EP3093917B1 - Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren - Google Patents

Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren Download PDF

Info

Publication number
EP3093917B1
EP3093917B1 EP15167192.2A EP15167192A EP3093917B1 EP 3093917 B1 EP3093917 B1 EP 3093917B1 EP 15167192 A EP15167192 A EP 15167192A EP 3093917 B1 EP3093917 B1 EP 3093917B1
Authority
EP
European Patent Office
Prior art keywords
signal line
dimensional
electrodes
component interconnect
interconnect substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15167192.2A
Other languages
English (en)
French (fr)
Other versions
EP3093917A1 (de
Inventor
MD Samiul Haque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Technologies Oy
Original Assignee
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Technologies Oy filed Critical Nokia Technologies Oy
Priority to EP15167192.2A priority Critical patent/EP3093917B1/de
Publication of EP3093917A1 publication Critical patent/EP3093917A1/de
Application granted granted Critical
Publication of EP3093917B1 publication Critical patent/EP3093917B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • H01P3/084Suspended microstriplines

Definitions

  • the present disclosure relates particularly to the field of transmission lines for integrated circuits, associated methods and apparatus, and specifically concerns an apparatus comprising a two-dimensional signal line suspended over a component interconnect substrate by first and second electrodes to reduce electromagnetic interactions between the component interconnect substrate and the signal line to facilitate transmission of an electrical signal to/from one or more components on the substrate.
  • Certain disclosed example aspects/embodiments relate to portable electronic devices, in particular, so-called hand-portable electronic devices which may be hand-held in use (although they may be placed in a cradle in use).
  • Such hand-portable electronic devices include so-called Personal Digital Assistants (PDAs) and tablet PCs.
  • the portable electronic devices/apparatus may provide one or more audio/text/video communication functions (e.g. tele-communication, video-communication, and/or text transmission, Short Message Service (SMS)/ Multimedia Message Service (MMS)/emailing functions), interactive/non-interactive viewing functions (e.g. web-browsing, navigation, TV/program viewing functions), music recording/playing functions (e.g. MP3 or other format and/or (FM/AM) radio broadcast recording/playing), downloading/sending of data functions, image capture function (e.g. using a (e.g. in-built) digital camera), and gaming functions.
  • audio/text/video communication functions e.g. tele-communication, video-communication, and/or text transmission, Short Message Service (SMS)/ Multimedia Message Service (MMS)/emailing functions
  • interactive/non-interactive viewing functions e.g. web-browsing, navigation, TV/program viewing functions
  • music recording/playing functions e.g.
  • GNRs graphene nanoribbons
  • MMIC monolithic microwave integrated circuit
  • the lines and the underlying SiO2/Si layers were then modeled as thin film co-planar waveguide (TFCPW) before characterization and their microwave behavior was simulated using CST Microwave Studio electromagnetic simulator. By curve-fitting the experimental results with simulation, graphene parameters were subsequently extracted. From I-V measurements the conductivity was found to be 2.89 ⁇ 10 7 S/m and scattering parameter measurements of the samples obtained at frequencies up to 20 GHz show that GNR has high potential for transmitting signals at GHz frequencies.
  • TFCPW thin film co-planar waveguide
  • an apparatus comprising the features of claim 1.
  • Each ground line may be attached to a respective pair of first and second electrodes such that a portion of the ground line is suspended by the first and second electrodes over the component interconnect substrate.
  • the two-dimensional signal line may be spaced apart from each ground line on the component interconnect substrate by an in-plane distance of 1-100 ⁇ m.
  • One or more of the two-dimensional signal line and ground lines may have a length of between 100nm and 10mm.
  • the two-dimensional signal line may comprise between 1 and 5 monolayers of conductive two-dimensional material. In certain embodiments, the two-dimensional signal line may be up to around 10nm thick, for example.
  • the conductive two-dimensional material may comprise one or more of graphene and reduced graphene oxide or a combination of graphene-doped graphene or other 2D materials such as MOS 2 , hBN (hexagonal boronitride as encapsulants).
  • the structure may comprise different 2D materials forming a suspended heterostructure.
  • the additional layers of 2D materials may be of the same order of thickness as the underlying 2D layer such that the overall thickness of the heterostructure may be up to around 20nm, for example.
  • Such a heterostructure can still be considered to be a 2D signal line.
  • respective 2D materials forming the signal line may be separated by a layer to provide stacked respective 2D signal lines separated by the layer.
  • the separating later is hBN (hexagonal boronitride)
  • the layer could be insulating (which might induce capacitive behaviour between the layers).
  • the separating layer could be conductive.
  • the conductive two-dimensional material may comprise one or more dopants configured to reduce the sheet resistance of the two-dimensional signal line.
  • the one or more dopants may comprise molybdenum oxide (MoO 3 ) or FeCl 3 .
  • the ground lines may comprise one or more of a metal, a conductive two-dimensional material, copper, gold, silver, aluminium, nickel, graphene and reduced graphene oxide.
  • the first and second electrodes may comprise one or more of a metal, a doped semiconductor, copper, gold, silver, aluminium, nickel, germanium carbide and silicon carbide.
  • the apparatus may be configured to enable the transmission of AC electrical signals in the frequency range of 10kHz to 1THz.
  • the component interconnect substrate may be one or more of a rigid, reversibly flexible and reversibly stretchable substrate.
  • the apparatus may be one or more of an electronic device, a portable electronic device, a portable telecommunications device, a mobile phone, a personal digital assistant, a tablet, a phablet, a desktop computer, a laptop computer, a server, a smartphone, a smartwatch, smart eyewear, a circuit board, a transmission line, a microstrip, a coplanar waveguide, a filter circuit, an electronic oscillator, and a module for one or more of the same.
  • Forming the two-dimensional signal line and first and second electrodes may comprise:
  • Forming the layer of conductive two-dimensional material on top of the layer of electrode material may comprise growing the layer of conductive two-dimensional material via chemical vapour deposition using the layer of electrode material as a seed layer.
  • the method may comprise transferring the two-dimensional signal line and first and second electrodes onto the component interconnect substrate by:
  • the layer of transfer material may comprise poly(methyl methacrylate).
  • Forming the two-dimensional signal line and first and second electrodes may comprise:
  • descriptors relating to relative orientation and position such as “top”, “bottom”, “upper”, “lower”, “above” and “below”, as well as any adjective and adverb derivatives thereof, are used in the sense of the orientation of the apparatus as presented in the drawings. However, such descriptors are not intended to be in any way limiting to an intended use of the described or claimed invention.
  • One or more of the computer programs may, when run on a computer, cause the computer to configure any apparatus, including a battery, circuit, controller, or device disclosed herein or perform any method disclosed herein.
  • One or more of the computer programs may be software implementations, and the computer may be considered as any appropriate hardware, including a digital signal processor, a microcontroller, and an implementation in read only memory (ROM), erasable programmable read only memory (EPROM) or electronically erasable programmable read only memory (EEPROM), as non-limiting examples.
  • the software may be an assembly program.
  • One or more of the computer programs may be provided on a computer readable medium, which may be a physical computer readable medium such as a disc or a memory device, or may be embodied as a transient signal.
  • a transient signal may be a network download, including an internet download.
  • the present disclosure includes one or more corresponding aspects, example embodiments or features in isolation or in various combinations whether or not specifically stated (including claimed) in that combination or in isolation.
  • Corresponding means for performing one or more of the discussed functions are also within the present disclosure.
  • a transmission line is an electrical conductor for carrying radio and microwave frequency AC signals to and from the various components of a printed circuit board (e.g. in a filter circuit or electronic oscillator).
  • Standard wires and traces are not suitable for transmitting such high frequency signals because the energy tends to radiate off the conductor as radio/micro waves causing power losses.
  • radio and microwave frequency currents tend to reflect from discontinuities in the wire/trace (such as connectors and joints) and travel back down the conductor towards the source. This can prevent the signal from reaching its destination.
  • Transmission lines use special configurations and impedance matching to carry electromagnetic signals with fewer reflections and power losses. Common types of transmission line in modern circuits include the microstrip transmission line and the coplanar waveguide.
  • Figure 1 shows a microstrip transmission line 101 in perspective view. It consists of a conductive strip 102 (signal line) of length "I”, width "w” and thickness "t” separated from a ground plane 103 by a dielectric substrate 104 of thickness "h".
  • the electromagnetic wave carried by a microstrip transmission line 101 exists partly in the dielectric substrate 104 and partly in the air above it.
  • the width "w” of the signal line 102 together with the thickness "h” and dielectric constant of the substrate 104 determine the characteristic impedance of the microstrip 101.
  • Figure 2 shows a coplanar waveguide 205 in perspective view. It consists of a conductive strip 202 (signal line) of length "I", width "w” and thickness "t” fabricated between a pair of coplanar ground lines 206a,b on the surface of a dielectric substrate 204 of thickness "h” to form a ground-signal-ground configuration.
  • the signal line 202 is separated from each ground line 206a,b by an in-plane gap "g" which has a constant width along the length of the coplanar waveguide 205.
  • the electromagnetic wave carried by a coplanar waveguide 205 exists partly in the dielectric substrate 204 and partly in the air above it.
  • the signal can, however, be more closely confined to the dielectric substrate 204 by using a substrate thickness "h” of at least twice the width "w" of the signal line 202.
  • Coplanar waveguides 205 use the signal line width "w” and the gap "g” between the signal 202 and ground 206a,b lines to control the characteristic impedance.
  • FIG. 3 shows one example of the present apparatus 307 in cross-section.
  • the apparatus 307 comprises a two-dimensional signal line 302, and first 308a and second 308b electrodes configured to enable the transmission of an electrical signal from the first electrode 308a through the two-dimensional signal line 302 to the second electrode 308b.
  • a component interconnect substrate 304 is configured to support the two-dimensional signal line 302 and the first 308a and second 308b electrodes to allow transmission of the electrical signal through the component interconnect substrate 304 to/from one or more components 309 on the substrate 304 via the first 308a and/or second 308b electrode.
  • the component interconnect substrate 304 comprises one or more traces 310 therein/thereon for electrical connection of the components 309.
  • the two-dimensional signal line 302 is attached to the first 308a and second 308b electrodes such that a portion 311 of the two-dimensional signal line 302 is suspended by the first 308a and second 308b electrodes over the component interconnect substrate 304 to reduce electromagnetic interactions between the component interconnect substrate 304 and the suspended portion 311 to facilitate transmission of the electrical signal.
  • the first 308a and second 308b electrodes perform multiple functions.
  • the electrodes 308a,b suspend a portion 311 of the signal line 302 over the component interconnect substrate 304 to reduce the electromagnetic interactions therebetween, and are also used as bonding pads for attachment of the signal line 302 to the component interconnect substrate 304.
  • the conductive material used to form the electrodes 308a,b may also be used in the fabrication of the two-dimensional signal line 302. The multiple uses of the first 308a and second 308b electrodes help to reduce the cost and complexity of the present apparatus 307.
  • two-dimensional with respect to the signal line 302 may be taken to mean that the signal line 302 is formed from a conductive two-dimensional material typically comprising a single layer of atoms or molecules, examples of which include graphene and reduced graphene oxide. Measurements have shown that two-dimensional materials are able to conduct electrical signals at higher frequencies than the materials used in conventional signal lines 302. Furthermore, the sheet resistance of these materials may be reduced to less than 5 ⁇ /sq by using a few monolayers (e.g. 2-5 layers) and/or introducing one or more dopants (such as MoO 3 ).
  • a few monolayers e.g. 2-5 layers
  • dopants such as MoO 3
  • the two-dimensional signal line 302 described herein may serve as the signal line 102, 202 of a microstrip transmission line 101 or coplanar waveguide 205 configured to enable the transmission of AC electrical signals in the frequency range of 10kHz to 1THz. In some cases the frequency range can in the 1-100THz.
  • the component interconnect substrate 304 When used in a microstrip transmission line 101, the component interconnect substrate 304 would normally comprise a layer of electrically conductive material on its lower surface, similar to the ground plane 103 shown in Figure 1 .
  • Figure 4 shows another example of the present apparatus 407 (in plan view) configured for use as a coplanar waveguide.
  • the two-dimensional signal line 402 is positioned between, and spaced apart from, a pair of coplanar ground lines 406a,b to form a ground-signal-ground configuration on the component interconnect substrate 404 (similar to that shown in Figure 2 ).
  • the two-dimensional signal line 402 may be spaced apart from each ground line 406a,b by an in-plane distance of 1-100 ⁇ m.
  • each ground line 406a,b is attached to a respective pair of first 408a and second 408b electrodes such that a portion 411 of the ground line 406a,b is suspended by the first 408a and second 408b electrodes over the component interconnect substrate 404. In other examples, however, the ground lines 406a,b may not be suspended.
  • One or more of the signal 402 and ground 406a,b lines described above may have a length of between 100nm (or even 10nm, particularly in the future) and 10mm, and may be formed from any conductive material such as a metal (e.g. copper, gold, silver, aluminium, nickel or alloys thereof) or conductive two-dimensional material (e.g. graphene or reduced graphene oxide).
  • the first 408a and second 408b electrodes may be formed from a metal (e.g. copper, gold, silver, aluminium, nickel or alloys thereof) or doped semiconductor (e.g. germanium carbide or silicon carbide).
  • the component interconnect substrate 404 may be one or more of a rigid, reversibly flexible and reversibly stretchable substrate. Whilst rigid substrates (e.g. FR-4) are more traditional, flexible and stretchable substrates are becoming more common in device applications due to new form factors and size constraints. In this respect, the component interconnect substrate 404 may comprise one or more flexible materials (e.g. polyimide or polyester) and/or stretchable materials (e.g. polyurethane or polydimethylsiloxane).
  • flexible materials e.g. polyimide or polyester
  • stretchable materials e.g. polyurethane or polydimethylsiloxane
  • Figures 5a-f illustrate schematically one method of making the present apparatus.
  • the apparatus is a co-planar waveguide, but the same process may be used to form a microstrip transmission line by omitting the ground lines.
  • Cross-section, top and bottom views of the structure are shown in these figures to aid visualisation of the apparatus following each step of the process.
  • a layer of conductive two-dimensional material 512 is formed on top of a layer of electrode material 513 ( Figure 5a ). This may be achieved by growing the layer of conductive two-dimensional material 512 (e.g. graphene) via chemical vapour deposition using the layer of electrode material 513 (e.g. copper) as a seed layer. Formation of the layer of two-dimensional material 512 in this way helps to ensure good physical and electrical contact with the layer of electrode material 513 (and therefore between the signal or ground lines and their respective electrodes). The layer of conductive two-dimensional material 512 is then selectively etched to define the two-dimensional signal line 502 and ground lines 506a,b ( Figure 5b ).
  • the layer of conductive two-dimensional material 512 is then selectively etched to define the two-dimensional signal line 502 and ground lines 506a,b ( Figure 5b ).
  • a layer of transfer material 514 (e.g. PMMA) is deposited on top of the layers of conductive two-dimensional 512 and electrode 513 material ( Figure 5c ) and then the layer of electrode material 513 is selectively etched to define the first 508a and second 508b electrode pairs ( Figure 5d ).
  • the layer of transfer material 514 helps to hold the signal line 502, ground lines 506a,b and their respective electrode pairs 508a,b in position following the etching processes.
  • the layer of transfer material 514 is then used to transfer the layers of conductive two-dimensional 512 (i.e. signal 502 and ground 506a,b lines) and electrode 513 (i.e.
  • first 508a and second 508b electrode pairs material onto a component interconnect substrate 504 ( Figure 5e ).
  • the first 508a and second 508b electrodes serve as bonding pads to attach the respective signal 502 and ground 506a,b lines to the component interconnect substrate 504.
  • the layer of transfer material 514 can be removed ( Figure 5f ). Removal of the transfer layer 514 may be performed by stripping or etching away the transfer material 514 (e.g. using acetone for PMMA).
  • Figures 6a-b illustrate schematically another method of making the present apparatus in which the signal 602 and ground 606a,b lines are formed separately/remotely from the electrodes 608a,b.
  • the electrode pairs 608a,b are formed directly on top of the component interconnect substrate 604 ( Figure 6a ). This may be achieved using photo or electron beam lithography in combination with sputter coating or evaporation.
  • preformed signal 602 and ground 606a,b lines are deposited on top of their respective electrode pairs 608a,b ( Figure 6b ). Fabrication (not shown) and deposition of the signal 602 and ground 606a,b lines may be achieved respectively using selective etching and transfer procedures similar to those described with reference to Figure 5 .
  • FIG. 7 illustrates schematically another example of the present apparatus 707.
  • the apparatus 707 may be one or more of an electronic device, a portable electronic device, a portable telecommunications device, a mobile phone, a personal digital assistant, a tablet, a phablet, a desktop computer, a laptop computer, a server, a smartphone, a smartwatch, smart eyewear, a circuit board, a transmission line, a microstrip, a coplanar waveguide, a filter circuit, an electronic oscillator, and a module for one or more of the same.
  • the apparatus 707 comprises the two-dimensional signal line 702, first 708a and second 708b electrodes and component interconnect substrate 704 described previously, a power source 715, a processor 716 and a storage medium 717, which are electrically connected to one another by a data bus 718.
  • the processor 716 is configured for general operation of the apparatus 707 by providing signalling to, and receiving signalling from, the other components to manage their operation.
  • the storage medium 717 is configured to store computer code configured to perform, control or enable operation of the apparatus 707.
  • the storage medium 717 may also be configured to store settings for the other components.
  • the processor 716 may access the storage medium 717 to retrieve the component settings in order to manage the operation of the other components.
  • the power source 715 is configured to apply a voltage between the first 708a and second 708b electrodes to enable the transmission of an electrical signal through the two-dimensional signal line 702 to/from one or more components on the component interconnect substrate 704.
  • the processor 716 may be a microprocessor, including an Application Specific Integrated Circuit (ASIC).
  • the storage medium 717 may be a temporary storage medium such as a volatile random access memory.
  • the storage medium 717 may be a permanent storage medium 717 such as a hard disk drive, a flash memory, or a non-volatile random access memory.
  • the power source 715 may comprise one or more of a primary battery, a secondary battery, a capacitor, a supercapacitor and a battery-capacitor hybrid.
  • Figure 8 shows the main steps 819-824 of a method of making the apparatus described herein in the form of a flow chart.
  • the method is consistent with the schematic diagrams in Figures 5a-f , and generally comprises: forming a layer of conductive two-dimensional material on top of a layer of electrode material 819; selectively etching the layer of conductive two-dimensional material to define the two-dimensional signal line 820; depositing a layer of transfer material on top of the layers of conductive two-dimensional and electrode material 821; selectively etching the layer of electrode material to define the first and second electrodes 822; transferring the layers of conductive two-dimensional and electrode material onto the component interconnect substrate using the layer of transfer material 823; and removing the layer of transfer material 824.
  • Figure 9 shows the main steps 925-926 of another method of making the apparatus described herein in the form of a flow chart.
  • the method is consistent with the schematic diagrams in Figures 6a-b , and generally comprises: forming the first and second electrodes on top of the component interconnect substrate 925; and depositing a preformed two-dimensional signal line on top of the first and second electrodes 926.
  • Figure 10 illustrates schematically a computer/processor readable medium 1027 providing a computer program according to one embodiment.
  • the computer program may comprise computer code configured to perform, control or enable one or more of the method steps 819-824, 925-926 of Figure 8 and/or 9. Additionally or alternatively, the computer program may comprise computer code configured to apply a voltage between the first and second electrodes to enable the transmission of an electrical signal through the two-dimensional signal line to/from one or more components on the component interconnect substrate.
  • the computer/processor readable medium 1027 is a disc such as a digital versatile disc (DVD) or a compact disc (CD).
  • DVD digital versatile disc
  • CD compact disc
  • the computer/processor readable medium 1027 may be any medium that has been programmed in such a way as to carry out an inventive function.
  • the computer/processor readable medium 1027 may be a removable memory device such as a memory stick or memory card (SD, mini SD, micro SD or nano SD).
  • feature number 1 can also correspond to numbers 101, 201, 301 etc. These numbered features may appear in the figures but may not have been directly referred to within the description of these particular embodiments. These have still been provided in the figures to aid understanding of the further embodiments, particularly in relation to the features of similar earlier described embodiments.
  • any mentioned apparatus/device and/or other features of particular mentioned apparatus/device may be provided by apparatus arranged such that they become configured to carry out the desired operations only when enabled, e.g. switched on, or the like. In such cases, they may not necessarily have the appropriate software loaded into the active memory in the non-enabled (e.g. switched off state) and only load the appropriate software in the enabled (e.g. on state).
  • the apparatus may comprise hardware circuitry and/or firmware.
  • the apparatus may comprise software loaded onto memory.
  • Such software/computer programs may be recorded on the same memory/processor/functional units and/or on one or more memories/processors/functional units.
  • a particular mentioned apparatus/device may be pre-programmed with the appropriate software to carry out desired operations, and wherein the appropriate software can be enabled for use by a user downloading a "key", for example, to unlock/enable the software and its associated functionality.
  • Advantages associated with such embodiments can include a reduced requirement to download data when further functionality is required for a device, and this can be useful in examples where a device is perceived to have sufficient capacity to store such pre-programmed software for functionality that may not be enabled by a user.
  • any mentioned apparatus/circuitry/elements/processor may have other functions in addition to the mentioned functions, and that these functions may be performed by the same apparatus/circuitry/elements/processor.
  • One or more disclosed aspects may encompass the electronic distribution of associated computer programs and computer programs (which may be source/transport encoded) recorded on an appropriate carrier (e.g. memory, signal).
  • any "computer” described herein can comprise a collection of one or more individual processors/processing elements that may or may not be located on the same circuit board, or the same region/position of a circuit board or even the same device. In some embodiments one or more of any mentioned processors may be distributed over a plurality of devices. The same or different processor/processing elements may perform one or more functions described herein.
  • signal may refer to one or more signals transmitted as a series of transmitted and/or received signals.
  • the series of signals may comprise one, two, three, four or even more individual signal components or distinct signals to make up said signalling. Some or all of these individual signals may be transmitted/received simultaneously, in sequence, and/or such that they temporally overlap one another.
  • processors and memory may comprise a computer processor, Application Specific Integrated Circuit (ASIC), field-programmable gate array (FPGA), and/or other hardware components that have been programmed in such a way to carry out the inventive function.
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Claims (15)

  1. Übertragungsleitungsvorrichtung (307), umfassend:
    eine zweidimensionale Signalleitung (302);
    eine erste (308a) und zweite (308b) Elektrode, ausgelegt zur Ermöglichung der Übertragung eines elektrischen Signals von der ersten Elektrode (308a) durch die zweidimensionale Signalleitung (302) zu der zweiten Elektrode (308b);
    ein Paar von koplanaren Masseleitungen (406a,b); und
    ein Komponenten-Verbindungssubstrat (304), ausgelegt zum Unterstützen der zweidimensionalen Signalleitung (302), der ersten (308a) und zweiten (308b) Elektrode und der koplanaren Masseleitungen (406a,b), um Übertragung des elektrischen Signals durch das Komponenten-Verbindungssubstrat (304) zu/von einer oder mehreren Komponenten (309) auf dem Substrat (304) über die erste (308a) und/oder zweite (308b) Elektrode zu gestatten,
    wobei die zweidimensionale Signalleitung (302) dergestalt an die erste (308a) und zweite (308b) Elektrode angebracht ist, dass ein Teil (311) der zweidimensionalen Signalleitung (302) durch die erste (308a) und zweite (308b) Elektrode über dem Komponenten-Verbindungssubstrat (304) suspendiert wird, um elektromagnetische Wechselwirkungen zwischen dem Komponenten-Verbindungssubstrat (304) und dem suspendierten Teil (311) zu verringern, um Übertragung des elektrischen Signals zu erleichtern, und
    wobei die zweidimensionale Signalleitung (402) zwischen dem Paar von koplanaren Masseleitungen (406a,b) und von diesen beabstandet positioniert ist, um eine Masse-Signal-Masse-Konfiguration auf dem Komponenten-Verbindungssubstrat (404) zu bilden.
  2. Vorrichtung (407) nach Anspruch 1, wobei jede Masseleitung (406a,b) dergestalt an einem jeweiligen Paar von erster (408a) und zweiter (408b) Elektrode angebracht ist, das ein Teil der Masseleitung (406a,b) durch die erste (408a) und zweite (408b) Elektrode über dem Komponenten-Verbindungssubstrat (404) suspendiert wird.
  3. Vorrichtung (407) nach Anspruch 1 oder 2, wobei die zweidimensionale Signalleitung (402) um einen In-Ebene-Abstand von 1-100 µm von jeder Masseleitung (406a,b) auf dem Komponenten-Verbindungssubstrat beabstandet ist.
  4. Vorrichtung (407) nach einem der vorhergehenden Ansprüche, wobei eine oder mehrere der zweidimensionalen Signalleitung (402) und Masseleitungen (406a,b) eine Länge zwischen 10 nm und 10 mm aufweisen.
  5. Vorrichtung (307) nach einem der vorhergehenden Ansprüche, wobei die zweidimensionale Signalleitung (302) zwischen 1 und 5 Monoschichten aus leitfähigem zweidimensionalem Material umfasst.
  6. Vorrichtung (307) nach Anspruch 5, wobei das leitfähige zweidimensionale Material einen oder mehrere Dotierungsstoffe umfasst, die dafür ausgelegt sind, den Flächenwiderstand der zweidimensionalen Signalleitung zu verringern.
  7. Vorrichtung (307) nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung (307) dafür ausgelegt ist, die Übertragung von elektrischen Wechselstromsignalen im Frequenzbereich von 10 kHz bis mehreren 10 THz zu ermöglichen.
  8. Vorrichtung (307) nach einem der vorhergehenden Ansprüche, wobei das Komponenten-Verbindungssubstrat (304) eines oder mehrere eines starren, umkehrbar flexiblen und umkehrbar streckbaren Substrats ist.
  9. Verfahren zur Herstellung einer Übertragungsleitungsvorrichtung (307), wobei das Verfahren Folgendes umfasst:
    Bilden einer zweidimensionalen Signalleitung (302), einer ersten (308a) und zweiten (308b) Elektrode und eines Paars von koplanaren Masseleitungen (406a,b) zur Bereitstellung auf einem Komponenten-Verbindungssubstrat (304), dergestalt, dass ein Teil (311) der zweidimensionalen Signalleitung (302) durch die erste (308a) und zweite (308b) Elektrode über dem Komponenten-Verbindungssubstrat (304) suspendiert wird, um elektromagnetische Wechselwirkungen zwischen dem Komponenten-Verbindungssubstrat (304) und dem suspendierten Teil (311) zu verringern, und die zweidimensionale Signalleitung (402) zwischen dem Paar von koplanaren Masseleitungen (406a,b) und von diesen beabstandet positioniert ist, um eine Masse-Signal-Masse-Konfiguration auf dem Komponenten-Verbindungssubstrat (404) zu bilden, wobei die erste (308a) und zweite (308b) Elektrode dafür ausgelegt sind, die Übertragung eines elektrischen Signals von der ersten Elektrode (308a) durch die zweidimensionale Signalleitung (302) zu der zweiten Elektrode (308b) zu ermöglichen und wobei die erste (308a) und/oder zweite (308b) Elektrode dafür ausgelegt ist, die zweidimensionale Signalleitung (302) mit dem Komponenten-Verbindungssubstrat (304) zu verbinden, um Übertragung des elektrischen Signals durch das Komponenten-Verbindungssubstrat (304) zu/von einer oder mehreren Komponenten (309) auf dem Substrat (304) zu gestatten.
  10. Verfahren nach Anspruch 9, wobei Bilden der zweidimensionalen Signalleitung (502) und der ersten (506a) und zweiten (506b) Elektrode Folgendes umfasst:
    Bilden (819) einer Schicht aus leitfähigem zweidimensionalem Material (512) über einer Schicht aus Elektrodenmaterial (513);
    selektives Ätzen (820) der Schicht aus leitfähigem zweidimensionalem Material (512), um die zweidimensionale Signalleitung (502) zu definieren; und
    selektives Ätzen (822) der Schicht aus Elektrodenmaterial (512), um die erste (506a) und zweite (506b) Elektrode zu definieren.
  11. Verfahren nach Anspruch 10, wobei Bilden (819) der Schicht aus leitfähigem zweidimensionalem Material (512) über der Schicht aus Elektrodenmaterial (513) Wachsen der Schicht aus leitfähigem zweidimensionalem Material (512) mittels chemischer Gasphasenabscheidung unter Verwendung der Schicht aus Elektrodenmaterial (513) als Keimschicht umfasst.
  12. Verfahren nach Anspruch 10 oder 11, wobei das Verfahren Transferieren der zweidimensionalen Signalleitung (502) und der ersten (506a) und zweiten (506b) Elektrode auf das Komponenten-Verbindungssubstrat (504) umfasst durch
    Abscheiden (821) einer Schicht aus Transfermaterial (514) über den Schichten aus leitfähigem zweidimensionalem (512) und Elektrodenmaterial (513);
    Transferieren (823) der Schichten aus leitfähigem zweidimensionalem (512) und Elektrodenmaterial (513) auf das Komponenten-Verbindungssubstrat (504) unter Verwendung der Schicht aus Transfermaterial (514); und
    Entfernen (824) der Schicht aus Transfermaterial (514) .
  13. Verfahren nach Anspruch 9, wobei Bilden der zweidimensionalen Signalleitung (602) und der ersten (606a) und zweiten (606b) Elektrode Folgendes umfasst:
    Bilden (925) der ersten (606a) und zweiten (606b) Elektrode auf dem Komponenten-Verbindungssubstrat (604); und
    Abscheiden (926) einer vorgeformten zweidimensionalen Signalleitung (602) auf der ersten (606a) und zweiten (606b) Elektrode.
  14. Verfahren zur Verwendung der Übertragungsleitungsvorrichtung (307, 407) nach einem der Ansprüche 1 bis 8, wobei das Verfahren Anlegen einer Spannung zwischen der ersten (308a, 408a) und zweiten (308b, 408b) Elektrode umfasst, um die Übertragung eines elektrischen Signals durch die zweidimensionale Signalleitung (302, 402) zu/von einer oder mehreren Komponenten (309) auf dem Komponenten-Verbindungssubstrat (304, 404) zu ermöglichen.
  15. Computerprogramm mit Computercode, der dafür ausgelegt ist, das Verfahren nach einem der Ansprüche 9 bis 14 auszuführen.
EP15167192.2A 2015-05-11 2015-05-11 Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren Active EP3093917B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15167192.2A EP3093917B1 (de) 2015-05-11 2015-05-11 Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15167192.2A EP3093917B1 (de) 2015-05-11 2015-05-11 Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren

Publications (2)

Publication Number Publication Date
EP3093917A1 EP3093917A1 (de) 2016-11-16
EP3093917B1 true EP3093917B1 (de) 2020-08-26

Family

ID=53189648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15167192.2A Active EP3093917B1 (de) 2015-05-11 2015-05-11 Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren

Country Status (1)

Country Link
EP (1) EP3093917B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113104808B (zh) * 2021-04-02 2024-01-09 中国人民解放军国防科技大学 一种悬空二维材料器件及规模化制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952863B2 (en) * 2010-12-17 2015-02-10 Nokia Corporation Strain-tunable antenna and associated methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3093917A1 (de) 2016-11-16

Similar Documents

Publication Publication Date Title
US8803636B2 (en) Apparatus and associated methods
EP2652838B1 (de) Antenne mit einstellbarer spannung mit einem aktuator
EP3131121B1 (de) Verfahren zum herstellen einer auf graphen basierdenden feldeffektvorrichtung
US10177000B2 (en) Semiconductor structures having low resistance paths throughout a wafer
EP3093917B1 (de) Aufgehängte 2d-signalleitung für schaltungen und zugehörige vorrichtung und verfahren
CN108415198B (zh) 阵列基板、显示装置及其制备方法
CN105493234A (zh) 为嵌入式电阻器形成可调温度系数的方法
TWI736099B (zh) 共平面波導結構、積體電路與用於製造用於平面傳輸線的堆疊訊號線及堆疊接地線的方法
CN111384022B (zh) 具有碳基导电元件的重分布层、制造方法以及相关的半导体装置封装和系统
WO2022046750A1 (en) Metal interconnect wrap around with graphene
EP3104416A1 (de) Vorrichtung für feldeffekt-transistor-basierte bauelemente und zugehörige verfahren
KR102539128B1 (ko) 코일 전자 부품
EP3243794A1 (de) Verfahren zur herstellung einer anordnung aus sensorpixeln und zugehörige vorrichtung und verfahren
US9502645B2 (en) Semiconductor device, related manufacturing method, and related electronic device
EP3580780B1 (de) Elektrische verbindung mit einem topologischen isolatormaterial
CN105531878B (zh) 导体连接结构以及显示装置
EP3109628B1 (de) Vorrichtung mit einer nanomembran und zugehörige verfahren
KR102307167B1 (ko) 갈륨 질화물-온-실리콘 디바이스
CN110731029B (zh) 用于波导的复合基底以及制造复合基底的方法
CN104810374B (zh) 阵列基板及其制作方法以及显示装置
US11824249B2 (en) Transmission line structures for millimeter wave signals
US20150137370A1 (en) Electrically conductive device and manufacturing method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170510

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOKIA TECHNOLOGIES OY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191113

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1307276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015057943

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1307276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015057943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

26N No opposition filed

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230331

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826