EP3087578B1 - Elektrischer schalter - Google Patents

Elektrischer schalter Download PDF

Info

Publication number
EP3087578B1
EP3087578B1 EP14828031.6A EP14828031A EP3087578B1 EP 3087578 B1 EP3087578 B1 EP 3087578B1 EP 14828031 A EP14828031 A EP 14828031A EP 3087578 B1 EP3087578 B1 EP 3087578B1
Authority
EP
European Patent Office
Prior art keywords
volume
exhaust gas
exhaust
wall
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14828031.6A
Other languages
English (en)
French (fr)
Other versions
EP3087578A1 (de
Inventor
Javier Mantilla
Xiangyang Ye
Mahesh DHOTRE
Oliver Cossalter
Stephan Grob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Priority to EP14828031.6A priority Critical patent/EP3087578B1/de
Priority to BR112016014319A priority patent/BR112016014319A8/pt
Priority claimed from PCT/EP2014/078975 external-priority patent/WO2015097143A1/en
Publication of EP3087578A1 publication Critical patent/EP3087578A1/de
Application granted granted Critical
Publication of EP3087578B1 publication Critical patent/EP3087578B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/72Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber
    • H01H33/74Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid having stationary parts for directing the flow of arc-extinguishing fluid, e.g. arc-extinguishing chamber wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H2033/888Deflection of hot gasses and arcing products

Definitions

  • the invention is in the field of medium and high voltage switching technologies and relates to an electrical switching device and a method for operating it according to the independent claims, particularly for a use as an earthing device, a fast-acting earthing device, a circuit breaker, a generator circuit breaker, a switch disconnector, a combined disconnector and earthing switch, or a load break switch in power transmission and distribution systems.
  • Electrical switching devices are well known in the field of medium and high voltage switching applications. They are e.g. used for interrupting a current when an electrical fault occurs.
  • circuit breakers have the task of opening contacts and keeping them far apart from one another in order to avoid a current flow, even in case of high electrical potential originating from the electrical fault itself.
  • medium voltage refers to voltages from 1 kV to 72.5 kV
  • high voltage refers to voltages higher than 72.5 kV.
  • the electrical switching devices may be rated to carry high nominal currents of 4000 A to 6300 A and to switch very high short circuit currents of 40 kA to 80 kA at very high voltages of 110 kV to 1200 kV.
  • the electrical switching devices of today require many so-called nominal contact fingers for the nominal current.
  • the current When disconnecting (opening) a nominal or short circuit current within the electrical switching devices, the current commutates from nominal contacts of the electrical switching device to its arcing contacts.
  • the arcing contacts are connected in advance.
  • the arcing contacts comprise, as a first arcing contact, arcing contact fingers arranged around the longitudinal axis of the electrical switching device in a so-called arcing finger cage and, as a second arcing contact, a rod or pin which is driven into the finger cage.
  • the electrical switching devices During the opening process of the electrical switching device an electric arc forms between the first and the second arcing contact, an area being called arcing volume, which arc is conductive and still carries electric current even after the opening or physical separation of the arcing contacts.
  • the electrical switching devices contain a dielectrically inert fluid used as a dielectric insulating medium and for quenching the electric arc as fast as possible. Quenching the electric arc means extracting as much energy as possible from it. Consequently, a part of the fluid located in the area where the electric arc is generated is considerably heated up (to around 20'000°C to 30'000°C) in a very short period of time.
  • this part of the fluid builds up a pressure and is ejected from the arcing volume. In this way the electric arc is blown off around the instant when the current is zero.
  • the fluid flows into one or more exhaust volumes where it is cooled and redirected by a cooling device. Mixing with the cold fluid located in the exhaust volume or volumes is only possible to a relatively small extent, because the predominant part of the cold gas present inside the respective exhaust volume is pressed out of the exhaust volume by the hot fluid, which expands out of the arcing volume, before any significant mixing can occur.
  • the hot exhaust fluid comes into electric-field-stressed regions, e.g.
  • an SF 6 -gas-blast circuit breaker in which SF 6 -exhaust-gas from an arcing area is passed through a hollow contact into a concentrically arranged exhaust volume, and from there into a switching chamber volume located further outward.
  • at least one intermediate volume and possibly an additional volume is or are arranged concentrically between the hollow contact and the exhaust volume and are separated from one another by intermediate walls.
  • the intermediate walls generate an increased intermediate SF 6 -exhaust-gas pressure and have holes or openings for forming SF 6 gas jets.
  • the SF 6 -exhaust-gas jets then impact on opposite walls opposing the openings and are swirled intensively at the opposing walls.
  • the SF 6 -exhaust-gas is cooled by radially flowing out the SF6-switching-gas from the inner to the outer volumes through a sequence of jet-forming openings and jet-swirling opposing baffle walls, and thus a large amount of thermal energy is transferred to walls of the volumes in the exhaust system.
  • the openings between the hollow-contact volume, the intermediate volume and, if appropriate, the additional volume are arranged offset with respect to one another on the circumference.
  • the openings between the additional volume and the exhaust volume are arranged offset with respect to one another on the circumference and/or in the axial direction. This also results in meandering as well as spiralling SF 6 -exhaust-gas paths being predetermined, with the dwell time for which the SF 6 -exhaust-gas remains in the exhaust area being increased, and with the heat transfer from the SF 6 -exhaust-gas being further improved.
  • the holes can be covered by means of panels in the form of perforated metal sheets to produce a larger number of radially directed SF 6 -exhaust-gas streams or SF 6 -exhaust-gas jets.
  • These SF 6 -exhaust-gas jets again strike the opposite wall, are swirled at the impact points, and thus intensively cool the hot SF 6 exhaust gas.
  • the intermediate volume which improves the cooling, is arranged in the exhaust area on the drive contact side.
  • a second intermediate volume may also be provided on the fixed-contact side.
  • at least one intermediate volume is additionally required in the circuit breaker, that is to say in addition to the hollow-contact volume, the exhaust volume and the switching chamber volume, in order to achieve efficient SF 6 -exhaust-gas cooling.
  • an SF 6 -gas-blast generator circuit breaker with a similar exhaust gas system which has intermediate walls with openings for SF 6 -exhaust-gas jet formation and opposing walls with baffle-wall and heat-sink function for vortex heat transfer of the SF 6 -exhaust-gas to such opposing walls.
  • a gas-blast circuit breaker with a novel arc-exctinguishing insulation fluid comprising fluoroketones is disclosed.
  • High voltage circuit breakers having a heating chamber for providing a self-blasting effect can be operated with such fluoroketones and specifically C6-fluoroketones.
  • fluoroketones are disclosed to beneficially increase the self-blasting pressure in the heating chamber during a back-heating phase in a switching operation, as they are decomposed to a larger number of fluorocarbon compounds having a lower number of carbon atoms.
  • a favourable arc extinction capability of fluoroketones having from 4 to 12 carbon atoms is at least partially attributed to the recombination of the dissociation products of the fluoroketones mainly to tetrafluoromethane (CF 4 ), which is a highly potent arc extinction medium.
  • C6-fluoroketones are disclosed to be useful for limiting the exhaust gas temperature in the whole vessel and in the exhaust volumes during and after arc interruption, because decomposition of sufficiently present C6-fluoroketone molecules absorbs the excess thermal energy and prevents further exhaust-gas heating beyond the decomposition temperature of around 550°C to 570°C.
  • a gas-blast circuit breaker with arc-exctinguishing insulation fluids comprising C5-fluoroketones.
  • the C5-fluoroketones have a non-linear increase of dielectric strength in mixtures with certain carrier gases, such as nitrogen and carbon dioxide.
  • the C5-fluoroketones again provide a beneficial blasting-pressure increase in the compression chamber and/or heating chamber and/or arcing region during an arc-extinguishing phase due to molecular decomposition.
  • recombination of C5-fluoroketone to tetrafluoromethane (CF 4 ) in the arcing region is beneficial for arc extinction.
  • molecular decomposition is also beneficial in the exhaust region, because the rather low dissociation temperatures of the fluoroketones of about 400°C to about 600°C or even 900°C can function as a temperature barrier in the exhaust gas.
  • an exhaust system with at least two concentric exhaust tubes is disclosed.
  • the exhaust tubes have large numbers of radial (mantle-sided) over-pressure relief openings that are mutually off-set to one another such that direct radial gas outflow through both exhaust tubes is blocked.
  • the relief openings may be arranged such that the exhaust gas is forced to enter the first and second exhaust tube repeatedly.
  • axial (end-sided) non-overlapping over-pressure relief openings are disclosed and may e.g. be on opposite end faces of the first and second exhaust tube.
  • An armature body can be provided, which is shiftable or dimensionally adaptable to hide or clear openings and thus to adapt the cooling capacity.
  • exhaust gas is cooled by providing a long meandering (i.e. alternatingly radial and axial) gas path, by providing a very large number and density of openings, and also by providing each opening with an opposing baffle wall section for better mixing the exhaust gas.
  • a puffer-type gas-blast circuit breaker which has a moveable hollow arcing contact with a radial opening for releasing exhaust gases in radial direction.
  • the drive rod for the hollow arcing contact carries a gas blocking member for preventing axial gas discharge towards the drive unit.
  • EP-A1-1768150 discloses an electrical switching device according to the preamble of claim 1.
  • a first aspect of the invention related to an electrical switching device having a longitudinal axis z, comprising an arcing volume and at least an arcing contact arrangement with a first arcing contact and a mating second arcing contact, and further comprising an exhaust system with at least one exhaust volume, wherein for closing and opening the electric switching device at least one of the arcing contacts is movable parallel to the longitudinal axis z and cooperates with the other arcing contact, wherein the electrical switching device comprising a dielectric insulating medium comprising an organofluorine compound selected from the group consisting of: a fluoroether, a fluoroamine, a fluoroketone, a fluoroolefine, and mixtures thereof, and inside the exhaust volume at least one intermediate volume is arranged, is enclosed by an intermediate wall, comprises at least one inlet opening for receiving exhaust gas coming from the arcing region, and comprises at least one outlet opening, which outlet opening is facing an opposing wall, in particular of the exhaust volume, and is for producing at least
  • the impacting causes swirling the at least one exhaust gas jet, which swirling induces turbulent-gas heat transfer to the opposing wall and reduces a temperature and pressure of the swirling exhaust gas jet.
  • the organofluorine compound is selected from the group consisting of: perfluoroether, hydrofluoroether, perfluoroamine, perfluoroketone, perfluoroolefin, hydrofluoroolefine, and mixtures thereof; in particular, such organofluorine compound can be in mixtures with a background gas and more particularly in a mixture with a background gas compound selected from the group consisting of: air, air components, nitrogen, oxygen, carbon dioxide, nitrogen oxides.
  • the dielectric insulating medium comprises as the organofluorine compound a fluoroketone having from 4 to 15 carbon atoms.
  • the fluoroketone can be selected from the group consisting of: fluorketones having exactly 5 carbon atoms, fluorketones having exactly 6 carbon atoms, fluorketones having exactly 7 carbon atoms, fluorketones having exactly 8 carbon atoms, such fluoroketones with at least one of the mentioned carbon atoms being replaced by a heteroatom, in particular being replaced by nitrogen and/or oxygen and/or sulphur, and mixtures thereof.
  • the intermediate volume is designed such that during operation, in particular during a time period of exhaust gas ejection,
  • the intermediate volume is designed such that at least temporarily during a time period of exhaust gas ejection an intermediate exhaust gas pressure p 7 ; p 8 in the intermediate volume exceeds an exhaust gas pressure in its immediately succeeding exhaust volume at least by a pressure ratio K larger than 1.1, in particular the pressure ratio K being selected from the group consisting of: a first pressure ratio K 7 , a first further pressure ratio K f , a second pressure ratio K 8 , and combinations thereof.
  • Choosing the pressure ratio K high is beneficial for providing a high impacting velocity of the impinging gas jets; however it can increase the flow resistance in the travel path of the exhaust gas.
  • Choosing a critical pressure ratio K is optimal, because it allows to reach sonic outflow speed out of the first and/or second outlet opening(s) (which is the maximal achievable speed, without nozzle-shapes being provided at the outlet opening(s)) while maintaining the flow resistance in the travel path at still moderate levels.
  • a second aspect of the invention relates to an electrical switching device, in particular as described above, having a longitudinal axis z, comprising an arcing volume and at least an arcing contact arrangement with a first arcing contact and a mating second arcing contact, and further comprising an exhaust system with at least one exhaust volume, wherein for closing and opening the electric switching device at least one of the arcing contacts is movable parallel to the longitudinal axis z and cooperates with the other arcing contact, and the electrical switching device comprises a dielectric insulating medium, and wherein inside the exhaust volume at least one intermediate volume is arranged, is enclosed by an intermediate wall, comprises at least one inlet opening for receiving exhaust gas coming from the arcing region , and comprises at least one outlet opening, which outlet opening is facing an opposing wall, in particular of the exhaust volume, and is for producing at least one exhaust gas jet and for discharging it towards and impacting it on the opposing wall, and wherein the switching device has means for changing a size of the intermediate volume, in particular wherein
  • the means serve for adapting a first intermediate exhaust gas pressure p 7 in the first intermediate volume to a second exhaust gas pressure p 8' in the second exhaust volume, or to a second intermediate exhaust gas pressure p 8 in the second intermediate volume, within a predetermined range of pressure differences, in particular within 0.5 bar and more particularly within 0.4 bar and most particularly within 0.3 bar.
  • the intermediate volume is delimited by a moveable wall that allows adaptation of a size of the intermediate volume; and/or the first intermediate volume is delimited by a first moveable wall that allows adaptation of a size of the first intermediate volume; and/or the second intermediate volume is delimited by a second moveable wall that allows adaptation of a size of the second intermediate volume.
  • the intermediate volume in particular the first intermediate volume and/or the second intermediate volume, is or are designed such that at least temporarily during a time period of arc extinction, in particular during the whole arc extinction period, an additional flow resistance introduced in the exhaust gas comprising the organofluorine compound by the intermediate volume, in particular the first intermediate volume and/or the second intermediate volume, is kept below a threshold flow resistance, below which threshold flow resistance sonic or supersonic flow conditions in the arcing region are maintained, in other words at or above which threshold flow resistance subsonic flow conditions in the arcing region (6) would occur.
  • a size of the intermediate volume and a position, number and cross-section of the at least one outlet opening are adapted to gas flow characteristics of the organofluorine compound, in particular of the fluoroketone and more particularly to a speed of sound of the fluoroketone gas mixtures, to withhold at least temporarily during a time period of arc extinction a predetermined amount of the exhaust gas inside the intermediate volume, and in particular to achieve a predetermined level of increase of the intermediate exhaust gas pressure(s) p 7 ; p 8 in the intermediate volume over the exhaust gas pressure (s) p 7' , p 8' in exhaust volumes downstream of the intermediate volume.
  • a second aspect of the invention relates to a method for operating an electrical switching device as described herein, wherein an intermediate exhaust gas pressure p 7 ; p 8 in one of the intermediate volumes is adjusted, in particular by shifting at least one moveable wall, in such a way that it approximately equals, in particular within a pressure difference of 1 bar or 0.5 bar or less, an intermediate exhaust gas pressure p 8 ; p 7 in the other of the intermediate volumes at least temporarily during an arc extinction period; and/or wherein an intermediate exhaust gas pressure p 7 ; p 8 in one of the intermediate volumes and/or an intermediate exhaust gas pressure p 8 ; p 7 in the other of the intermediate volumes is or are adjusted, in particular by shifting at least one moveable wall (14a, 14b), in such a way that it is or they are smaller than a third pressure in the arcing volume (6) at least temporarily during an arc extinction period; and/or wherein the first intermediate exhaust gas pressure p 7 in the first intermediate volume is adjusted, in particular by shifting the first moveable wall,
  • the first intermediate exhaust gas pressure p 7 in the first intermediate volume and/or the second intermediate exhaust gas pressure p 8 in the second intermediate volume is or are adjusted, in particular by shifting at least one moveable wall along the longitudinal axis z, depending on an intensity of an electric arc forming between the arcing contacts, when they are opened or closed.
  • the first intermediate exhaust gas pressure p 7 in the first intermediate volume and/or a or the second intermediate exhaust gas pressure p 8 in the second intermediate volume is or are adjusted, in particular by shifting a moveable wall along the longitudinal axis z, in such a way that a temperature of the dielectric insulating medium is kept lower than a decomposition temperature of the organofluorine compound, in particular the fluoroketone.
  • the electrical switching device and the method for operating it has the advantage of improved cooling of the insulating and extinguishing fluid located in the switching device.
  • the adjustment of the size of the exhaust volume provides a flexible way of accounting for different current strengths, ensuring a pressure in the respective exhaust volume which is high enough to create a strong fluid stream, e.g. through the at least one first opening, towards the exterior of the exhaust volume or exhaust volumes.
  • By providing jet-forming openings in the intermediate volume(s) and in particular even a hole array for such openings it is possible to increase a turbulence of said exhaust gas fluid stream, thus also enhancing the heat transfer capabilities from the fluid to its environment.
  • thermoelectric insulation media arc extinguishing and insulating gas mixtures (herein simply referred to as "dielectric insulation media") used in high or medium voltage switching devices experience decomposition when heated up above certain levels, which may be encountered under certain operating conditions of said switching devices. This decomposition is undesired, as it reduces the insulating properties of the fluid.
  • SF 6 has the property that it recombines when it is cooled down and thereby regains substantially its full dielectric properties; however other gases comprising an organofluorine compound, like the fluoroketone C5, do not exhibit this property.
  • the present invention improves circuit breakers and makes it possible to use also such gases comprising an organofluorine-type compound, because the disclosed subject-matter allows to keep gas temperatures below decomposition temperatures of the organofluorine compound at least in certain areas outside the arcing volume, in particular at least in parts of the first exhaust volume and/or second exhaust volume and/or exterior volume.
  • the decomposition can be reduced, and for example the degree of decomposition or the concentration ratio of decomposition products to the organofluorine compound in the exhaust gas can be kept below a predetermined threshold value.
  • losses of the organofluorine compound can be reduced and maintenance time intervals of the switching device can be increased.
  • Other benefits are the possibility of reducing the size of exhaust volumes.
  • both leftward and rightward directions are downstream of the arcing volume where the pressure is highest and from where arc-blowing gas and exhaust gas is originating into both leftward and rightward directions.
  • Switching device means electrical switching device and can encompass, for example, a high-voltage circuit breaker, a generator circuit breaker, a disconnector, a combined disconnector and earthing switch, a load break switch, an earthing device, or a fast-acting earthing device.
  • Fig. 1 shows a sectional view of an embodiment of a high voltage circuit breaker 1 in an opened configuration.
  • the device 1 can be essentially rotationally symmetric about the longitudinal axis z. Only the elements of the circuit breaker 1 which are related to the present invention will be described in the following, other elements present in the figures are not relevant for understanding the invention. Furthermore a detailed description of the operating principles of the circuit breaker 1 is not given.
  • a “closed configuration” as used herein means that the nominal contacts and/or the arcing contacts of the circuit breaker 1 are closed (i.e. are touching one another). Accordingly, an “opened configuration” as used herein means that the nominal contacts and/or the arcing contacts of the circuit breaker 1 are opened (i.e. are separated).
  • the purely exemplary circuit breaker 1 is enclosed by a shell or external enclosure 5 which normally is cylindrical and is arranged around longitudinal axis z. It comprises a nominal contact arrangement 3a, 3b comprising a first nominal contact comprising a plurality of contact fingers 3a, of which only two are shown here for reasons of clarity.
  • the nominal contact fingers 3a are formed as a finger cage around the longitudinal axis z.
  • the nominal contact arrangement further comprises a second mating nominal contact 3b which normally is a metal tube.
  • a shielding 5a can be arranged around the first and the second nominal contact 3a, 3b.
  • the circuit breaker 1 furthermore comprises an arcing contact arrangement 4a, 4b comprising a first arcing contact 4a and a second arcing contact 4b.
  • Analogue to the first nominal contact 3a also the first arcing contact 4a comprises multiple fingers 4a arranged in a finger cage.
  • the second arcing contact 4b is normally rod-shaped.
  • the contact fingers 3a, 4a are movable relatively to the contacts 3b, 4b from said closed configuration, in which they are in electrical contact to one another, into the opened configuration shown in Fig. 1 , in which they are apart from one another, and vice versa. It is also possible that only one set of the contacts 3a, 4a or 3b, 4b respectively, moves parallel to the longitudinal axis z and the other set of contacts 3b, 4b or 3a, 4a respectively, is stationary. For the explanatory purposes of the present invention it is assumed that only the first nominal contact 3a and the first arcing contact 4a are movable along the z-axis and the second nominal contact 3b and the second arcing contact 4b are stationary. However, the invention is not limited to this configuration.
  • circuit breaker 1 is shown during an opening process of the electrical switching device 1 in an instant when the distance between the arcing contacts 4a, 4b is still so small that an electric arc 3 is still present between the arcing contacts 4a, 4b.
  • the area around the electric arc 3 is called arcing volume 6 or heat up area 6.
  • the first arcing contact 4a is attached to an exhaust tube 7''' and the first nominal contact 3a is attached to a first intermediate volume 7 which at least partially surrounds the exhaust tube 7'''.
  • a first exhaust volume 7' is arranged around the first intermediate volume 7.
  • the second arcing contact 4b and the second nominal contact 3b are attached to a second intermediate volume 8.
  • a second exhaust volume 8' is arranged around the second intermediate volume 8.
  • the enclosure 5 defines an exterior volume 9 surrounding (at least partially or completely) the exhaust tube 7''', the first first intermediate volume 7 and the second intermediate volume 8.
  • the exhaust tube 7''', the first intermediate volume 7, the first exhaust volume 7', the second intermediate volume 8, the second exhaust volume 8' and the exterior volume 9 form a or at least one travel path 2 for a fluid travelling through them.
  • This travel path 2 is illustrated in Fig. 1 by a plurality of arrows, of which only a few have been denoted by the reference numeral 2. It is noted that the electrical switching device 1 may have less or more exhaust volumes or enclosures, depending on its type.
  • the arcing volume 6 has on the lefthand side fluid connection via the exhaust tube 7''' to the first intermediate volume 7, and on the righthand side via an inner volume 80 surrounding and/or adjacent to the second arcing contact (plug) 4b to the second intermediate volume 8, as shown by the respective arrows 2.
  • the first intermediate volume 7, the first exhaust volume 7' and the exterior volume 9 form a first travel path for the exhaust gas
  • at least the arcing volume 6, the second intermediate volume 8, the second exhaust volume 8' and the exterior volume 9 form a second travel path for the exhaust gas.
  • the exhaust system 7, 7', 7", 7''; 8, 8', 8" comprises a first exhaust volume 7' downstream from the arcing volume 6 on a first side of the switching device 1 having the first arcing contact 4a, and inside the first exhaust volume 7' at least one first intermediate volume 7 is arranged, is enclosed by a first intermediate wall 7a, comprises a first inlet opening 11a, which is for receiving exhaust gas coming from a hollow exhaust tube 7''' fluidly connected to the arcing region 6, and comprises at least one first outlet opening 12a, which is facing a first opposing wall 7b, in particular of the first exhaust volume 7', and is for producing at least one first gas jet 77 and for discharging it towards and impacting it on the first opposing wall 7b.
  • the pressure ratios disclosed herein can be chosen to be critical pressure ratios, i.e. K, K 7 , K 7f , K 8 between 1.6 and 1.7 for (predominantly) SF 6 or between 1.7 and 1.8 for organofluorine compounds with background gas. This assures sonic outflow out of the first intermediate volume 7 and/or second intermediate volume 8 and/or first further intermediate volume.
  • the fluid used in the circuit breaker 1 can be SF 6 gas or any other dielectric insulation medium, may it be gaseous and/or liquid, and in particular can be a dielectric insulation gas or arc quenching gas.
  • dielectric insulation medium can for example encompass media comprising an organofluorine compound, such organofluorine compound being selected from the group consisting of: a fluoroether, an oxirane, a fluoroamine, a fluoroketone, a fluoroolefin and mixtures and/or decomposition products thereof.
  • fluoroether refers to at least partially fluorinated compounds.
  • fluoroether encompasses both hydrofluoroethers and perfluoroethers
  • oxirane encompasses both hydrofluorooxiranes and perfluorooxiranes
  • fluoroamine encompasses both hydrofluoroamines and perfluoroamines
  • fluoroketone encompasses both hydrofluoroketones and perfluoroketones
  • fluoroolefin encompasses both hydrofluoroolefins and perfluoroolefins. It can thereby be preferred that the fluoroether, the oxirane, the fluoroamine and the fluoroketone are fully fluorinated, i.e. perfluorinated.
  • the dielectric insulation medium is selected from the group consisting of: a (or several) hydrofluoroether(s), a (or several) perfluoroketone(s), a (or several) hydrofluoroolefin(s), and mixtures thereof.
  • fluoroketone as used in the context of the present invention shall be interpreted broadly and shall encompass both fluoromonoketones and fluorodiketones or generally fluoropolyketones. Explicity, more than a single carbonyl group flanked by carbon atoms may be present in the molecule. The term shall also encompass both saturated compounds and unsaturated compounds including double and/or triple bonds between carbon atoms.
  • the at least partially fluorinated alkyl chain of the fluoroketones can be linear or branched and can optionally form a ring.
  • the dielectric insulation medium comprises at least one compound being a fluoromonoketone and/or comprising also heteroatoms incorporated into the carbon backbone of the molecules, such as at least one of: a nitrogen atom, oxygen atom and sulphur atom, replacing one or more carbon atoms.
  • the fluoromonoketone in particular perfluoroketone, can have from 3 to 15 or from 4 to 12 carbon atoms and particularly from 5 to 9 carbon atoms. Most preferably, it may comprise exactly 5 carbon atoms and/or exactly 6 carbon atoms and/or exactly 7 carbon atoms and/or exactly 8 carbon atoms.
  • the dielectric insulation medium comprises at least one compound being a fluoroolefin selected from the group consisting of: hydrofluoroolefins (HFO) comprising at least three carbon atoms, hydrofluoroolefins (HFO) comprising exactly three carbon atoms, trans-1,3,3,3-tetrafluoro-1-propene (HFO-1234ze), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and mixtures thereof.
  • HFO hydrofluoroolefins
  • HFO hydrofluoroolefins
  • HFO trans-1,3,3,3-tetrafluoro-1-propene
  • HFO-1234yf trans-1,3,3,3-tetrafluoro-1-propene
  • HFO-1234yf 2,3,3,3-tetrafluoro-1-propene
  • the dielectric insulation medium can further comprise a background gas or carrier gas different from the organofluorine compound (in particular different from the fluoroether, the oxirane, the fluoroamine, the fluoroketone and the fluoroolefin) and can in embodiments be selected from the group consisting of: air, N 2 , O 2 , CO 2 , a noble gas, H 2 ; NO 2 , NO, N 2 O; fluorocarbons and in particular perfluorocarbons, such as CF 4 ; CF 3 I, SF 6 ; and mixtures thereof.
  • a background gas or carrier gas different from the organofluorine compound in particular different from the fluoroether, the oxirane, the fluoroamine, the fluoroketone and the fluoroolefin
  • a background gas or carrier gas different from the organofluorine compound (in particular different from the fluoroether, the oxirane, the fluoroamine, the fluoroketone and the fluoro
  • a size of the intermediate volume 7, 8 and a position, number and cross-section of the at least one outlet opening 12a; 12b are adapted to gas flow characteristics of the organofluorine compound, in particular of the fluoroketone and more particularly to a speed of sound of the fluoroketone gas mixtures, to withhold at least temporarily during a time period of arc extinction a predetermined amount of the exhaust gas inside the intermediate volume 7; 8, and in particular to achieve a predetermined level of increase of the intermediate exhaust gas pressure (s) p 7 ; p 8 in the intermediate volume 7; 8 over the exhaust gas pressure (s) p 7' , p 8' in exhaust volumes 7'; 8' downstream of the intermediate volume 7; 8.
  • the first intermediate volume 7 and/or the second intermediate volume 8 is or are delimited on one side by at least a first wall 14 (exemplarily shown on the left-hand side in Fig. 1 , 2 ) arranged transversally to the longitudinal axis z and shiftable parallel to it by at least an actuation device 15, 16, 17.
  • the at least one actuation device comprises at least one spring 16 connecting the actuator 15 to the first wall 14.
  • the actuation device 15 may also be formed by a hydraulic or a pneumatic or electric actuation device 15, or it may be a spring itself or even the spring 16.
  • this moving first wall 14a is to adjust the volume of the first intermediate volume 7 and/or of the second intermediate volume 8 depending on operating parameters of the circuit breaker 1, with the aim of optimizing the fluid flow within the circuit breaker 1, which leads to a more efficient fluid or exhaust gas cooling inside the circuit breaker 1.
  • the first intermediate volume 7 may be decreased by pushing the first wall 14a in the direction of the longitudinal axis z (to the righthand side) in case small currents are expected.
  • a decrease of the first intermediate volume 7 helps to keep up a necessary exhaust fluid or gas pressure and to achieve an optimized impinging jet effect 77 for the exhaust fluid or gas.
  • the exhaust fluid or gas escaping from the intermediate volume 7 or volumes 7, 8 through the first outlet openings 12a or second outlet openings 12b generates a higher turbulence in the respective first and second exhaust volume 7', 8'.
  • the fluid or gas in the arcing volume 6 has a higher pressure and expansion and may require a larger volume.
  • the first intermediate volume 7 can be augmented by shifting the first wall 14 in a leftward direction counter or anti-parallel to the longitudinal axis z (rightward direction being denoted by arrow z).
  • the spring 16 has such a spring rigidity that it permits a volume change of the first and/or the intermediate volume 7, 8 of maximum ⁇ 90%, in particular ⁇ 70% and more particularly ⁇ 50% and most particularly ⁇ 30%, with respect to a base volume of the first and/or the second intermediate volume 7, 8 defined by the base position of the first moveable wall 14a or second moveable wall 14b, respectively.
  • a self-adapting volume change e.g. within the above limits, occurs as an effect of changing pressures in the respective exhaust volume 7, 8 due to the travelling fluid or exhaust gas.
  • a first pressure in one of the intermediate volumes 7, 8 is adjusted in such a way by shifting the moveable wall 14a and/or 14b that it approximately equals a second pressure of the other intermediate volume 8, 7.
  • This pressure-driven, self-adapting volume change can be achieved by at least one shiftable moveable first and/or second wall 14a, 14b with any actuator system, e.g. actuator system 15-17, present in the circuit breaker 1.
  • the volume adjustment in a respective intermediate volume 7, 8 is carried out by shifting the first wall 14a.
  • Current values and pressure values assumed in this example are exemplary and may vary.
  • the base position of the first wall 14a is set by the actuator 15 before operating the electrical switching device 1, and the pressure in the respective intermediate volume 7, 8 is calculated for 90% of the maximum current, e.g. equal to 50 bar; i.e. the base position is defined by these parameters.
  • the spring rigidity is chosen in such a way that, in operation of the electrical switching device 1, the first wall 14 does not move when the current is lower than 90% of the maximum current.
  • the first wall 14a only moves when the current is higher than 90% of the maximum current.
  • the pressure may e.g.
  • the first pressure in the first intermediate volume 7 and/or in the second intermediate volume 8 is adapted depending on an intensity of the electric arc 3 forming between the arcing contacts 4a, 4b when they are opened or closed.
  • such measures also contribute to pressure equalization within both the first and second intermediate volume 7 and 8.
  • the pressure equalization is best in an embodiment using moving walls 14a, 14b coupled to actuators 15-17 for both the first and the second intermediate volume 7, 8.
  • the first pressure p 7 in the first intermediate volume 7 and/or a second pressure p 8 in the second intermediate volume 8 is or are adjusted by shifting the first wall 14a and/or the second wall 14b in such a way that the first pressure p 7 and/or the second pressure p 8 is or are smaller than a third pressure in the arcing volume 6. This is desired in order to prevent the fluid or exhaust gas which has escaped into the intermediate volume or volumes 7, 8 to flow back into the arcing volume 6.
  • the first pressure p 7 in the first intermediate volume and/or the second pressure p 8 in the second intermediate volume 7, 8 is or are adjusted in such a way that a temperature of the dielectric insulating medium is kept lower than a decomposition temperature of the insulating medium by shifting the respective first wall 14a, 14b along the longitudinal axis z.
  • the fluoroketone has a decomposition temperature of around 600-900°C.
  • Fig. 4 shows the beneficial effect of using the first intermediate volume 7 in conjunction with the dielectric insulation medium comprising a fluoroketone, specifically gaseous C5-fluoroketone (i.e. comprising exactly 5 carbon atoms), in a mixture with air as background gas.
  • the graphs are showing absorbed thermal energy in kilo-Joule (i.e. exhaust gas cooling) versus time after current zero CZ in seconds for fluorketone-air mixtures (upper curve) compared to conventional SF 6 (lower curve).
  • This prooves that the novel arc extinction medium comprising organofluorine compounds have unexpectedly better exhaust gas cooling by an intermediate volume 7, 8 as disclosed herein.
  • the at least one outlet opening 12a; 12b in particular the first outlet opening 12a and/or the second outlet opening 12b, is or are covered by at least one hole array comprising a plurality of holes 13.
  • a ratio of a distance H between the intermediate wall 7a; 8a and the opposing wall 7b, 8b and an average diameter D of the outlet opening 12a; 12b is in the range of 1.5 to 8, particularly the ratio has a value of 6; in particular wherein a first ratio of a first distance between the first intermediate wall 7a and the first opposing wall 7b and an average diameter D of the first outlet opening 12a is in the range of 1.5 to 8 or is 6, and/or a second ratio of a second distance between the second intermediate wall 8a and the second opposing wall 8b and an average diameter D of the second outlet opening 12b is in the range of 1.5 to 8 or is 6.
  • a ratio of 6 can be preferred. This ensures an optimized transfer of the fluid or exhaust gas stream from the intermediate volumes 7, 8 into their respective first and/or second exhaust volumes 7', 8'.
  • Fig. 2 shows a sectional view of another embodiment of a high voltage circuit breaker 1 in an opened configuration.
  • This embodiment is similar to the embodiment described in connection with Fig. 1 with the difference that the first wall 14a (here shown for left-hand first intermediate volume 7, but alternatively or in addition equally applicable to right-hand second intermediate volume 8) is actuated in a different way for its movement along the longitudinal axis z.
  • no actuator and spring are present. Instead the actuation is done by using a drive 17 which is already present in the circuit breaker 1 and is coupled to the nominal and/or arcing contacts 3a, 3b, 4a, 4b by a drive rod.
  • This drive 17 has the main task of moving the lefthand contacts, in this example the nominal contact 3a and arcing contact 4a, during the opening and closing procedures. In this way, also the exhaust tube 7''' is shifted along the longitudinal axis z.
  • the first wall 14a is attached to the exhaust tube 7''' and is consequently also moved along with it. While the contacts 3a, 3b; 4a, 4b are being closed, the first intermediate volume 7 is decreased until the contacts 3a, 3b; 4a, 4b have reached their closed configuration, in which the 1 st intermediate volume 7 has a minimum size. While the contacts 3a, 3b; 4a, 4b are being moved into the opened configuration, the 1 st intermediate volume 7 is increased until it reaches a maximum size.
  • the means 14a, 14b, 15, 16, 17 for changing a size of the intermediate volume 7, 8, in particular the at least one actuation device 17, comprise at least one exhaust tube 7''' arranged inside the first exhaust volume 7' and are attached to the first arcing contact 4a and at least one drive 17 of the switching device 1 for moving the exhaust tube 7''' and the first arcing contact 4a along the longitudinal axis z, wherein the at least one first moveable wall 14a is attached to the exhaust tube 7'''; and/or the first moveable wall 14a acts as an exhaust-gas-pressure-driven auxiliary driving-force support for a or the drive 17.
  • the first wall 14a is shown as being mounted at one extremity of the exhaust tub 7'''. In other embodiments the first wall 14a may also be mounted at another location along the exhaust tube 7'''.
  • the limitation how far it may be mounted on the outer surface of the exhaust tube 7''', as seen in the direction of the longitudinal axis z, is given by a minimum required size of the first intermediate volume 7 and by a position of the openings 11a in the exhaust tube 7'''.
  • Fig. 2 also shows an embodiment of a second wall 14b being moveable transversely to the longitudinal axis z. This is, among other possibilities of providing moveable first and/or second moveable walls 14a, 14b, useful and can be implemented in a relatively simple manner.
  • Fig. 3 shows a detailed view of an embodiment of one of the first outlet openings 12a or second outlet openings 12b of Fig. 1 or 2 .
  • At least the intermediate wall 7b (and/or 8b) of the first intermediate volume 7 (and/or of the second intermediate volume 8, respectively) can comprise multiple outlet openings 12a, 12b of the type shown in Fig. 3 .
  • the intermediate wall 7b, 8b is preferably concentric with respect to the longitudinal axis z.
  • the outlet openings 12a, 12b are covered by a hole array having a plurality of holes 13.
  • the holes 13 of the hole array have a cross-section of not more than 50% of an average cross section of the outlet opening 12a; 12b (without hole array), in particular the first outlet opening 12a and/or the second outlet opening 12b; and/or the hole array is exchangeable with a hole array having holes 13 with a different diameter.
  • the fluid or exhaust gas escapes from the first and/or second intermediate volume 7, 8 through said outlet openings 12a, 12b into the first and/or the second exhaust volume 7', 8', respectively.
  • the advantage of providing outlet openings 12a, 12b with such a hole array 13 is that the turbulence of the fluid or exhaust gas stream is increased, thus improving heat transfer to metal surfaces of delimiting walls in the path of the fluid or exhaust gas.
  • the exhaust gases can be focused even better onto an impinging wall or baffle wall or opposing wall 7b, 8b, such as first opposing wall 7b of the first exhaust volume 7' or second opposing wall 8b of the second exhaust volume 8', arranged opposite of the outlet openings 12a, 12b, respectively.
  • a first hole array with first holes 13 is exchangeable with a second hole array having second holes 13 with a different diameter. This is advantageous for adapting the circuit breaker 1 to different or changing operating conditions, e.g. to another fluid used as dielectric insulation and extinguishing medium.
  • the first arcing contact 4a is an arcing contact tulip 4a and the second arcing contact (4b) is an arcing contact pin (4b); and/or the dielectric insulation medium comprises: an organofluorine compound selected from the group consisting of a fluoroether, a fluoroamine, a fluoroketone, a fluoroolefine, and mixtures thereof; the organofluorine compound being in a mixture with a background gas, in particular selected from the group consisting of: CO 2 , O 2 , N 2 .
  • At least one guiding-wall section of the travel path of the exhaust gas is provided with projections 18, 19, 20 (see e.g. exemplarily Fig. 1 and 2 ) that extend transversely to the guiding-wall section out of or into the travel path and are for cooling down the exhaust gas.
  • the projections 18, 19 can be macroscopic projections 18, 19 and can be arranged in a two-dimensional arrangement or two-dimensional matrix at the guiding-wall section and can form a two-dimensional arrangement of vortices in the exhaust gas along the guiding-wall section of the travel path to increase a rate of convective heat transfer from the exhaust gas to the guiding-wall section.
  • the projections are negative projections 18, 19, 20, in particular uniform dimples 18 or non-uniform dimples 19 or microscopic projections 20, that extend into the guiding-wall section of the travel path; and/or the projections are positive projections 18, 19, 20, in particular uniform positive projections 18 or non-uniform positive projections 19 or microscopic projections 20, extending out of the guiding-wall section of the travel path.
  • the opposing wall 7b, 8b in particular the first opposing wall 7b and/or the second opposing wall 8b, has or have on its surface uniform dimples 18 or non-uniform dimples 19 or an increased surface roughness 20 forming microscopic projections 20, all for enhancing heat transfer from impinging exhaust gas jets 77, 88 to the opposing wall 7b, 8b; and/or the opposing wall 7b, 8b, in particular the first opposing wall 7b and/or the second opposing wall 8b, is or are made from metal or metal-impregnated ceramic materials.
  • a mean roughness Ra of the guiding-wall section comprising the microscopic projections 20 is selected in a range of 30 ⁇ m to 200 ⁇ m and more preferably in a range of 50 ⁇ m to 150 ⁇ m and most preferably in a range of 70 ⁇ m to 120 ⁇ m; and/or none of the projections 18, 19 are formed as microscopic projections 20 but instead are macroscopic projections 18, 19 and the macroscopic projections 18, 19 are sufficiently distanced from one another for forming mutually non-interacting vortices in the exhaust gas.
  • FIG. 5 shows exemplarily a sectional view of at least one inner thread section 22 arranged inside the exhaust tube 6.
  • the inner thread elements 22 are preferably negative projections 22 formed as cavities in the inner wall 23 of the exhaust tube 6.
  • the inner thread section (s) is or are for swirling the exhaust gas inside the hollow exhaust tube (7''').
  • the exhaust tube 6 is shown in a partial "transparent" way to better illustrate the inner thread or swirl 22.
  • At least a part of the inner thread sections 22 may be connected to one another and may thus form one or more channels 22 in the wall of the exhaust tube 6.
  • This concept of exhaust tube 6 with inner thread section projections 22 or continuous innner thread projections 22 can be implement in any other set-up disclosed herein.
  • At least one deflection device 21 is arranged upstream of the at least one intermediate volume 7, 8 and interacts with the at least one inlet opening 11a, 11b and is for radial deflection of the exhaust gas into the intermediate volume 7, 8.
  • the at least one deflection device 21 can be arranged on a side of the hollow exhaust tube 7''' facing away from the arcing region 6 and can interact with the at least one first inlet opening 11a in the hollow exhaust tube 7''' and serves then for radial deflection of the exhaust gas into the first intermediate volume 7.
  • the present invention improves the capabilities of cooling a fluid or exhaust gas present inside a high or medium voltage switching device 1.
  • organofluorine compounds as disclosed herein
  • the present invention allows to protect oranofluorine compounds being present outside the arcing volume 6, in particular in the first intermediate volume 7 and/or second intermediate volume 8 and exterior volume 9, to be protected from too high temperatures caused by the exhaust gases and thus from being decomposed. This allows to reduce or minimize the loss of organofluorine compounds occurring during circuit breaker operation.
  • the electrical switching device 1 in particular as disclosed above, has a longitudinal axis z, comprises an arcing volume 6 and at least an arcing contact arrangement with a first arcing contact 4a and a mating second arcing contact 4b, and further comprises an exhaust system 7, 7', 7", 7'''; 8, 8', 8" with at least one exhaust volume 7'; 8', wherein for closing and opening the electric switching device 1 at least one of the arcing contacts 4a, 4b is movable parallel to the longitudinal axis z and cooperates with the other arcing contact 4b, 4a, wherein the electrical switching device 1 comprises a dielectric insulating medium comprising an organofluorine compound selected from the group consisting of fluoronitriles, in particular perfluoronitriles, and mixtures and/or decomposition products thereof, wherein inside the exhaust volume 7'; 8' at least one intermediate volume 7; 8 is arranged, is enclosed by an intermediate
  • the fluoronitrile is in a mixture with an organofluorine compound selected from the group consisting of: a fluoroether, an oxirane, a fluoroamine, a fluoroketone, a fluoroolefine, and mixtures and/or decomposition products thereof; in particular the fluoronitrile being in mixtures with a background gas and more particularly in a mixture with a background gas compound selected from the group consisting of: air, air components, nitrogen, oxygen, carbon dioxide, nitrogen oxides.
  • an organofluorine compound selected from the group consisting of: a fluoroether, an oxirane, a fluoroamine, a fluoroketone, a fluoroolefine, and mixtures and/or decomposition products thereof; in particular the fluoronitrile being in mixtures with a background gas and more particularly in a mixture with a background gas compound selected from the group consisting of: air, air components, nitrogen, oxygen, carbon dioxide, nitrogen oxides.
  • the fluoronitrile is a perfluoronitrile containing two carbon atoms, three carbon atoms or four carbon atoms, in particular is a perfluoroalkylnitrile, specifically perfluoroacetonitrile, perfluoropropionitrile (C 2 F 5 CN) and/or perfluorobutyronitrile (C 3 F 7 CN), and more particularly is perfluoroisobutyronitrile according to the formula (CF 3 ) 2 CFCN and/or perfluoro-2-methoxypropanenitrile according to the formula CF 3 CF(OCF 3 )CN.
  • the dielectric insulation medium is selected such and the intermediate volume 7; 8 is designed such that at least temporarily during a time period of exhaust gas ejection an intermediate exhaust gas pressure p 7 ; p 8 in the intermediate volume 7; 8 exceeds an exhaust gas pressure in its immediately succeeding exhaust volume 7'; 8' at least by a pressure ratio K larger than 1.3, preferably larger than 1.4, more preferably larger than 1.5, more preferably larger than 1.6, and most preferably larger than 1.7.
  • the pressure ratio K is selected from the group consisting of: a first pressure ratio K 7 , a first further pressure ratio K f , a second pressure ratio K 8 , and combinations thereof.
  • the advantage of choosing the pressure ratio K larger than a threshold value of 1.1, or optionally larger than 1.3 or 1.4 or 1.5 or 1.6 or 1.7, is that with increasing pressure ratio K the exhaust gas jet formation is improved. This results in more gas mass flow and hence better heat transfer to the exhaust system 7, 7', 7", 7'''; 8, 8', 8" of the electrical switching device 1.
  • the exhaust gas jet formation will be sonic, as long as the outlet opening 12a; 12b for jet formation is a hole 12a; 12b, but may become supersonic, if the outlet opening for jet formation has at least partly a nozzle form 12a; 12b, and ideally has a laval nozzle form 12a; 12b.
  • the gas mass flow and hence heat transfer can further be increased.

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Organic Insulating Materials (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Claims (26)

  1. Elektrischer Schalter (1), der eine Längsachse (z) aufweist, umfassend ein Lichtbogenvolumen (6) und mindestens eine Lichtbogenkontaktanordnung mit einem ersten Lichtbogenkontakt (4a) und einem passenden zweiten Lichtbogenkontakt (4b), und ferner umfassend ein Auspuffsystem (7, 7', 7", 7'''; 8, 8', 8") mit mindestens einem Auspuffvolumen (7'; 8'),
    wobei zum Schließen und Öffnen des elektrischen Schalters (1) mindestens einer der Lichtbogenkontakte (4a, 4b) parallel zur Längsachse (z) bewegbar ist und mit dem anderen Lichtbogenkontakt (4b, 4a) zusammenwirkt,
    wobei innerhalb des Auspuffvolumens (7'; 8') mindestens ein Zwischenvolumen (7; 8) angeordnet ist, von einer Zwischenwand (7a; 8a) umschlossen ist, mindestens eine Eingangsöffnung (11a; 11b) zum Aufnehmen von Abgas umfasst, das von dem Lichtbogenbereich (6) kommt, und mindestens eine Ausgangsöffnung (12a; 12b) umfasst, wobei die Ausgangsöffnung (12a; 12b) einer gegenüberliegenden Wand (7b, 8b), insbesondere des Auspuffvolumens (7'; 8'), zugewandt ist, und zum Erzeugen mindestens eines Abgasstrahls (77, 88) und zum Ablassen desselben hin zu der gegenüberliegenden Wand (7b, 8b) und zum Auftreffen desselben auf diese dient, dadurch gekennzeichnet, dass
    der elektrische Schalter (1) ein dielektrisches Isoliermedium umfasst, das eine fluororganische Verbindung umfasst, die aus der Gruppe ausgewählt ist, die aus Folgendem besteht: einem Fluorether, einem Oxiran, einem Fluoramin, einem Fluorketon, einem Fluorolefin, einem Fluornitril sowie Gemischen und/oder Zersetzungsprodukten davon, und dadurch, dass
    das Zwischenvolumen (7; 8) derart ausgelegt ist, dass zumindest zeitweise während einer Zeitspanne eines Abgasausstoßes ein Zwischen-Abgasdruck p7; p8 in dem Zwischenvolumen (7; 8) einen Abgasdruck in dessen unmittelbar nachfolgenden Auspuffvolumen (7'; 8') mindestens um ein Druckverhältnis K übersteigt, das größer als 1,1 ist.
  2. Elektrischer Schalter (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Auftreffen eine Verwirbelung des mindestens einen Abgasstrahls (77, 88) verursacht, wobei die Verwirbelung eine Wirbelgaswärmeübertragung auf die gegenüberliegende Wand (7b; 8b) herbeiführt und eine Temperatur und einen Druck des wirbelnden Abgasstrahls (77, 88) verringert.
  3. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die fluororganische Verbindung aus der Gruppe ausgewählt ist, die aus Folgendem besteht: Perfluorether, Hydrofluorether, Perfluoramin, Perfluorketon, Perfluorolefin, Hydrofluorolefin, Perfluornitril und Gemischen davon; insbesondere in Gemischen mit einem Hintergrundgas und besonders in einem Gemisch mit einer Hintergrundgasverbindung, die aus der Gruppe ausgewählt ist, die aus Folgendem besteht: Luft, Luftkomponenten, Stickstoff, Sauerstoff, Kohlendioxid, Stickoxide.
  4. Elektrische Schaltvorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das dielektrische Isoliermedium als die fluororganische Verbindung ein Fluorketon umfasst, das 4 bis 15 Kohlenstoffatome aufweist, wobei das Fluorketon insbesondere aus der Gruppe ausgewählt ist, die aus Folgendem besteht: Fluorketone, die genau 5 Kohlenstoffatome aufweisen, Fluorketone, die genau 6 Kohlenstoffatome aufweisen, Fluorketone, die genau 7 Kohlenstoffatome aufweisen, Fluorketone, die genau 8 Kohlenstoffatome aufweisen, derartige Fluorketone, bei denen mindestens eins der genannten Kohlenstoffatome durch ein Heteroatom ersetzt ist, insbesondere durch Stickstoff und/oder Sauerstoff und/oder Schwefel und Gemische davon ersetzt ist; und/oder dadurch gekennzeichnet, dass das Fluornitril ein Perfluornitril ist, das zwei Kohlenstoffatome, drei Kohlenstoffatome oder vier Kohlenstoffatome enthält, insbesondere ein Perfluoralkylnitril, im Speziellen Perfluoracetonitril, Perfluoropropionitril (C2F5CN) und/oder Perfluorobutyronitril (C3F7CN) ist und besonders Perfluoroisobutyronitril gemäß der Formel (CF3)2CFCN und/oder Perfluoro-2-methoxypropannitril gemäß der Formel CF3CF(OCF3)CN ist.
  5. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zwischenvolumen (7; 8) derart ausgelegt ist, dass während des Betriebes, insbesondere in einer Zeitspanne eines Abgasausstoßes, ein Abgasdruck entlang einer Bewegungsbahn des Abgases von dem Lichtbogenbereich (6) durch das Auspuffsystem (7, 7', 7", 7'''; 8, 8' , 8") abnimmt.
  6. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zwischenvolumen (7; 8) derart ausgelegt ist, dass zumindest zeitweise während einer Zeitspanne eines Abgasausstoßes ein Zwischen-Abgasdruck p7; p8 in dem Zwischenvolumen (7, 8) einen Druck in den Volumina übersteigt, die dem Zwischenvolumen (7, 8) in der Bewegungsbahn des Abgases durch das Auspuffsystem (7, 7', 7", 7'''; 8, 8', 8")nachgelagert sind; und/oder dass das Zwischenvolumen (7; 8) derart ausgelegt ist, dass während des Betriebes, insbesondere während einer Zeitspanne eines Abgasausstoßes, ein Abgasdruck in dem mindestens einen Zwischenvolumen (7; 8) erhöht wird, im Vergleich zu wenn das mindestens eine Zwischenvolumen (7; 8) nicht vorhanden wäre.
  7. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Auspuffsystem ein erstes Auspuffvolumen (7') umfasst, das dem Lichtbogenvolumen (6) auf einer ersten Seite des Schalters (1), der den ersten Lichtbogenkontakt (4a) aufweist, nachgelagert ist, und innerhalb des ersten Auspuffvolumens (7') mindestens ein erstes Zwischenvolumen (7) angeordnet ist, von einer ersten Zwischenwand (7a) umschlossen ist, eine erste Eingangsöffnung (11a) umfasst, die zum Aufnehmen von Abgas dient, das von einem hohlen Auspuffrohr (7''') kommt, das mit dem Lichtbogenbereich (6) in Fluidverbindung steht, und mindestens eine erste Ausgangsöffnung (12a) umfasst, die einer ersten gegenüberliegenden Wand (7b), insbesondere des ersten Auspuffvolumens (7'), zugewandt ist, und zum Erzeugen mindestens eines ersten Gasstrahls (77) und zum Ablassen desselben hin zu der ersten gegenüberliegenden Wand (7b) und zum Auftreffen desselben auf diese dient, und
    das erste Zwischenvolumen (7) derart ausgelegt ist, dass zumindest zeitweise während einer Zeitspanne eines Abgasausstoßes ein erster Zwischen-Abgasdruck p7 in dem ersten Zwischenvolumen (7) einen ersten Abgasdruck p7' in dem ersten Auspuffvolumen (7') mindestens um ein erstes Druckverhältnis K7 = p7/p7' übersteigt, das größer als 1,1 ist.
  8. Elektrischer Schalter (1) nach Anspruch 7, dadurch gekennzeichnet, dass das hohle Auspuffrohr (7''') mit dem ersten Lichtbogenkontakt (4a) an einem zweiten Endteil mechanisch verbunden ist, und/oder
    ein erstes weiteres Zwischenvolumen außerhalb des ersten Zwischenvolumens (7) angeordnet ist, von einer ersten weiteren Zwischenwand umschlossen ist, eine erste weitere Eingangsöffnung (12a) zum Aufnehmen von Abgas umfasst, das von dem ersten Zwischenvolumen (7) kommt, und mindestens eine erste weitere Ausgangsöffnung umfasst, die einer ersten weiteren gegenüberliegenden Wand, insbesondere des ersten Auspuffvolumens (7'), zugewandt ist, und zum Erzeugen mindestens eines ersten weiteren Gasstrahls und zum Ablassen desselben hin zu der ersten weiteren gegenüberliegenden Wand und zum Auftreffen desselben auf diese dient, und
    das erste Zwischenvolumen (7) und/oder das erste weitere Zwischenvolumen derart ausgelegt ist oder sind, dass zumindest zeitweise während einer Zeitspanne eines Abgasausstoßes ein erster Zwischen-Abgasdruck p7 in dem ersten Zwischenvolumen (7) einen ersten weiteren Zwischen-Abgasdruck p7f in dem ersten weiteren Zwischenvolumen mindestens um ein erstes weiteres Druckverhältnis Kf = p7/p7f übersteigt, das größer als 1,1 ist.
  9. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Auspuff ein zweites Auspuffvolumen (8') umfasst, das dem Lichtbogenvolumen (6) auf einer zweiten Seite des Schalters (1), der den zweiten Lichtbogenkontakt (4b) aufweist, nachgelagert ist, und innerhalb des zweiten Auspuffvolumens (8') mindestens ein zweites Zwischenvolumen (8) angeordnet ist, von einer zweiten Zwischenwand (8a) umschlossen ist, eine zweite Eingangsöffnung (11b) umfasst, die zum Aufnehmen von Abgas dient, das von dem Lichtbogenbereich (6) kommt, und mindestens eine zweite Ausgangsöffnung (12b) umfasst, die einer zweiten gegenüberliegenden Wand (8b), insbesondere des zweiten Auspuffvolumens (8'), zugewandt ist, und zum Erzeugen mindestens eines zweiten Gasstrahls (88) und zum Ablassen desselben hin zu der zweiten gegenüberliegenden Wand (8b) und zum Auftreffen desselben auf diese dient, und
    das zweite Zwischenvolumen (8) derart ausgelegt ist, dass zumindest zeitweise während einer Zeitspanne eines Abgasausstoßes ein zweiter Zwischen-Abgasdruck p8 in dem zweiten Zwischenvolumen (8) einen zweiten Abgasdruck p8' in dem zweiten Auspuffvolumen (8') mindestens um ein zweites Druckverhältnis K8 = p8/p8' übersteigt, das größer als 1,1 ist.
  10. Elektrischer Schalter (1) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Druckverhältnis K, insbesondere das erste Druckverhältnis K7 = p7/p7' und/oder das erste weitere Druckverhältnis Kf = p7/p7f und/oder das zweite Druckverhältnis K8 = p8/p8', in Abhängigkeit von dem dielektrischen Isolationsmedium gewählt ist oder sind.
  11. Elektrischer Schalter (1) nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass das Druckverhältnis K ein kritisches Druckverhältnis K ist, insbesondere ein erstes kritisches Druckverhältnis K7 = p7/p7' und/oder ein erstes weiteres kritisches Druckverhältnis Kf = p7/p7f und/oder ein zweites kritisches Druckverhältnis K8 = p8/p8', das/die wie folgt gewählt ist oder sind:
    in einem Bereich von 1,6 bis 1,7, wenn das dielektrische Isolationsmedium überwiegend SF6 enthält, oder
    in einem Bereich von 1,7 bis 1,8, wenn das dielektrische Isolationsmedium überwiegend oder ausschließlich die fluororganische Verbindung in einem Gemisch mit einem Hintergrundgas enthält, insbesondere Fluorketon oder C5-Fluorketon in einem Gemisch mit mindestens einem von: CO2, O2 und N2.
  12. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche,
    der eine Längsachse (z) aufweist, umfassend ein Lichtbogenvolumen (6) und mindestens eine Lichtbogenkontaktanordnung mit einem ersten Lichtbogenkontakt (4a) und einem passenden zweiten Lichtbogenkontakt (4b), und ferner umfassend ein Auspuffsystem (7, 7', 7", 7'''; 8, 8', 8") mit mindestens einem Auspuffvolumen (7'; 8'),
    wobei zum Schließen und Öffnen des elektrischen Schalters (1) mindestens einer der Lichtbogenkontakte (4a, 4b) parallel zur Längsachse (z) bewegbar ist und mit dem anderen Lichtbogenkontakt (4b, 4a) zusammenwirkt, und der elektrische Schalter (1) ein dielektrisches Isoliermedium umfasst, und
    wobei innerhalb des Auspuffvolumens (7'; 8') mindestens ein Zwischenvolumen (7; 8) angeordnet ist, von einer Zwischenwand (7a; 8a) umschlossen ist, mindestens eine Eingangsöffnung (11a; 11b) zum Aufnehmen von Abgas umfasst, das von dem Lichtbogenbereich (6) kommt, und mindestens eine Ausgangsöffnung (12a; 12b) umfasst, wobei die Ausgangsöffnung (12a; 12b) einer gegenüberliegenden Wand (7b, 8b), insbesondere des Auspuffvolumens (7'; 8'), zugewandt ist, und zum Erzeugen mindestens eines Abgasstrahls (77, 88) und zum Ablassen desselben hin zu der gegenüberliegenden Wand (7b, 8b) und zum Auftreffen desselben auf diese dient, und
    wobei der Schalter (1) Mittel (14a, 14b, 15, 16, 17) zum Ändern einer Größe des Zwischenvolumens (7, 8) aufweist, insbesondere wobei die Mittel (14a, 14b, 15, 16, 17) zum Ändern einer Größe eines oder des ersten Zwischenvolumens (7) und/oder einer Größe eines oder des zweiten Zwischenvolumens (8) dienen.
  13. Elektrischer Schalter (1) nach Anspruch 12, dadurch gekennzeichnet, dass die Mittel (14a, 14b, 15, 16, 17) zum Anpassen eines ersten Zwischen-Abgasdrucks p7 in dem ersten Zwischenvolumen (7) an einen zweiten Abgasdruck p8' in dem zweiten Auspuffvolumen (8) oder an einen zweiten Zwischen-Abgasdruck p8 in dem zweiten Zwischenvolumen (8) innerhalb eines vorbestimmten Bereichs von Druckunterschieden dienen, insbesondere innerhalb von 0,5 bar und besonders innerhalb von 0,4 bar und ganz besonders innerhalb von 0,3 bar.
  14. Elektrischer Schalter (1) nach einem der Ansprüche 12 bis 13, dadurch gekennzeichnet, dass
    das Zwischenvolumen (7; 8) von einer bewegbaren Wand (14a, 14b) begrenzt ist, die eine Anpassung einer Größe des Zwischenvolumens (7; 8) erlaubt, und/oder das erste Zwischenvolumen (7) von einer ersten bewegbaren Wand (14a) begrenzt ist, die eine Anpassung einer Größe des ersten Zwischenvolumens (7) erlaubt, und/oder
    das zweite Zwischenvolumen (8) von einer zweiten bewegbaren Wand (14b) begrenzt ist, die eine Anpassung einer Größe des zweiten Zwischenvolumens (8) erlaubt; insbesondere dadurch, dass die bewegbare Wand (14a, 14b), insbesondere die erste bewegbare Wand (14a) und/oder die zweite bewegbare Wand (14b), das Zwischenvolumen (7; 8) auf einer Seite begrenzt und quer zur Längsachse (z) angeordnet ist und von mindestens einer Betätigungsvorrichtung (15, 16; 17) parallel zur Längsachse (z) verschiebbar ist.
  15. Elektrischer Schalter (1) nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das Mittel (14a, 14b, 15, 16, 17) oder die mindestens eine Betätigungsvorrichtung (15, 16) mindestens einen Aktuator (15), insbesondere eine/n pneumatische/n oder hydraulische/n oder elektrische/n Aktuator (15) oder Feder, und mindestens eine Feder (16), die an dem Aktuator (15) angebracht ist, zur Positionierung der bewegbaren Wand (14a, 14b) umfasst,
    wobei eine Grundstellung der bewegbaren Wand (14a, 14b), insbesondere der ersten bewegbaren Wand (14a) und/oder der zweiten bewegbaren Wand (14b), durch den Aktuator (15) oder durch eine Grundstellung der Feder (16) verstellbar ist, und die Feder (16) eine derartige Härte aufweist, dass die Feder (16) eine Volumenänderung des Zwischenvolumens (7, 8) innerhalb eines Anpassungsbereichs von maximal ±90% oder ±70% oder ±50% oder ±30% in Bezug auf ein Grundvolumen des Zwischenvolumens (7, 8) gestattet, das von der Grundstellung der bewegbaren Wand (14a, 14b) definiert ist.
  16. Elektrischer Schalter (1) nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass das Mittel (14a, 14b, 15, 16, 17), insbesondere die mindestens eine Betätigungsvorrichtung (17), mindestens ein Auspuffrohr (7'''), das innerhalb des ersten Auspuffvolumens (7') angeordnet ist und an dem ersten Lichtbogenkontakt (4a) angebracht ist, und mindestens einen Antrieb (17) des Schalters (1) zum Bewegen des Auspuffrohrs (7''') und des ersten Lichtbogenkontakts (4a) entlang der Längsachse (z) umfasst, wobei die mindestens eine bewegbare Wand (14a) an dem Auspuffrohr (7''') angebracht ist; und/oder
    dass die erste bewegbare Wand (14a) als eine abgasdruckgetriebene Neben-Antriebskraftunterstützung für einen oder den Antrieb (17) fungiert.
  17. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 12 bis 16, wobei
    der erste Lichtbogenkontakt (4a) eine Lichtbogenkontakttulpe (4a) ist und der zweite Lichtbogenkontakt (4b) ein Lichtbogenkontaktstift (4b) ist; und/oder
    wobei das dielektrische Isolationsmedium Folgendes umfasst: eine fluororganische Verbindung, die aus der Gruppe ausgewählt ist, die aus einem Fluorether, einem Fluoramin, einem Fluorketon, einem Fluorolefin, einem Fluornitril und Gemischen und/oder Zersetzungsprodukten davon besteht; wobei die fluororganische Verbindung in einem Gemisch mit einem Hintergrundgas ist, das insbesondere aus der Gruppe ausgewählt ist, die aus Folgendem besteht: CO2, O2, N2.
  18. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, der elektrische Schalter (1) ferner umfassend ein äußeres Volumen (9), das das erste Auspuffvolumen (7) und das zweite Auspuffvolumen (8) zumindest teilweise umgibt, insbesondere vollständig umgibt, wobei zumindest das Lichtbogenvolumen (6), das erste Zwischenvolumen (7), das erste Auspuffvolumen (7') und das äußere Volumen (9) eine erste Bewegungsbahn für das Abgas bilden, und/oder wobei zumindest das Lichtbogenvolumen (6), das zweite Zwischenvolumen (8), das zweite Auspuffvolumen (8') und das äußere Volumen (9) eine zweite Bewegungsbahn für das Abgas bilden; und/oder wobei der elektrische Schalter (1) ein/einen Erder, ein/einen Schnellerder, ein/einen Leistungsschalter, ein/einen Generator-Leistungsschalter, ein/einen Lasttrenner, ein/einen kombinierten Trenn- und Erdungsschalter oder ein/einen Lasttrennschalter ist oder umfasst.
  19. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zwischenvolumen (7, 8), insbesondere das erste Zwischenvolumen (7) und/oder das zweite Zwischenvolumen (8), derart ausgelegt ist oder sind, dass zumindest zeitweise während einer Zeitspanne einer Lichtbogenlöschung, insbesondere während der gesamten Lichtbogen-Löschungszeitspanne, ein zusätzlicher Strömungswiderstand, der in das Abgas, das die fluororganische Verbindung umfasst, durch das Zwischenvolumen (7, 8), insbesondere das erste Zwischenvolumen (7) und/oder das zweite Zwischenvolumen (8), eingebracht ist, unter einer Strömungswiderstandsschwelle gehalten wird, wobei unter der Strömungswiderstandschwelle sonische oder supersonische Strömungsbedingungen in dem Lichtbogenbereich (6) beibehalten werden; und/oder darin, dass eine Größe des Zwischenvolumens (7, 8) und eine Position, Anzahl und ein Querschnitt der mindestens einen Ausgangsöffnung (12a; 12b) an Gasströmungseigenschaften der fluororganischen Verbindung, insbesondere des Fluorketons und besonders an eine Schallgeschwindigkeit der Fluorketon-Gasgemische, angepasst sind, um zumindest zeitweise während einer Zeitspanne einer Lichtbogenlöschung eine vorbestimmte Menge des Abgases innerhalb des Zwischenvolumens (7; 8) zurückzuhalten, und insbesondere, um ein vorbestimmtes Anstiegsniveau des/der Zwischen-Abgasdrucks/Zwischen-Abgasdrücke p7; p8 in dem Zwischenvolumen (7; 8) über den/die Abgasdruck/Abgasdrücke p7', p8' in Auspuffvolumen (7'; 8'), die dem Zwischenvolumen (7; 8) nachgelagert sind, zu erreichen.
  20. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Ausgangsöffnung (12a; 12b), insbesondere die erste Ausgangsöffnung (12a) und/oder die zweite Ausgangsöffnung (12b), von mindestens einer Lochanordnung bedeckt ist, die mehrere Löcher (13) umfasst, und dadurch, dass ein Verhältnis eines Abstands (H) zwischen der Zwischenwand (7a; 8a) und der gegenüberliegenden Wand (7b, 8b) und eines durchschnittlichen Durchmessers (D) der Ausgangsöffnung (12a; 12b) im Bereich von 1,5 bis 8 liegt, das Verhältnis insbesondere einen Wert von 6 aufweist, insbesondere, dass ein erstes Verhältnis eines ersten Abstands zwischen der ersten Zwischenwand (7a) und der ersten gegenüberliegenden Wand (7b) und eines durchschnittlichen Durchmessers (D) der ersten Ausgangsöffnung (12a) im Bereich von 1,5 bis 8 liegt oder 6 beträgt, und/oder ein zweites Verhältnis eines zweiten Abstands zwischen der zweiten Zwischenwand (8a) und der zweiten gegenüberliegenden Wand (8b) und eines durchschnittlichen Durchmessers (D) der zweiten Ausgangsöffnung (12b) im Bereich von 1,5 bis 8 liegt oder 6 beträgt;
    und/oder dadurch, dass die Löcher (13) der Lochanordnung einen Querschnitt von nicht mehr als 50% eines durchschnittlichen Querschnitts der Ausgangsöffnung (12a; 12b), insbesondere der ersten Ausgangsöffnung (12a) und/oder der zweiten Ausgangsöffnung (12b), aufweisen;
    und/oder dadurch, dass die Lochanordnung mit einer Lochanordnung austauschbar ist, die Löcher (13) mit einem anderen Durchmesser aufweist.
  21. Elektrischer Schalter (1) nach Anspruch 5 und einem der vorhergehenden Ansprüche 1 bis 4 und 6 bis 20, dadurch gekennzeichnet, dass mindestens ein Führungswandabschnitt der Bewegungsbahn mit Überständen (18, 19, 20) versehen ist, die sich quer zum Führungswandabschnitt aus der Bewegungsbahn oder in diese erstrecken und zum Herunterkühlen des Abgases dienen, insbesondere, dass die Überstände (18, 19) makroskopische Überstände (18, 19) sind und in einer zweidimensionalen Anordnung oder zweidimensionalen Matrix an dem Führungswandabschnitt angeordnet sind und eine zweidimensionale Anordnung von Wirbeln in dem Abgas entlang des Führungswandabschnitts der Bewegungsbahn bilden, um eine Konvektionswärme-Übertragungsrate von dem Abgas zu dem Führungswandabschnitt zu erhöhen; und insbesondere, dass die Überstände negative Überstände (18, 19, 20), insbesondere einheitliche Vertiefungen (18) oder uneinheitliche Vertiefungen (19) oder mikroskopische Überstände (20) sind, die sich in den Führungswandabschnitt der Bewegungsbahn erstrecken, und insbesondere, dass die Überstände positive Überstände (18, 19, 20), insbesondere einheitliche positive Überstände (18) oder uneinheitliche positive Überstände (19) oder mikroskopische Überstände (20) sind, die sich aus dem Führungswandabschnitt der Bewegungsbahn erstrecken.
  22. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gegenüberliegende Wand (7b; 8b), insbesondere die erste gegenüberliegende Wand (7b) und/oder die zweite gegenüberliegende Wand (8b), auf ihrer Oberfläche einheitliche Vertiefungen (18) oder uneinheitliche Vertiefungen (19) oder eine erhöhte Oberflächenrauheit (20), die mikroskopische Überstände (20) bilden/bildet, die alle zum Verbessern der Wärmeübertragung von auftreffenden Abgasstrahlen (77, 88) auf die gegenüberliegende Wand (7b; 8b) dienen; und/oder dass die gegenüberliegende Wand (7b; 8b), insbesondere die erste gegenüberliegende Wand (7b) und/oder die zweite gegenüberliegende Wand (8b), aus Metall oder metallimprägnierten Keramikmaterialien hergestellt ist oder sind; und/oder dass, falls Oberflächenrauheit (20) die mikroskopischen Überstände (20) bildet, eine mittlere Rauheit (Ra) des Führungswandabschnitts, der die mikroskopischen Überstände (20) umfasst, in einem Bereich von 30 µm bis 200 µm und besser noch in einem Bereich von 50 µm bis 150 µm und am besten in einem Bereich von 70 µm bis 120 ausgewählt ist;
    oder dass keine der Überstände (18, 19) als mikroskopische Überstände (20) ausgebildet sind, sondern stattdessen makroskopische Überstände (18, 19) sind und die makroskopischen Überstände (18, 19) zum Bilden wechselseitig nicht zusammenwirkender Wirbel in dem Abgas ausreichend voneinander beabstandet sind.
  23. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein hohles oder das hohle Auspuffrohr (7''') Innengewindeelemente (22), insbesondere kontinuierliche Gewindeelemente (22), die mindestens einen konkaven Kanal innerhalb des hohlen Auspuffrohrs (7''') bilden, zum Verwirbeln des Abgases innerhalb des hohlen Auspuffrohrs (7''') aufweist; und/oder
    dass mindestens eine Umleitungsvorrichtung (21), die dem mindestens einen Zwischenvolumen (7, 8) vorgelagert ist, mit der mindestens einen Eingangsöffnung (11a, 11b) zusammenwirkt und zur radialen Umleitung des Abgases in das Zwischenvolumen (7, 8) dient, und/oder dass mindestens eine Umleitungsvorrichtung (21), die an einer Seite eines oder des hohlen Auspuffrohrs (7'''), das dem Lichtbogenbereich (6) abgewandt ist, angeordnet ist, mit der mindestens einen ersten Eingangsöffnung (11a) in dem hohlen Auspuffrohr (7''') zusammenwirkt und zur radialen Umleitung des Abgases in das erste Zwischenvolumen (7) dient.
  24. Elektrischer Schalter (1) nach einem der vorhergehenden Ansprüche, wobei das dielektrische Isolationsmedium derart gewählt ist und das Zwischenvolumen (7; 8) derart ausgelegt ist, dass zumindest zeitweise während einer Zeitspanne eines Abgasausstoßes ein Zwischen-Abgasdruck p7; p8 in dem Zwischenvolumen (7; 8) einen Abgasdruck in dessen unmittelbar nachfolgenden Auspuffvolumen (7'; 8') mindestens um ein Druckverhältnis K übersteigt, das größer als 1,3, vorzugsweise größer als 1,4, besser noch größer als 1,5, besser noch größer als 1,6 und am besten größer als 1,7 ist; und/oder wobei die mindestens eine Ausgangsöffnung (12a; 12b) zum Erzeugen mindestens eines Abgasstrahls (77, 88) und zum Ablassen desselben hin zu der gegenüberliegenden Wand (7b, 8b) und zum Auftreffen desselben auf diese ein Loch (12a; 12b) oder eine Düse (12a; 12b), insbesondere eine Lavaldüse (12a; 12b), ist.
  25. Verfahren zum Betreiben eines elektrischen Schalters (1) nach einem der vorhergehenden Ansprüche; insbesondere dadurch gekennzeichnet,
    dass ein Zwischen-Abgasdruck p7; p8 in einem der Zwischenvolumina (7, 8) verstellt wird, insbesondere indem mindestens eine bewegbare Wand (14a, 14b) derart verschoben wird, dass er insbesondere innerhalb eines Druckunterschieds von 1 bar oder 0,5 bar oder weniger, zumindest zeitweise während einer Lichtbogen-Löschungszeitspanne ungefähr gleich einem Zwischen-Abgasdruck p8; p7 in dem anderen der Zwischenvolumen (8; 7) ist; und/oder
    dass ein Zwischen-Abgasdruck p7; p8 in einem der Zwischenvolumina (7, 8) und/oder ein Zwischen-Abgasdruck p8; p7 in dem anderen der Zwischenvolumina (8; 7) verstellt wird oder werden, insbesondere, indem mindestens eine bewegbare Wand (14a, 14b) derart verschoben wird, dass er oder sie zumindest zeitweise während einer Lichtbogen-Löschungszeitspanne kleiner als ein dritter Druck in dem Lichtbogenvolumen (6) ist oder sind.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet,
    dass der erste Zwischen-Abgasdruck p7 in dem ersten Zwischenvolumen (7) verstellt wird, insbesondere, indem die erste bewegbare Wand (14a) derart verschoben wird, dass er insbesondere innerhalb eines Druckunterschieds von 1 bar oder 0,5 bar oder weniger, zumindest zeitweise während einer Lichtbogen-Löschungszeitspanne ungefähr gleich einem Abgasdruck in dem zweiten Auspuffvolumen (8') ist; und/oder
    dass der Zwischen-Abgasdruck (p7) in dem ersten Zwischenvolumen (7) und/oder ein Abgasdruck in dem zweiten Zwischenvolumen (8') verstellt wird oder werden, insbesondere, indem die erste bewegbare Wand (14a) derart verschoben wird, dass er oder sie zumindest zeitweise während einer Lichtbogen-Löschungszeitspanne kleiner als ein dritter Druck in dem Lichtbogenvolumen (6) ist oder sind; und/oder
    wobei der erste Zwischen-Abgasdruck p7 in dem ersten Zwischenvolumen (7) und/oder der zweite Zwischen-Abgasdruck p8 in dem zweiten Zwischenvolumen (8) verstellt wird oder werden, insbesondere, indem mindestens eine bewegbare Wand (14a, 14b) in Abhängigkeit von einer Intensität eines Lichtbogens (3), der sich zwischen den Lichtbogenkontakten (4a, 4b) bildet, wenn sie geöffnet oder geschlossen werden, entlang der Längsachse (z) verschoben wird; und/oder
    wobei ein oder der erste Zwischen-Abgasdruck p7 in dem ersten Zwischenvolumen (7) und/oder ein oder der zweite Zwischen-Abgasdruck p8 in dem zweiten Zwischenvolumen (8) verstellt wird oder werden, insbesondere, indem eine bewegbare Wand (14a, 14b) derart entlang der Längsachse (z) verschoben wird, dass eine Temperatur des dielektrischen Isoliermediums unter einer Zersetzungstemperatur der fluororganischen Verbindung, insbesondere des Fluorketons, gehalten wird.
EP14828031.6A 2013-12-23 2014-12-22 Elektrischer schalter Active EP3087578B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14828031.6A EP3087578B1 (de) 2013-12-23 2014-12-22 Elektrischer schalter
BR112016014319A BR112016014319A8 (pt) 2013-12-23 2014-12-22 Dispositivo de comutação elétrica

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP2013077960 2013-12-23
EP14828031.6A EP3087578B1 (de) 2013-12-23 2014-12-22 Elektrischer schalter
PCT/EP2014/078975 WO2015097143A1 (en) 2013-12-23 2014-12-22 Electrical switching device

Publications (2)

Publication Number Publication Date
EP3087578A1 EP3087578A1 (de) 2016-11-02
EP3087578B1 true EP3087578B1 (de) 2018-02-28

Family

ID=56979723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14828031.6A Active EP3087578B1 (de) 2013-12-23 2014-12-22 Elektrischer schalter

Country Status (2)

Country Link
EP (1) EP3087578B1 (de)
BR (1) BR112016014319A8 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4125108B1 (de) * 2021-07-26 2024-01-31 Hitachi Energy Ltd Gasisolierter hoch- oder mittelspannungsleistungsschalter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4125108B1 (de) * 2021-07-26 2024-01-31 Hitachi Energy Ltd Gasisolierter hoch- oder mittelspannungsleistungsschalter

Also Published As

Publication number Publication date
BR112016014319A2 (de) 2017-08-08
BR112016014319A8 (pt) 2017-12-26
EP3087578A1 (de) 2016-11-02

Similar Documents

Publication Publication Date Title
US9899167B2 (en) Electrical switching device
JP4643634B2 (ja) サーキット・ブレーカ
CN109564832B (zh) 气体绝缘式低压或中压断载开关
EP3433870B1 (de) Elektrische schutzschaltervorrichtung mit partikelfalle
WO2014096460A1 (en) Electrical switching device
EP3087578B1 (de) Elektrischer schalter
US20230420203A1 (en) Electrical switching device
CN111466006B (zh) 气体绝缘高压或中压断路器
EP2954548A1 (de) Kontaktanordnung und elektrische schaltvorrichtung mit solch einer kontaktanordnung
EP3433869B1 (de) Elektrische schutzschaltervorrichtung
CN111630622B (zh) 气体绝缘高压或中压断路器
CN110770868B (zh) 气体绝缘负载断路开关和包括气体绝缘负载断路开关的开关设备
US20140174895A1 (en) Contact arrangement for high voltage switchgear with contact arrangement
EP4125108B1 (de) Gasisolierter hoch- oder mittelspannungsleistungsschalter
EP2827353A1 (de) Elektrische Schaltvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB SCHWEIZ AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014021776

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0033700000

Ipc: H01H0033880000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 33/74 20060101ALI20170801BHEP

Ipc: H01H 33/88 20060101AFI20170801BHEP

Ipc: H01H 33/22 20060101ALI20170801BHEP

Ipc: H01H 33/70 20060101ALI20170801BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170920

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 974991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014021776

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014021776

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014021776

Country of ref document: DE

Representative=s name: VOGEL, ALBRECHT, DIPL.-ING. DR.-ING., DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180228

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 974991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180528

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180529

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180528

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014021776

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021776

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021776

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014021776

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021776

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021776

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021776

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014021776

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014021776

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 10