EP3088673A1 - Laufschaufel für eine Gasturbine, zugehöriger Rotor, Gasturbine und Kraftwerksanlage - Google Patents

Laufschaufel für eine Gasturbine, zugehöriger Rotor, Gasturbine und Kraftwerksanlage Download PDF

Info

Publication number
EP3088673A1
EP3088673A1 EP15165406.8A EP15165406A EP3088673A1 EP 3088673 A1 EP3088673 A1 EP 3088673A1 EP 15165406 A EP15165406 A EP 15165406A EP 3088673 A1 EP3088673 A1 EP 3088673A1
Authority
EP
European Patent Office
Prior art keywords
cavity
blade
side wall
squealer
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15165406.8A
Other languages
English (en)
French (fr)
Other versions
EP3088673B1 (de
Inventor
Fathi Ahmad
Christian Menke
Horst-Michael Dreher
Thorsten Mattheis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP15165406.8A priority Critical patent/EP3088673B1/de
Priority to US15/135,727 priority patent/US20160319675A1/en
Priority to JP2016088923A priority patent/JP6224161B2/ja
Priority to CN201610269552.1A priority patent/CN106089315B/zh
Publication of EP3088673A1 publication Critical patent/EP3088673A1/de
Application granted granted Critical
Publication of EP3088673B1 publication Critical patent/EP3088673B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling

Definitions

  • the invention relates to a rotor blade for a gas turbine, comprising a pressure-side wall and a suction-side wall, a tip cap, a cavity, which is formed by the inner surface of the pressure-side wall, the suction-side wall and the tip cap, and a squealer, extending radially from the pressure side and suction side wall, a half space formed by the outer surface of the tip cap and the squeal edge, and a cooling channel, which leads from the cavity to the squeal edge.
  • Blades of the above type are used in gas turbines to convert the energy of a hot gas stream into rotary energy. They typically have an airfoil traversed by one or more cavities for guiding cooling air, which has a pressure-side and a suction-side wall and is closed at its tip by a tip cap. On the tip cap a circumferential, in the radial direction (with respect to the axis of the gas turbine) extending squealer edge is often provided, which extends the pressure-side and suction-side wall in the radial direction.
  • Turbine blades are currently produced by casting from a single piece and a material. They are usually cooled during operation to protect the material of the blades from the high gas temperatures and to prevent their oxidation.
  • a proven and successful cooling design for turbine blades is the internal cooling. In this case flows a liquid or gaseous cooling fluid - usually air, which is taken from the compressor of the turbine - in the cavities described above.
  • the squeal edge described has relatively thin walls and is relatively far away from the cooling air inside the blade. For this reason, it is particularly susceptible to the high temperatures of the gas stream.
  • cooling channels pass from the cavity within the blade through the tip cap to the outside of the squeal edge. Cooling fluid exits through these cooling channels and thus cools the squealer edge.
  • Such an arrangement is for example from the EP 1 057 970 B1 known.
  • the tip cap has a cavity which extends from the half-space in the tip cap, that the cavity divides the cooling channel into a first part communicating with the cavity and communicating with the outside second part.
  • the invention is based on the consideration that an even longer life of the blade can be achieved, although a cooling channel interrupting the cavity is provided, but this does not reduce the stability of the squeal.
  • the cavity in the radial direction extends into the tip cap and thus does not reduce the thickness of the squealer.
  • the excavation reaches into the Cooling channels into it, which extend from the cavity within the blade to the outside of the squealer, so that these cooling channels are divided into a first and a second part.
  • the first part advantageously has an outlet opening in the cavity and / or the second part advantageously has an outlet opening on the outside of the squealer edge.
  • the cooling fluid flow from the cavity in the blade thus initially enters the cavity and thus cools the inside there in the half-space.
  • the cooling efficiency is very good here. Only then does it continue to flow through the second part to the outside of the squealer. Due to the prevailing in operation pressure differences in this case, no reversal of the current to be feared, d. H. no hot gas enters the half-space through the second part.
  • the blade of the cooling channel is formed linear. This applies to the entire cooling channel, d. H. first and second part lie on a common line. On the one hand, this enables a better flow of the cooling fluid out of the first into the second part of the cooling channel. On the other hand, but this allows a particularly simple introduction of the cooling channel, both the first and the second part in one piece, preferably by laser drilling. The laser is placed on the outside of the squealer and drills through the cavity into the cavity inside the blade.
  • the cavity extends in the manner of a groove along the pressure-side wall or along the suction-side wall of the blade.
  • a particularly homogeneous cooling is achieved because the cooling fluid from the cooling channel propagate along the groove length and evenly cool the squeal.
  • Particularly advantageous in terms of pressure conditions is an extension along the suction side wall.
  • a side wall of the cavity goes straight into the inside of the pressure-side or suction-side wall.
  • this enables a particularly simple casting mold, on the other hand, the cooling effect of the cooling fluid in the cavity or groove on the rubbing edge is thereby further improved.
  • the blade has, in an advantageous embodiment, a plurality of cooling channels leading from the cavity to the outside of the squealer, and the cavity divides the plurality of cooling channels into a respective first part communicating with the cavity and a second part communicating with the outer space.
  • the cooling channels are constructed identically. Through several cooling channels of this type, the cooling effect is further improved.
  • a rotor for a gas turbine advantageously comprises such a rotor blade.
  • a gas turbine advantageously comprises such a rotor.
  • a power plant advantageously comprises such a gas turbine.
  • the advantages achieved by the invention are in particular that by introducing a radial cavity in the tip cap, which divides the cooling channels to the outside of the squeal, a particularly good cooling effect is achieved with high stability of the squealer.
  • the cavity ensures that the cooling fluid outlet is ensured, despite possible casting deviations during the production of the blade.
  • the cooling fluid undergoes less pressure losses.
  • the life is also increased by the fact that in the half-space emerging cooling channels open into the cavity and are thus better protected against external hot gas.
  • FIG. 1 shows a plan view from a radially outer direction on a blade 1.
  • This has a pressure-side wall 2, a suction-side wall 4 and a tip cap 6 at the radial end of the blade 1.
  • a cooling fluid usually air taken from the compressor of the turbine - circulates within the cavity and cools the pressure and suction side walls 2, 4 from the inside by convection.
  • FIG. 1 shows the tip portion of the blade 1, which includes a squealer edge 8 and protects the tip portion of the blade from damage in the event of contact with the housing of the gas turbine.
  • the squeal edge 8 extends radially from the pressure and suction side wall 2, 4 in circumferentially same height.
  • the squealer 8 forms together with the tip cap 8 a half-space 10th
  • cooling channels 12 extend from the cavity within the blade through the squealer edge 8 to its the outer space 14 facing side. This is in FIG. 1 not apparent and is still based on FIG. 2 clearer.
  • the cooling fluid flows through these cooling channels 12 and cools the squealer 8 by cooling from the inside.
  • the cooling fluid then exits the cooling channels 12 through the outlet openings on the outside, cools the squealer edge 8 by flowing around the outside, and finally mixes with the leakage current of the gas turbine.
  • a cavity 16 is inserted, which extends in the radial direction inwardly and extending in a groove-like manner parallel to the suction-side wall 4.
  • the cavity 16 divides the cooling channels 12 in the vicinity of the suction-side wall 4. This will be described below with reference to FIG. 2 explained.
  • FIG. 2 shows the cross section along the line II of the tip portion of the blade 1 with the pressure side wall 2 and the suction side wall 4.
  • the cavity 18 in the blade 1 through the inner surfaces 20, 22 of the pressure and the suction side wall 2, 4th and the inner surface 24 of the tip cap 6 is formed.
  • a cooling channel 12 extends as described from the cavity 18 to the outside of the squealer 8. It is formed completely linear and introduced by means of laser drilling.
  • the cooling channel 12 is interrupted by the cavity 16 into a first part 28 which extends from the cavity 16 to an outlet opening 32 in the cavity 16 and into a second part 30 extending from the cavity 16 to the outlet opening 34 on the outside the squeal edge 8 extends.
  • FIG. 1 shown cooling channels 12 are identical and thus open into the cavity 16.
  • the cavity 16 is here formed with a rounded or curved side wall, which is most conveniently produced by casting.
  • FIG. 3 shows a rectangular cavity 16, which is most economically produced by a cutting shaping. Both forms are suitable from the standpoint of cooling fluid flow and the effectiveness of the cooling.
  • a side wall 36 of the cavity 16 just transitions into the inner side 38 of the squealer edge 8 on the suction-side wall 4.
  • FIG. 4 finally shows a gas turbine 100 in a longitudinal partial section.
  • a turbine is a turbomachine that converts the internal energy (enthalpy) of a flowing fluid (liquid or gas) into rotational energy and ultimately into mechanical drive energy.
  • the gas turbine 100 has inside a rotatably mounted around a rotation axis 102 (axial direction) rotor 103, which is also referred to as a turbine runner.
  • a rotation axis 102 axial direction
  • rotor 103 which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular hot gas channel 111.
  • the turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed from two blade rings.
  • the hot gas channel 111 of a row of guide vanes 115 is followed by a row 125 formed of rotor blades 1.
  • the blades 120, 130 are profiled slightly curved, similar to an aircraft wing.
  • the vanes 130 are attached to the stator 143, whereas the blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133.
  • the rotor blades 1 thus form components of the rotor or rotor 103. Coupled to the rotor 103 is a generator or a working machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 1.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 1 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the highest thermal load in addition to the heat shield bricks lining the annular combustion chamber 106.
  • the high loads make highly resilient materials necessary.
  • the turbine blades 1, 130 are therefore made of titanium alloys, nickel superalloy or tungsten-molybdenum alloys.
  • M Fe, Co, Ni, rare earths
  • thermal barrier coating for example ZrO2, Y2O4-ZrO2
  • TBC Thermal Barrier Coating
  • Other measures to make the blades more resistant to heat consist of sophisticated cooling duct systems. This technique is used both in the guide and in the rotor blades 1, 130.
  • Each vane 130 has a vane foot (also not shown), also referred to as a platform, facing the inner casing 138 of the turbine 108 and a vane head opposite the vane root.
  • the Leitschaufelkopf faces the rotor 103 and fixed to a sealing ring 140 of the stator 143.
  • Each sealing ring 140 encloses the shaft of the rotor 103.
  • each blade 1 has such a blade root, but ends in a blade tip. This is according to one in the 1 to FIG. 3 designed embodiment shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Architecture (AREA)

Abstract

Eine Laufschaufel (1) für eine Gasturbine (100), umfassend eine druckseitige Wand (2) und eine saugseitige Wand (4), eine Spitzenkappe (6), einen Hohlraum (18), der durch die innere Oberfläche (20, 22, 24) der druckseitigen Wand (2), der saugseitigen Wand (4) und der Spitzenkappe (6) gebildet wird, und einer Anstreifkante (8), die sich radial von der druckseitigen und saugseitigen Wand (2, 4) erstreckt, einem Halbraum (10), der durch die äußere Oberfläche der Spitzenkappe (6) und der Anstreifkante (8) gebildet wird, und einem Kühlkanal (12), der vom Hohlraum (18) zur Außenseite der Anstreifkante (6) führt, soll eine noch bessere Kühlung der Anstreifkante bei gleichzeitig hoher Stabilität und Lebensdauer aufweisen. Dazu weist die Spitzenkappe (4) eine Aushöhlung auf, die sich derart vom Halbraum (9) in die Spitzenkappe (6) erstreckt, dass die Aushöhlung (16) den Kühlkanal (12) in einen mit dem Hohlraum (18) kommunizierenden ersten Teil (28) und einen mit dem Außenraum (14) kommunizierenden zweiten Teil (30) unterteilt.

Description

  • Die Erfindung betrifft eine Laufschaufel für eine Gasturbine, umfassend eine druckseitige Wand und eine saugseitige Wand, eine Spitzenkappe, einen Hohlraum, der durch die innere Oberfläche der druckseitigen Wand, der saugseitigen Wand und der Spitzenkappe gebildet wird, und einer Anstreifkante, die sich radial von der druckseitigen und saugseitigen Wand erstreckt, einem Halbraum, der durch die äußere Oberfläche der Spitzenkappe und der Anstreifkante gebildet wird, und einem Kühlkanal, der vom Hohlraum zur Anstreifkante führt.
  • Laufschaufeln der oben genannten Art dienen in Gasturbinen zur Umwandlung der Energie eines heißen Gasstroms in rotatorische Energie. Sie weisen typischerweise ein von einem oder mehreren Hohlräumen zur Führung von Kühlluft durchzogenes Schaufelblatt auf, das eine druckseitige und eine saugseitige Wand aufweist und an seiner Spitze durch eine Spitzenkappe abgeschlossen ist. Auf der Spitzenkappe ist häufig eine umlaufende, in radialer Richtung (bezogen auf die Achse der Gasturbine) erstreckte Anstreifkante vorgesehen, die die druckseitige und saugseitige Wand in radialer Richtung verlängert.
  • Turbinenlaufschaufeln werden derzeit gusstechnisch aus einem Stück und einem Werkstoff hergestellt. Sie werden im Betrieb in der Regel gekühlt, um das Material der Schaufeln vor den hohen Gastemperaturen zu schützen und dessen Oxidation zu verhindern. Eine bewährte und erfolgreiche Kühlkonstruktion für Turbinenschaufeln ist die Innenkühlung. Dabei strömt ein flüssiges oder gasförmiges Kühlfluid - in der Regel Luft, die von dem Verdichter der Turbine entnommen wird - in den oben beschriebenen Hohlräumen.
  • Problematisch ist hierbei, dass die beschriebene Anstreifkante verhältnismäßig dünne Wände aufweist und relativ weit von der Kühlluft im Inneren der Schaufel entfernt ist. Aus diesem Grund ist sie besonders anfällig für die hohen Temperaturen des Gasstromes. Um die Kühlung des Spitzenbereichs sicherzustellen, führen Kühlkanäle vom Hohlraum innerhalb der Schaufel durch die Spitzenkappe bis zur Außenseite der Anstreifkante. Kühlfluid tritt durch diese Kühlkanäle aus und kühlt so die Anstreifkante. Eine derartige Anordnung ist beispielsweise aus der EP 1 057 970 B1 bekannt.
  • Aus der EP 1 267 041 B1 ist weiterhin bekannt, in die Innenseite, d. h. die dem Halbraum zugewandte Seite der Anstreifkante eine Aushöhlung einzubringen, die den Kühlkanal unterbricht. Dies verbessert zwar die Kühlwirkung. Nachteilig ist dabei aber, dass hierdurch die Stabilität der Anstreifkante reduziert wird. Dies begrenzt die mögliche Länge der Aushöhlung.
  • Es ist nunmehr Aufgabe der Erfindung, eine Laufschaufel der eingangs genannten Art anzugeben, welche eine noch bessere Kühlung der Anstreifkante bei gleichzeitig hoher Stabilität und Lebensdauer aufweist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Spitzenkappe eine Aushöhlung aufweist, die sich derart vom Halbraum in die Spitzenkappe erstreckt, dass die Aushöhlung den Kühlkanal in einen mit dem Hohlraum kommunizierenden ersten Teil und einen mit dem Außenraum kommunizierenden zweiten Teil unterteilt.
  • Die Erfindung geht dabei von der Überlegung aus, dass eine noch höhere Lebensdauer der Laufschaufel erreichbar ist, wenn zwar eine den Kühlkanal unterbrechende Aushöhlung vorgesehen ist, diese jedoch nicht die Stabilität der Anstreifkante mindert. Dazu ist die Aushöhlung in radialer Richtung in die Spitzenkappe hinein erstreckt und mindert somit nicht die Dicke der Anstreifkante. Die Aushöhlung reicht bis in die Kühlkanäle hinein, die sich vom Hohlraum innerhalb der Schaufel bis zur Außenseite der Anstreifkante erstrecken, so dass diese Kühlkanäle in einen ersten und einen zweiten Teil unterteilt werden.
  • Dabei weist der erste Teil vorteilhafterweise eine Austrittsöffnung in der Aushöhlung auf und/oder der zweite Teil vorteilhafterweise eine Austrittsöffnung an der Außenseite der Anstreifkante auf. Der Kühlfluidstrom aus dem Hohlraum in der Laufschaufel tritt somit zunächst in die Aushöhlung ein und kühlt somit dort die Innenseite im Halbraum. Die Kühleffektivität ist hier sehr gut. Erst dann strömt er weiter durch den zweiten Teil zur Außenseite der Anstreifkante. Durch die im Betrieb vorherrschenden Druckdifferenzen ist hierbei auch keine Umkehrung des Stromes zu befürchten, d. h. kein Heißgas tritt durch den zweiten Teil in den Halbraum.
  • In vorteilhafter Ausgestaltung der Laufschaufel ist der Kühlkanal linear ausgebildet. Dies gilt für den gesamten Kühlkanal, d. h. erster und zweiter Teil liegen auf einer gemeinsamen Geraden. Dies ermöglicht einerseits ein besseres Durchströmen des Kühlfluids aus dem ersten in den zweiten Teil des Kühlkanals. Zum anderen ermöglicht dies aber ein besonders einfaches Einbringen des Kühlkanals, und zwar sowohl des ersten als auch des zweiten Teils in einem Stück, vorzugsweise durch Laserbohren. Der Laser wird an der Außenseite der Anstreifkante angesetzt und bohrt durch die Aushöhlung bis in den Hohlraum im Inneren der Laufschaufel.
  • In weiterer vorteilhafter Ausgestaltung der Laufschaufel erstreckt sich die Aushöhlung in der Art einer Nut entlang der druckseitigen Wand oder entlang der saugseitigen Wand der Laufschaufel. Hierdurch wird eine besonders homogene Kühlung erreicht, da sich das Kühlfluid aus dem Kühlkanal entlang der Nutlänge ausbreiten und gleichmäßig die Anstreifkante kühlen kann. Besonders vorteilhaft bezüglich der Druckverhältnisse ist eine Erstreckung entlang der saugseitigen Wand.
  • Dabei geht vorteilhafterweise eine Seitenwand der Aushöhlung gerade in die Innenseite der druckseitigen oder saugseitigen Wand über. Dies ermöglicht einerseits eine besonders einfache Gussform, andererseits wird dadurch die Kühlwirkung des Kühlfluids in der Aushöhlung oder Nut auf die Anstreifkante noch weiter verbessert.
  • Die Laufschaufel weist in vorteilhafter Ausgestaltung mehrere Kühlkanäle auf, die vom Hohlraum zur Außenseite der Anstreifkante führen, und die Aushöhlung unterteilt die mehreren Kühlkanäle in jeweils einen mit dem Hohlraum kommunizierenden ersten Teil und jeweils einen mit dem Außenraum kommunizierenden zweiten Teil. Die Kühlkanäle sind dabei gleichartig aufgebaut. Durch mehrere Kühlkanäle dieser Art wird die Kühlwirkung noch weiter verbessert.
  • Ein Rotor für eine Gasturbine umfasst vorteilhafterweise eine derartige Laufschaufel.
  • Eine Gasturbine umfasst vorteilhafterweise einen derartigen Rotor.
  • Eine Kraftwerksanlage umfasst vorteilhafterweise eine derartige Gasturbine.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Einbringung einer radialen Aushöhlung in die Spitzenkappe, die die Kühlkanäle zur Außenseite der Anstreifkante unterteilt, eine besonders gute Kühlwirkung bei gleichzeitig hoher Stabilität der Anstreifkante erreicht wird. Die Aushöhlung sorgt für eine Sicherstellung des Kühlfluidaustritts trotz eventueller Gussabweichungen bei der Herstellung der Laufschaufel. Zudem erfährt das Kühlfluid weniger Druckverluste. Die Lebensdauer wird zudem dadurch erhöht, dass in den Halbraum austretende Kühlkanäle in die Aushöhlung münden und dadurch noch besser vor äußerem Heißgas geschützt sind.
  • Ausführungsbeispiele der Erfindung werden anhand von Zeichnungen näher erläutert. Darin zeigen:
  • FIG 1
    eine Aufsicht auf die Spitze einer Laufschaufel aus radialer Richtung in einer ersten Ausführungsform,
    FIG 2
    einen Querschnitt entlang der Linie I-I des Spitzenbereichs der Laufschaufel aus FIG 1,
    FIG 3
    einen Querschnitt des Spitzenbereichs der Laufschaufel in einer zweiten Ausführungsform, und
    FIG 4
    einen Teillängsschnitt durch eine Gasturbine.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • FIG 1 zeigt eine Aufsicht aus radial äußerer Richtung auf eine Laufschaufel 1. Diese weist eine einer druckseitige Wand 2, eine saugseitigen Wand 4 und eine Spitzenkappe 6 am radialen Ende der Laufschaufel 1 auf. Innerhalb der Laufschaufel 1 bilden die innere Oberfläche der Spitzenkappe 4 und die inneren Oberflächen der druckseitigen und der saugseitigen Wand 2, 4 einen hier nicht dargestellten Hohlraum. Ein Kühlfluid - in der Regel Luft, die vom Verdichter der Turbine entnommen wird - zirkuliert innerhalb des Hohlraums und kühlt die druck- und saugseitige Wand 2, 4 von innen durch Konvektion.
  • Die FIG 1 zeigt insbesondere den Spitzenbereich der Laufschaufel 1, die eine Anstreifkante 8 umfasst und den Spitzenbereich der Schaufel vor Schäden im Falle einer Berührung mit dem Gehäuse der Gasturbine schützt. Die Anstreifkante 8 erstreckt sich radial von der druck- und saugseitigen Wand 2, 4 in umlaufend gleicher Höhe. Die Anstreifkante 8 bildet zusammen mit der Spitzenkappe 8 einen Halbraum 10.
  • Mehrere Kühlkanäle 12 erstrecken sich von dem Hohlraum innerhalb der Laufschaufel durch die Anstreifkante 8 bis zu deren dem Außenraum 14 zugewandter Seite. Dies ist in FIG 1 nicht ersichtlich und wird noch anhand von FIG 2 klarer. Das Kühlfluid strömt durch diese Kühlkanäle 12 und kühlt die Anstreifkante 8 durch Kühlung von innen. Das Kühlfluid tritt dann aus den Kühlkanälen 12 durch die Austrittsöffnungen an der Außenseite, kühlt die Anstreifkante 8, indem es sie außen umströmt, und vermischt sich schließlich mit dem Leckstrom der Gasturbine.
  • In die Spitzenkappe 6 ist eine Aushöhlung 16 eingebracht, die sich in radialer Richtung nach innen erstreckt und nutartig parallel zur saugseitigen Wand 4 erstreckt ist. Die Aushöhlung 16 unterteilt die Kühlkanäle 12 in der Nähe der saugseitigen Wand 4. Dies wird im Folgenden mit Bezug auf FIG 2 erläutert.
  • FIG 2 zeigt den Querschnitt entlang der Linie I-I des Spitzenbereichs der Laufschaufel 1 mit der druckseitigen Wand 2 und der saugseitigen Wand 4. Hier erkennbar wird der Hohlraum 18 in der Laufschaufel 1 durch die inneren Oberflächen 20, 22 der druck- beziehungsweise der saugseitigen Wand 2, 4 sowie der inneren Oberfläche 24 der Spitzenkappe 6 gebildet. Ein Kühlkanal 12 erstreckt sich wie beschrieben vom Hohlraum 18 bis zur Außenseite der Anstreifkante 8. Er ist vollkommen linear ausgebildet und mittels Laserbohren eingebracht. Der Kühlkanal 12 wird durch die Aushöhlung 16 unterbrochen in einen ersten Teil 28, der sich von dem Hohlraum 16 zu einer Austrittsöffnung 32 in der Aushöhlung 16 erstreckt, und in einen zweiten Teil 30, der sich von der Aushöhlung 16 zur Austrittsöffnung 34 auf der Außenseite der Anstreifkante 8 erstreckt.
  • Alle in FIG 1 gezeigten Kühlkanäle 12 sind identisch ausgebildet und münden somit in die Aushöhlung 16. Die Aushöhlung 16 ist hier mit einer gerundeten oder gebogenen Seitenwand ausgebildet, die am zweckmäßigsten durch Guss hergestellt wird.
  • Die zweite Ausführungsform gemäß FIG 3, die nur anhand ihrer Unterschiede zu FIG 2 erläutert wird, zeigt eine rechteckige Aushöhlung 16, die am wirtschaftlichsten durch eine spanabhebende Formgebung hergestellt wird. Beide Formen sind vom Standpunkt des Kühlfluidstroms und der Wirksamkeit der Kühlung geeignet. In der Ausführungsform der FIG 3 geht zudem eine Seitenwand 36 der Aushöhlung 16 gerade in die Innenseite 38 der Anstreifkante 8 an der saugseitigen Wand 4 über.
  • Die FIG 4 zeigt schließlich eine Gasturbine 100 in einem Längsteilschnitt. Eine Turbine ist eine Strömungsmaschine, welche die innere Energie (Enthalpie) eines strömenden Fluids (Flüssigkeit oder Gas) in Rotationsenergie und letztlich in mechanische Antriebsenergie umwandelt.
  • Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 (Axialrichtung) drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
  • Die Ringbrennkammer 106 kommuniziert mit einem ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108. Jede Turbinenstufe 112 ist aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 1 gebildete Reihe 125. Die Schaufeln 120, 130 sind leicht gekrümmt profiliert, ähnlich einer Flugzeugtragfläche.
  • Die Leitschaufeln 130 sind dabei am Stator 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. Die Laufschaufeln 1 bilden somit Bestandteile des Rotors oder Läufers 103. An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 1.
  • Dem Fluidstrom wird durch die möglichst wirbelfreie laminare Umströmung der Turbinenschaufeln 1, 130 ein Teil seiner inneren Energie entzogen, der auf die Laufschaufeln 1 der Turbine 108 übergeht. Über diese wird dann der Rotor 103 in Drehung versetzt, wodurch zunächst der Verdichter 105 angetrieben wird. Die nutzbare Leistung wird an die nicht dargestellte Arbeitsmaschine abgegeben.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 1 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet. Die hohen Belastungen machen höchstbelastbare Werkstoffe erforderlich. Die Turbinenschaufeln 1, 130 werden daher aus Titan-Legierungen, Nickel-Superlegierung oder Wolfram-Molybdän-Legierungen gefertigt. Die Schaufeln werden für höhere Resistenz gegen Temperaturen so wie Erosion wie zum Beispiel Lochfraß, auch bekannt unter "pitting corrosion", durch Beschichtungen gegen Korrosion (MCrAlX; M = Fe, Co, Ni, Seltene Erden) und Wärme (Wärmedämmschicht, beispielsweise ZrO2, Y2O4-ZrO2) geschützt. Die Beschichtung zur Hitzeabschirmung wird Thermal Barrier Coating bzw. kurz TBC genannt. Weitere Maßnahmen, um die Schaufeln hitzeresistenter zu machen, bestehen in ausgeklügelten Kühlkanalsystemen. Diese Technik wird sowohl in den Leit- als auch in den Laufschaufeln 1, 130 angewendet.
  • Jede Leitschaufel 130 weist einen auch als Plattform bezeichneten, dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Dichtring 140 des Stators 143 festgelegt. Jeder Dichtring 140 umschließt dabei die Welle des Rotors 103. Ebenso weist jede Laufschaufel 1 einen derartigen Laufschaufelfuß auf, endet jedoch in einer Laufschaufelspitze. Diese ist gemäß einer in den FIG 1 bis FIG 3 gezeigten Ausführungsform ausgestaltet.

Claims (10)

  1. Laufschaufel (1) für eine Gasturbine (100),
    umfassend eine druckseitige Wand (2) und eine saugseitige Wand (4), eine Spitzenkappe (6), einen Hohlraum (18), der durch die innere Oberfläche (20, 22, 24) der druckseitigen Wand (2), der saugseitigen Wand (4) und der Spitzenkappe (6) gebildet wird, und einer Anstreifkante (8), die sich radial von der druckseitigen und saugseitigen Wand (2, 4) erstreckt, einem Halbraum (10), der durch die äußere Oberfläche der Spitzenkappe (6) und der Anstreifkante (8) gebildet wird, und einem Kühlkanal (12), der vom Hohlraum (18) zur Außenseite der Anstreifkante (6) führt,
    dadurch gekennzeichnet, dass
    die Spitzenkappe (4) eine Aushöhlung aufweist, die sich derart vom Halbraum (9) in die Spitzenkappe (6) erstreckt, dass die Aushöhlung (16) den Kühlkanal (12) in einen mit dem Hohlraum (18) kommunizierenden ersten Teil (28) und einen mit dem Außenraum (14) kommunizierenden zweiten Teil (30) unterteilt.
  2. Laufschaufel (1) nach Anspruch 1,
    bei der der erste Teil (28) eine Austrittsöffnung (32) in der Aushöhlung (16) aufweist.
  3. Laufschaufel (1) nach einem der vorhergehenden Ansprüche,
    bei der der zweite Teil (30) eine Austrittsöffnung (34) an der Außenseite der Anstreifkante (8) aufweist.
  4. Laufschaufel (1) nach einem der vorhergehenden Ansprüche,
    bei der der Kühlkanal (12) linear ausgebildet ist.
  5. Laufschaufel (1) nach einem der vorhergehenden Ansprüche,
    bei der die Aushöhlung (16) sich in der Art einer Nut entlang der druckseitigen Wand (2) oder entlang der saugseitigen Wand (4) der Laufschaufel (1) erstreckt.
  6. Laufschaufel (1) nach Anspruch 5,
    bei der eine Seitenwand (36) der Aushöhlung (16) gerade in die Innenseite (38) der Anstreifkante (8) übergeht.
  7. Laufschaufel (1) nach Anspruch 5 oder 6,
    die mehrere Kühlkanäle (12) aufweist, die vom Hohlraum (18) zur Außenseite der Anstreifkante (8) führen, und
    bei der die Aushöhlung (16) die mehreren Kühlkanäle (12) in jeweils einen mit dem Hohlraum (18) kommunizierenden ersten Teil (28) und jeweils einen mit dem Außenraum (14) kommunizierenden zweiten Teil (30) unterteilt.
  8. Rotor (103) für eine Gasturbine (100),
    umfassend eine Laufschaufel (1) nach einem der vorhergehenden Ansprüche.
  9. Gasturbine (100) mit einem Rotor (103) nach Anspruch 8.
  10. Kraftwerksanlage mit einer Gasturbine (100) nach Anspruch 9.
EP15165406.8A 2015-04-28 2015-04-28 Laufschaufel für eine gasturbine, zugehöriger rotor, gasturbine und kraftwerksanlage Not-in-force EP3088673B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15165406.8A EP3088673B1 (de) 2015-04-28 2015-04-28 Laufschaufel für eine gasturbine, zugehöriger rotor, gasturbine und kraftwerksanlage
US15/135,727 US20160319675A1 (en) 2015-04-28 2016-04-22 Rotor blade for a gas turbine
JP2016088923A JP6224161B2 (ja) 2015-04-28 2016-04-27 ガスタービンのためのロータブレード
CN201610269552.1A CN106089315B (zh) 2015-04-28 2016-04-27 用于燃气涡轮的转子叶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15165406.8A EP3088673B1 (de) 2015-04-28 2015-04-28 Laufschaufel für eine gasturbine, zugehöriger rotor, gasturbine und kraftwerksanlage

Publications (2)

Publication Number Publication Date
EP3088673A1 true EP3088673A1 (de) 2016-11-02
EP3088673B1 EP3088673B1 (de) 2017-11-01

Family

ID=53002624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15165406.8A Not-in-force EP3088673B1 (de) 2015-04-28 2015-04-28 Laufschaufel für eine gasturbine, zugehöriger rotor, gasturbine und kraftwerksanlage

Country Status (4)

Country Link
US (1) US20160319675A1 (de)
EP (1) EP3088673B1 (de)
JP (1) JP6224161B2 (de)
CN (1) CN106089315B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618002B1 (en) * 2013-09-27 2017-04-11 University Of South Florida Mini notched turbine generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223402A (ja) * 1986-03-24 1987-10-01 Toshiba Corp タ−ビン動翼の先端冷却構造
EP1079072A2 (de) * 1999-08-23 2001-02-28 General Electric Company Schaufelspitzenkühlung
EP1178181A2 (de) * 2000-07-31 2002-02-06 General Electric Company Tandemkühlung für eine Turbinenschaufel
EP1557533A1 (de) * 2004-01-23 2005-07-27 Siemens Aktiengesellschaft Kühlung einer Turbinenschaufel mit einem Doppelboden zwischen Schaufelblatt und Schaufelspitze
EP1057970B1 (de) 1999-06-01 2005-12-21 General Electric Company Schaufelspitze mit Prallkühlung
EP1267041B1 (de) 2001-06-11 2006-06-28 ALSTOM Technology Ltd Gekühlte Turbinenschaufel
CN102182518A (zh) * 2011-06-08 2011-09-14 河南科技大学 一种涡轮冷却叶片

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893987A (en) * 1987-12-08 1990-01-16 General Electric Company Diffusion-cooled blade tip cap
US20030021684A1 (en) * 2001-07-24 2003-01-30 Downs James P. Turbine blade tip cooling construction
US6994514B2 (en) * 2002-11-20 2006-02-07 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
US7287959B2 (en) * 2005-12-05 2007-10-30 General Electric Company Blunt tip turbine blade
US7695243B2 (en) * 2006-07-27 2010-04-13 General Electric Company Dust hole dome blade
FR2983517B1 (fr) * 2011-12-06 2013-12-20 Snecma Aube de turbine refroidie pour moteur a turbine a gaz.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223402A (ja) * 1986-03-24 1987-10-01 Toshiba Corp タ−ビン動翼の先端冷却構造
EP1057970B1 (de) 1999-06-01 2005-12-21 General Electric Company Schaufelspitze mit Prallkühlung
EP1079072A2 (de) * 1999-08-23 2001-02-28 General Electric Company Schaufelspitzenkühlung
EP1178181A2 (de) * 2000-07-31 2002-02-06 General Electric Company Tandemkühlung für eine Turbinenschaufel
EP1267041B1 (de) 2001-06-11 2006-06-28 ALSTOM Technology Ltd Gekühlte Turbinenschaufel
EP1557533A1 (de) * 2004-01-23 2005-07-27 Siemens Aktiengesellschaft Kühlung einer Turbinenschaufel mit einem Doppelboden zwischen Schaufelblatt und Schaufelspitze
CN102182518A (zh) * 2011-06-08 2011-09-14 河南科技大学 一种涡轮冷却叶片

Also Published As

Publication number Publication date
CN106089315A (zh) 2016-11-09
JP6224161B2 (ja) 2017-11-01
EP3088673B1 (de) 2017-11-01
JP2016211556A (ja) 2016-12-15
CN106089315B (zh) 2018-08-31
US20160319675A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
CH702553B1 (de) Turbinenleitapparatbaugruppe.
DE102009021384A1 (de) Strömungsvorrichtung mit Kavitätenkühlung
EP3028793A1 (de) Verfahren zur Herstellung einer Laufschaufel
EP1389690A1 (de) Innenkühlbare Schraube
EP1621730A1 (de) Gekühltes Bauteil einer Strömungsmaschine und Verfahren zum Giessen dieses gekühlten Bauteils
DE102014115264A1 (de) Mikrokanalauslass zur Kühlung und/oder Spülung von Gasturbinensegmentspalten
EP1904717B1 (de) HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE
EP2084368B1 (de) Turbinenschaufel
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
DE19914227A1 (de) Wärmeschutzvorrichtung in Gasturbinen
EP1995413B1 (de) Spaltdichtung für Schaufeln einer Turbomaschine
EP2559854A1 (de) Innenkühlbares Bauteil für eine Gasturbine mit zumindest einem Kühlkanal
EP2877702A1 (de) Verfahren zur herstellung einer leitschaufel sowie leitschaufel
EP2832956A1 (de) Turbinenschaufel mit tragflächenprofilförmigen Kühlkörpern
EP3088673B1 (de) Laufschaufel für eine gasturbine, zugehöriger rotor, gasturbine und kraftwerksanlage
EP2823154B1 (de) Kühlmittelüberbrückungsleitung, zugehörige turbinenschaufel, gasturbine und kraftwerksanlage
EP3274561B1 (de) Laufschaufel für eine gasturbine, herstellungsverfahren und nachbearbeitungsverfahren
EP2957718A1 (de) Turbine
DE102015215207A1 (de) Brennkammer für eine Gasturbine und Hitzeschildelement zum Auskleiden einer derartigen Brennkammer
EP3023191A1 (de) Turbinenschaufel hergestellt aus zwei teilen
DE102013220455A1 (de) Gasturbinentriebwerk mit Kühlluftringkammer
EP1783325A1 (de) Befestigungsanordnung eines Rohres an einer Umfangsfläche
EP3039244B1 (de) Turbinenschaufel
EP2853687A1 (de) Turbinenschaufel, und zugehörige Stator, Rotor, Turbine und Kraftwerksanlage
EP2999853B1 (de) Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170406

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170602

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 942240

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002230

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180619

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002230

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

26N No opposition filed

Effective date: 20180802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180718

Year of fee payment: 4

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180428

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190423

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015002230

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190428

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 942240

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200428