EP3093583B1 - Method and device for defrosting an evaporator of a refrigeration installation and use of the defrosting device as calorimeter - Google Patents

Method and device for defrosting an evaporator of a refrigeration installation and use of the defrosting device as calorimeter Download PDF

Info

Publication number
EP3093583B1
EP3093583B1 EP16169376.7A EP16169376A EP3093583B1 EP 3093583 B1 EP3093583 B1 EP 3093583B1 EP 16169376 A EP16169376 A EP 16169376A EP 3093583 B1 EP3093583 B1 EP 3093583B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
defrosting
refrigerant
circuit
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16169376.7A
Other languages
German (de)
French (fr)
Other versions
EP3093583A1 (en
Inventor
Friedhelm Meyer
Thomas Frisch
Thorsten Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3093583A1 publication Critical patent/EP3093583A1/en
Application granted granted Critical
Publication of EP3093583B1 publication Critical patent/EP3093583B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the invention relates to a method and a device for defrosting an evaporator of a refrigeration system that serves as an air cooler, wherein the evaporator can be used, for example, to cool refrigerators, cold rooms or deep-freeze cells.
  • the invention further relates to the use of the defrosting device in refrigerated cabinets as a calorimeter.
  • a refrigeration system which serves as an air cooler
  • GB 998,719 A describes a refrigeration circuit with means for defrosting ice, wherein refrigerant flows through a pipe in the evaporator that is guided in turns through a stack of plate-shaped fins and an inner pipe is provided within the refrigerant pipe for the heat transfer medium intended for defrosting, which has radial ribs in the space between the inner and outer tubes is in heat-conducting contact with the outer tube.
  • the invention is based on the object of improving the defrosting process on an evaporator of a refrigeration circuit with a simple structure.
  • the refrigerant-carrying pipes of the evaporator are at least partially or partially surrounded by a pipe jacket, through which a heat transfer medium is guided along the surface of the refrigerant-carrying pipes during the defrosting process.
  • the evaporator pipe carrying refrigerant is in close thermal contact with the heat transfer medium over its longitudinal dimension during the defrosting process, a uniform temperature distribution in the evaporator is achieved during the defrosting process and excessive local temperatures are avoided during the defrosting, as is the case, for example a defrost heater that uses electric heating elements.
  • frost or ice formation on the evaporator is defrosted by a heat transfer medium which is passed through a defrost circuit and heated for defrosting while the cooling process of the refrigeration circuit of the evaporator is switched off , wherein the heat transfer medium of the defrosting circuit is guided at least in sections along the outer circumference of the refrigerant lines in the evaporator during defrosting operation.
  • the heat transfer medium can be guided in sections over the longitudinal extent of the refrigerant lines and/or also in sections around the circumference of the refrigerant lines.
  • a cavity is formed on the outer circumference of the coolant lines, through which the heat transfer medium is guided.
  • the flow of the heat transfer medium in the defrosting circuit is interrupted during the cooling operation and the flow of the refrigerant in the refrigerant line is interrupted during the defrosting operation.
  • the fan is conveniently switched off during defrosting so that the heat of the heat transfer medium is only conducted to the iced-over fins of the evaporator via thermal contact of the pipe walls.
  • a fan is provided for blowing air to be cooled through the evaporator, the pipes of the refrigerant and the heat transfer medium being guided through the evaporator and a pipe casing being at least partially or is formed in sections around an inner tube, which has a cavity on or around the inner pipe, so that there is good thermal contact between the pipe and the surrounding cavity.
  • fins are provided on the outer circumference of the outer tube in heat-conducting contact with the outer tube, through which air is blown by the fan.
  • the inner tube of the evaporator is expediently guided in turns through a stack of plate-shaped fins and the outer tube is only provided in the area of straight sections of the inner tube, so that outer tube sections lying essentially parallel to one another result, at the ends of which the arches of the inner tube laid in turns protrude .
  • the inner tube which is guided in turns through the evaporator, can also be surrounded by the outer tube over its entire length, including bends.
  • At least one heat-conducting spacer element is advantageously provided in the cavity surrounding the inner tube in order to improve the heat-conducting contact between the inner and outer tubes.
  • Such a spacer element can expediently be designed as a corrugated sheet metal which rests in the cavity both on the inner circumference of the outer tube and on the outer circumference of the inner tube.
  • the described structure of a defrosting device of an air cooler can advantageously be used as a calorimeter in a refrigerated cabinet, in which the air to be cooled is guided by the fan through the hollow walls of the refrigerated cabinet in such a way that the cool air sweeps over the open top of the refrigerated cabinet.
  • Fig. 1 shows a refrigeration circuit K with a compressor 1, from which a hot gas line 2 leads to a condenser, for example a plate heat exchanger 3.
  • a condenser for example a plate heat exchanger 3.
  • 4 denotes a condensate line
  • 5 denotes a refrigerant collector, from which a pipeline 6 leads to an expansion valve 7.
  • the refrigerant expanded in the expansion valve flows in line 6 through an evaporator 8, on which a fan 80 is provided, which blows air through a package of fins 8.1.
  • a heat exchanger 9 is provided in the hot gas line 2, through which heat is transferred from the high-pressure refrigerant to a circuit V carrying a heat transfer medium such as brine in order to cool the hot gas coming from the compressor before it enters the condenser 3.
  • FIG. 1 a defrosting circuit with a circulation pump 20 and a heating device 21 for the heat transfer medium, for example brine, flowing through the defrosting circuit A.
  • the heat transfer medium flows via a flow line 22 through the fin area 8.1 of the evaporator 8 parallel to the refrigerant line 6 and via a return line 23 back to the circulation pump 20.
  • 24 denotes a safety valve and 25 denotes an expansion vessel in defrost circuit A.
  • FIG. 1 The compressor 1 of the refrigeration circuit K is switched off when a certain degree of frost or ice formation is detected by suitable sensors on the evaporator 8, whereupon, after the refrigeration circuit K has been switched off, the circulation pump 20 with heating device 21 in the defrosting circuit A is switched on, so that the heating device 21 heated heat transfer medium flows through the fin area 8.1 of the evaporator 8 in order to heat it and defrost the ice. If sensors have detected a sufficient defrosting process, the defrosting circuit A is shut down by switching off the circulation pump 20 and the heating device 21, whereupon the refrigeration circuit K starts operating again in order to cool the air flowing through the evaporator via the evaporator 8, which has been freed from frost and ice .
  • Fig. 2 shows a schematic cross-section of a refrigerated cabinet as used in department stores to display frozen goods.
  • 30 denotes the outer insulation of a housing 31 with a U-shaped cross section, the walls of which are hollow to form a cooling air circuit, with air outlet and inlet slots 32 being provided in the upper region of the side walls.
  • the evaporator 8 is arranged between the inner floor surface and the floor insulation, through which air is blown by means of the fan 80.
  • the cooling air circuit is indicated by arrows.
  • a shut-off valve in the refrigerant line 6 is designated by 33.
  • the evaporator 8 can also be arranged at another location in the closed area of the cooling air circuit within the refrigerated cabinet, in which the cooling air flow between the air slots 32 sweeps over the open upper area of the refrigerated cabinet.
  • Fig. 3 shows a defrosting circuit A designed according to the invention, in which the heat transfer medium of the defrosting circuit A flows through a pipe casing 40 which surrounds the refrigerant line 6 in the fin area 8.1 of the evaporator 8.
  • the remaining defrost circuit A corresponds to that in Fig. 1 .
  • Fig. 4 shows schematically in a detailed view the in Fig. 3 The structure of the defrost heater shown here.
  • the pipe casing 40 through which a heat transfer medium such as brine flows is provided with the slats 8.1 on the outer circumference.
  • the inner pipe 6 leading to the refrigerant causes the brine to enter the cavity 41 of the pipe casing during cooling operation 40 cooled, the cooling temperature being transferred to the pipe casing 40 around which air flows and the plate pack 8.1 through which air flows.
  • the refrigerant line 6 and the pipe casing 40 are preferably made of the same material in order to avoid tensions between the pipe casing and the refrigerant pipe at the connection points, which could arise due to different linear expansions due to the temperature changes that occur. Copper is preferably used for the refrigerant line 6 as well as for the pipe casing 40.
  • the slats 8.1 can be designed in the shape of a plate and they are provided with punched outs into which the pipe casing 40 is inserted.
  • a collar indicated at 8.11 can be provided on the punched outs of the slats 8.1, through which the contact area between the slat 8.1 and the pipe casing 40 is increased.
  • Fig. 5 shows a front view of the structure in Fig. 4 .
  • Fig. 6 shows schematically a view of an evaporator 8 with plate-shaped spaced fins 8.1, through which the refrigerant line 6 runs in turns, which is essentially only surrounded by the pipe casing 40 on the straight sections extending through the fin pack 8.1.
  • shut-off valve 10 is shown in the refrigerant line 6.
  • the heat transfer medium of the defrosting circuit A is supplied through the line 22, which opens into a distribution pipe 42, from which the pipe jacket 40 extends along the refrigerant line 6.
  • the pipe casing 40 runs, for example, in arches 40a between the straight sections of the refrigerant line 6, without the refrigerant line 6 being encased.
  • the refrigerant line 6 runs outside the pipe casing 40 in the area of the curved guide 6a.
  • a collecting pipe 43 is provided, from which the line 23 ( Fig. 3 ) leads to the heating device and the pump in defrost circuit A.
  • a collecting pipe 6.1 can be provided, into which the individual refrigerant lines 6 of several layers of refrigerant lines open.
  • the refrigerant line 6 runs from the collecting pipe 6.1 Fig. 6 to compressor 1.
  • Fig. 7 shows schematically a front view of the arrangement in Fig. 6 from below, with, for example, three layers of the refrigerant line 6 lying one above the other in turns.
  • the pipe casing 40 is shown by a dashed line, while the arches 40a of the pipe casing between winding strands of the refrigerant line 6 are shown by solid lines.
  • bends 6a of the refrigerant line 6 are shown by solid lines and the further course of the refrigerant line by dashed lines.
  • Fig. 9a shows a top view, with a lamella 8.1 being arranged between the arch 40a and the straight section of the pipe casing 40.
  • the pipe casing 40 can be bent together with the internal refrigerant line 6.
  • the bends 6a can be soldered onto the straight sections of the refrigerant line 6, which are surrounded by the pipe casing, so that when the evaporator is manufactured, the pipe casing 40 is pushed onto a straight section of the refrigerant pipe 6 and on the end faces for sealing on the circumference of the refrigerant pipe 6 is soldered, whereupon the bends 6a are soldered onto the individual jacketed sections of the refrigerant line 6.
  • the refrigeration circuit K is interrupted and the defrost circuit A is put into operation, whereupon the heat transfer medium such as brine heated by the heating device 21 initiates the defrosting process, with the fins 8.1 of the evaporator 8 being pushed through the cavity 41 via the pipe casing 40 Pipe casing 40 flowing brine is heated.
  • the refrigerant in the refrigerant line 6 is heated in the evaporator 8, which is brought back to a lower temperature after the cooling operation of the refrigeration circuit K has resumed.
  • the heat transfer medium or brine is in the pipe casing 40 is cooled, the fins 8.1 being brought to the low temperature of the air cooler or evaporator via the cooled heat transfer medium.
  • the volume of the heat transfer medium in the cavity 41 of the pipe casing 40 in the evaporator 8 is preferably kept low in order to promote the cooling effect on the fins 8.1 during cooling operation.
  • a refrigerant with a low specific volume is used to operate the refrigerant circuit K.
  • a shut-off valve can be provided before the heat transfer medium enters the evaporator 8 and at the exit from the evaporator, so that a flow of the heat transfer medium in the defrosting circuit A can be prevented during cooling operation.
  • the heat transfer between refrigerant line 6 and pipe casing 40 during cooling operation can be improved by heat-conducting spacer elements in the cavity 41 between refrigerant pipe 6 and pipe casing 40.
  • a corrugated sheet 44 in the cavity 41 is shown in a cross-sectional view, which rests on the inner circumference of the pipe casing 40 and on the outer circumference of the refrigerant line 6. This enables an accelerated reduction in temperature on the slats 8.1 during cooling operation.
  • Fig. 9 shows an embodiment in which the refrigerant line 6 rests on the inner circumference of the pipe casing 40. In this embodiment, too, the heat transfer from the refrigerant line 6 to the pipe casing 40 is improved during cooling operation. In this arrangement, the refrigerant line 6 is only partially surrounded by the cavity 41 on the circumference.
  • Fig. 10 shows schematically another embodiment of the pipe arrangement in the evaporator 8, in which, in contrast to the previously described embodiment, the refrigerant flows through the cavity 61 of a refrigerant pipe 60, within which a pipe 22 of the defrosting circuit A carrying the heat transfer medium runs.
  • the fins 8.1 arranged on the outer tube 60 are cooled more effectively in cooling mode, while in defrosting mode the heat from the fins arranged in the inside Pipe 22 flowing heat transfer medium must be transferred via the refrigerant in the cavity 61 to the fins 8.1.
  • the refrigerant line 60 forms the outer pipe and the pipe 22 carrying the heat transfer medium forms the inner pipe.
  • the described design of an evaporator with a refrigerant line 6 that is at least partially sheathed or a brine line 22 that is sheathed by the refrigerant line 60 can be used as a calorimeter.
  • the refrigeration circuit is operated in cooling mode, for example with CO2 as a refrigerant, with the fan 80 switched off, with the evaporator having previously cooled the air flowing through to, for example, minus 20 ° C.
  • the heating output can be varied by the heating device 21 until the refrigerant temperature in the evaporator becomes essentially constant. In this way, a balance is established between the heat supplied on the one hand and the refrigerant temperature in the evaporator on the other.
  • the heating power supplied can be measured using a wattmeter.
  • the refrigerant temperature within the evaporator can be determined using a measuring device.
  • the cooling output of the evaporator can be determined based on the heating output supplied, because due to the balance, the heating output supplied corresponds to the cooling output of the evaporator.
  • the manufacturer's information on evaporator performance is not uniform for refrigeration systems in refrigerated cabinets, so that the operator of a refrigeration system in refrigerated cabinets cannot compare the information on evaporator performance. He is also not able to easily check the evaporator performance.
  • the defrosting device described is used as a calorimeter according to the invention.
  • Fig. 2 shown refrigeration cabinet, in which the evaporator 8 is arranged in a largely closed cavity, the fan 80 is switched off, so that in particular when the evaporator 8 is arranged in the bottom area of the refrigeration cabinet There is no air flow through the evaporator, at most a slight convective air flow, which does not influence a calorimetric measurement.
  • the compressor 1 continues to deliver refrigerant through the refrigerant line 6.
  • the defrosting circuit A is switched on, so that the pump 20 delivers heat transfer medium (eg glycol) heated by the heating device 21 through the evaporator 8.
  • heat transfer medium eg glycol
  • a temperature balance can be set between the amount of heat supplied by the defrost circuit using heated glycol as a heat transfer medium and the refrigerant temperature in the evaporator, as shown in Fig. 11 is reproduced using a measurement protocol.
  • the heating output of the heating device 21 is kept constant while the evaporator 1 continues to run and maintains the cooling operation of the refrigeration circuit.
  • the room temperature in the largely closed cavity in which the evaporator is arranged is kept constant over a certain period of time. This is facilitated by the fact that the largely closed cavity is, on the one hand, provided with thermal insulation 30 ( Fig. 2 ) and on the other hand is provided with only relatively small openings in the form of slots 32. Furthermore, the temperature of the refrigerant in the evaporator is kept constant.
  • the easily measurable heating output can be used to determine which corresponds to the evaporator output, with the refrigerant in the evaporator absorbing the amount of heat supplied.
  • the amount of heat supplied by the defrosting circuit corresponds to the amount of heat for cooling by the refrigerant (preferably CO 2 ), the temperature of which is kept constant during operation as a calorimeter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Defrosting Systems (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Abtauen eines als Luftkühler dienenden Verdampfers einer Kälteanlage, wobei der Verdampfer beispielsweise zum Kühlen von Kühlmöbeln, Kühlräumen oder Tiefkühlzellen eingesetzt werden kann. Weiterhin betrifft die Erfindung die Verwendung der Abtauvorrichtung bei Kühlmöbeln als Kalorimeter.The invention relates to a method and a device for defrosting an evaporator of a refrigeration system that serves as an air cooler, wherein the evaporator can be used, for example, to cool refrigerators, cold rooms or deep-freeze cells. The invention further relates to the use of the defrosting device in refrigerated cabinets as a calorimeter.

An dem als Luftkühler dienenden Verdampfer einer Kälteanlage kondensiert Luftfeuchtigkeit, sodass nach gewissen Betriebszeiten unterhalb des Gefrierpunktes der Verdampfer vereist und abgetaut werden muss, damit die Kühlleistung aufrechterhalten werden kann. Hierzu ist es bekannt, den Kühlprozess zu unterbrechen und den Verdampfer beispielsweise mittels elektrischer Heizstäbe abzutauen, die zwischen den Kältemittel führenden Rohrleitungen des Verdampfers angeordnet sind. Bekannt ist auch, am Verdampfer eine Heißgasbeaufschlagung durch Kreislaufumkehr des Kältekreises vorzusehen, oder den Verdampfer mittels eines separaten Wärmeträgerkreislaufs abzutauen, dessen Rohrleitungen zwischen den Kältemittel führenden Rohrleitungen des Verdampfers angeordnet sind.Air moisture condenses on the evaporator of a refrigeration system, which serves as an air cooler, so that after certain operating times below the freezing point, the evaporator ices up and has to be defrosted so that the cooling performance can be maintained. For this purpose, it is known to interrupt the cooling process and to defrost the evaporator, for example by means of electric heating elements, which are arranged between the pipes of the evaporator carrying refrigerant. It is also known to provide the evaporator with hot gas by reversing the refrigeration circuit, or to defrost the evaporator using a separate heat transfer circuit, the pipes of which are arranged between the pipes of the evaporator that carry refrigerant.

GB 998,719 A beschreibt einen Kältekreis mit Mitteln zum Abtauen von Eis, wobei eine in dem Verdampfer in Windungen durch einen Stapel von plattenförmigen Lamellen geführte Rohrleitung von Kältemittel durchströmt wird und innerhalb der Kältemittelleitung ein Innenrohr für das zum Abtauen vorgesehene Wärmeträgermedium vorgesehen ist, das über radiale Rippen im Zwischenraum zwischen Innen- und Außenrohr mit dem Außenrohr in wärmeleitendem Kontakt steht. GB 998,719 A describes a refrigeration circuit with means for defrosting ice, wherein refrigerant flows through a pipe in the evaporator that is guided in turns through a stack of plate-shaped fins and an inner pipe is provided within the refrigerant pipe for the heat transfer medium intended for defrosting, which has radial ribs in the space between the inner and outer tubes is in heat-conducting contact with the outer tube.

Der Erfindung liegt die Aufgabe zugrunde, den Abtauvorgang an einem Verdampfer eines Kältekreises bei einfachem Aufbau zu verbessern.The invention is based on the object of improving the defrosting process on an evaporator of a refrigeration circuit with a simple structure.

Erfindungsgemäß werden die Kältemittel führenden Rohrleitungen des Verdampfers zumindest teilweise bzw. abschnittsweise mit einem Rohrmantel umgeben, durch den ein Wärmeträgermedium längs der Oberfläche der Kältemittel führenden Rohrleitungen während des Abtauvorgangs entlanggeführt wird.According to the invention, the refrigerant-carrying pipes of the evaporator are at least partially or partially surrounded by a pipe jacket, through which a heat transfer medium is guided along the surface of the refrigerant-carrying pipes during the defrosting process.

Dadurch, dass die Kältemittel führende Rohrleitung des Verdampfers über ihre Längsabmessung in einem engen Wärmeleitkontakt mit dem Wärmeträgermedium während des Abtauvorgangs steht, wird eine gleichmäßige Temperaturverteilung im Verdampfer während des Abtauvorgangs erreicht und es werden zu hohe lokale Temperaturen während der Abtauung vermieden, wie sie beispielsweise bei einer mit elektrischen Heizstäben arbeitenden Abtauheizung auftreten können.Because the evaporator pipe carrying refrigerant is in close thermal contact with the heat transfer medium over its longitudinal dimension during the defrosting process, a uniform temperature distribution in the evaporator is achieved during the defrosting process and excessive local temperatures are avoided during the defrosting, as is the case, for example a defrost heater that uses electric heating elements.

Bei einem Verfahren zum Abtauen eines als Luftkühler dienenden Verdampfers eines Kältekreises insbesondere für Kühlmöbel und Kühlräume wird eine Reif- oder Eisbildung am Verdampfer durch ein Wärmeträgermedium abgetaut, das durch einen Abtaukreis geführt und zum Abtauen aufgeheizt wird, während der Kühlprozess des Kältekreises des Verdampfers abgeschaltet ist, wobei das Wärmeträgermedium des Abtaukreises im Abtaubetrieb wenigstens abschnittsweise längs des Außenumfangs der Kältemittelleitungen im Verdampfer geführt wird.In a method for defrosting an evaporator of a refrigeration circuit serving as an air cooler, in particular for refrigeration cabinets and cold rooms, frost or ice formation on the evaporator is defrosted by a heat transfer medium which is passed through a defrost circuit and heated for defrosting while the cooling process of the refrigeration circuit of the evaporator is switched off , wherein the heat transfer medium of the defrosting circuit is guided at least in sections along the outer circumference of the refrigerant lines in the evaporator during defrosting operation.

Dabei kann das Wärmeträgermedium abschnittsweise über die Längserstreckung der Kältemittelleitungen und/oder auch abschnittsweise um den Umfang der Kältemittelleitungen geführt werden.The heat transfer medium can be guided in sections over the longitudinal extent of the refrigerant lines and/or also in sections around the circumference of the refrigerant lines.

Um das Wärmeträgermedium des Abtaukreises zumindest abschnittsweise längs den Kühlmittelleitungen im Verdampfer zu führen, wird ein Hohlraum auf dem Außenumfang der Kältemittelleitungen ausgebildet, durch den das Wärmeträgermedium geführt wird.In order to guide the heat transfer medium of the defrost circuit at least in sections along the coolant lines in the evaporator, a cavity is formed on the outer circumference of the coolant lines, through which the heat transfer medium is guided.

Vorteilhafterweise wird während des Kühlbetriebes die Strömung des Wärmeträgermediums im Abtaukreis unterbrochen und während des Abtaubetriebs die Strömung des Kältemittels in der Kältemittelleitung unterbrochen.Advantageously, the flow of the heat transfer medium in the defrosting circuit is interrupted during the cooling operation and the flow of the refrigerant in the refrigerant line is interrupted during the defrosting operation.

Der Ventilator wird während des Abtaubetriebs zweckmäßigerweise abgestellt, sodass die Wärme des Wärmeträgermediums nur über Wärmeleitkontakt der Rohrwände an die vereisten Lamellen des Verdampfers geleitet wird.The fan is conveniently switched off during defrosting so that the heat of the heat transfer medium is only conducted to the iced-over fins of the evaporator via thermal contact of the pipe walls.

Bei einer Vorrichtung zum Abtauen eines als Luftkühler dienenden Verdampfers eines Kältekreises in Kühlmöbeln oder Kühlräumen ist ein Ventilator zum Blasen von zu kühlender Luft durch den Verdampfer vorgesehen, wobei die Rohrleitungen des Kältemittels und des Wärmeträgermediums durch den Verdampfer geführt sind und eine Rohrummantelung wenigstens teilweise bzw. abschnittsweise um ein Innenrohr ausgebildet ist, das einen Hohlraum am oder um das Innenrohr bildet, sodass sich ein guter Wärmeleitkontakt zwischen Rohrleitung und umgebendem Hohlraum ergibt.In a device for defrosting an evaporator of a refrigeration circuit serving as an air cooler in refrigeration cabinets or cold rooms, a fan is provided for blowing air to be cooled through the evaporator, the pipes of the refrigerant and the heat transfer medium being guided through the evaporator and a pipe casing being at least partially or is formed in sections around an inner tube, which has a cavity on or around the inner pipe, so that there is good thermal contact between the pipe and the surrounding cavity.

Vorzugsweise werden auf dem Außenumfang des Außenrohres Lamellen in wärmeleitendem Kontakt mit dem Außenrohr vorgesehen, durch die Luft vom Ventilator geblasen wird.Preferably, fins are provided on the outer circumference of the outer tube in heat-conducting contact with the outer tube, through which air is blown by the fan.

Zweckmäßigerweise wird das Innenrohr des Verdampfers in Windungen durch einen Stapel von plattenförmigen Lamellen geführt und das Außenrohr nur im Bereich von geraden Abschnitten des Innenrohrs vorgesehen, sodass sich im Wesentlichen parallel zueinander liegende äußere Rohrabschnitte ergeben, an deren Enden die Bögen des in Windungen gelegten Innenrohres vorstehen.The inner tube of the evaporator is expediently guided in turns through a stack of plate-shaped fins and the outer tube is only provided in the area of straight sections of the inner tube, so that outer tube sections lying essentially parallel to one another result, at the ends of which the arches of the inner tube laid in turns protrude .

Es kann aber auch das in Windungen durch den Verdampfer geführte Innenrohr über seine gesamte Länge einschließlich Bögen von dem Außenrohr umgeben sein.However, the inner tube, which is guided in turns through the evaporator, can also be surrounded by the outer tube over its entire length, including bends.

In dem das Innenrohr umgebenden Hohlraum wird vorteilhafterweise wenigstens ein wärmeleitendes Distanzelement vorgesehen, um den Wärmeleitkontakt zwischen Innen- und Außenrohr zu verbessern.At least one heat-conducting spacer element is advantageously provided in the cavity surrounding the inner tube in order to improve the heat-conducting contact between the inner and outer tubes.

Ein solches Distanzelement kann zweckmäßigerweise als gewelltes Blech ausgebildet sein, das im Hohlraum sowohl an dem Innenumfang des Außenrohres als auch auf dem Außenumfang des innenrohres anliegt.Such a spacer element can expediently be designed as a corrugated sheet metal which rests in the cavity both on the inner circumference of the outer tube and on the outer circumference of the inner tube.

Der beschriebene Aufbau einer Abtauvorrichtung eines Luftkühlers kann vorteilhafterweise als Kalorimeter bei einem Kühlmöbel verwendet werden, bei dem die zu kühlende Luft vom Ventilator durch die hohlen Wände des Kühlmöbels so geleitet wird, dass die kühle Luft die offene Oberseite des Kühlmöbels überstreicht.The described structure of a defrosting device of an air cooler can advantageously be used as a calorimeter in a refrigerated cabinet, in which the air to be cooled is guided by the fan through the hollow walls of the refrigerated cabinet in such a way that the cool air sweeps over the open top of the refrigerated cabinet.

Wenn bei einem solchen Kühlmöbel der Ventilator abgeschaltet wird und die Strömung des Kältemittels durch den Kältekreis wie im Kältebetrieb durch den Betrieb des Verdichters aufrechterhalten wird, während gleichzeitig das Wärmeträgermedium durch den Abtaukreis strömt und erwärmt wird, kann dieser Betrieb so eingestellt werden, dass ein Gleichgewicht entsteht zwischen am Abtaukreis zugeführter Wärmemenge einerseits und konstanter Temperatur des Kältemittels im Kältekreis andererseits. Hierdurch kann bei Erreichen dieses Gleichgewichts anhand der zugeführten Wärmemenge die Leistung des Verdampfers in einfacher Weise ermittelt werden.If the fan is switched off in such a refrigeration cabinet and the flow of refrigerant through the refrigeration circuit is maintained as in refrigeration mode by the operation of the compressor, while at the same time the heat transfer medium flows through the defrost circuit and is heated, this operation can be adjusted so that an equilibrium is achieved arises between the amount of heat supplied to the defrost circuit on the one hand and the constant temperature of the refrigerant in the refrigeration circuit on the other. As a result, when this equilibrium is reached, the performance of the evaporator can be determined in a simple manner based on the amount of heat supplied.

Beispielsweise Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert. Es zeigen

Fig. 1
schematisch einen Kältekreis mit einem ein Wärmeträgermedium führenden Abtaukreis,
Fig. 2
schematisch ein Kühlmöbel mit einem Verdampfer als Luftkühler,
Fig. 3
den Abtaukreis nach Fig. 1 mit einer schematisch wiedergegebenen erfindungsgemäßen Abtauheizung,
Fig. 4
eine schematische Detailansicht der erfindungsgemäßen Abtauheizung,
Fig. 5
eine Schnittansicht zu Fig. 4,
Fig. 6
eine Draufsicht auf eine Rohrleitungsführung in einem Verdampfer mit der erfindungsgemäßen Abtauheizung,
Fig. 7
eine Stirnansicht der Rohrleitungsanordnung von unten in Fig. 6,
Fig. 8
im Querschnitt eine Ausführungsform mit Wärmeübertragungselement zwischen Innenrohr und Außenrohr,
Fig. 9, 9a
eine andere Anordnung zwischen Innen- und Außenrohr,
Fig. 10
eine schematische Schnittansicht durch eine Rohrleitung bei einer weiteren Ausführungsform des Verdampfers, und
Fig. 11
ein Messprotokoll zur Erläuterung des Betriebs bei einer kalorimetischen Messung.
For example, embodiments of the invention are explained in more detail below with reference to the drawing. Show it
Fig. 1
schematically a refrigeration circuit with a defrosting circuit carrying a heat transfer medium,
Fig. 2
schematically a refrigeration cabinet with an evaporator as an air cooler,
Fig. 3
the defrost circuit Fig. 1 with a defrost heater according to the invention shown schematically,
Fig. 4
a schematic detailed view of the defrost heater according to the invention,
Fig. 5
a sectional view Fig. 4 ,
Fig. 6
a top view of a pipeline in an evaporator with the defrost heater according to the invention,
Fig. 7
a front view of the pipeline arrangement from below Fig. 6 ,
Fig. 8
in cross section an embodiment with a heat transfer element between the inner tube and outer tube,
Fig. 9, 9a
a different arrangement between the inner and outer tube,
Fig. 10
a schematic sectional view through a pipeline in a further embodiment of the evaporator, and
Fig. 11
a measurement protocol to explain the operation of a calorimetric measurement.

Fig. 1 zeigt einen Kältekreis K mit einem Verdichter 1, von dem eine Heißgasleitung 2 zu einem Verflüssiger, beispielsweise einem Plattenwärmeübertrager 3 führt. Mit 4 ist eine Kondensatleitung und mit 5 ein Kältemittelsammler bezeichnet, von dem aus eine Rohrleitung 6 zu einem Expansionsventil 7 führt. Das im Expansionsventil entspannte Kältemittel strömt in der Leitung 6 durch einen Verdampfer 8, an dem ein Ventilator 80 vorgesehen ist, der Luft durch ein Paket von Lamellen 8.1 bläst. Fig. 1 shows a refrigeration circuit K with a compressor 1, from which a hot gas line 2 leads to a condenser, for example a plate heat exchanger 3. 4 denotes a condensate line and 5 denotes a refrigerant collector, from which a pipeline 6 leads to an expansion valve 7. The refrigerant expanded in the expansion valve flows in line 6 through an evaporator 8, on which a fan 80 is provided, which blows air through a package of fins 8.1.

Bei dem dargestellten Ausführungsbeispiel ist in der Heißgasleitung 2 ein Wärmeübertrager 9 vorgesehen, durch den Wärme auf einen ein Wärmeträgermedium wie z.B. Sole führenden Kreis V vom Hochdruckkältemittel übertragen wird, um das vom Verdichter kommende Heißgas vor dem Eintritt in den Verflüssiger 3 zu kühlen.In the exemplary embodiment shown, a heat exchanger 9 is provided in the hot gas line 2, through which heat is transferred from the high-pressure refrigerant to a circuit V carrying a heat transfer medium such as brine in order to cool the hot gas coming from the compressor before it enters the condenser 3.

Mit A ist in Fig. 1 ein Abtaukreislauf mit einer Zirkulationspumpe 20 und einer Heizeinrichtung 21 für das den Abtaukreislauf A durchströmende Wärmeträgermediums, z.B. Sole, bezeichnet. Von der Zirkulationspumpe 20 strömt das Wärmeträgermedium über eine Vorlaufleitung 22 durch den Lamellenbereich 8.1 des Verdampfers 8 parallel zur Kältemittelleitung 6 und über eine Rücklaufleitung 23 zurück zur Zirkulationspumpe 20. Mit 24 ist ein Sicherheitsventil und mit 25 ein Ausdehnungsgefäß im Abtaukreis A bezeichnet.With A is in Fig. 1 a defrosting circuit with a circulation pump 20 and a heating device 21 for the heat transfer medium, for example brine, flowing through the defrosting circuit A. From the circulation pump 20, the heat transfer medium flows via a flow line 22 through the fin area 8.1 of the evaporator 8 parallel to the refrigerant line 6 and via a return line 23 back to the circulation pump 20. 24 denotes a safety valve and 25 denotes an expansion vessel in defrost circuit A.

Bei dieser bekannten Anordnung nach Fig. 1 wird der Verdichter 1 des Kältekreises K abgeschaltet, wenn durch geeignete Sensoren am Verdampfer 8 ein bestimmter Grad an Reif- oder Eisbildung festgestellt wird, worauf nach Abschalten des Kältekreises K die Zirkulationspumpe 20 mit Heizeinrichtung 21 im Abtaukreislauf A eingeschaltet wird, sodass durch die Heizeinrichtung 21 erwärmtes Wärmeträgermedium durch den Lamellenbereich 8.1 des Verdampfers 8 strömt, um diesen zu erwärmen und das Eis abzutauen. Wenn durch Sensoren ein ausreichender Abtauvorgang festgestellt ist, wird der Abtaukreislauf A durch Abschalten der Zirkulationspumpe 20 und der Heizeinrichtung 21 stillgelegt, worauf der Kältekreis K wieder den Betrieb aufnimmt, um über den von Reif und Eis befreiten Verdampfer 8 die den Verdampfer durchströmende Luft zu kühlen.With this known arrangement Fig. 1 The compressor 1 of the refrigeration circuit K is switched off when a certain degree of frost or ice formation is detected by suitable sensors on the evaporator 8, whereupon, after the refrigeration circuit K has been switched off, the circulation pump 20 with heating device 21 in the defrosting circuit A is switched on, so that the heating device 21 heated heat transfer medium flows through the fin area 8.1 of the evaporator 8 in order to heat it and defrost the ice. If sensors have detected a sufficient defrosting process, the defrosting circuit A is shut down by switching off the circulation pump 20 and the heating device 21, whereupon the refrigeration circuit K starts operating again in order to cool the air flowing through the evaporator via the evaporator 8, which has been freed from frost and ice .

Fig. 2 zeigt schematisch in einem Querschnitt ein Kühlmöbel, wie es in Kaufhäusern zur Präsentation von Tiefkühlwaren verwendet wird. Mit 30 ist die äußere Isolierung eines im Querschnitt U-förmigen Gehäuses 31 bezeichnet, dessen Wände zur Ausbildung eines Kühlluftkreislaufs hohl ausgebildet sind, wobei im oberen Bereich der Seitenwände Luft-Aus- und Einlassschlitze 32 vorgesehen sind. Zwischen der inneren Bodenfläche und der Bodenisolierung ist der Verdampfer 8 angeordnet, durch den mittels des Ventilators 80 Luft geblasen wird. Durch Pfeile ist der Kühlluftkreislauf angedeutet. Mit 33 ist ein Absperrventil in der Kältemittelleitung 6 bezeichnet. Fig. 2 shows a schematic cross-section of a refrigerated cabinet as used in department stores to display frozen goods. 30 denotes the outer insulation of a housing 31 with a U-shaped cross section, the walls of which are hollow to form a cooling air circuit, with air outlet and inlet slots 32 being provided in the upper region of the side walls. The evaporator 8 is arranged between the inner floor surface and the floor insulation, through which air is blown by means of the fan 80. The cooling air circuit is indicated by arrows. A shut-off valve in the refrigerant line 6 is designated by 33.

Der Verdampfer 8 kann auch an einer anderen Stelle in dem geschlossenen Bereich des Kühlluftkreislaufs innerhalb des Kühlmöbels angeordnet sein, bei dem die Kühlluftströmung zwischen den Luftschlitzen 32 den offenen oberen Bereich des Kühlmöbels überstreicht.The evaporator 8 can also be arranged at another location in the closed area of the cooling air circuit within the refrigerated cabinet, in which the cooling air flow between the air slots 32 sweeps over the open upper area of the refrigerated cabinet.

Fig. 3 zeigt einen erfindungsgemäß ausgestalteten Abtaukreislauf A, bei dem das Wärmeträgermedium des Abtaukreislaufs A eine Rohrummantelung 40 durchströmt, die im Lamellenbereich 8.1 des Verdampfers 8 die Kältemittelleitung 6 umgibt. Der übrige Abtaukreis A entspricht dem in Fig. 1. Fig. 3 shows a defrosting circuit A designed according to the invention, in which the heat transfer medium of the defrosting circuit A flows through a pipe casing 40 which surrounds the refrigerant line 6 in the fin area 8.1 of the evaporator 8. The remaining defrost circuit A corresponds to that in Fig. 1 .

Fig. 4 zeigt schematisch in einer Detailansicht den in Fig. 3 wiedergegebenen Aufbau der Abtauheizung. Fig. 4 shows schematically in a detailed view the in Fig. 3 The structure of the defrost heater shown here.

Die von einem Wärmeträgermedium wie Sole durchströmte Rohrummantelung 40 ist auf dem Außenumfang mit den Lamellen 8.1 versehen. Durch die Kältemittel führende innere Rohrleitung 6 wird während des Kühlbetriebs die Sole im Hohlraum 41 der Rohrummantelung 40 gekühlt, wobei die Kühltemperatur auf die von Luft umströmte Rohrummantelung 40 und das von Luft durchströmte Lamellenpaket 8.1 übertragen wird.The pipe casing 40 through which a heat transfer medium such as brine flows is provided with the slats 8.1 on the outer circumference. The inner pipe 6 leading to the refrigerant causes the brine to enter the cavity 41 of the pipe casing during cooling operation 40 cooled, the cooling temperature being transferred to the pipe casing 40 around which air flows and the plate pack 8.1 through which air flows.

Bei dieser Rohr-in-Rohr-Anordnung nach Fig. 4 bildet die Rohrummantelung 40 ein Außenrohr und die Kältemittelleitung 6 ein Innenrohr.With this tube-in-tube arrangement Fig. 4 the pipe casing 40 forms an outer pipe and the refrigerant line 6 forms an inner pipe.

Die Kältemittelleitung 6 und die Rohrummantelung 40 bestehen vorzugsweise aus dem gleichen Material, um Spannungen zwischen Rohrummantelung und Kältemittelleitung an den Verbindungsstellen zu vermeiden, die durch unterschiedliche Längenausdehnungen bei den auftretenden Temperaturänderungen entstehen könnten. Vorzugsweise wird für die Kältemittelleitung 6 wie für die Rohrummantelung 40 Kupfer verwendet.The refrigerant line 6 and the pipe casing 40 are preferably made of the same material in order to avoid tensions between the pipe casing and the refrigerant pipe at the connection points, which could arise due to different linear expansions due to the temperature changes that occur. Copper is preferably used for the refrigerant line 6 as well as for the pipe casing 40.

Die Lamellen 8.1 können plattenförmig ausgestaltet sein und sie sind mit Ausstanzungen versehen, in die die Rohrummantelung 40 eingesetzt wird. An den Ausstanzungen der Lamellen 8.1 kann ein bei 8.11 angedeuteter Kragen vorgesehen sein, durch den die Kontaktfläche zwischen Lamelle 8.1 und Rohrummantelung 40 vergrößert wird. Fig. 5 zeigt eine Stirnansicht des Aufbaus in Fig. 4.The slats 8.1 can be designed in the shape of a plate and they are provided with punched outs into which the pipe casing 40 is inserted. A collar indicated at 8.11 can be provided on the punched outs of the slats 8.1, through which the contact area between the slat 8.1 and the pipe casing 40 is increased. Fig. 5 shows a front view of the structure in Fig. 4 .

Fig. 6 zeigt schematisch eine Ansicht eines Verdampfers 8 mit plattenförmigen beabstandeten Lamellen 8.1, durch die die Kältemittelleitung 6 in Windungen verläuft, die im Wesentlichen nur auf den geraden, durch das Lamellenpaket 8.1 sich erstreckenden Abschnitten von der Rohrummantelung 40 umgeben ist. Fig. 6 shows schematically a view of an evaporator 8 with plate-shaped spaced fins 8.1, through which the refrigerant line 6 runs in turns, which is essentially only surrounded by the pipe casing 40 on the straight sections extending through the fin pack 8.1.

Am Eintritt des Kältemittels in den Verdampfer 8 ist in der Kältemittelleitung 6 ein Absperrventil 10 wiedergegeben.At the entry of the refrigerant into the evaporator 8, a shut-off valve 10 is shown in the refrigerant line 6.

Das Wärmeträgermedium des Abtaukreises A wird durch die Leitung 22 zugeführt, die in ein Verteilerrohr 42 mündet, von dem aus die Rohrummantelung 40 sich längs der Kältemittelleitung 6 erstreckt. Im Bereich der Windungsbögen 6a der Kältemittelleitung 6 verläuft die Rohrummantelung 40 beispielsweise in Bögen 40a zwischen den geraden Abschnitten der Kältemittelleitung 6, ohne dass die Kältemittelleitung 6 ummantelt wird. In gleicher Weise verläuft im Bereich der Bogenführung 6a die Kältemittelleitung 6 außerhalb der Rohrummantelung 40.The heat transfer medium of the defrosting circuit A is supplied through the line 22, which opens into a distribution pipe 42, from which the pipe jacket 40 extends along the refrigerant line 6. In the area of the winding bends 6a of the refrigerant line 6, the pipe casing 40 runs, for example, in arches 40a between the straight sections of the refrigerant line 6, without the refrigerant line 6 being encased. In the same way, the refrigerant line 6 runs outside the pipe casing 40 in the area of the curved guide 6a.

Am Austritt des Wärmeträgermediums aus der Rohrummantelung 40 ist ein Sammelrohr 43 vorgesehen, von dem aus die Leitung 23 (Fig. 3) zur Heizeinrichtung und zur Pumpe im Abtaukreis A führt.At the outlet of the heat transfer medium from the pipe casing 40, a collecting pipe 43 is provided, from which the line 23 ( Fig. 3 ) leads to the heating device and the pump in defrost circuit A.

Am Austritt des Kältemittels aus dem Verdampfer 8 kann in Fig. 6 ein Sammelrohr 6.1 vorgesehen sein, in das die einzelnen Kältemittelleitungen 6 von mehreren Lagen von Kältemittelleitungen münden. Von dem Sammelrohr 6.1 aus verläuft die Kältemittelleitung 6 in Fig. 6 zum Verdichter 1.At the outlet of the refrigerant from the evaporator 8 can be in Fig. 6 a collecting pipe 6.1 can be provided, into which the individual refrigerant lines 6 of several layers of refrigerant lines open. The refrigerant line 6 runs from the collecting pipe 6.1 Fig. 6 to compressor 1.

Fig. 7 zeigt schematisch eine Stirnansicht der Anordnung in Fig. 6 von unten, wobei beispielsweise drei Lagen der Kältemittelleitung 6 in Windungen übereinander liegen. Der Übersichtlichkeit halber ist die Rohrummantelung 40 durch eine gestrichelte Linie wiedergegeben, während die Bögen 40a der Rohrummantelung zwischen Windungssträngen der Kältemittelleitung 6 durch ausgezogene Linien wiedergegeben sind. Fig. 7 shows schematically a front view of the arrangement in Fig. 6 from below, with, for example, three layers of the refrigerant line 6 lying one above the other in turns. For the sake of clarity, the pipe casing 40 is shown by a dashed line, while the arches 40a of the pipe casing between winding strands of the refrigerant line 6 are shown by solid lines.

In gleicher Weise sind die Bögen 6a der Kältemittelleitung 6 durch ausgezogene Linien wiedergegeben und der weitere Verlauf der Kältemittelleitung durch gestrichelte Linien.In the same way, the bends 6a of the refrigerant line 6 are shown by solid lines and the further course of the refrigerant line by dashed lines.

Es ist auch möglich, die Rohrummantelung 40 längs der Bögen 6a der Kältemittelleitung 6 zu führen, sodass die gesamte durch den Verdampfer verlaufende Kältemittelleitung 6 von der Rohrummantelung 40 umgeben ist. Hierbei kann im Bereich der Bögen die Kältemittelleitung 6 am Innenumfang der Rohrummantelung 40 anliegen, wie dies Fig. 9 und 9a zeigtIt is also possible to guide the pipe casing 40 along the bends 6a of the refrigerant line 6, so that the entire refrigerant pipe 6 running through the evaporator is surrounded by the pipe casing 40. Here, in the area of the bends, the refrigerant line 6 can rest on the inner circumference of the pipe casing 40, like this 9 and 9a shows

Fig. 9a zeigt eine Draufsicht, wobei zwischen Bogen 40a und geradem Abschnitt der Rohrummantelung 40 eine Lamelle 8.1 angeordnet ist. Die Rohrummantelung 40 kann zusammen mit der innenliegenden Kältemittelleitung 6 gebogen werden. Fig. 9a shows a top view, with a lamella 8.1 being arranged between the arch 40a and the straight section of the pipe casing 40. The pipe casing 40 can be bent together with the internal refrigerant line 6.

Bei der Ausführungsform nach den Fig. 6 und 7 können die Bögen 6a auf die geraden Abschnitte der Kältemittelleitung 6, die von der Rohrummantelung umgeben sind, aufgelötet werden, sodass bei der Herstellung des Verdampfers die Rohrummantelung 40 auf einen geraden Abschnitt der Kältemittelleitung 6 aufgeschoben und an den Stirnseiten zur Abdichtung auf dem Umfang der Kältemittelleitung 6 verlötet wird, worauf auf die einzelnen ummantelten Abschnitte der Kältemittelleitung 6 die Bögen 6a angelötet werden.In the embodiment according to Fig. 6 and 7 The bends 6a can be soldered onto the straight sections of the refrigerant line 6, which are surrounded by the pipe casing, so that when the evaporator is manufactured, the pipe casing 40 is pushed onto a straight section of the refrigerant pipe 6 and on the end faces for sealing on the circumference of the refrigerant pipe 6 is soldered, whereupon the bends 6a are soldered onto the individual jacketed sections of the refrigerant line 6.

Zum Abtauen des Verdampfers 8 wird der Kältekreis K unterbrochen und der Abtaukreis A in Betrieb gesetzt, worauf das durch die Heizeinrichtung 21 erwärmte Wärmeträgermedium wie Sole den Abtauvorgang einleitet, wobei über die Rohrummantelung 40 die Lamellen 8.1 des Verdampfers 8 durch die durch den Hohlraum 41 der Rohrummantelung 40 strömende Sole erwärmt werden.To defrost the evaporator 8, the refrigeration circuit K is interrupted and the defrost circuit A is put into operation, whereupon the heat transfer medium such as brine heated by the heating device 21 initiates the defrosting process, with the fins 8.1 of the evaporator 8 being pushed through the cavity 41 via the pipe casing 40 Pipe casing 40 flowing brine is heated.

Hierbei wird das Kältemittel in der Kältemittelleitung 6 im Verdampfer 8 erwärmt, das nach Wiederaufnahme des Kühlbetriebs des Kältekreises K wieder auf eine niedrigere Temperatur gebracht wird. Während des Kühlbetriebes wird das Wärmeträgermedium bzw. die Sole in der Rohrummantelung 40 gekühlt, wobei die Lamellen 8.1 über das gekühlte Wärmeträgermedium auf die niedrige Temperatur des Luftkühlers bzw. Verdampfers gebracht werden.Here, the refrigerant in the refrigerant line 6 is heated in the evaporator 8, which is brought back to a lower temperature after the cooling operation of the refrigeration circuit K has resumed. During cooling operation, the heat transfer medium or brine is in the pipe casing 40 is cooled, the fins 8.1 being brought to the low temperature of the air cooler or evaporator via the cooled heat transfer medium.

Das Volumen des Wärmeträgermediums im Hohlraum 41 der Rohrummantelung 40 im Verdampfer 8 wird vorzugsweise gering gehalten, um beim Kühlbetrieb die Kühlwirkung an den Lamellen 8.1 zu begünstigen.The volume of the heat transfer medium in the cavity 41 of the pipe casing 40 in the evaporator 8 is preferably kept low in order to promote the cooling effect on the fins 8.1 during cooling operation.

Vorzugsweise wird für den Betrieb des Kältemittelkreises K ein Kältemittel mit niedrigem spezifischem Volumen verwendet.Preferably, a refrigerant with a low specific volume is used to operate the refrigerant circuit K.

Im Abtaukreis A kann vor dem Eintritt des Wärmeträgermediums in den Verdampfer 8 und am Austritt aus dem Verdampfer ein Absperrventil vorgesehen sein, damit während des Kühlbetriebs eine Strömung des Wärmeträgermediums im Abtaukreis A verhindert werden kann.In the defrosting circuit A, a shut-off valve can be provided before the heat transfer medium enters the evaporator 8 and at the exit from the evaporator, so that a flow of the heat transfer medium in the defrosting circuit A can be prevented during cooling operation.

Die Wärmeübertragung zwischen Kältemittelleitung 6 und Rohrummantelung 40 während des Kühlbetriebs kann durch wärmeleitende Distanzelemente im Hohlraum 41 zwischen Kältemittelleitung 6 und Rohrummantelung 40 verbessert werden.The heat transfer between refrigerant line 6 and pipe casing 40 during cooling operation can be improved by heat-conducting spacer elements in the cavity 41 between refrigerant pipe 6 and pipe casing 40.

Als Beispiel ist in Fig. 8 ein gewelltes Blech 44 im Hohlraum 41 in einer Querschnittsansicht wiedergegeben, das auf dem Innenumfang der Rohrummantelung 40 und auf dem Außenumfang der Kältemittelleitung 6 anliegt. Hierdurch wird im Kühlbetrieb eine beschleunigte Temperaturabsenkung an den Lamellen 8.1 ermöglicht.As an example is in Fig. 8 a corrugated sheet 44 in the cavity 41 is shown in a cross-sectional view, which rests on the inner circumference of the pipe casing 40 and on the outer circumference of the refrigerant line 6. This enables an accelerated reduction in temperature on the slats 8.1 during cooling operation.

Fig. 9 zeigt eine Ausführungsform, bei der die Kältemittelleitung 6 am Innenumfang der Rohrummantelung 40 anliegt. Auch bei dieser Ausführungsform wird während des Kühibetriebs die Wärmeübertragung von der Kältemittelleitung 6 auf die Rohrummantelung 40 verbessert. Bei dieser Anordnung ist die Kältemittelleitung 6 nur teilweise auf dem Umfang von dem Hohlraum 41 umgeben. Fig. 9 shows an embodiment in which the refrigerant line 6 rests on the inner circumference of the pipe casing 40. In this embodiment, too, the heat transfer from the refrigerant line 6 to the pipe casing 40 is improved during cooling operation. In this arrangement, the refrigerant line 6 is only partially surrounded by the cavity 41 on the circumference.

Fig. 10 zeigt schematisch eine andere Ausführungsform der Rohrleitungsanordnung im Verdampfer 8, wobei im Gegensatz zu der vorher beschriebenen Ausführungsform das Kältemittel durch den Hohlraum 61 einer Kältemittelleitung 60 strömt, innerhalb von der eine das Wärmeträgermedium führende Rohrleitung 22 des Abtaukreises A verläuft. Bei dieser Rohr-in-Rohr-Anordnung werden im Kühlbetrieb die auf dem Außenrohr 60 angeordneten Lamellen 8.1 effektiver gekühlt, während im Abtaubetrieb die Wärme des in der innen angeordneten Rohrleitung 22 strömenden Wärmeträgermediums über das Kältemittel im Hohlraum 61 auf die Lamellen 8.1 übertragen werden muss. Fig. 10 shows schematically another embodiment of the pipe arrangement in the evaporator 8, in which, in contrast to the previously described embodiment, the refrigerant flows through the cavity 61 of a refrigerant pipe 60, within which a pipe 22 of the defrosting circuit A carrying the heat transfer medium runs. In this tube-in-tube arrangement, the fins 8.1 arranged on the outer tube 60 are cooled more effectively in cooling mode, while in defrosting mode the heat from the fins arranged in the inside Pipe 22 flowing heat transfer medium must be transferred via the refrigerant in the cavity 61 to the fins 8.1.

Auch bei der Rohranordnung nach Fig. 10 können die Ausführungsformen nach Fig. 8 und 9 vorgesehen werden.Also with the pipe arrangement Fig. 10 can follow the embodiments 8 and 9 be provided.

Bei der Anordnung nach Fig. 10 bildet die Kältemittelleitung 60 das Außenrohr und die das Wärmeträgermedium führende Rohrleitung 22 das Innenrohr.When arranged according to Fig. 10 the refrigerant line 60 forms the outer pipe and the pipe 22 carrying the heat transfer medium forms the inner pipe.

Die beschriebene Bauform eines Verdampfers mit wenigstens abschnittsweise ummantelter Kältemittelleitung 6 oder von der Kältemittelleitung 60 ummantelter Soleleitung 22 (Fig. 10) kann als Kalorimeter verwendet werden. Hierbei wird der Kältekreis beispielsweise mit CO2 als Kältemittel bei abgeschaltetem Ventilator 80 im Kühlbetrieb betrieben, wobei der Verdampfer die durchgeströmte Luft zuvor auf z.B. minus 20° C gekühlt hat.The described design of an evaporator with a refrigerant line 6 that is at least partially sheathed or a brine line 22 that is sheathed by the refrigerant line 60 ( Fig. 10 ) can be used as a calorimeter. Here, the refrigeration circuit is operated in cooling mode, for example with CO2 as a refrigerant, with the fan 80 switched off, with the evaporator having previously cooled the air flowing through to, for example, minus 20 ° C.

Während des weiteren Betriebs des Kältekreises K bei abgeschaltetem Ventilator 80 wird gleichzeitig durch die im Abtaukreis A erwärmte Sole gegengeheizt, wobei die erwärmte Sole durch die Rohrummantelung 40 (Fig. 4) bzw. durch das Innenrohr 22 in Fig. 10 strömt. Hierbei kann die Heizleistung durch die Heizeinrichtung 21 variiert werden, bis die Kältemitteltemperatur im Verdampfer im Wesentlichen konstant wird. Auf diese Weise wird ein Gleichgewicht zwischen zugeführter Wärme einerseits und Kältemitteltemperatur im Verdampfer andererseits einstellt. Die zugeführte Heizleistung kann über ein Wattmeter gemessen werden. Die Kältemitteltemperatur innerhalb des Verdampfers kann über eine Messeinrichtung ermittelt wird.During further operation of the refrigeration circuit K with the fan 80 switched off, counterheating is simultaneously carried out by the brine heated in the defrost circuit A, with the heated brine passing through the pipe casing 40 ( Fig. 4 ) or through the inner tube 22 in Fig. 10 flows. Here, the heating output can be varied by the heating device 21 until the refrigerant temperature in the evaporator becomes essentially constant. In this way, a balance is established between the heat supplied on the one hand and the refrigerant temperature in the evaporator on the other. The heating power supplied can be measured using a wattmeter. The refrigerant temperature within the evaporator can be determined using a measuring device.

Sobald durch entsprechende Variation der Heizleistung das Gleichgewicht eingestellt ist, kann anhand der zugeführten Heizleistung die Kälteleistung des Verdampfers ermittelt werden, weil aufgrund des Gleichgewichts die zugeführte Heizleistung der Kälteleistung des Verdampfers entspricht.As soon as the equilibrium is set by appropriately varying the heating output, the cooling output of the evaporator can be determined based on the heating output supplied, because due to the balance, the heating output supplied corresponds to the cooling output of the evaporator.

In der Praxis sind bei Kälteanlagen in Kühlmöbeln die Angaben der Hersteller zur Verdampferleistung nicht einheitlich, sodass der Betreiber einer Kälteanlage bei Kühlmöbeln die Angaben zur Verdampferleistung nicht vergleichen kann. Auch ist er nicht in der Lage, ohne weiteres die Verdampferleistung zu überprüfen.In practice, the manufacturer's information on evaporator performance is not uniform for refrigeration systems in refrigerated cabinets, so that the operator of a refrigeration system in refrigerated cabinets cannot compare the information on evaporator performance. He is also not able to easily check the evaporator performance.

Um eine einfache Überprüfung der Verdampferleistung zu ermöglichen wird erfindungsgemäß die beschriebene Abtauvorrichtung als Kalorimeter eingesetzt.In order to enable a simple check of the evaporator performance, the defrosting device described is used as a calorimeter according to the invention.

Hierbei wird bei einem in Fig. 2 wiedergegebenen Kühlmöbel, bei dem der Verdampfer 8 in einem weitgehend geschlossenen Hohlraum angeordnet ist, der Ventilator 80 abgeschaltet, sodass insbesondere bei der Anordnung des Verdampfers 8 im Bodenbereich des Kühlmöbels keine Luftströmung durch den Verdampfer auftritt, allenfalls eine geringfügige konvektive Luftströmung, die eine kalorimetrische Messung nicht beeinflusst. Der Verdichter 1 fördert dabei weiterhin Kältemittel durch die Kältemittelleitung 6. Zugleich wird der Abtaukreis A eingeschaltet, sodass die Pumpe 20 durch die Heizeinrichtung 21 erwärmtes Wärmeträgermedium (z.B. Glykol) durch den Verdampfer 8 fördert.Here, one in Fig. 2 shown refrigeration cabinet, in which the evaporator 8 is arranged in a largely closed cavity, the fan 80 is switched off, so that in particular when the evaporator 8 is arranged in the bottom area of the refrigeration cabinet There is no air flow through the evaporator, at most a slight convective air flow, which does not influence a calorimetric measurement. The compressor 1 continues to deliver refrigerant through the refrigerant line 6. At the same time, the defrosting circuit A is switched on, so that the pump 20 delivers heat transfer medium (eg glycol) heated by the heating device 21 through the evaporator 8.

Bei diesem gleichzeitigen Betrieb von Kältekreis und Abtaukreis bei abgeschaltetem Ventilator 80 kann ein Temperaturgleichgewicht eingestellt werden zwischen der durch den Abtaukreis zugeführten Wärmemenge durch erwärmtes Glykol als Wärmeträgermedium und der Kältemitteltemperatur im Verdampfer, wie dies in Fig. 11 anhand eines Messprotokolls wiedergegeben ist. Hierbei wird die Heizleistung der Heizeinrichtung 21 konstant gehalten, während der Verdampfer 1 weiterläuft und den Kühlbetrieb des Kältekreises aufrechterhält. Die Raumtemperatur in dem weitgehend geschlossenen Hohlraum, in dem der Verdampfer angeordnet ist, wird hierbei über eine gewisse Zeit konstant gehalten. Dies wird dadurch begünstigt, dass der weitgehend geschlossene Hohlraum einerseits mit einer Wärmeisolierung 30 (Fig. 2) und andererseits mit nur relativ kleinen Öffnungen in Form der Schlitze 32 versehen ist. Weiterhin wird die Temperatur des Kältemittels im Verdampfer konstant gehalten.With this simultaneous operation of the refrigeration circuit and defrost circuit with the fan 80 switched off, a temperature balance can be set between the amount of heat supplied by the defrost circuit using heated glycol as a heat transfer medium and the refrigerant temperature in the evaporator, as shown in Fig. 11 is reproduced using a measurement protocol. Here, the heating output of the heating device 21 is kept constant while the evaporator 1 continues to run and maintains the cooling operation of the refrigeration circuit. The room temperature in the largely closed cavity in which the evaporator is arranged is kept constant over a certain period of time. This is facilitated by the fact that the largely closed cavity is, on the one hand, provided with thermal insulation 30 ( Fig. 2 ) and on the other hand is provided with only relatively small openings in the form of slots 32. Furthermore, the temperature of the refrigerant in the evaporator is kept constant.

Im Einzelnen gibt Fig. 11 eine kalorimetrische Messung bei einer erfindungsgemäßen Abtauvorrichtung wieder, bei der CO2 als Kältemittel im Innenrohr und Glykol als Wärmeträgermedium im Außenrohr des Verdampfers strömt. Hierbei zeigt

  1. a) die Leistungsaufnahme des Verdichters knapp unter 800 Watt,
  2. b) die durch die Heizung eingebrachte Wärmemenge in der Größenordnung von 1.900 bis 2.000 Watt,
  3. c) die Temperatur von - 20°C in dem den Verdampfer umgebenden Hohlraum,
  4. d) die Temperatur von - 30°C des im Verdampfer verdampfenden Kältemittels,
  5. e) die Temperatur von etwa - 13°C des Wärmeträgermediums am Eintritt in den Verdampfer, und
  6. f) die Temperatur von etwa - 23°C des Wärmeträgermediums am Austritt des Verdampfers.
  7. g) Gibt den Verdampfungsdruck wieder.
In detail there is Fig. 11 a calorimetric measurement in a defrosting device according to the invention, in which CO 2 flows as a refrigerant in the inner tube and glycol as a heat transfer medium in the outer tube of the evaporator. This shows
  1. a) the power consumption of the compressor is just under 800 watts,
  2. b) the amount of heat introduced by the heater in the order of 1,900 to 2,000 watts,
  3. c) the temperature of -20°C in the cavity surrounding the evaporator,
  4. d) the temperature of - 30°C of the refrigerant evaporating in the evaporator,
  5. e) the temperature of approximately -13°C of the heat transfer medium at the inlet to the evaporator, and
  6. f) the temperature of approximately -23°C of the heat transfer medium at the outlet of the evaporator.
  7. g) Represents the evaporation pressure.

Bei dem so eingestellten Betriebszustand kann anhand der leicht messbaren Heizleistung ermittelt werden, die der Verdampferleistung entspricht, wobei das Kältemittel im Verdampfer die zugeführte Wärmemenge aufnimmt.With the operating state set in this way, the easily measurable heating output can be used to determine which corresponds to the evaporator output, with the refrigerant in the evaporator absorbing the amount of heat supplied.

Bei der Verwendung der Abtauvorrichtung als Kalorimeter wird von außen kein Wärme aufgenommen, weil der Hohlraum, in dem der Verdampfer 8 angeordnet ist, nach außen wärmeisoliert ist und die Luftblas- und Luftansaugöffnungen 32 bei abgeschaltetem Ventilator den Hohlraum auch gegenüber der Umgebung weitgehend abschließen. In diesem Zustand entspricht die zugeführte Wärmemenge durch den Abtaukreis der Wärmemenge der Kühlung durch das Kältemittel (vorzugsweise CO2), dessen Temperatur während des Betriebs als Kalorimeter konstant gehalten wird.When using the defrosting device as a calorimeter, no heat is absorbed from the outside because the cavity in which the evaporator 8 is arranged is thermally insulated from the outside and the air blowing and air intake openings 32 largely close off the cavity from the environment when the fan is switched off. In this state, the amount of heat supplied by the defrosting circuit corresponds to the amount of heat for cooling by the refrigerant (preferably CO 2 ), the temperature of which is kept constant during operation as a calorimeter.

Claims (9)

  1. Method for defrosting an evaporator (8), serving as an air cooler, of a cooling circuit (K) with refrigerant lines (6), in particular in items of refrigeration equipment and cold storage rooms, wherein a build-up of frost or ice at the evaporator (8) is defrosted by a heat transfer medium which is guided through a defrosting circuit (A) and heated for defrosting, while the cooling process of the cooling circuit (K) of the evaporator (8) is switched off,
    characterised in that
    in defrosting operation, the heat transfer medium of the defrosting circuit (A) is guided through a cylinder guiding the refrigerant and surrounding, at least in sections, the piping of the evaporator (8) along the surface of the outer circumference of the refrigerant lines (6) over its longitudinal dimension in the evaporator (8).
  2. Method according to claim 1, wherein a hollow space (41) is formed, at least in sections, on the refrigerant line (6) in the evaporator (8), through which space the heat transfer medium of the defrosting circuit (A) is guided.
  3. Method according to claim 1 or 2, wherein, during the cooling operation, the flow of the heat transfer medium in the defrosting circuit (A) is interrupted and, during the defrosting operation, the heat transfer medium circulates in the defrosting circuit (A), while the flow of the refrigerant in the refrigerant line (6, 60) in the evaporator (8) is interrupted.
  4. Device for defrosting an evaporator (8), serving as an air cooler, of a cooling circuit in items of refrigeration equipment or cold storage rooms, comprising
    an evaporator (8),
    a fan (80) for blowing air to be cooled through the evaporator (8), a cooling circuit (K) connected to the evaporator (8), with refrigerant lines (6) and a defrosting circuit (A) guiding a heat transfer medium, the piping of which circuit leads through the evaporating region of the evaporator (8),
    wherein in the evaporator (8) a tube jacket (40, 60) is designed, at least partially or in sections, about an inner tube (6, 22) of a refrigerant line of the cooling circuit (K), forming a hollow space (41, 61) about the inner tube (6, 22) connected to the piping of the defrosting circuit (A) for guiding through the heat transfer medium, and wherein in the hollow space (41, 61) at least one heat-conducting distancing element (44) is provided between inner tube (6, 22) and outer tube (40, 60).
  5. Device according to claim 4, wherein fins (8.1) of the evaporator (8) abut against the outer circumference of the outer tube (40, 60) in heat-conducting contact.
  6. Device according to claim 4 or 5, wherein the inner tube (6, 22) is guided, in coils, through a stack of plate-shaped fins (8.1) and the outer tube (40, 60) surrounds the inner tube (6, 22) running through the stack of fins in coils only in the region of straight sections.
  7. Device according to claim 4 or 5, wherein the inner tube (6, 22) guided in coils through the evaporator is surrounded, over its whole length, including curves (6a) by the outer tube (40, 60).
  8. Device according to claim 4, wherein a corrugated sheet (44) is provided in the hollow space (41, 61), which element abuts against the inner circumference of the outer tube (40, 60) and against the outer circumference of the inner tube (6, 22).
  9. Use of the device according to claim 4 as calorimeter, wherein the evaporator (8) is arranged in a hollow element which is largely closed and insulated against heat dissipation outwards, such as for example in an item of refrigeration equipment, and wherein, during operation of the cooling circuit (K), the fan (80) is switched off at the evaporator (8) and heated heat transfer medium is guided through the defrosting circuit (A) until an equilibrium between the added quantity of heat and a quantity of heat absorbed by refrigerant in the evaporator is set, while the temperature of the refrigerant is held substantially constant, whereby the refrigerating performance of the evaporator is ascertained using the added heating capacity for the defrosting circuit (A) of the device.
EP16169376.7A 2015-05-12 2016-05-12 Method and device for defrosting an evaporator of a refrigeration installation and use of the defrosting device as calorimeter Active EP3093583B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015107423.0A DE102015107423A1 (en) 2015-05-12 2015-05-12 Method and device for defrosting an evaporator of a refrigeration system

Publications (2)

Publication Number Publication Date
EP3093583A1 EP3093583A1 (en) 2016-11-16
EP3093583B1 true EP3093583B1 (en) 2023-10-25

Family

ID=56083909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16169376.7A Active EP3093583B1 (en) 2015-05-12 2016-05-12 Method and device for defrosting an evaporator of a refrigeration installation and use of the defrosting device as calorimeter

Country Status (2)

Country Link
EP (1) EP3093583B1 (en)
DE (1) DE102015107423A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020100288A1 (en) * 2020-01-09 2021-07-15 Friedhelm Meyer Refrigeration device with defrost operation mode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693682A (en) * 1952-06-25 1954-11-09 Winger Milton Refrigerating system with defrosting arrangement
DE1401489A1 (en) * 1960-11-14 1969-02-06 Dunham Bush Inc Freezing system with means for defrosting ice and method for defrosting ice
DE10360349A1 (en) * 2003-12-22 2005-07-14 Volkswagen Ag A method for preventing icing of the evaporator in a carbon dioxide refrigeration system has an icing sensor and control valve to bypass the evaporator

Also Published As

Publication number Publication date
EP3093583A1 (en) 2016-11-16
DE102015107423A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
Melo et al. An experimental study on defrost heaters applied to frost-free household refrigerators
DE102017110560B4 (en) Refrigerant circuit of a refrigeration system with an arrangement for defrosting a heat exchanger and a method for operating the refrigerant circuit
WO2016066489A1 (en) Refrigeration appliance with a heat exchanging element
WO2015128164A1 (en) Refrigerator
EP3093583B1 (en) Method and device for defrosting an evaporator of a refrigeration installation and use of the defrosting device as calorimeter
EP2157385A2 (en) Evaporation of defrost water for reducing energy consumption
WO2016091621A1 (en) No-frost refrigeration appliance
EP2187148A1 (en) Refrigeration system
DE102014222113A1 (en) Refrigeration device with a heat circulation system
EP3260797B1 (en) Indoor air conditioning system and arrangement of the indoor air conditioning system
WO2009144067A1 (en) Refrigerator, in particular household refrigerator, comprising a condenser with heat storage elements
EP3289297A1 (en) Refrigeration device with a heat exchanger
DE102011088656A1 (en) Refrigerating appliance with a static evaporator and a dynamic evaporator
DE102017002365A1 (en) Fridge and / or freezer
EP2783173A2 (en) Evaporator for a refrigeration device and refrigeration device
DE19654790C1 (en) Heat exchanger for environmental chamber
EP0838644B1 (en) Method and device for defrosting a cooler of a refrigeration plant
DE2623879A1 (en) Domestic refrigerator with compartments at different temps. - has single refrigerator plant with non interacting heat absorbers in compartments
DE102015211963A1 (en) The refrigerator
DE102018202008A1 (en) Combination refrigeration device
DE102014222849A1 (en) Domestic refrigerator and chiller for it
DE102011086553A1 (en) Cooling apparatus e.g. refrigerator, for use in e.g. domestic home for preserving food product, has refrigerant bypass line provided for bypassing dynamic vaporizer and for introducing refrigerant into static vaporizer
DE102008049412A1 (en) Fridge and / or freezer
DE102011084826A1 (en) Cold apparatus e.g. household cold apparatus, for e.g. storing food and/or beverages at certain temperature in e.g. home, has valve selectively connecting supply line to vaporizer or another valve and outlet with compressor
DE102014212411A1 (en) Refrigeration unit with exposed evaporator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170516

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200415

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230519

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016173

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240226