EP3086405A1 - Antenna architecture with multiple sources per beam and comprising a modular focal network - Google Patents

Antenna architecture with multiple sources per beam and comprising a modular focal network Download PDF

Info

Publication number
EP3086405A1
EP3086405A1 EP16166576.5A EP16166576A EP3086405A1 EP 3086405 A1 EP3086405 A1 EP 3086405A1 EP 16166576 A EP16166576 A EP 16166576A EP 3086405 A1 EP3086405 A1 EP 3086405A1
Authority
EP
European Patent Office
Prior art keywords
sources
bfn
focal
accesses
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16166576.5A
Other languages
German (de)
French (fr)
Other versions
EP3086405B1 (en
Inventor
Pierre Bosshard
Jean-Christophe Odin
Olivier SAINT MARTIN
Daniel ANDRIEU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3086405A1 publication Critical patent/EP3086405A1/en
Application granted granted Critical
Publication of EP3086405B1 publication Critical patent/EP3086405B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device

Definitions

  • the present invention relates to a multi-source antenna architecture per beam and having a modular focal array. It applies to the field of space applications such as satellite telecommunications and more particularly to MFPB antenna systems (in English: Multiple Feeds Per Beam) embedded on a satellite in order to ensure a mission with multichannel coverage.
  • MFPB antenna systems in English: Multiple Feeds Per Beam
  • each beam is formed by combining the accesses of several radio frequency sources of a focal network, each radiofrequency source consisting of a radiating element connected to a radiofrequency transmission and transmission channel. reception usually with two accesses.
  • the RF sources of the focal network are grouped into a plurality of elementary cells having the same number of RF sources and forming a mesh.
  • the mesh may have different geometric shapes, for example square or hexagonal. The accesses of the radiofrequency sources of each mesh can then be combined with each other to form a beam.
  • radio frequency sources to form adjacent beams.
  • the reuse of the radio frequency sources is generally carried out according to two dimensions of the space, which conventionally requires the use of a complex BFN beam formation network (Beam Forming Network).
  • Beam Forming Network Beam Forming Network
  • This difficulty is increased by the use of couplers common to several radio frequency sources, which allow the reuse of radio frequency sources and the independence of the beams between them.
  • These antennas can not be built and assembled in modular form and the number of beams that can be formed is limited.
  • the document FR 2 939 971 describes a particularly compact radiofrequency source, comprising a four-port RF chain, two transmission ports operating respectively in two polarizations P1, P2 orthogonal to each other and two receiving ports respectively operating in the two polarizations P1 and P2.
  • the transmission ports and the reception ports operate respectively in two different frequency bands F1 and F2.
  • This radiofrequency source comprising four independent accesses makes it possible to form two independent beams on transmission and on reception.
  • the document FR 2,993,716 describes a transmission and reception MFPB antenna architecture comprising a focal network equipped with four-port compact radio frequency sources, in which each beam is developed by a group of four radio frequency sources of the network, combining four same polarization and the same frequency of each of the four radiofrequency sources.
  • This antenna operates on transmission and reception, and two adjacent beams operating in orthogonal polarizations are developed by two groups of different RF sources, each consisting of four radio-frequency sources that can share one or two radio-frequency sources, depending on the arrangement of four RF sources in the mesh.
  • This architecture makes it possible to reuse radiofrequency sources only in one dimension of the space and requires the use of a second identical antenna to obtain a good overlap of the beams in the two dimensions of the space.
  • This antenna architecture is therefore particularly simple since two adjacent beams are made by different access combinations, which allows the use of independent BFNs, each BFN having combination circuits dedicated to the formation of a single beam.
  • this document gives no information on a possibility of building the focal network of the antenna in a modular form, nor on the possibility of an assembly of sources and BFN without overlap between the components of different BFN.
  • the object of the invention is to remedy the problems of known MFPB antennas and to realize a new MFPB antenna architecture whose dimension can be adjusted as required, without limitation, having a completely modular focal network for developing a very a large number of beams, each elementary module being functional and independent of the other modules, the different elementary modules being able to be assembled in a simple manner, on a single joint plane, without any overlap between the components of the different modules, and therefore without any hyperstatic constraint .
  • the invention relates to a multi-source beam antenna comprising a focal array equipped with a plurality of RF radio frequency sources and a BFN beam forming network, each RF source having a radiating horn connected to an RF chain. transmission and reception, two transmission ports respectively operating in two different polarizations orthogonal to each other and two receiving ports respectively operating in said two different polarizations, the number of RF sources per beam being equal to four.
  • the focal grating and the beamforming network are modular, the RF sources being grouped into subsets respectively integrated into different independent source blocks each having at least four RF sources and the BFN beam forming network. with several independent linear partial BFNs called BFN arrays.
  • the antenna further comprises a single structuring interface plate having a front face on which are mounted the different source blocks, arranged next to each other, and a rear face on which the BFN strips are mounted side by side , the structuring plate comprising a plurality of traversing waveguides opening on the two front and rear faces to which are respectively connected the different accesses of the RF sources of each source block and secondly, corresponding accesses of the Linear partial BFNs, the corresponding accesses of the RF sources and the partial BFNs being connected to one another via the traversing waveguides of the interface plate.
  • each block of sources may consist of a stack of several planar layers, each planar layer consisting of two complementary metal half-shells assembled together, the two half-shells of each planar layer integrating radio frequency components of the RF channels. of all the RF sources of the source block, each RF chain being connected to a corresponding radiating horn.
  • the traversing waveguides of the interface plate may respectively be arranged in a matrix with several rows and several columns and the transmission and reception ports of the RF channels may all have the same orientation.
  • the adjacent RF sources in the focal network have transmission ports and reception ports respectively connected four by four by the power combiners integrated in the BFN bars, two groups of four consecutive sources in the focal network sharing two sources in a single focal network direction and the BFN arrays extend parallel to said focal network direction corresponding to the source sharing.
  • the interface plate may comprise, at the periphery of the focal network, available through waveguides connected to transmission and reception ports of RF sources but not connected to accesses of a BFN strip, the available through waveguides having a carbon-containing absorbent material.
  • the invention relates to an antenna architecture operating on transmission and reception.
  • the formation of the beams is therefore carried out in the two transmission and reception frequency bands.
  • the remainder of the description is limited to a single antenna operating in transmission and reception.
  • the figure 1 is a cross-sectional diagram, illustrating an example of a modular focal array, according to the invention.
  • the focal network comprises a plurality of source blocks, a plurality of beamforming subareas, BFN1, BFN2, BFN3, called partial BFNs, and a structuring interface plate 30 covering all access to RF sources.
  • Each source block has a subset of several RF radio sources, with fully integrated Tx transmit and receive Rx channels.
  • All source blocks 15 comprise an identical number of N RF sources, where N is an integer greater than or equal to four, arranged in a matrix comprising at least two lines and at least two columns.
  • the figure 3a illustrates a source block with eight RF sources arranged in four rows and two columns.
  • each RF source comprises a radiating horn 10 connected to an RF chain 11 provided with four transmission or reception ports Tx1, Tx2, Rx1, Rx2, the RF chain being able, for example, to be similar to that described in the document FR 2,993,716 .
  • Each RF chain has an OMT diplexant orthomode transducer and filters. The formation of the circular polarization is provided by couplers and / or by a polarizer for the Rx receive ports. Alternatively, the RF chain can be designed to operate in linear polarization.
  • each source block is as compact as possible
  • the various RF chains can be manufactured in two complementary parts, called half-shells, by a known machining process, the two half-shells then being assembled together by any type of connection known, conventionally by screws, or alternatively, by welding, or by gluing.
  • all RF channels integrated in the same source block can be machined together, next to each other, in metal half-shells common to all RF sources of the source block.
  • the assembly of a source block consists in assembling the half-shells two by two, then stacking the shells assembled in different planar layers 16, 17, and finally, stacking and assembling additional planar layers 18 containing the couplers and the axial polarizers.
  • Each block of sources then has the advantage of having a planar multilayer architecture comprising a first stage consisting of radiating elements, for example turbinators, a second stage comprising the RF chains connected to the different horns, and three stages integrating couplers and couplers. axial polarizers.
  • the four transmission accesses Tx1, Tx2 and reception Rx1, Rx2 of each RF source are arranged side by side on the rear face of the source block 15.
  • the accesses corresponding to different RF sources are oriented parallel to each other and are arranged according to a matrix, in the same arrangement of rows and columns as the radiating horns of the corresponding RF sources, for example four rows and two columns in the case of Figures 3a, 3b and 3c .
  • the only difference between the two arrangements represented on the Figures 3b and 3c relates to the direction of access that can be made in a direction X corresponding to the direction of the lines, or in a direction Y corresponding to the direction of the columns, the X and Y directions can be orthogonal in the case of a mesh square as depicted on the Figures 3b and 3c , or be oriented at 30 ° or 60 ° in the case of a hexagonal mesh as shown in figures 5a and 5b .
  • the accesses corresponding to the same frequency and to the same polarization are arranged in the same order and are therefore aligned with each other.
  • the different accesses of the integrated RF sources in each source block 15 are intended to be connected to traversing waveguides 31 corresponding, open at their two opposite ends, arranged in the structuring interface plate 30 common to all the source blocks 15 of the focal network of the antenna.
  • the structuring interface plate 30 has dimensions that correspond to the dimensions of said focal network and therefore covers the entire surface of the focal network.
  • the structuring interface plate 30 comprises at least as many passing waveguides 31 as there is access to RF sources to be connected, the traversing waveguides opening on two opposite faces, respectively front and rear, of the structuring interface plate.
  • the arrangement of the traversing waveguides is identical to the access block layout of the source blocks as shown in FIG. figure 4 .
  • all the source blocks 15 are mounted side-by-side on a front face of the structuring interface plate, without any overlap between them, and all the accesses of the RF sources integrated in the source blocks are connected to waveguides. respective through-wavelengths integrated in the structuring interface plate.
  • each beam is elaborated by a group 20, 21, 22 of four RF sources of the focal network, the four RF sources being arranged in a two-line and two-column matrix, by combining, via the passing waveguides 31 of the interface plate 30, the access of the same polarization and the same frequency of each of the four RF sources.
  • each group of four RF sources only one of the transmission ports, for example Tx1, and only one of the reception ports, for example Rx1, of each RF source are combined with the corresponding accesses of the other three RF sources of the group by dedicated power combiners 23a, 23b.
  • each group of four RF sources are developed a transmission beam and a receiving beam. Since each RF source has two transmit ports and two receive ports, there remains one available Tx2 transmit port and one Rx2 receive port that can be used to form another transmit beam and another receive beam with RF sources from another adjacent group.
  • Two adjacent beams operating in orthogonal polarizations are developed by two groups of adjacent RF sources, each consisting of four RF sources.
  • the combined accesses in the two adjacent groups 20, 21 have the same frequency but polarizations different.
  • the second available access is combined with corresponding accesses of a group of four adjacent RF sources.
  • a direction of the focal network for example in the X direction
  • the two adjacent groups 20, 21 have two sources in common and therefore share two RF sources among the four.
  • no RF source is shared between the adjacent source groups 20, 22. The reuse of two RF sources among the four is therefore performed in a single direction of the focal network.
  • each partial BFN can then be manufactured in a modular form, called a BFN strip, each BFN strip including all the power combiners 23a, 23b needed to combine the RF source accesses, four by four, for the formation of a line of beams.
  • the BFN strip extends parallel to the access lines to be combined, has a width corresponding to the width of two access columns of the focal network and has a length corresponding to the length of a line of the focal network.
  • the focal array comprises a partial BFN per line of beams to be formed.
  • Each strip of BFN comprises a front face provided with two input access lines arranged in a matrix identical to that of two lines of crossing waveguides 31 of the interface plate 30 structuring and comprises a rear face provided with two beam output ports, respectively transmission and reception, group of four RF sources.
  • all the partial BFN bars, BFN1, BFN2, BFN3, are mounted side by side on a rear face of the structuring interface plate 30, without any overlap between them, and all the input ports of the partial BFNs are connected to respective through waveguides integrated in the structuring interface plate.
  • the input ports of each partial BFN are connected to respective accesses of the RF sources integrated in the source blocks via the traversing waveguides of the structuring interface plate.
  • the focal network there may be some available waveguides 19 which are connected to accesses of the RF sources but which are not used for the formation of the beams and thus not connected to the accesses of a partial BFN .
  • an absorbent material is inserted locally in the available through waveguides of the structuring interface plate to which are connected the unused access.
  • the absorbent material contains carbon, such as, for example, silicon carbide.
  • This antenna architecture makes it possible to reuse radiofrequency sources in only one dimension of the space and requires the use of a second identical antenna to obtain a good overlap of the beams in the two dimensions of the space.
  • This antenna architecture is therefore particularly simple since two adjacent beams are made by different access combinations, without using couplers, which allows the use of independent power combiners dedicated to the formation of a single beam.
  • the structuring interface plate provides support, assembly and interconnections between all source blocks and all partial BFNs on a single joint plane and allows a total decoupling between the different RF sources integrated in the elementary source blocks mounted on its front face and the various partial BFN mounted on its rear face.
  • the number of integrated RF channels in each source block is not fixed and can be adapted as desired depending on the shape of the cover to be made.
  • the structuring interface plate makes it possible to connect RF channels and BFN having waveguides of different sections as well as waveguides with different orientations, which simplifies the design of BFN.
  • the orientation of the accesses of the RF chains being identical for all the RF sources, it makes it possible to facilitate the routing of the power combiners within the BFNs in a plane parallel to the focal network, without overlap between the BFN and to reduce the congestion of each RF source and mesh size of the focal network.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

L'antenne MFPB comporte une pluralité de sources RF à quatre accès et un BFN, le nombre de sources par faisceau étant égal à quatre, et une plaque d'interface (30) structurante unique, couvrant l'ensemble des accès des sources RF, et comportant une pluralité de guides d'onde traversants (31). Les guides d'onde traversants (31) sont disposés selon une matrice à plusieurs lignes et plusieurs colonnes. les sources RF sont regroupées en sous-ensembles (20, 21, 22) respectivement intégrés dans différents blocs de sources (15) indépendants montés les uns à côté des autres sur la face avant de la plaque d'interface (30), les accès des sources RF de chaque bloc de sources étant raccordés aux guides d'onde traversants. Le BFN est constitué de plusieurs BFN partiels linéaires indépendants, appelés barrettes de BFN (BFN1, BFN2, BFN3), montés côte à côte sur la face arrière de la plaque d'interface (30), les différents accès des combineurs de puissance (23a, 23b) intégrés dans chaque barrette de BFN étant raccordés aux guides d'onde traversants.The MFPB antenna has a plurality of four-port RF sources and a BFN, the number of sources per beam being four, and a single structuring interface plate (30) covering all accesses of the RF sources, and having a plurality of through waveguides (31). The traversing waveguides (31) are arranged in a matrix with several lines and several columns. the RF sources are grouped into sub-assemblies (20, 21, 22) respectively integrated in different independent source blocks (15) mounted next to one another on the front face of the interface plate (30), the accesses RF sources of each source block being connected to the traversing waveguides. The BFN consists of several independent linear partial BFNs, called BFN arrays (BFN1, BFN2, BFN3), mounted side by side on the rear face of the interface plate (30), the different power combiner accesses (23a , 23b) integrated in each BFN strip being connected to the traversing waveguides.

Description

La présente invention concerne une architecture d'antenne à plusieurs sources par faisceau et comportant un réseau focal modulaire. Elle s'applique au domaine des applications spatiales telles que les télécommunications par satellite et plus particulièrement aux systèmes d'antennes MFPB (en anglais : Multiple Feeds Per Beam) embarqués sur un satellite afin d'assurer une mission à couverture mutifaisceaux.The present invention relates to a multi-source antenna architecture per beam and having a modular focal array. It applies to the field of space applications such as satellite telecommunications and more particularly to MFPB antenna systems (in English: Multiple Feeds Per Beam) embedded on a satellite in order to ensure a mission with multichannel coverage.

Dans une antenne MFPB à plusieurs sources radiofréquences RF par faisceau, chaque faisceau est formé en combinant les accès de plusieurs sources radiofréquences d'un réseau focal, chaque source radiofréquence étant constituée d'un élément rayonnant connecté à une chaîne radiofréquence d'émission et de réception généralement à deux accès. Pour cela, les sources RF du réseau focal sont groupées en une pluralité de cellules élémentaires comportant le même nombre de sources RF et formant un maillage. Selon l'implantation des sources radiofréquences dans le réseau focal et le nombre sources radiofréquences dans chaque maille, la maille peut avoir différentes formes géométriques, par exemple carrée ou hexagonale. Les accès des sources radiofréquences de chaque maille peuvent alors être combinés entre eux pour former un faisceau. Pour obtenir un bon recouvrement des faisceaux, il est connu de réutiliser une ou plusieurs sources radiofréquences pour former des faisceaux adjacents. La réutilisation des sources radiofréquences est généralement réalisée selon deux dimensions de l'espace, ce qui nécessite classiquement, l'utilisation d'un réseau de formation de faisceaux BFN (en anglais : Beam Forming Network) complexe, qui comporte des circuits de combinaison de puissance disposés axialement, qui s'entrecroisent les uns avec les autres, et il est alors impossible de séparer physiquement les circuits de combinaison dédiés à la formation de faisceaux différents. Cette difficulté est accrue par l'usage de coupleurs communs à plusieurs sources radiofréquences, qui permettent la réutilisation des sources radiofréquences et l'indépendance des faisceaux entre eux. Ces antennes ne peuvent donc pas être construites et assemblées sous forme modulaire et le nombre de faisceaux qui peuvent être formés est limité.In an MFPB antenna with multiple radio RF sources per beam, each beam is formed by combining the accesses of several radio frequency sources of a focal network, each radiofrequency source consisting of a radiating element connected to a radiofrequency transmission and transmission channel. reception usually with two accesses. For this, the RF sources of the focal network are grouped into a plurality of elementary cells having the same number of RF sources and forming a mesh. Depending on the location of the radio frequency sources in the focal network and the number of radiofrequency sources in each mesh, the mesh may have different geometric shapes, for example square or hexagonal. The accesses of the radiofrequency sources of each mesh can then be combined with each other to form a beam. To obtain a good coverage of the beams, it is known to reuse one or more radio frequency sources to form adjacent beams. The reuse of the radio frequency sources is generally carried out according to two dimensions of the space, which conventionally requires the use of a complex BFN beam formation network (Beam Forming Network). power arranged axially, which intersect with each other, and it is then impossible to physically separate the combination circuits dedicated to the formation of different beams. This difficulty is increased by the use of couplers common to several radio frequency sources, which allow the reuse of radio frequency sources and the independence of the beams between them. These antennas can not be built and assembled in modular form and the number of beams that can be formed is limited.

Le document FR 2 939 971 décrit une source radiofréquence particulièrement compacte, comportant une chaîne RF à quatre accès dont deux accès d'émission fonctionnant respectivement dans deux polarisations P1, P2 orthogonales entre elles et deux accès de réception fonctionnant respectivement dans les deux polarisations P1 et P2. Les accès d'émission et les accès de réception fonctionnent respectivement dans deux bandes de fréquences différentes F1 et F2. Cette source radiofréquence comportant quatre accès indépendants, permet de former deux faisceaux indépendants à l'émission et à la réception.The document FR 2 939 971 describes a particularly compact radiofrequency source, comprising a four-port RF chain, two transmission ports operating respectively in two polarizations P1, P2 orthogonal to each other and two receiving ports respectively operating in the two polarizations P1 and P2. The transmission ports and the reception ports operate respectively in two different frequency bands F1 and F2. This radiofrequency source comprising four independent accesses makes it possible to form two independent beams on transmission and on reception.

Le document FR 2 993 716 décrit une architecture d'antenne MFPB d'émission et de réception comportant un réseau focal équipé de sources radiofréquences compactes à quatre accès, dans laquelle chaque faisceau est élaboré par un groupe de quatre sources radiofréquences du réseau, en combinant par quatre, les accès de même polarisation et de même fréquence de chacune des quatre sources radiofréquences. Cette antenne fonctionne à l'émission et à la réception, et deux faisceaux adjacents fonctionnant dans des polarisations orthogonales sont élaborés par deux groupes de sources RF différents, constitués chacun de quatre sources radiofréquences pouvant partager une ou deux sources radiofréquences, selon l'arrangement des quatre sources RF dans la maille. Cette architecture ne permet de réutiliser les sources radiofréquence que dans une seule dimension de l'espace et nécessite l'utilisation d'une deuxième antenne identique pour obtenir un bon recouvrement des faisceaux dans les deux dimensions de l'espace. Cette architecture d'antenne est donc particulièrement simple puisque deux faisceaux adjacents sont réalisés par des combinaisons d'accès différents, ce qui permet l'utilisation de BFN indépendants, chaque BFN comportant des circuits de combinaison dédiés à la formation d'un seul faisceau. Cependant ce document ne donne aucune information sur une possibilité de construction du réseau focal de l'antenne sous une forme modulaire, ni sur la possibilité d'un assemblage des sources et des BFN sans recouvrement entre les composants des différents BFN.The document FR 2,993,716 describes a transmission and reception MFPB antenna architecture comprising a focal network equipped with four-port compact radio frequency sources, in which each beam is developed by a group of four radio frequency sources of the network, combining four same polarization and the same frequency of each of the four radiofrequency sources. This antenna operates on transmission and reception, and two adjacent beams operating in orthogonal polarizations are developed by two groups of different RF sources, each consisting of four radio-frequency sources that can share one or two radio-frequency sources, depending on the arrangement of four RF sources in the mesh. This architecture makes it possible to reuse radiofrequency sources only in one dimension of the space and requires the use of a second identical antenna to obtain a good overlap of the beams in the two dimensions of the space. This antenna architecture is therefore particularly simple since two adjacent beams are made by different access combinations, which allows the use of independent BFNs, each BFN having combination circuits dedicated to the formation of a single beam. However, this document gives no information on a possibility of building the focal network of the antenna in a modular form, nor on the possibility of an assembly of sources and BFN without overlap between the components of different BFN.

Le but de l'invention est de remédier aux problèmes des antennes MFPB connues et de réaliser une nouvelle architecture d'antenne MFPB dont la dimension peut être ajustée selon les besoins, sans limitation, comportant un réseau focal complètement modulaire permettant d'élaborer un très grand nombre de faisceaux, chaque module élémentaire étant fonctionnel et indépendant des autres modules, les différents modules élémentaires pouvant être assemblés de façon simple, sur un plan de joint unique, sans aucun recouvrement entre les composants des différents modules, et donc sans aucune contrainte hyperstatique.The object of the invention is to remedy the problems of known MFPB antennas and to realize a new MFPB antenna architecture whose dimension can be adjusted as required, without limitation, having a completely modular focal network for developing a very a large number of beams, each elementary module being functional and independent of the other modules, the different elementary modules being able to be assembled in a simple manner, on a single joint plane, without any overlap between the components of the different modules, and therefore without any hyperstatic constraint .

Pour cela, l'invention concerne une antenne à plusieurs sources par faisceau comportant un réseau focal équipé d'une pluralité de sources radiofréquences RF et d'un réseau de formation de faisceaux BFN, chaque source RF comportant un cornet rayonnant relié à une chaîne RF d'émission et de réception, deux accès d'émission fonctionnant respectivement dans deux polarisations différentes orthogonales entre elles et deux accès de réception fonctionnant respectivement dans lesdites deux polarisations différentes, le nombre de sources RF par faisceau étant égal à quatre. Le réseau focal et le réseau de formation de faisceaux sont modulaires, les sources RF étant regroupées en sous-ensembles respectivement intégrés dans différents blocs de sources indépendants les uns des autres, comportant chacun au moins quatre sources RF et le réseau de formation de faisceaux BFN comportant plusieurs BFN partiels linéaires indépendants appelés barrettes de BFN. L'antenne comporte en outre une plaque d'interface structurante unique comportant une face avant sur laquelle sont montés les différents blocs de sources, disposés les uns à côté des autres, et une face arrière sur laquelle les barrettes de BFN sont montées côte à côte, la plaque structurante comportant une pluralité de guides d'onde traversants débouchant sur les deux faces avant et arrière auxquels sont respectivement raccordés d'une part les différents accès des sources RF de chaque bloc de sources et d'autre part, des accès correspondants des BFN partiels linéaires, les accès correspondants des sources RF et des BFN partiels étant reliés entre eux par l'intermédiaire des guides d'onde traversants de la plaque d'interface.For this purpose, the invention relates to a multi-source beam antenna comprising a focal array equipped with a plurality of RF radio frequency sources and a BFN beam forming network, each RF source having a radiating horn connected to an RF chain. transmission and reception, two transmission ports respectively operating in two different polarizations orthogonal to each other and two receiving ports respectively operating in said two different polarizations, the number of RF sources per beam being equal to four. The focal grating and the beamforming network are modular, the RF sources being grouped into subsets respectively integrated into different independent source blocks each having at least four RF sources and the BFN beam forming network. with several independent linear partial BFNs called BFN arrays. The antenna further comprises a single structuring interface plate having a front face on which are mounted the different source blocks, arranged next to each other, and a rear face on which the BFN strips are mounted side by side , the structuring plate comprising a plurality of traversing waveguides opening on the two front and rear faces to which are respectively connected the different accesses of the RF sources of each source block and secondly, corresponding accesses of the Linear partial BFNs, the corresponding accesses of the RF sources and the partial BFNs being connected to one another via the traversing waveguides of the interface plate.

Avantageusement, chaque bloc de sources peut être constitué d'un empilement de plusieurs couches planaires, chaque couche planaire étant constituée de deux demi-coquilles métalliques complémentaires assemblées entre elles, les deux demi-coquilles de chaque couche planaire intégrant des composants radiofréquences des chaînes RF de toutes les sources RF du bloc de sources, chaque chaîne RF étant raccordée à un cornet rayonnant correspondant.Advantageously, each block of sources may consist of a stack of several planar layers, each planar layer consisting of two complementary metal half-shells assembled together, the two half-shells of each planar layer integrating radio frequency components of the RF channels. of all the RF sources of the source block, each RF chain being connected to a corresponding radiating horn.

Avantageusement, les guides d'ondes traversants de la plaque d'interface peuvent être respectivement disposés selon une matrice à plusieurs lignes et plusieurs colonnes et les accès d'émission et de réception des chaînes RF peuvent avoir tous la même orientation.Advantageously, the traversing waveguides of the interface plate may respectively be arranged in a matrix with several rows and several columns and the transmission and reception ports of the RF channels may all have the same orientation.

Avantageusement, les sources RF adjacentes dans le réseau focal ont des accès d'émission et des accès de réception respectivement reliés quatre par quatre par les combineurs de puissance intégrés dans les barrettes de BFN, deux groupes de quatre sources consécutifs dans le réseau focal partageant deux sources en commun selon une seule direction du réseau focal et les barrettes de BFN s'étendent parallèlement à ladite direction du réseau focal correspondant au partage de sources.Advantageously, the adjacent RF sources in the focal network have transmission ports and reception ports respectively connected four by four by the power combiners integrated in the BFN bars, two groups of four consecutive sources in the focal network sharing two sources in a single focal network direction and the BFN arrays extend parallel to said focal network direction corresponding to the source sharing.

Avantageusement, la plaque d'interface peut comporter, en périphérie du réseau focal, des guides d'onde traversants disponibles, raccordés à des accès d'émission et de réception de sources RF mais non connectés à des accès d'une barrette de BFN, les guides d'onde traversants disponibles comportant un matériau absorbant contenant du carbone.Advantageously, the interface plate may comprise, at the periphery of the focal network, available through waveguides connected to transmission and reception ports of RF sources but not connected to accesses of a BFN strip, the available through waveguides having a carbon-containing absorbent material.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1 : un schéma, en coupe transversale, d'un exemple de réseau focal modulaire, selon l'invention ;
  • figures 2a et 2b: deux schémas en perspective et en vue de dessous, illustrant, respectivement, un exemple de sources RF à quatre accès, et un exemple de disposition des quatre accès, selon l'invention ;
  • figure 3a : un schéma, en perspective, d'un exemple de bloc de sources, selon l'invention ;
  • figures 3b et 3c : deux schémas, en vue de dessous, de deux exemples d'arrangement des accès du bloc de sources de la figure 3a, selon l'invention ;
  • figure 4 : un schéma illustrant un arrangement des trous traversants débouchant sur les faces avant et arrière d'une plaque d'interface structurante, selon l'invention ;
  • figure 5a : un schéma, en vue partielle de dessous, illustrant un exemple de position des barrettes de BFN partiels et les différents groupes d'accès combinés sur une plaque d'interface structurante, selon l'invention ;
  • figure 5b: une vue de détail de deux groupes de sources adjacents partageant deux sources RF avec la combinaison des accès pour la formation de deux faisceaux d'émission et de deux faisceaux de réception, selon l'invention ;
  • figure 6 : un schéma en perspective, d'un exemple d'aménagement des barrettes de BFN partiels, sur la plaque d'interface structurante, selon l'invention.
Other features and advantages of the invention will become clear in the following description given by way of purely illustrative and non-limiting example, with reference to the attached schematic drawings which represent:
  • figure 1 : a diagram, in cross section, of an example of a modular focal array, according to the invention;
  • Figures 2a and 2b two diagrams in perspective and in view from below, illustrating, respectively, an example of RF sources with four accesses, and an example of arrangement of the four accesses, according to the invention;
  • figure 3a : a diagram, in perspective, of an example of source block, according to the invention;
  • Figures 3b and 3c : two diagrams, seen from below, of two examples of arrangement of the accesses of the source block of the figure 3a according to the invention;
  • figure 4 : a diagram illustrating an arrangement of the through holes opening on the front and rear faces of a structuring interface plate, according to the invention;
  • figure 5a : a diagram, in partial view from below, illustrating an example of position of the partial BFN bars and the different access groups combined on a structuring interface plate, according to the invention;
  • figure 5b : a detail view of two groups of adjacent sources sharing two RF sources with the combination of accesses for the formation of two transmit beams and two receive beams, according to the invention;
  • figure 6 : a perspective diagram, of an example of arrangement of the partial BFN bars, on the structuring interface plate, according to the invention.

L'invention concerne une architecture d'antenne fonctionnant à l'émission et à la réception. La formation des faisceaux est donc réalisé dans les deux bandes de fréquence d'émission et de réception. Cependant, pour obtenir un bon recouvrement des faisceaux dans les deux directions de l'espace, il est nécessaire d'utiliser deux antennes dédiées aux deux bandes de fréquence, les deux antennes ayant une architecture identique. La suite de la description est limitée à une seule antenne fonctionnant en émission et en réception.The invention relates to an antenna architecture operating on transmission and reception. The formation of the beams is therefore carried out in the two transmission and reception frequency bands. However, to obtain a good coverage of the beams in the two directions of space, it is necessary to use two antennas dedicated to the two frequency bands, the two antennas having an identical architecture. The remainder of the description is limited to a single antenna operating in transmission and reception.

La figure 1 est un schéma en coupe transversale, illustrant un exemple de réseau focal modulaire, selon l'invention. Le réseau focal comporte une pluralité de blocs de sources 15 (en anglais : cluster sources), une pluralité de sous-réseaux de formation de faisceaux, BFN1, BFN2, BFN3, appelés BFN partiels, et une plaque d'interface structurante 30 couvrant l'ensemble des accès des sources RF. Chaque bloc de sources comporte un sous-ensemble de plusieurs sources radiofréquences RF, comportant des chaînes RF d'émission Tx et de réception Rx complètement intégrées. Tous les blocs de sources 15 comportent un nombre identique de N sources RF, où N est un nombre entier supérieur ou égal à quatre, agencées selon une matrice comportant au moins deux lignes et au moins deux colonnes. A titre d'exemple non limitatif, la figure 3a illustre un bloc de sources comportant huit sources RF agencées en quatre lignes et deux colonnes. Selon l'invention, comme représenté sur les figures 2a et 2b, chaque source RF comporte un cornet rayonnant 10 connecté à une chaîne RF 11 munie de quatre accès d'émission ou de réception Tx1, Tx2, Rx1, Rx2, la chaîne RF pouvant, par exemple, être similaire à celle décrite dans le document FR 2 993 716 . Chaque chaîne RF comporte un transducteur orthomode diplexant OMT et des filtres. La formation de la polarisation circulaire est assurée par des coupleurs et/ou par un polariseur pour les accès de réception Rx. Alternativement, la chaîne RF peut être conçue pour fonctionner en polarisation linéaire. Avantageusement, pour que chaque bloc de sources soit le plus compact possible, les différentes chaînes RF peuvent être fabriquées en deux parties complémentaires, appelées demi-coquilles, par un procédé d'usinage connu, les deux demi-coquilles étant ensuite assemblées entre elles par tout type de liaison connues, classiquement par des vis, ou alternativement, par soudure, ou par collage.The figure 1 is a cross-sectional diagram, illustrating an example of a modular focal array, according to the invention. The focal network comprises a plurality of source blocks, a plurality of beamforming subareas, BFN1, BFN2, BFN3, called partial BFNs, and a structuring interface plate 30 covering all access to RF sources. Each source block has a subset of several RF radio sources, with fully integrated Tx transmit and receive Rx channels. All source blocks 15 comprise an identical number of N RF sources, where N is an integer greater than or equal to four, arranged in a matrix comprising at least two lines and at least two columns. By way of non-limiting example, the figure 3a illustrates a source block with eight RF sources arranged in four rows and two columns. According to the invention, as shown in Figures 2a and 2b each RF source comprises a radiating horn 10 connected to an RF chain 11 provided with four transmission or reception ports Tx1, Tx2, Rx1, Rx2, the RF chain being able, for example, to be similar to that described in the document FR 2,993,716 . Each RF chain has an OMT diplexant orthomode transducer and filters. The formation of the circular polarization is provided by couplers and / or by a polarizer for the Rx receive ports. Alternatively, the RF chain can be designed to operate in linear polarization. Advantageously, so that each source block is as compact as possible, the various RF chains can be manufactured in two complementary parts, called half-shells, by a known machining process, the two half-shells then being assembled together by any type of connection known, conventionally by screws, or alternatively, by welding, or by gluing.

Avantageusement, toutes les chaînes RF intégrées dans un même bloc de sources peuvent être usinées ensembles, les unes à coté des autres, dans des demi-coquilles métalliques communes à toutes les sources RF du bloc de sources. Dans ce cas, l'assemblage d'un bloc de sources consiste à assembler les demi-coquilles deux à deux, puis à empiler les coquilles assemblées dans des couches planaires différentes 16, 17, et enfin, à empiler et assembler des couches planaires additionnelles 18 contenant les coupleurs et les polariseurs axiaux. La fabrication de tous les composants radiofréquences par usinage dans des pièces métalliques communes à toutes les sources RF, procure une très grande robustesse de chaque chaîne RF vis-à-vis des dispersions de performances liées à la fabrication des composants. En effet, tous les composants correspondant à une même bande de fréquence étant localisés dans une même couche physique, tous les chemins électriques dédiés aux deux polarisations de chaque chaîne RF sont symétriques et induisent donc la même dispersion de phase.Advantageously, all RF channels integrated in the same source block can be machined together, next to each other, in metal half-shells common to all RF sources of the source block. In this case, the assembly of a source block consists in assembling the half-shells two by two, then stacking the shells assembled in different planar layers 16, 17, and finally, stacking and assembling additional planar layers 18 containing the couplers and the axial polarizers. The manufacture of all radio frequency components by machining metal parts common to all RF sources, provides a very high robustness of each RF chain vis-à-vis performance dispersions related to the manufacture of components. Indeed, all the components corresponding to the same frequency band being located in the same physical layer, all the electrical paths dedicated to the two polarizations of each RF chain are symmetrical and thus induce the same phase dispersion.

Chaque bloc de sources présente alors l'avantage d'avoir une architecture multicouches planaire comportant un premier étage constitué des éléments rayonnants, par exemple des cornets, un deuxième étage comportant les chaînes RF raccordées aux différents cornets, et trois étages intégrant des coupleurs et des polariseurs axiaux.Each block of sources then has the advantage of having a planar multilayer architecture comprising a first stage consisting of radiating elements, for example turbinators, a second stage comprising the RF chains connected to the different horns, and three stages integrating couplers and couplers. axial polarizers.

Comme représenté sur les deux arrangements illustrés, en vues de dessous, sur les figures 3b et 3c, les quatre accès d'émission Tx1, Tx2 et de réception Rx1, Rx2 de chaque source RF sont aménagés côte à côte sur la face arrière du bloc de sources 15. Les accès correspondant à différentes sources RF sont orientés parallèlement entre eux et sont agencés selon une matrice, dans le même arrangement de lignes et de colonnes que les cornets rayonnants des sources RF correspondantes, par exemple quatre lignes et deux colonnes dans le cas des figures 3a, 3b et 3c. La seule différence entre les deux arrangements représentés sur les figures 3b et 3c concerne la direction d'orientation des accès qui peut être réalisée selon une direction X correspondant à la direction des lignes, ou selon une direction Y correspondant à la direction des colonnes, les directions X et Y pouvant être orthogonales dans le cas d'une maille carrée comme représenté sur les figures 3b et 3c, ou être orientées à 30° ou à 60° dans le cas d'une maille hexagonale comme représenté sur les figures 5a et 5b. Dans l'arrangement représenté sur la figure 3b, dans chaque ligne, pour toutes les sources RF, les accès correspondant à la même fréquence et à la même polarisation sont disposés dans le même ordre et sont donc alignés entre eux. Dans l'arrangement représenté sur la figure 3c, dans chaque colonne, pour toutes les sources RF, les accès correspondant à la même fréquence et à la même polarisation sont disposés dans le même ordre et sont donc alignés entre eux. Bien entendu, les dénominations « ligne » et « colonne » sont arbitraires et peuvent être inversées sans que l'invention ne soit modifiée.As depicted on the two illustrated schemes, in bottom views, on the Figures 3b and 3c the four transmission accesses Tx1, Tx2 and reception Rx1, Rx2 of each RF source are arranged side by side on the rear face of the source block 15. The accesses corresponding to different RF sources are oriented parallel to each other and are arranged according to a matrix, in the same arrangement of rows and columns as the radiating horns of the corresponding RF sources, for example four rows and two columns in the case of Figures 3a, 3b and 3c . The only difference between the two arrangements represented on the Figures 3b and 3c relates to the direction of access that can be made in a direction X corresponding to the direction of the lines, or in a direction Y corresponding to the direction of the columns, the X and Y directions can be orthogonal in the case of a mesh square as depicted on the Figures 3b and 3c , or be oriented at 30 ° or 60 ° in the case of a hexagonal mesh as shown in figures 5a and 5b . In the arrangement shown on the figure 3b in each line, for all RF sources, the accesses corresponding to the same frequency and to the same polarization are arranged in the same order and are therefore aligned with each other. In the arrangement shown on the figure 3c in each column, for all RF sources, the accesses corresponding to the same frequency and to the same polarization are arranged in the same order and are therefore aligned with each other. Of course, the denominations "line" and "column" are arbitrary and can be inverted without the invention being modified.

Les différents accès des sources RF intégrées dans chaque bloc de sources 15 sont destinés à être raccordés à des guides d'ondes traversants 31 correspondants, ouverts à leurs deux extrémités opposées, aménagés dans la plaque d'interface structurante 30 commune à tous les blocs de sources 15 du réseau focal de l'antenne. La plaque d'interface structurante 30 a des dimensions qui correspondent aux dimensions dudit réseau focal et couvre donc la totalité de la surface du réseau focal. La plaque d'interface structurante 30 comporte au moins autant de guides d'ondes traversants 31 qu'il y a d'accès de sources RF à raccorder, les guides d'onde traversants débouchant sur deux faces opposées, respectivement avant et arrière, de la plaque d'interface structurante. La disposition des guides d'onde traversants est identique à la disposition en matrice des accès des blocs de sources comme représenté sur la figure 4. Ainsi, tous les blocs de sources 15 sont montés côte à côte sur une face avant de la plaque d'interface structurante, sans aucun recouvrement entre eux, et tous les accès des sources RF intégrées dans les blocs de sources sont connectés à des guides d'onde traversants respectifs intégrés dans la plaque d'interface structurante.The different accesses of the integrated RF sources in each source block 15 are intended to be connected to traversing waveguides 31 corresponding, open at their two opposite ends, arranged in the structuring interface plate 30 common to all the source blocks 15 of the focal network of the antenna. The structuring interface plate 30 has dimensions that correspond to the dimensions of said focal network and therefore covers the entire surface of the focal network. The structuring interface plate 30 comprises at least as many passing waveguides 31 as there is access to RF sources to be connected, the traversing waveguides opening on two opposite faces, respectively front and rear, of the structuring interface plate. The arrangement of the traversing waveguides is identical to the access block layout of the source blocks as shown in FIG. figure 4 . Thus, all the source blocks 15 are mounted side-by-side on a front face of the structuring interface plate, without any overlap between them, and all the accesses of the RF sources integrated in the source blocks are connected to waveguides. respective through-wavelengths integrated in the structuring interface plate.

Comme représenté sur les figures 5a et 5b, chaque faisceau est élaboré par un groupe 20, 21, 22 de quatre sources RF du réseau focal, les quatre sources RF étant disposées selon une matrice à deux lignes et deux colonnes, en combinant, par l'intermédiaire des guides d'onde traversants 31 de la plaque d'interface 30, les accès de même polarisation et de même fréquence de chacune des quatre sources RF. Dans chaque groupe de quatre sources RF, un seul des accès d'émission, par exemple Tx1, et un seul des accès de réception, par exemple Rx1, de chaque source RF sont combinés aux accès correspondants des trois autres sources RF du groupe par des combineurs de puissance dédiés 23a, 23b. Ainsi, avec chaque groupe de quatre sources RF sont élaborés un faisceau d'émission et un faisceau de réception. Chaque source RF comportant deux accès d'émission et deux accès de réception, il reste donc un accès d'émission Tx2 et un accès de réception Rx2 disponibles qui peuvent être utilisés pour former un autre faisceau d'émission et un autre faisceau de réception avec des sources RF d'un autre groupe adjacent.As shown on figures 5a and 5b each beam is elaborated by a group 20, 21, 22 of four RF sources of the focal network, the four RF sources being arranged in a two-line and two-column matrix, by combining, via the passing waveguides 31 of the interface plate 30, the access of the same polarization and the same frequency of each of the four RF sources. In each group of four RF sources, only one of the transmission ports, for example Tx1, and only one of the reception ports, for example Rx1, of each RF source are combined with the corresponding accesses of the other three RF sources of the group by dedicated power combiners 23a, 23b. Thus, with each group of four RF sources are developed a transmission beam and a receiving beam. Since each RF source has two transmit ports and two receive ports, there remains one available Tx2 transmit port and one Rx2 receive port that can be used to form another transmit beam and another receive beam with RF sources from another adjacent group.

Deux faisceaux adjacents fonctionnant dans des polarisations orthogonales sont élaborés par deux groupes de sources RF adjacents, constitués chacun de quatre sources RF. Les accès combinés dans les deux groupes adjacents 20, 21 ont la même fréquence mais des polarisations différentes. Pour cela, en émission et en réception, le deuxième accès disponible est combiné avec des accès correspondants d'un groupe de quatre sources RF adjacents. Selon une direction du réseau focal, par exemple selon la direction X, les deux groupes adjacents 20, 21 comportent deux sources en commun et partagent donc deux sources RF parmi les quatre. Dans l'autre direction, par exemple la direction Y, aucune source RF n'est partagée entre les groupes de sources adjacents 20, 22. La réutilisation de deux sources RF parmi les quatre est donc réalisée selon une seule direction du réseau focal.Two adjacent beams operating in orthogonal polarizations are developed by two groups of adjacent RF sources, each consisting of four RF sources. The combined accesses in the two adjacent groups 20, 21 have the same frequency but polarizations different. For this, in transmission and reception, the second available access is combined with corresponding accesses of a group of four adjacent RF sources. According to a direction of the focal network, for example in the X direction, the two adjacent groups 20, 21 have two sources in common and therefore share two RF sources among the four. In the other direction, for example the Y direction, no RF source is shared between the adjacent source groups 20, 22. The reuse of two RF sources among the four is therefore performed in a single direction of the focal network.

Comme il n'y a un partage de sources que dans une seule direction du réseau focal, la formation des différents faisceaux peut être réalisée en utilisant des BFN partiels linéaires, indépendants et sans aucun recouvrement entre eux, chaque BFN partiel, BFN1, BFN2, BFN3, étant dédié la formation d'une ligne de faisceaux. Les BFN partiels s'étendent selon la direction du réseau focal correspondant à la direction où il y a un partage de sources entre les groupes adjacents, c'est-à-dire selon la direction X dans notre exemple. Chaque BFN partiel peut alors être fabriqué sous une forme modulaire, appelée barrette de BFN, chaque barrette de BFN comportant tous les combineurs de puissance 23a, 23b nécessaires à la combinaison des accès des sources RF, quatre par quatre, pour la formation d'une ligne de faisceaux. La barrette de BFN s'étend parallèlement aux lignes d'accès à combiner, a une largeur correspondant à la largeur de deux colonnes d'accès du réseau focal et a une longueur correspondant à la longueur d'une ligne du réseau focal. Le réseau focal comporte un BFN partiel par ligne de faisceaux à former. Chaque barrette de BFN comporte une face avant munie de deux lignes d'accès d'entrée arrangés selon une matrice identique à celle de deux lignes de guides d'onde traversants 31 de la plaque d'interface 30 structurante et comporte une face arrière munie de deux accès de sortie de faisceau, respectivement d'émission et de réception, par groupe de quatre sources RF. Ainsi, comme représenté sur le schéma de la figure 6, toutes les barrettes de BFN partiels, BFN1, BFN2, BFN3, sont montées côte à côte sur une face arrière de la plaque d'interface structurante 30, sans aucun recouvrement entre elles, et tous les accès d'entrée des BFN partiels sont connectés à des guides d'onde traversants respectifs intégrés dans la plaque d'interface structurante. Comme chaque guide d'onde traversant est connecté à un accès d'une source RF appartenant à un bloc de sources 15 monté sur la face avant de la plaque d'interface structurante 30, les accès d'entrée de chaque BFN partiel sont reliés à des accès respectifs des sources RF intégrées dans les blocs de sources par l'intermédiaire des guides d'onde traversants de la plaque d'interface structurante. A la périphérie du réseau focal, il peut y avoir certains guides d'onde traversants 19 disponibles qui sont raccordés à des accès des sources RF mais qui ne sont pas utilisés pour la formation des faisceaux et donc non connectés aux accès d'un BFN partiel. Dans ce cas, pour absorber l'énergie RF rayonnée par les accès des sources RF, non utilisés, un matériau absorbant est inséré localement dans les guides d'onde traversants disponibles de la plaque d'interface structurante auxquels sont raccordés les accès non utilisés. Avantageusement, le matériau absorbant contient du carbone, tel que par exemple du carbure de silicium.Since there is a sharing of sources only in one direction of the focal network, the formation of the different beams can be achieved by using linear partial BFNs, independent and without any overlap between them, each partial BFN, BFN1, BFN2, BFN3, being dedicated the formation of a beam line. The partial BFNs extend in the direction of the focal network corresponding to the direction where there is a sharing of sources between the adjacent groups, that is to say in the X direction in our example. Each partial BFN can then be manufactured in a modular form, called a BFN strip, each BFN strip including all the power combiners 23a, 23b needed to combine the RF source accesses, four by four, for the formation of a line of beams. The BFN strip extends parallel to the access lines to be combined, has a width corresponding to the width of two access columns of the focal network and has a length corresponding to the length of a line of the focal network. The focal array comprises a partial BFN per line of beams to be formed. Each strip of BFN comprises a front face provided with two input access lines arranged in a matrix identical to that of two lines of crossing waveguides 31 of the interface plate 30 structuring and comprises a rear face provided with two beam output ports, respectively transmission and reception, group of four RF sources. Thus, as shown in the diagram of the figure 6 , all the partial BFN bars, BFN1, BFN2, BFN3, are mounted side by side on a rear face of the structuring interface plate 30, without any overlap between them, and all the input ports of the partial BFNs are connected to respective through waveguides integrated in the structuring interface plate. Like every waveguide through is connected to an access of an RF source belonging to a source block 15 mounted on the front face of the structuring interface plate 30, the input ports of each partial BFN are connected to respective accesses of the RF sources integrated in the source blocks via the traversing waveguides of the structuring interface plate. At the periphery of the focal network, there may be some available waveguides 19 which are connected to accesses of the RF sources but which are not used for the formation of the beams and thus not connected to the accesses of a partial BFN . In this case, to absorb the RF energy radiated by the accesses of the RF sources, unused, an absorbent material is inserted locally in the available through waveguides of the structuring interface plate to which are connected the unused access. Advantageously, the absorbent material contains carbon, such as, for example, silicon carbide.

Cette architecture d'antenne ne permet de réutiliser les sources radiofréquence que dans une seule dimension de l'espace et nécessite l'utilisation d'une deuxième antenne identique pour obtenir un bon recouvrement des faisceaux dans les deux dimensions de l'espace. Cette architecture d'antenne est donc particulièrement simple puisque deux faisceaux adjacents sont réalisés par des combinaisons d'accès différents, sans utilisation de coupleurs, ce qui permet l'utilisation de combineurs de puissance indépendants dédiés à la formation d'un seul faisceau.This antenna architecture makes it possible to reuse radiofrequency sources in only one dimension of the space and requires the use of a second identical antenna to obtain a good overlap of the beams in the two dimensions of the space. This antenna architecture is therefore particularly simple since two adjacent beams are made by different access combinations, without using couplers, which allows the use of independent power combiners dedicated to the formation of a single beam.

La plaque d'interface structurante assure le support, l'assemblage et les interconnexions entre tous les blocs de sources et tous les BFN partiels sur un plan de joint unique et permet un total découplage entre les différentes sources RF intégrées dans les blocs de sources élémentaires montés sur sa face avant et les différents BFN partiels montés sur sa face arrière. Contrairement aux architectures d'antenne classiques, le nombre de chaînes RF intégrées dans chaque bloc de sources n'est pas figé et peut être adapté à volonté en fonction de la forme de la couverture à réaliser. Par ailleurs, il est possible d'incorporer des guides d'onde traversants torsadés (en anglais : twisted) dans la plaque d'interface structurante. La plaque d'interface structurante permet alors de connecter des chaînes RF et des BFN ayant des guides d'onde de sections différentes ainsi que des guides d'onde ayant des orientations différentes, ce qui permet de simplifier la conception des BFN. L'orientation des accès des chaînes RF étant identique pour toutes les sources RF, cela permet de faciliter le routage des combineurs de puissance au sein des BFN dans un plan parallèle au réseau focal, sans recouvrement entre les BFN et de diminuer l'encombrement de chaque source RF et la taille de la maille du réseau focal.The structuring interface plate provides support, assembly and interconnections between all source blocks and all partial BFNs on a single joint plane and allows a total decoupling between the different RF sources integrated in the elementary source blocks mounted on its front face and the various partial BFN mounted on its rear face. Unlike conventional antenna architectures, the number of integrated RF channels in each source block is not fixed and can be adapted as desired depending on the shape of the cover to be made. Moreover, it is possible to incorporate twisted through waveguides (in English: twisted) in the structuring interface plate. The structuring interface plate makes it possible to connect RF channels and BFN having waveguides of different sections as well as waveguides with different orientations, which simplifies the design of BFN. The orientation of the accesses of the RF chains being identical for all the RF sources, it makes it possible to facilitate the routing of the power combiners within the BFNs in a plane parallel to the focal network, without overlap between the BFN and to reduce the congestion of each RF source and mesh size of the focal network.

Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with particular embodiments, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

Claims (5)

Antenne à plusieurs sources par faisceau comportant un réseau focal équipé d'une pluralité de sources radiofréquences RF et d'un réseau de formation de faisceaux BFN, chaque source RF comportant un cornet rayonnant (10) relié à une chaîne RF (11) d'émission et de réception, deux accès d'émission (Tx1, Tx2) fonctionnant respectivement dans deux polarisations différentes orthogonales entre elles et deux accès de réception (Rx1, Rx2) fonctionnant respectivement dans lesdites deux polarisations différentes, le nombre de sources RF par faisceau étant égal à quatre, caractérisée en ce que le réseau focal et le réseau de formation de faisceaux sont modulaires, les sources RF étant regroupées en sous-ensembles respectivement intégrés dans différents blocs de sources (15) indépendants les uns des autres, comportant chacun au moins quatre sources RF et le réseau de formation de faisceaux BFN comportant plusieurs BFN partiels linéaires indépendants (BFN1, BFN2, BFN3), appelés barrettes de BFN, et en ce qu'elle comporte en outre une plaque d'interface (30) structurante unique comportant une face avant sur laquelle sont montés les différents blocs de sources (15), disposés les uns à côté des autres, et une face arrière sur laquelle les barrettes de BFN sont montées côte à côte, la plaque structurante comportant une pluralité de guides d'onde traversants (31) débouchant sur les deux faces avant et arrière auxquels sont respectivement raccordés d'une part les différents accès des sources RF de chaque bloc de sources et d'autre part, des accès correspondants des BFN partiels linéaires, les accès correspondants des sources RF et des BFN partiels étant reliés entre eux par l'intermédiaire des guides d'onde traversants (31) de la plaque d'interface (30).A plurality of beam source antennas having a focal array provided with a plurality of RF radio frequency sources and a BFN beam forming network, each RF source having a radiating horn (10) connected to an RF chain (11) of transmission and reception, two transmission ports (Tx1, Tx2) respectively operating in two different polarizations orthogonal to each other and two reception ports (Rx1, Rx2) respectively operating in said two different polarizations, the number of RF sources per beam being equal to four, characterized in that the focal grating and the beam forming network are modular, the RF sources being grouped into subsets respectively integrated in different independently independent blocks of sources (15), each comprising at least four RF sources and the BFN beam forming network having a plurality of independent linear partial BFNs (BFN1, BFN2, B FN3), called BFN strips, and in that it further comprises a single structuring interface plate (30) having a front face on which are mounted the different source blocks (15) arranged next to each other. others, and a rear face on which the bars of BFN are mounted side by side, the structuring plate having a plurality of traversing waveguides (31) opening on the two front and rear faces which are respectively connected on the one hand the different accesses of the RF sources of each source block and secondly, corresponding accesses of the linear partial BFNs, the corresponding accesses of the RF sources and the partial BFNs being connected to one another via the traversing waveguides (31). ) of the interface plate (30). Antenne selon la revendication 1, caractérisée en ce que chaque bloc de sources (15) est constitué d'un empilement de plusieurs couches planaires (16, 17, 18), chaque couche planaire étant constituée de deux demi-coquilles métalliques complémentaires assemblées entre elles, les deux demi-coquilles de chaque couche planaire intégrant des composants radiofréquences des chaînes RF (11) de toutes les sources RF du bloc de sources, chaque chaîne RF étant raccordée à un cornet rayonnant (10) correspondant.Antenna according to claim 1, characterized in that each source block (15) consists of a stack of several planar layers (16, 17, 18), each planar layer consisting of two complementary metal half-shells assembled together. , the two half-shells of each planar layer integrating radiofrequency components of RF channels (11) of all RF sources of the source block, each RF chain being connected to a corresponding radiating horn (10). Antenne selon la revendication 2, caractérisée en ce que les guides d'ondes traversants (31) de la plaque d'interface (30) sont respectivement disposés selon une matrice à plusieurs lignes et plusieurs colonnes et en ce que les accès d'émission et de réception des chaînes RF (11) ont tous la même orientation.Antenna according to Claim 2, characterized in that the traversing waveguides (31) of the interface plate (30) are respectively arranged in a multi-line matrix and in a plurality of columns and in that the transmission and RF channel reception (11) all have the same orientation. Antenne selon l'une des revendications précédentes, caractérisée en ce que les sources RF adjacentes dans le réseau focal ont des accès d'émission et des accès de réception respectivement reliés quatre par quatre par des combineurs de puissance (23a, 23b) intégrés dans les barrettes de BFN (BFN1, BFN2, BFN3), deux groupes (20, 21) de quatre sources consécutifs dans le réseau focal partageant deux sources en commun selon une seule direction du réseau focal et en ce que les barrettes de BFN s'étendent parallèlement à ladite direction du réseau focal correspondant au partage de sources.Antenna according to one of the preceding claims, characterized in that the adjacent RF sources in the focal network have transmission ports and reception ports respectively connected four by four by power combiners (23a, 23b) integrated in the BFN arrays (BFN1, BFN2, BFN3), two groups (20, 21) of four consecutive sources in the focal network sharing two sources in common in only one direction of the focal network and in that the BFN arrays extend in parallel to said direction of the focal network corresponding to the sharing of sources. Antenne selon la revendication 4, caractérisée en ce que la plaque d'interface (30) comporte, en périphérie du réseau focal, des guides d'onde traversants disponibles (19), raccordés à des accès d'émission et de réception de sources RF mais non connectés à des accès d'une barrette de BFN, lesdits guides d'onde traversants disponibles (19) comportant un matériau absorbant contenant du carbone.Antenna according to claim 4, characterized in that the interface plate (30) comprises, on the periphery of the focal grating, available through waveguides (19), connected to RF source transmission and reception ports. but not connected to accesses of a BFN strip, said available through waveguides (19) having a carbon-containing absorbent material.
EP16166576.5A 2015-04-24 2016-04-22 Antenna architecture with multiple sources per beam and comprising a modular focal network Active EP3086405B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1500871A FR3035548B1 (en) 2015-04-24 2015-04-24 MULTI-SOURCE ANTENNA ARCHITECTURE BY BEAM AND COMPRISING A MODULAR FOCAL NETWORK

Publications (2)

Publication Number Publication Date
EP3086405A1 true EP3086405A1 (en) 2016-10-26
EP3086405B1 EP3086405B1 (en) 2018-03-07

Family

ID=54065915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16166576.5A Active EP3086405B1 (en) 2015-04-24 2016-04-22 Antenna architecture with multiple sources per beam and comprising a modular focal network

Country Status (5)

Country Link
US (1) US10135144B2 (en)
EP (1) EP3086405B1 (en)
CA (1) CA2928165C (en)
ES (1) ES2670321T3 (en)
FR (1) FR3035548B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340603B2 (en) * 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
FR3061364B1 (en) 2016-12-22 2020-06-19 Thales MECHANICAL ARCHITECTURE OF A BEAM FORMER FOR SINGLE-SOURCE SINGLE-SOURCE MFPB ANTENNA MFPB ACCORDING TO TWO SPACE DIMENSIONS AND METHOD FOR PRODUCING THE BEAM FORMER
US10379198B2 (en) 2017-04-06 2019-08-13 International Business Machines Corporation Determining positions of transducers for receiving and/or transmitting wave signals
CN112164883B (en) * 2020-08-21 2022-09-23 西安空间无线电技术研究所 Layered feed structure for maintaining pressure between sub-layers in temperature-varying environment
CN112164885B (en) * 2020-08-24 2022-10-14 西安空间无线电技术研究所 Amplitude-phase optimization design method based on multi-feed source synthesis network
CN113381204B (en) * 2021-05-19 2023-01-06 北京交通大学 Novel planar array antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764738A1 (en) * 1997-06-13 1998-12-18 Thomson Csf INTEGRATED TRANSMISSION OR RECEPTION DEVICE
US20090315796A1 (en) * 2008-06-18 2009-12-24 Mitsubishi Electric Corporation Antenna apparatus, radar and waveguide
FR2939971A1 (en) 2008-12-16 2010-06-18 Thales Sa COMPACT EXCITATION ASSEMBLY FOR GENERATING CIRCULAR POLARIZATION IN AN ANTENNA AND METHOD FOR PRODUCING SUCH AN EXCITATION ASSEMBLY
US20140022138A1 (en) * 2012-07-20 2014-01-23 Thales Multibeam Transmitting and Receiving Antenna with Multiple Feeds Per Beam, System of Antennas and Satellite Telecommunication System Containing Such an Antenna
EP2822095A1 (en) * 2013-06-24 2015-01-07 Delphi Technologies, Inc. Antenna with fifty percent overlapped subarrays

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0701087D0 (en) * 2007-01-19 2007-02-28 Plasma Antennas Ltd A displaced feed parallel plate antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764738A1 (en) * 1997-06-13 1998-12-18 Thomson Csf INTEGRATED TRANSMISSION OR RECEPTION DEVICE
US20090315796A1 (en) * 2008-06-18 2009-12-24 Mitsubishi Electric Corporation Antenna apparatus, radar and waveguide
FR2939971A1 (en) 2008-12-16 2010-06-18 Thales Sa COMPACT EXCITATION ASSEMBLY FOR GENERATING CIRCULAR POLARIZATION IN AN ANTENNA AND METHOD FOR PRODUCING SUCH AN EXCITATION ASSEMBLY
US20140022138A1 (en) * 2012-07-20 2014-01-23 Thales Multibeam Transmitting and Receiving Antenna with Multiple Feeds Per Beam, System of Antennas and Satellite Telecommunication System Containing Such an Antenna
FR2993716A1 (en) 2012-07-20 2014-01-24 Thales Sa MULTIFUNCTIONAL MULTI-SOURCE SENDING AND RECEIVING ANTENNA BY BEAM, ANTENNA SYSTEM AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA
EP2822095A1 (en) * 2013-06-24 2015-01-07 Delphi Technologies, Inc. Antenna with fifty percent overlapped subarrays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Reflexionsfreie Abschlusswiderstände und Dämpfungsglieder", TASCHENBUCH DER HOCHFREQUENZTECHNIK,, 1 January 1968 (1968-01-01), pages 443 - 445, XP001367596 *

Also Published As

Publication number Publication date
FR3035548A1 (en) 2016-10-28
ES2670321T3 (en) 2018-05-30
EP3086405B1 (en) 2018-03-07
US10135144B2 (en) 2018-11-20
CA2928165A1 (en) 2016-10-24
US20160315391A1 (en) 2016-10-27
CA2928165C (en) 2023-08-15
FR3035548B1 (en) 2017-05-05

Similar Documents

Publication Publication Date Title
EP3086405B1 (en) Antenna architecture with multiple sources per beam and comprising a modular focal network
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP2807702B1 (en) Two dimensional multibeam former, antenna using such and satellite telecommunication system.
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP2869396B1 (en) Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network
EP2688142B1 (en) Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna
CA2821242C (en) Multi-beam antenna and antennae system including compact sources and satellite telecommunication system including at least one such antenna
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
EP2664030A1 (en) Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas
EP3176875A1 (en) Active antenna architecture with reconfigurable hybrid beam formation
FR3105611A1 (en) Dual polarized antenna
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
EP3340369B1 (en) Architecture for deployable source block, compact antenna and satellite comprising such an architecture
EP3340386B1 (en) Mechanical architecture of a beam former for single-reflector mfpb antenna with sharing of sources in two spatial dimensions, and process for producing the beam former
EP2764577A1 (en) Multibeam source
FR3053166A1 (en) MULTI-BEAM SOURCE FOR MULTI-BEAM ANTENNA
FR2952759A1 (en) Reflector focal network and antenna for use in satellite to cover chosen geographical area of geostationary orbit, has sub-reflector misaligning and/or deforming beam from selected sources to produce spot near area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170411

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 3/12 20060101ALN20170814BHEP

Ipc: H01Q 21/00 20060101ALI20170814BHEP

Ipc: H01Q 21/06 20060101ALI20170814BHEP

Ipc: H01Q 1/28 20060101AFI20170814BHEP

Ipc: H01Q 25/00 20060101ALN20170814BHEP

INTG Intention to grant announced

Effective date: 20170919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 977484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016001795

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2670321

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180530

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180307

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 977484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016001795

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180422

26N No opposition filed

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230328

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 8

Ref country code: ES

Payment date: 20230512

Year of fee payment: 8

Ref country code: DE

Payment date: 20230314

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240314

Year of fee payment: 9