16165741.6A 2015-04-27 2016-04-18 Stirrer and container with a stirrer Active EP3095510B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015106419.7A DE102015106419A1 (en) 2015-04-27 2015-04-27 Agitator and container with stirrer

Publications (3)

Publication Number Publication Date
EP3095510A2 EP3095510A2 (en) 2016-11-23
EP3095510A3 EP3095510A3 (en) 2017-04-26
EP3095510B1 true EP3095510B1 (en) 2020-09-09

Family

ID=55759525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16165741.6A Active EP3095510B1 (en) 2015-04-27 2016-04-18 Stirrer and container with a stirrer

Country Status (2)

Country Link
EP (1) EP3095510B1 (en)
DE (1) DE102015106419A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107116677B (en) * 2017-05-26 2023-12-19 中国国家铁路集团有限公司 Fiber soil mixing equipment
DE102017213641A1 (en) * 2017-08-07 2019-02-07 Robert Bosch Gmbh Mixing device, method for mixing and method for cleaning a mixing device
DE102017129836A1 (en) * 2017-12-13 2019-06-13 EKATO Rühr- und Mischtechnik GmbH Rührorganvorrichtung
AU2020443206A1 (en) * 2020-04-20 2022-11-24 Metso Outotec Finland Oy Mixing arrangement, mixer settler unit and use

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830879C (en) * 1950-02-23 1952-02-07 Draiswerke Gmbh Mixing device equipped with an agitator
US3064908A (en) * 1957-07-02 1962-11-20 Color & Sjogren Ab Apparatus for mixing and working material
DE1432024A1 (en) * 1961-04-18 1969-08-07 Aachener Misch & Knetmasch Mixer
DE1607776A1 (en) * 1967-11-29 1970-07-09 Kranz Gmbh Karl Device for mixing powdery substances
DE3012707C2 (en) * 1980-04-01 1983-02-10 BHS-Bayerische Berg-, Hütten- und Salzwerke AG, 8000 München Mixing mechanism for trough mixers
WO1987000449A1 (en) * 1985-07-17 1987-01-29 Elba-Werk Maschinen-Gesellschaft Mbh & Co. Device for mixing construction materials
JP2649131B2 (en) * 1992-11-18 1997-09-03 神鋼パンテツク株式会社 Stirrer and bottom ribbon blade used for it
JPH08103643A (en) * 1994-10-06 1996-04-23 Tanaka Giken Kogyo Kk Mixer
DE19729196C2 (en) * 1997-07-09 2000-03-23 Martin Theodor Melchior Mixing whisk for a device for mixing and conveying a bulk material with water
JP2004105892A (en) * 2002-09-20 2004-04-08 Hanai Seisakusho:Kk Kneading machine
DE10260972B4 (en) * 2002-12-24 2010-04-08 Johann Hochreiter Device for circulating liquid manure and wastewater in a storage container
DE102004027077B4 (en) * 2004-06-02 2007-05-31 Schmack Biogas Ag Heatable agitator for fermentation tanks
DE202006004982U1 (en) 2006-03-27 2006-05-24 Schmack Biogas Ag Agitator for fermentation tank
DE102007022902A1 (en) * 2007-05-14 2008-11-20 Karl Buschmann Maschinenbau Gmbh Conveying system of a fermentation or digestion tank
TW200911740A (en) * 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
DE102011114793A1 (en) * 2010-10-08 2012-04-12 Rohn Gmbh Cylindrical mashing container used for biogasification, has filling opening which is formed in ceiling, and a mixer positioned with respect to filling opening such that the container is re-fed to a substrate
EP2656909B1 (en) 2012-04-25 2014-12-24 Thöni Industriebetriebe GmbH Fermentation device and method comprising a stirring device
US9849430B2 (en) * 2012-09-26 2017-12-26 Triad Capital Group, Llc Mixing device
DE202013006429U1 (en) * 2013-07-17 2013-08-08 BHKW Johann Hochreiter Biogas Planung Beratung GmbH Device for mixing the contents of substrate containers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3095510A3 (en) 2017-04-26
EP3095510A2 (en) 2016-11-23
DE102015106419A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
EP0063171B1 (en) Mixing apparatus
EP3095510B1 (en) Stirrer and container with a stirrer
EP1121193A1 (en) Compulsory mixer used, in particular, as a cement mixer
DE69932115T2 (en) Agitator with vertical axis
DE2160410A1 (en) Mixing device
DE3344531A1 (en) MIXING DEVICE
EP2011563B1 (en) Mixing-drying unit and/or reactor
EP0052298A2 (en) Stirring device for fermenting receptacles of grape mash
DE102006053339A1 (en) Fermenter with agitating device for biogas plant has agitating vane detachable from hub by means of insertion connection
DE202010003100U1 (en) Colloidal mixer, in particular for the treatment of building materials
DE2830491C2 (en)
EP3065852B1 (en) Agitator for mixing fluids
EP1155734A1 (en) Vertical mixer
EP1474223A1 (en) Dynamic mixer
DE2643560C2 (en) Stirrer
DE2513577C3 (en) Continuously working mixer for plastic materials
DE102016114735A1 (en) agitator
WO2006108381A1 (en) Device for mixing and homogenising viscous media
DE102011077877A1 (en) Stirrer of standing stirred tank for suspending substrates, has lower stirring plane stirring blade with external end that is rotated in clockwise direction at right angle
DE2559170C2 (en) Surface ventilation gyroscope
DE3143287A1 (en) Stirring device for fermentation containers for grape mash
DE102010049034B4 (en) Stirrer and agitator for mixing and / or homogenizing fluid media
DE202011107055U1 (en) Agitator for a fermenter tank, fermenter tank with such a stirrer and biogas plant
DE102011084053A1 (en) Mixer with crushing and dispersing device
DE1941831B2 (en) MIXER WITH FORCED-DRIVEN DISC MIXING CONTAINER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 7/00 20060101AFI20170321BHEP

Ipc: B01F 7/22 20060101ALI20170321BHEP

Ipc: B01F 7/06 20060101ALI20170321BHEP

Ipc: B01F 15/00 20060101ALI20170321BHEP

Ipc: B01F 7/02 20060101ALI20170321BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171016

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310859

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011075

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011075

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016011075

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0007000000

Ipc: B01F0027000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230316

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 8

Ref country code: FR

Payment date: 20230411

Year of fee payment: 8

Ref country code: DE

Payment date: 20230609

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20230419

Year of fee payment: 8

Ref country code: AT

Payment date: 20230412

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230406

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016011075

Country of ref document: DE

Representative=s name: SCHULZE HORN, KATHRIN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909