EP3087125B1 - Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer - Google Patents

Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer Download PDF

Info

Publication number
EP3087125B1
EP3087125B1 EP14816275.3A EP14816275A EP3087125B1 EP 3087125 B1 EP3087125 B1 EP 3087125B1 EP 14816275 A EP14816275 A EP 14816275A EP 3087125 B1 EP3087125 B1 EP 3087125B1
Authority
EP
European Patent Office
Prior art keywords
polymer
carbon black
measured according
silica
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14816275.3A
Other languages
English (en)
French (fr)
Other versions
EP3087125A1 (de
Inventor
Filip Lukasz KONDRATOWICZ
Marzena MIKOSZEK
Karol KOZUCH
Kamil UTRATA
Marcin CHYLASZEK
Jaroslaw ROGOZA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synthos Styrenics Synthos Dwory 2 Sp zoo
Original Assignee
Synthos Styrenics Synthos Dwory 2 Sp zoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthos Styrenics Synthos Dwory 2 Sp zoo filed Critical Synthos Styrenics Synthos Dwory 2 Sp zoo
Priority to PL14816275T priority Critical patent/PL3087125T3/pl
Priority to EP14816275.3A priority patent/EP3087125B1/de
Publication of EP3087125A1 publication Critical patent/EP3087125A1/de
Application granted granted Critical
Publication of EP3087125B1 publication Critical patent/EP3087125B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to the use of a combination of a) a mineral component containing calcium phosphate (and optionally silica) and b) carbon black, for decreasing the thermal conductivity of foamed vinyl aromatic polymer.
  • the invention also relates to processes for the preparation of expandable polymer granulate, the expandable polymer granulate, and polymer foam made from such granulate.
  • the invention further relates to a compounded masterbatch comprising a) and b).
  • Athermanous fillers such as carbon black or graphite, or minerals from the group of silicas
  • athermanous fillers decreases the thermal conductivity of polymers.
  • examples for such types of polymers are those obtained by polymerization of vinyl aromatic monomers (in particular of styrene) and optionally comonomers.
  • Other examples for such type of polymers are those obtained by extrusion of polystyrene and its copolymers.
  • fillers that can absorb infrared radiation are added.
  • Vinyl aromatic polymers are known and used for the preparation of expanded products that are adopted in various applications, among which the most important one is for thermal insulation. This is why there is a continuously increasing demand for expanded vinyl aromatic polymers with both low thermal conductivity and good dimensional stability.
  • WO 2012/032022 A1 discloses EPS containing specific carbon black powders.
  • talc having a mean diameter of 10.5 ⁇ m is used as a cell regulator.
  • talc is a crystalline mineral and may affect the nucleation process and cell size uniformity; its presence is therefore undesirable in some applications.
  • the desired expanded polymer should contain carbon-based filler in an amount that maintains the foam's self-extinguishing and mechanical properties in the same range as in an expanded polymer without such filler, while at the same time the thermal conductivity of the foam should be decreased.
  • the invention relates to the use of a) a specific amount of a certain type of calcium phosphate, and optionally a specific amount of a certain type of silica, in combination with b) a specific amount of a certain type of carbon black, for decreasing the thermal conductivity of foams prepared from polymer based on vinyl aromatic monomer and optionally one or more comonomers.
  • the polymer used in accordance with the invention is based on one (or more) vinyl aromatic monomer(s), preferably styrene, and optionally one or more comonomers, i.e. it is a homopolymer or a copolymer.
  • the polymer composition comprises, in addition to the polymer component, a) a mineral component and b) carbon black, and typically and preferably a variety of further additives, as set out below.
  • the silica as used in accordance with the invention is amorphous and has the following specific properties:
  • the method to determine the silica's BET surface is based on the standards ASTM C1069 and ISO 9277 and is conducted as follows: in the first step, 2 to 5 g sample is dried at 105°C and placed in a desiccator for cooling and further degassing. Subsequently, 0.3 to 1.0 g of the dry material is weighed into a test tube and placed in the degassing unit for about 30 min. Afterwards, the sample is transferred to the measuring unit and is measured using the Micromeritics Tristar 3000 instrument.
  • the silica as used according to the invention preferably has a BET surface of from 5 to 70 m 2 /g, preferably 8 to 60 m 2 /g, such as 10 to 50 m 2 /g, in particular 15 to 40 m 2 /g, more preferably 20 to 30 m 2 /g, such as about 25 m 2 /g.
  • the silica as used according to the present invention is defined as having a particle size distribution, as measured according to the procedure detailed below, of 3 nm to 1000 nm.
  • the method to determine the particle size distribution is conducted as follows: in the first step, 45 g of distilled water and 5 g of sample are placed into a beaker and stirred to allow the entire sample to be wetted. Subsequently, the sample is dispersed in an external ultrasonic probe for 5 min at 100 % amplitude. The measurement is performed automatically using the primary agglomerate program in a Malvern MasterSizer 2000 device.
  • the particle size distribution of the silica as used according to the present invention is within a range of 20 to 800 nm, preferably 30 to 600 nm, such as 40 to 400 nm.
  • the silica if present, is used in an amount of from 0.1 to less than 2 wt.%, based on the weight of the polymer.
  • the silica is spherically shaped silica.
  • the silica a1) as used according to the present invention comprises the material Sidistar from ELKEM, and most preferred is that a1) is Sidistar T120.
  • the calcium phosphate used according to the invention has a particle size, as measured by laser diffraction, of 0.1 ⁇ m to 20 ⁇ m. It is preferred that the particle size is from 1 ⁇ m to 18 ⁇ m, such as 2 ⁇ m to 15 ⁇ m.
  • the calcium phosphate as used in accordance with the invention is preferably tricalcium phosphate (specifically a type of hydroxyapatite).
  • the calcium phosphate is used in an amount of from 0.1 to 10 wt.%, based on the weight of polymer.
  • the mineral component a) comprises the specific type of calcium phosphate. According to a second preferred embodiment of the present invention, the mineral component a) comprises both a1) the specific type of silica and a2) the specific type of calcium phosphate.
  • the constituents of the combination i.e. a2) the specific type of calcium phosphate (and optionally a1) the specific type of silica) and b), and the optional component c), are added at the same time.
  • a2), and optionally a1), and b), and the optional component c) are eventually present in the granulate (expandable polymer) or foam (expanded polymer).
  • the total amount of component a i.e. the sum of the amounts of a1) silica as specified (if present) and a2) calcium phosphate as specified, respectively, is 0.1 to less than 12 wt.% based on the weight of polymer. If both a1) the specific silica and a2) the specific calcium phosphate are present, then the minimum amount is 0.2 wt.% based on the weight of polymer.
  • the carbon black as used according to the invention has a BET surface, as measured according to ASTM 6556, of more than 40 to 250 m 2 /g.
  • the BET surface of the carbon black as used according to the invention is from 41 to 200 m 2 /g, preferably from 45 to 150 m 2 /g, in particular from 50 to 100 m 2 /g.
  • the sulphur content of the carbon black as used according to the invention is in the range of from 50 to 20,000 ppm, as measured according to ASTM D1619, preferably from 3,000 to 10,000.
  • the carbon black is used in an amount of 0.1 to 12 wt.%, based on the weight of the polymer.
  • the materials according to the invention may contain further additives, as is set out below.
  • a flame retardant system may be present, which is usually a combination of two types of compounds, namely a brominated aliphatic, cycloaliphatic, aromatic or polymeric compound containing at least 50 wt.% of bromine, and a second compound (so called synergistic compound) which can be bicumyl (i.e. 2,3-dimethyl-2,3-diphenylbutane) or 2-hydroperoxy-2-methylpropane.
  • the self-extinguishing properties are improved so as to achieve DIN 4102 (B1, B2), namely by using specific types of cenospheres as flame suppressors.
  • These additives reduce flame development by creation of char, and the gases enclosed in the spherical particles furthermore work as fire annihilators.
  • a micrograph of a typical cenosphere material is shown in Fig. 1 .
  • the combination (of a) calcium phosphate, and optionally silica, and b) carbon black) further comprises c) nanoparticles of metal oxide, the nanoparticles having a 90% particle size of less than 100 nm (on the basis of a BET standard measurement), preferably a 90% particle size less than 50 nm.
  • the metal oxide is zinc oxide, magnesium oxide, or a mixture thereof, and it is most preferred that the metal oxide c) is zinc oxide.
  • the carbon black is combined with the nanoparticles of metal oxides such as zinc oxide (ZnO) or magnesium oxide (MgO), especially nano ZnO: 90% particle size less than 50 nm (on the basis BET standard measurement).
  • metal oxides such as zinc oxide (ZnO) or magnesium oxide (MgO)
  • ZnO zinc oxide
  • MgO magnesium oxide
  • the metal oxides preferably have not more than 2% of contaminations.
  • a preferred weight ratio of metal oxide to carbon black is from 1:25 to 1:10, more preferably from 1:10 to 1:5 and in particular 1:5 to 1:2.5.
  • the self-extinguishing properties of the polymer foam are improved (the improvement being measured in accordance with DIN 4102 B1 and B2 test method) by the use of cenospheres having
  • cenosphere products of the Omya Fillite type are used.
  • cenospheres have a hardness of 4 to 6 on the Mohs scale, preferably about 5.
  • cenospheres have an average wall thickness of 2 to 20 % of the sphere diameter, preferably 5 to 10%.
  • the cenospheres have a melting temperature of 1000-1500 °C, preferably 1150-1400°C.
  • the cenospheres have a thermal conductivity of 0.02 to 1.0 W/m ⁇ K, preferably 0.06-0.3 W/m ⁇ K.
  • cenospheres have a moisture content of 0.01-1.5%, preferably 0.05-0.8 %.
  • cenospheres have a crush strength of 70-400 kg/cm2, preferably 90-250 kg/cm2.
  • bulk density is measured in accordance with Omya test method (GB LTM 001), and particle size is preferably determined according to test method (GB LTM 016).
  • the moisture content is determined according to Omya test method GBRN LTM 007.
  • carbon black may cause thermal instability. That is why thermal aging of foams comprising carbon black has a significant influence on the final dimensions of moulded blocks. Carbon black may decrease the glass transition temperature of vinyl aromatic polymers or generally increase foam heat capacity, which leads to the shrinking or change of dimensions of the moulded blocks during thermal conditioning. The above-mentioned phenomena may undesirably cause the formation of scrap during the sectioning of the moulded blocks.
  • the dimensional stability of foam blocks made of vinyl aromatic polymers comprising carbon black is improved by preparing polymer foam from a vinyl aromatic copolymer with p-tert-butylstyrene comonomer, or some other sterically hindered styrene comonomer.
  • the addition to the styrene monomer of a specific styrene comonomer possessing steric hindrance, in particular p-tert-butylstyrene increases the glass transition temperature of such a vinyl aromatic copolymer.
  • the addition of a specific styrene comonomer to the styrene monomer improves the thermal stability of vinyl aromatic copolymer, which subsequently leads to better dimensional stability of moulded blocks made thereof.
  • the vinyl aromatic copolymer is preferably comprised of 1 to 99 wt.% of styrene monomer and correspondingly 99 to 1 wt.% of p-tert-butylstyrene monomer, as follows (amounts in wt.%, based on the total amount of monomer): Monomer Preferred (wt%) More preferred (wt%) Most preferred (wt%) Styrene 1-99 50-98 75-95 p-tert-Butylstyrene 99-1 2-50 25-5
  • the invention relates to a compounded masterbatch for the preparation of expandable polymer granulates, the masterbatch being obtained by compounding of
  • the invention in a second aspect, relates to a process for the preparation of expandable polymer granulate.
  • Such granulate may be prepared by compounding in an extrusion process, alternatively by suspension polymerization, or further alternatively in a continuous mass polymerization process.
  • expandable polymer granulate is prepared in an extrusion process comprising the following steps:
  • step i) vinyl aromatic polymer (in particular polystyrene or its vinyl copolymer for instance with p-tert-butylstyrene, or the mixture of different types of polystyrene) is fed into a single or twin screw extruder.
  • the temperature in the extruder is preferably in the range of 100-250 °C, more preferably of 150-230 °C.
  • the polymer has an average molecular weight in the range of from 90 to 400 kg/mol.
  • step ii) carbon black and and calcium phosphate (and optionally silica), are added in the form of a masterbatch or in the form of powders; the addition of the compacted form is also possible.
  • Other additives such as nucleating agents can be added together with the athermanous fillers or with the flame retardant system (see above), thermal stabilizers and bromic acid scavengers may then be added.
  • cenospheres are then preferably added in the form of a masterbatch or in the form of powder. Cenospheres can be introduced to the process together with athermanous fillers or together with flame retardant.
  • a package of thermal stabilizers and bromic acid scavenger may be used to improve its thermal stability at 150 to 230 °C. It is preferably used in a total amount not higher than 2 wt.% by the weight of solid additives.
  • blowing agent is injected and dissolved in the polymer melt to the last sections of the main extruder.
  • blowing agents used are n-pentane, cyclopentane, i-pentane, combination of two of them or their mixture.
  • halogenated aliphatic hydrocarbons or alcohols containing from 1 to 3 carbons are commonly used.
  • step iv) transported and cooled in the "cooling extruder" from a temperature 230 °C down to 150 °C.
  • the flame retardant with thermal stabilizers, acid scavenger (with or without nucleating agent) is added through the side arm extruder connected to the last section of the cooling unit.
  • step v) the homogenous polymer or copolymer blend comprising a) tricalcium phosphate (and optionally silica), b) carbon black, and nucleating agent, flame retardant with thermal stabilizers and acid scavenger, cenospheres and blowing agent is extruded through the static mixer, polymer melt filter, diverter valve, finally die-holes and cut by rotating knifes in a pressurized underwater pelletizer unit in order to obtain micro pellets.
  • Pellets are preferably pre-treated by applying a coating of a mixture of mono- and triglycerides of fatty acids and stearic acid salts and then pre-expanded by means of steam.
  • expandable polymer granulate is prepared in an aqueous suspension polymerization process comprising the steps:
  • the athermanous fillers as mandatory according to the present invention may be added in the form of a masterbatch, they may be introduced at the beginning of the suspension polymerization process, or may be dissolved in the monomer and/or a mixture of the monomer and comonomer.
  • component a), calcium phosphate, and optionally silica, and carbon black b) may be introduced in step ii) or in step iii).
  • the granulate is prepared using well known inorganic salts of phosphoric acid, such as types of calcium phosphate, magnesium phosphate, or a combination of salts as suspending agents. These salts may be added to the reaction mixture in a finely divided form, or as a product of an in situ reaction (for example, between sodium phosphate and magnesium sulphate).
  • inorganic salts of phosphoric acid such as types of calcium phosphate, magnesium phosphate, or a combination of salts as suspending agents.
  • These salts may be added to the reaction mixture in a finely divided form, or as a product of an in situ reaction (for example, between sodium phosphate and magnesium sulphate).
  • the salts are supported in their suspending action by anionic surface-active compounds, such as sodium dodecylobenzene sulfonate or sodium poly(naphthalene formaldehyde) sulfonate.
  • anionic surface-active compounds such as sodium dodecylobenzene sulfonate or sodium poly(naphthalene formaldehyde) sulfonate.
  • Those surface-active compounds can be also being prepared in situ using their precursors such as sodium metabisulfite and potassium persulfate.
  • the suspension can be also stabilized by high molecular weight organic suspension stabilizer, such as polyvinyl alcohol or hydroxyethylcellulose.
  • polymer fresh vinyl aromatic polymer or waste vinyl aromatic polymer from a previous polymerization
  • optional suspension aid preferably 5 to 15 wt.%, based on the vinyl aromatic monomer amount. It increases the viscosity of the reagent mixture (monomer with all additives), which facilitates the creation of a suspension.
  • the same or similar effect can be achieved by mass pre-polymerization of the monomer or mixture of comonomers and additives until the suitable melt viscosity is obtained (as for 1% to 30% of polymer concentration).
  • Athermanous fillers in the form of a concentrated masterbatch are added to the styrene and/or its mixture with comonomer, particularly p-tert-butylstyrene.
  • the masterbatch can contain from 10 to 60 % of athermanous fillers - carbon black, or spherically shaped amorphous silicon dioxide (silica), calcium phosphate and nano zinc oxide pre-silanized or silanized in the masterbatch compounding process by the triethoxy(phenyl)silane to decrease its hydrophilic properties.
  • Athermanous fillers can be combined with carbon black in one masterbatch or all can be added in the form of silanized powders. The same is referred to flame suppressors, particularly cenospheres.
  • the polymerization is then continued in aqueous suspension phase, in the presence of the above-mentioned suspending agents, suspension stabilizers, athermanous fillers, flame retardants and suppressors, optionally at least in the presence of suspension aid.
  • the polymerization process is triggered by initiators. Normally, two organic peroxides are used as initiators. The first peroxide, with a half-life of one hour at 80-95°C, is used to start and run the reaction. The other, with a half-life of one hour at 105-125°C, is used during the following polymerization process continued in the higher temperature, so called high temperature cycle (HTC).
  • HTC high temperature cycle
  • the end of the process is typically indicated by a concentration of residual vinyl monomers of below 1000 ppm by weight, based on the mass of vinyl aromatic polymer or copolymer.
  • the vinyl aromatic polymer or copolymer which is obtained at the end of the process typically has an average molecular mass (Mw) ranging from 50 to 600 kg/mol, preferably from 150 to 450, most preferably from 100 to 350 kg/mol.
  • Mw average molecular mass
  • additives can be added directly to the monomers, their solution with suspension aid, to the pre-polymer, or to the suspension.
  • Additives such as flame retardant systems, nucleating agents, antistatic agents, blowing agents and colorants during the process stay in the polymer drops and are thus present in the final product.
  • concentrations of conventional additives are the same as for the extrusion process, as set out above.
  • the flame retardant systems suitable for the present invention are similar to those used in the extrusion process described above.
  • One suitable system is the combination of two types of compounds, namely a brominated aliphatic, cycloaliphatic, aromatic or polymeric compound containing at least 50 wt.% of bromine (such as hexabromocyclododecane, pentabromomonochloro-cyclohexane, or a polymeric bromine compound, specifically brominated styrene-butadiene rubber and a second compound called synergistic compound which can be e.g.
  • the content of flame retardant system is typically in the range of 0.2 to 5.0 wt.% with respect to the total weight of vinyl aromatic polymer (weight of monomer(s) plus weight of polymer if added on the start), preferably between 1 and 3 wt.%.
  • the ratio between bromine compound and synergistic compound is preferably in the range from 1:1 to 15:1 weight to weight, usually from 3:1 to 5:1.
  • the flame suppressant (cenospheres) is added in the same way as athermanous fillers, in the form of concentrated masterbatch up to 60 % or in the form of powder; concentrations are the same as for extrusion process, as set out in IIa) above.
  • the blowing agent or agents are preferably added during the polymerization to suspension phase and are selected from aliphatic or cyclic hydrocarbons containing from 1 to 6 carbons and their derivatives. Typically are used n-pentane, cyclopentane, i-pentane, combination of two of them or their mixture. In addition, the halogenated aliphatic hydrocarbons or alcohols containing from 1 to 3 carbons are commonly used.
  • the blowing agent or agents can also be added after the end of polymerization.
  • spherical particles of expandable styrenic polymer are obtained as granulate, with an average diameter range of 0.3 to 2.3 mm, preferably from 0.8 to 1.6 mm.
  • the particles can have different average molecular mass distribution depending on their size, but all contain used additives dispersed homogenously in the polymer matrix.
  • the mass is cooled down to e.g. 35 °C, and the polymer granulate is separated from the water, preferably in a centrifuging process.
  • the particles are then dried and preferably coated with a mixture of mono- and triglycerides of fatty acids and stearic acid salts.
  • the final product is typically pre-treated by applying a coating (the same as for extruded granulate) and can be expanded by the same method as the extrusion product.
  • expandable polymer granulate is prepared in a continuous mass process comprising the following steps:
  • the reactor or cascade reactor is preferably arranged horizontally. If a cascade reactor is used, then there are preferably up to 5 reactors, in particular up to 4, such as three reactors.
  • the continuous mass polymerization is process congruous to extrusion process but the vinyl aromatic polymer or copolymer together with athermanous fillers and flame suppressant is used in molten state and feeding extruder directly from the polymerization plant.
  • the mass polymerization reactor (or first from cascade reactors) is fed continuously by vinyl aromatic monomer particularly styrene, and optionally by its vinyl aromatic comonomer, for instance p-tert-butylstyrene.
  • At this stage, athermanous fillers in the form of masterbatch or in the form of powders are fed into the mass polymerisation reactor, one or more additives and recycled monomer recovered from the process.
  • the athermanous additives are preferably dissolved in the vinyl aromatic monomer or before feed to the polymerization reactor.
  • the polymerisation reaction is initiated thermally, without addition of initiators.
  • polymerisation is generally carried out in presence of for instance monocyclic aromatic hydrocarbon.
  • the prepolymerised mass from the pre-polymerisation reactor is pumped through the sequence of several horizontal reactors, and the polymerisation reaction is subsequently continued.
  • a vinyl polymer in molten state, produced in mass polymerization and containing athermanous fillers (carbon black with or without nano metal oxide and silica or/and calcium phosphate, and optionally cenospheres as flame suppressant) are fed into the extruder at the temperature in the range of from 100 to 250 °C, preferably from 150 to 230°C.
  • the flame retardant system and nucleating agent is fed to the polymer melt.
  • a combination of two types of flame retarding compounds can be used, namely a brominated aliphatic, cycloaliphatic, aromatic or polymeric compound containing at least 50 wt.% of bromine, and a second compound called synergistic compound, which can be bicumyl (2,3-dimethyl-2,3-diphenylbutane) or 2-hydroperoxy-2-methylpropane.
  • concentrations of additives are the same as for the extrusion process, as set out above.
  • the blowing agent is injected into the molten polymer blend and mixed.
  • blowing agent or agents are the same as for the suspension process, i.e. selected from aliphatic or cyclic hydrocarbons containing from 1 to 6 carbons and their derivatives.
  • the polymer with all additives and blowing agent is subsequently extruded to give expandable beads.
  • the homogenous polymer blend comprising carbon black, silica, cenospheres, additives and blowing agent is pumped to the die, where it is extruded through a number of cylindric die-holes with 0.5-0.8 mm of diameter, immediately cooled by a water stream and cut with a set of rotating knives in pressurized underwater pelletizer, to receive micropellets (granulate).
  • the beads are transported by water, washed, drained off and fractioned.
  • the final product is pre-treated in the same way, as it is in the suspension and extrusion processes.
  • the invention relates to expandable polymer granulate (particles) as prepared by the IIa) extrusion or IIb) suspension process or IIc) the continuous mass polymerization.
  • the parameters relating to the silica, calcium phosphate, carbon black, nano metal oxides, cenospheres and furthermore the use of styrene copolymer with p-tert-butylstyrene, set out above in relation to the process are equally applied to the expandable polymer.
  • the expandable polymer further comprises one or more athermanous additives selected from graphite, petroleum coke, graphitized carbon black, graphite oxides, and graphene.
  • the invention relates to expanded polymer foam.
  • the foam in accordance with the invention typically has a density of 10 to 30 kg/m 3 , and a thermal conductivity of 25 to 35 mW/K ⁇ m.
  • the general purpose polystyrene-Synthos PS 585X, type CSX910 carbon black from Cabot Corporation with a BET surface of 73.6 m 2 /g and a sulphur content of 4000 ppm was used in concentration of 5 wt.%.
  • the Synthos PS 585X and CSX910 were dosed to the main extruder together with spherically-shaped amorphous silicon dioxide from ELKEM in an amount of 1 wt.% and tricalcium phosphate (Expandia R) from Innophos in amount of 2 wt.% (both combined with carbon black in one masterbatch).
  • example 3a the nano zinc oxide in combination with CSX910 (compounded in one masterbach) was used to prove its positive influence on the further "lambda" decrease. Additionally styrene copolymer with 40 wt.% concentrated para-tert-butylstyrene was added in example 8a to improve glass transition temperature of the polymer matrix.
  • the polymeric flame retardant - (brominated styrene/butadiene rubber) in the concentration of 2 wt.%, together with thermal stabilizers: Irganox 1010 (0.1 wt.%), Irgafos 126 (0.1 wt.%), bromic acid scavenger: Epon 164 from Momentive (0.2 wt.%) and nucleating agent: Polywax 2000 (0.3 wt.%) were fed as powders mixture to the side arm extruder connected to the last section of "cooling extruder".
  • the flame suppressor (cenospheres) was added together with athermanous fillers in the form of masterbach, in examples 2, 3 and 3a.
  • examples 8 and 8a the silane was used for comparison to improve additives dispersion, thus cell structure uniformity.
  • the pentane and isopentane mixture 85/15% in the concentration of 5.5 wt.% were fed to the last section of the main extruder.
  • Example 1 The extrusion process of Example 1 was used with the following components:
  • the method of production was changed to suspension polymerization.
  • the same carbon black CSX910 from Cabot Corporation in the concentration 5 wt.% was used in masterbatch form, based on general purpose polystyrene-Synthos PS 585X.
  • Comonomer para-tert-butylstyrene, p-TBS
  • tricalcium phosphate, cenospheres, silica and nano zinc oxide were jointly compounded with carbon black, and coated by polymeric silane first to improve its affinity to the organic phase (monomer).
  • the method of styrene polymerization was changed to continuous mass in three reactors cascade.
  • the polymerization of styrene was initiated by heating.
  • the same carbon black CSX910 from Cabot Corporation in the concentration 5 wt.% was used in powder form.
  • the polymeric flame retardant system - brominated styrene/butadiene rubber
  • bicumyl peroxide in a concentration 0.5 wt.%
  • nucleating agent Polywax 2000 (0.2 wt.%) were added in pure powder form to the extruding raw polystyrene just after degassing of polymer.
  • Pentane and isopentane mixture 85/15 % in the concentration 5.5 wt.% is dosed to extruder.
  • the granulate form was obtained by underwater pelletizing.
  • the minerals: tricalcium phosphate, cenospheres, silica were coated by silane and jointly compounded to improve their dispersion in the polymer.
  • the comonomer (p-TBS) was added in the last example (Ex. 22) to increase the polymer glass transition.
  • the method was changed again, namely one reactor for continuous mass polymerization was used.
  • the polymerization of pure styrene was initiated by benzoyl peroxide 0.12 %.
  • the carbon black was added as masterbatch based on Synthos PS 585X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Claims (17)

  1. Verwendung von
    a) Kalziumphosphat und gegebenenfalls Siliciumdioxid in Kombination mit
    b) Ruß zur Verminderung der Wärmeleitfähigkeit von Schäumen, die aus Polymer basierend auf vinylaromatischem Monomer und gegebenenfalls einem oder mehreren Comonomeren hergestellt sind,
    wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und
    das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619, und
    der Ruß in einer Menge von 0,1 bis 12 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers.
  2. Verwendung nach Anspruch 1, wobei das Siliciumdioxid eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g besitzt, vorzugsweise 5 bis 70 m2/g, bevorzugter 8 bis 60 m2/g, wie 10 bis 50 m2/g, insbesondere 15 bis 40 m2/g, insbesondere 20 bis 30 m2/g, wie etwa 25 m2/g.
  3. Verwendung nach Anspruch 1 oder Anspruch 2, wobei das Siliciumdioxid eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 bis 1.000 nm besitzt, vorzugsweise 20 bis 800 nm, bevorzugter 30 bis 600 nm, wie 40 bis 400 nm.
  4. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Menge von Siliciumdioxid 0,5 bis 1,6 Gew.-% beträgt, vorzugsweise 0,7 bis 1,3 Gew.-%, bevorzugter etwa 1,0 Gew.-%, bezogen auf das Gewicht des Polymers.
  5. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 1 µm bis 18 µm besitzt, vorzugsweise 2 µm bis 15 µm.
  6. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Menge von Kalziumphosphat 0,5 bis 10 Gew.-% beträgt, vorzugsweise 1 bis 5 Gew.-%, bezogen auf das Gewicht des Polymers.
  7. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Kalziumphosphat Trikalziumphosphat ist.
  8. Verwendung nach einem der vorhergehenden Ansprüche, wobei der Ruß eine BET-Oberfläche, gemessen gemäß ASTM 6556, von 41 bis 200 m2/g besitzt, vorzugsweise 45 bis 150 m2/g, insbesondere 50 bis 100 m2/g.
  9. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Menge von Ruß 0,2 bis 12,0 Gew.-% beträgt, vorzugsweise 0,5 bis 9,0 Gew.-%, bevorzugter 1,0 bis 8,0 Gew.-%, wie 2,0 bis 7,0 Gew.-%, insbesondere 3,0 bis 6,0 Gew.-%, wie etwa 5,0 Gew.-%, bezogen auf das Gewicht des Polymers.
  10. Verwendung nach einem der vorhergehenden Ansprüche, wobei die Kombination ferner umfasst,
    c) Nanopartikel von Metalloxid, wobei die Nanopartikel eine 90%-Teilchengröße von weniger als 100 nm besitzen (basierend auf einer BET-Standardmessung),
    wobei das Metalloxid vorzugsweise Zinkoxid, Magnesiumoxid oder eine Mischung davon ist, bevorzugter wobei das Metalloxid Zinkoxid ist.
  11. Verwendung nach einem der vorhergehenden Ansprüche, wobei das vinylaromatische Monomer Styrol ist und das Comonomer sterisch gehindertes Styrol (vorzugsweise p-Tert.-Butylstyrol) ist, vorzugsweise wobei das Styrol-basierte Copolymer bis 99 Gew.-% p-Tert.-Butylstyrol-Comonomer umfasst, bevorzugter 2 - 50 Gew.-% p-Tert.-Butylstryrol-Comonomer, insbesondere 5 - 25 Gew.-% p-Tert.-Butylstyrol-Comonomer.
  12. Compoundiertes Masterbatch zur Herstellung von expandierbaren Polymergranulaten, wobei das Masterbatch umfasst
    i)
    a) Kalziumphosphat und gegebenenfalls Siliciumdioxid,
    b) Ruß und
    gegebenenfalls c) Nanopartikel von Metalloxid, wobei die Nanopartikel eine 90%-Teilchengröße von weniger als 100 nm besitzen (basierend auf der Basis einer BET-Standardmessung), vorzugsweise weniger als 50 nm,
    ii) Styrolhomo- oder -copolymer, und
    gegebenenfalls iii) Styrolmonomer,
    wobei die Gesamtmenge von Komponente i) in dem Masterbatch 10 bis 60 Gew.-% beträgt, und wobei Komponente i) beim Compoundieren des Masterbatch mit einem oder mehreren Silanen beschichtet worden ist, und
    wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und
    das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619.
  13. Verfahren zur Herstellung von expandierbaren Polymergranulaten, mit den folgenden Schritten:
    i) Einspeisen von vinylaromatischem Polymer oder Copolymer in einen Extruder,
    ii) Zugabe von a) Kalziumphosphat und gegebenenfalls Siliciumdioxid, und b) Ruß, und gegebenenfalls thermischem Stabilisator und Flammunterdrückungsmittel,
    iii) Zugeben von Treibmittel in die Schmelze von Polymer oder Copolymer,
    iv) Extrudieren des homogenen Gemischs und
    v) Pelletieren des Gemischs in einer Unterwasser-Pelletiervorrichtung, um so das Granulat zu erhalten,
    wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619, und
    der Ruß in einer Menge von 0,1 bis 12 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers.
  14. Verfahren zur Herstellung von expandierbaren Polymergranulaten mit den folgenden Schritten:
    i) Bereitstellen einer Mischung, die umfasst
    i1) mindestens ein Suspendiermittel, das ein Salz von anorganischer Säure ist,
    i2) mindestens einen Suspensionsstabilisator, der ausgewählt ist aus der Gruppe von anionischen oberflächenaktiven Verbindungen und/oder Verbindungen mit hohem Molekulargewicht, und
    i3) Wasser,
    ii) Zugabe von vinylaromatischem Monomer und gegebenenfalls einem oder mehreren Comonomeren zu der Mischung, und nachfolgend Zugabe von
    ii1) optionalem polymeren Suspensionshilfsmittel,
    ii2) athermanem Füllstoff,
    ii3) Flammverzögerer,
    ii4) Flammunterdrückungsmittel und
    ii5) mindestens einem Peroxid als Reaktionsinitiator und
    dann Polymerisieren des Monomers und gegebenenfalls Comonomeren in der Suspensionsphase,
    iii) Fortsetzen der Polymerisation,
    iv) Zugabe des Treibmittels während des oder nach dem Polymerisationsschritt,
    v) Abkühlen und dann Abtrennen des Granulats von dem Wasser, wobei a) Kalziumphosphat und gegebenenfalls Siliciumdioxid und b) Ruß in Schritt ii) und/oder Schritt iii) zugegeben werden und
    wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und
    das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619, und
    der Ruß in einer Menge von 0,1 bis 12 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers.
  15. Verfahren zur Herstellung von expandierbarem Polymergranulat, mit den folgenden Schritten:
    i) Kontinuierliches Bereitstellen, in einen Massenpräpolymerisationsreaktor (oder den ersten von einem Kaskaden-Reaktor) eines Stroms von:
    i1) vinylaromatischem Monomer und gegebenenfalls einem oder mehreren Comonomeren (vorzugsweise p-Tert.-Butylstyrol),
    i2) mindestens einer Additivlösung und
    i3) gegebenenfalls rückgeführtem Monomer,
    ii) Fortsetzen der Polymerisation in dem Präpolymerisationsreaktor oder der Reihe von Kaskaden-Reaktoren),
    iii) Zugabe von athermanen Füllstoffen: a) Kalziumphosphat und gegebenenfalls Siliciumdioxid und b) Ruß mit oder ohne Metalloxid, und gegebenenfalls weiteren Additiven, vorzugsweise Flammunterdrückungsmittel,
    iv) Entgasen des Polymers,
    v) Einspeisen des Polymers im geschmolzenen Zustand in den Extruder, vorzugsweise direkt aus der Polymerisationsanlage,
    vi) gegebenenfalls Zugabe eines Flammverzögerungssystems, einschließlich synergistischer Verbindung und thermischen Stabilisatoren,
    vii) Zugabe des Treibmittels,
    viii) Extrudieren des homogenen Polymergemischs und
    ix) Pelletieren in einer Unterwasser-Pelletiervorrichtung, um so das Granulat zu erhalten, wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und
    das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619, und
    der Ruß in einer Menge von 0,1 bis 12 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers.
  16. Expandierbares Polymergranulat, das umfasst:
    a) Kalziumphosphat und gegebenenfalls Siliciumdioxid,
    b) Ruß,
    c) Polymer von vinylaromatischem Monomer und gegebenenfalls einem oder mehreren Comonomeren und
    d) Treibmittel,
    wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und
    das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619, und
    der Ruß in einer Menge von 0,1 bis 12 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers;
    wobei das expandierbare Polymergranulat erhältlich ist gemäß dem Verfahren eines der Ansprüche 13 bis 15;
    wobei das expandierbare Polymergranulat vorzugsweise ferner einen oder mehrere Additive ausgewählt aus Graphit, Petrolkoks, graphitiertem Ruß, Graphitoxiden und
    Graphen umfasst.
  17. Expandierbarer Polymerschaum, der umfasst
    a) Kalziumphosphat und gegebenenfalls Siliciumdioxid,
    b) Ruß und
    c) Polymer von vinylaromatischem Monomer und gegebenenfalls einem oder mehreren Comonomeren,
    wobei
    a1) das Siliciumdioxid amorph ist und besitzt
    - eine BET-Oberfläche, gemessen gemäß der Beschreibung, von 3 bis 80 m2/g,
    - eine Teilchengrößenverteilung, gemessen gemäß der Beschreibung, im Bereich von 3 nm bis 1000 nm, und
    das Siliciumdioxid, wenn es verwendet wird, in einer Menge von 0,1 bis weniger als 2 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    a2) das Kalziumphosphat eine Teilchengröße, gemessen durch Laserstreuung, von 0,1 µm bis 20 µm besitzt, und
    das Kalziumphosphat in einer Menge von 0,1 bis 10 Gew.-% vorhanden ist, vorhanden auf das Gewicht des Polymers, und
    b) der Ruß besitzt
    - eine BET-Oberfläche, gemessen gemäß ASTM 6556, von mehr als 40 bis 250 m2/g, und
    - einen Schwefelgehalt im Bereich von 50 bis 20.000 ppm, gemessen gemäß ASTM D 1619, und
    der Ruß in einer Menge von 0,1 bis 12 Gew.-% vorhanden ist, bezogen auf das Gewicht des Polymers,
    wobei der Schaum besitzt
    - eine Dichte von 10 bis 30 kg/m3 und
    - eine Wärmeleitfähigkeit von 25 - 35 mW/K·m;
    wobei der Schaum erhältlich ist durch Expansion des expandierbaren Polymergranulats gemäß Anspruch 16.
EP14816275.3A 2013-12-27 2014-12-19 Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer Active EP3087125B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL14816275T PL3087125T3 (pl) 2013-12-27 2014-12-19 Kombinacja komponentu mineralnego z sadzą i jego zastosowanie do zmniejszenia przewodności cieplnej polimeru winyloaromatycznego
EP14816275.3A EP3087125B1 (de) 2013-12-27 2014-12-19 Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13461565 2013-12-27
PCT/EP2014/078896 WO2015097106A1 (en) 2013-12-27 2014-12-19 Combination of a mineral component with carbon black and its use for decreasing the thermal conductivity of vinyl aromatic polymer
EP14816275.3A EP3087125B1 (de) 2013-12-27 2014-12-19 Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer

Publications (2)

Publication Number Publication Date
EP3087125A1 EP3087125A1 (de) 2016-11-02
EP3087125B1 true EP3087125B1 (de) 2020-11-25

Family

ID=49916963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14816275.3A Active EP3087125B1 (de) 2013-12-27 2014-12-19 Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer

Country Status (5)

Country Link
EP (1) EP3087125B1 (de)
EA (1) EA036425B1 (de)
PL (1) PL3087125T3 (de)
UA (1) UA123000C2 (de)
WO (1) WO2015097106A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953999A1 (de) 2013-02-05 2015-12-16 SGL Carbon SE Polystyrolhartschaumstoffe
HUE051595T2 (hu) * 2016-07-20 2021-03-01 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia Spolka Jawna Geopolimer adalékanyag alkalmazása nem brómozott égésgátlóval kombinációban polimer habokban
CN109641798A (zh) 2016-07-20 2019-04-16 西索斯公司 改性地质聚合物和改性地质聚合物复合材料及其生产工艺
KR101991584B1 (ko) * 2016-12-23 2019-06-20 롯데첨단소재(주) 발포성 수지 조성물, 그 제조방법 및 이를 이용한 발포체
KR101961994B1 (ko) 2016-12-27 2019-03-25 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품
FI3684852T3 (fi) 2017-09-22 2023-05-31 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia Spolka Jawna Antrasiitin käsiteltyjä hiukkasia infrapunasäteilyä siirtämättömänä lisäaineena sisältävä vinyyliaromaattisen polymeerin granulaatti ja vaahto ja menetelmä niiden valmistamiseksi

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20030627A1 (it) 2003-03-31 2004-10-01 Polimeri Europa Spa Polimeri vinilaromatici espandibili e procedimento per la loro preparazione.
DE102004058583A1 (de) 2004-12-03 2006-06-14 Basf Ag Expandierbare Styrolpolymergranulate und Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit
WO2006061571A1 (en) 2004-12-06 2006-06-15 Ineos Europe Limited Expandable polystyrene composition
ITMI20062245A1 (it) 2006-11-23 2008-05-24 Polimeri Europa Spa Polimeri vinilaromatici espandibili a migliorata capacita' di isolamento termico e procedimento per la loro preparazione
CN103210027B (zh) 2010-09-10 2015-03-25 道达尔研究技术弗吕公司 能膨胀的乙烯基芳族聚合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
UA123000C2 (uk) 2021-02-03
EA201691332A1 (ru) 2016-11-30
EA036425B1 (ru) 2020-11-10
PL3087125T3 (pl) 2021-07-05
EP3087125A1 (de) 2016-11-02
WO2015097106A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
EP3087125B1 (de) Kombination aus einer mineralischen komponente mit russ und deren verwendung zur senkung der wärmeleitfähigkeit von aromatischem vinylpolymer
US11447614B2 (en) Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
EP2358798B1 (de) Zusammensetzungen von expandierbaren vinylaromatischen polymeren mit verbessertem wärmeisolationsvermögen, herstellungsverfahren dafür und daraus erhaltene expandierte gegenstände
US11267170B2 (en) Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
EP3245242B1 (de) Verwendung eines minerals mit perowskitstruktur in aromatischem vinylpolymerschaum
EP3087126B1 (de) Verwendung von cenosphären zur verbesserung der selbstverlöschenden eigenschaften von polymerschaum aus aromatischen vinylmonomeren mit athermanem additiv
EP3087127B1 (de) Verwendung von sterisch gehindertem styrolcomonomer zur verbesserung der wärmestabilität von expandiertem, aromatischem vinylpolymer
KR101419457B1 (ko) 알루미늄 입자를 함유하는 발포성 스티렌 중합체의 제조방법 및 이로부터 제조된 발포성 스티렌 중합체

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZIALN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190614

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191211

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200605

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1338244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014072742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210400081

Country of ref document: GR

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1338244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014072742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

26N No opposition filed

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014072742

Country of ref document: DE

Owner name: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZ, PL

Free format text: FORMER OWNER: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA SPOLKA JAWNA, OSWIECIM, PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA; PL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF LEGAL ENTITY; FORMER OWNER NAME: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA SPOLKA JAWNA

Effective date: 20230413

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA; PL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF LEGAL ENTITY; FORMER OWNER NAME: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA SPOLKA JAWNA

Effective date: 20230413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 9

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIE, PL

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231212

Year of fee payment: 10

Ref country code: SE

Payment date: 20231219

Year of fee payment: 10

Ref country code: NO

Payment date: 20231218

Year of fee payment: 10

Ref country code: NL

Payment date: 20231219

Year of fee payment: 10

Ref country code: FR

Payment date: 20231219

Year of fee payment: 10

Ref country code: FI

Payment date: 20231218

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231206

Year of fee payment: 10

Ref country code: AT

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231110

Year of fee payment: 10

Ref country code: BE

Payment date: 20231218

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1338244

Country of ref document: AT

Kind code of ref document: T

Owner name: SYNTHOS DWORY 7 SPOLKA Z OGRANICZONA ODPOWIEDZ, PL

Effective date: 20240124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240112

Year of fee payment: 10

Ref country code: CH

Payment date: 20240110

Year of fee payment: 10