EP3176875A1 - Active antenna architecture with reconfigurable hybrid beam formation - Google Patents

Active antenna architecture with reconfigurable hybrid beam formation Download PDF

Info

Publication number
EP3176875A1
EP3176875A1 EP16199488.4A EP16199488A EP3176875A1 EP 3176875 A1 EP3176875 A1 EP 3176875A1 EP 16199488 A EP16199488 A EP 16199488A EP 3176875 A1 EP3176875 A1 EP 3176875A1
Authority
EP
European Patent Office
Prior art keywords
quasi
beamformer
optical
ports
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16199488.4A
Other languages
German (de)
French (fr)
Other versions
EP3176875B1 (en
Inventor
Hervé Legay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3176875A1 publication Critical patent/EP3176875A1/en
Application granted granted Critical
Publication of EP3176875B1 publication Critical patent/EP3176875B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0033Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective used for beam splitting or combining, e.g. acting as a quasi-optical multiplexer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • H01Q25/008Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device lens fed multibeam arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/138Parallel-plate feeds, e.g. pill-box, cheese aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays

Definitions

  • the present invention relates to a reconfigurable hybrid beam-forming active antenna architecture.
  • the antenna can be applied to the terrestrial or space domain and in particular in the field of satellite telecommunications. In particular, it can be mounted on a terrestrial terminal or on board a satellite.
  • the mode of operation of the beamformers is assumed in reception, but a similar description could be formulated in transmission.
  • An electron beam-forming reconfigurable active antenna has a plurality of radiating elements, active chains for processing the signals received by the radiating elements, and a beamformer that recombines the received signals coherently in different directions to form different beams. .
  • Each radiating element is connected to the beamformer via a dedicated active channel.
  • the processing carried out by each active channel comprises a filtering and an amplification of the received signals.
  • the processing carried out by each active chain further comprises a transposition in frequency. Treatments may also include scanning if the beam formation is performed on digitized signals.
  • a planar radiofrequency beamformer divides the signals received by each radiating element E1, E2,..., Ei,..., EN, into M sub-signals which are conveyed in M different channels, then applies to each of the M sub-signals, a phase shift and a controllable value attenuation before recombining the sub-signals from the N radiating elements to form M different beams S1, S2, ..., SM, also called spots.
  • the radiofrequency planar beamformer requires crossings between the channels carrying the sub-signals, the number of crossings being equal to the product between the number M of beams and the number N of radiating elements. Consequently, the larger the number of beams to be made, the greater the mass, the size and the complexity of this beamformer. This beamformer therefore quickly becomes impractical when a large number of beams have to be made to cover a wide angular sector.
  • planar quasi-optical beamformers using electromagnetic propagation of radiofrequency waves from several input power sources, for example internal horns, according to a propagation mode in general TEM (in English). : Transverse Electric Magnetic) between two parallel metal plates (in English: parallel plates).
  • the focusing and the collimation of the beams can be carried out by a lens, for example an optical lens as described in particular in the documents US 3170158 and US 5936588 which illustrate the case of a Rotman lens, the lens being inserted in the path of propagation of radio waves, between the two parallel metal plates.
  • lenses can be used, these lenses being essentially phase correctors and allowing in most cases to convert one or more cylindrical waves emitted by the sources into one or more plane waves propagating in the waveguide.
  • wave with parallel metal plates The lens may comprise two opposite edges with parabolic profiles, respectively input and output.
  • the lens may be a dielectric lens, or a gradient index lens, or any other type of lens.
  • this technology uses parallel plate waveguides, As an alternative to using a plurality of discrete radiators aligned side by side, it is possible to use a continuous linear radiating aperture at the output of each parallel plate waveguide.
  • linear radiating apertures which are not spatially quantized, have much higher performances compared to the linear arrays of several radiating elements, for the depointed beams, because of the absence of quantization, and in bandwidth because of the absence of resonant propagation modes.
  • a quasi-optical beamformer is much simpler than traditional waveguide beamformers because it has no couplers or crossover devices and allows for multiple beams that cover a wide angular sector without no aberration. In addition, their bandwidth is very important and they can operate both in an Rx transmit band and in a Tx receive band.
  • known planar beam formers are only able to form beams in one dimension of space, in a direction parallel to the plane of the metal plates. To form beams according to two dimensions of the space, in two directions, respectively parallel and orthogonal to the plane of the metal plates, it is necessary to combine orthogonally between them, two sets of beam forming, each beam forming assembly consisting of a stack of several layers of unidirectional beamformers.
  • connection interfaces in particular input / output connectors
  • connection interfaces in particular input / output connectors
  • the object of the invention is to provide a novel reconfigurable active antenna architecture comprising a simpler electronic beamformator than the known electron beam formers, making it possible to reduce the number of signals to be controlled in phase and amplitude, to reduce the number of signals to recombine electronically for each beam, and to make a large number of beams from a large number of radiating elements.
  • the antenna architecture may further include switches capable of selecting, in each quasi-optical beamformer, a port among all the available beam access ports, each switch having an input connected to a transmission channel. phase and amplitude control of the electron beamformer and several outputs respectively connected to a plurality of respective beam access ports of the corresponding quasi-optical beamformer.
  • the beam access ports may consist of a first row of transmission ports arranged side by side along the focal axis of the lens and a second row of reception ports arranged side by side. along the focal axis of the lens, the first and second rows being stacked one above the other, the transmitting ports and the receiving ports being distinct and of different sizes, each port of emission, respectively receiving, being provided with a respective filter centered on the transmission frequency band, respectively receiving.
  • the linear radiating openings of the different quasi-optical beam formers can be networked to a single, partially reflective radome, common to all quasi-optical beamformers, the radome having a first partially reflecting surface sized for the sub-reflector. receiving frequency band and a second partially reflecting surface sized for the transmitting frequency subband, the first and second partially reflecting surfaces being respectively disposed at the output of the linear radiating apertures at a distance corresponding to a wavelength each of the two transmitting and receiving frequency sub-bands.
  • the hybrid beamformer may comprise a quasi-optical beamformer common to the Tx transmission and the Rx reception, two separate specific electron beam formers, respectively dedicated to transmission and reception, and switches having different positions respectively capable of selecting one of a plurality of beam access ports, each switch selectively connecting, depending on its position, a phase and amplitude control chain of the electron beamformer dedicated to the transmission, respectively to the receiving, at one of the transmitting or receiving ports, each quasi-optical beamformer.
  • the beam access ports selected by the switches in all stacked quasi-optical beam formers and connected to the same electron beam trainer, can have an identical direction of orientation and cover an identical geographic area.
  • a first portion of the beam access ports, selected by the switches in the stacked quasi-optical beamformers, may cover a first geographic area and a second portion of the beam access ports, selected by the switches in stacked quasi-optical beam trainers may cover a second geographic area adjacent to the first geographic area.
  • the combination device may consist of a combiner / divider comprising Nx inputs respectively connected to the Nx phase and amplitude control strings and a beam output.
  • the combination device may comprise a shunt for splitting each phase and amplitude control chain into several different channels, each channel comprising a dedicated phase shifter.
  • the combination device may consist of a quasi-optical beamformator in PCB technology comprising Nx inputs respectively connected to Nx channels of phase and amplitude control and several beam outputs.
  • the novel reconfigurable beam forming active antenna architecture comprises a hybrid beamformer consisting of at least two planar quasi-optical beamformers stacked one above the other, and at least one planar electron beamformer connected to a respective port of each planar quasi-optical beamformer.
  • Each quasi-optical beamformer is capable of forming beams in a first direction of the space parallel to the plane of the quasi-optical beamformer.
  • the electron beamformer is able to form the beams in a second direction of space, orthogonal to the first direction.
  • the hybrid beamformer includes Ny quasi-optical beamformers 101, 102, ..., 10i, ..., 10Ny, stacked one above the other, and Nx electron beam formers 201, ... , 20Nx, where Nx and Ny are integers greater than one.
  • Ny is equal to four and on the figure 5 , Nx and Ny are equal to two.
  • each quasi-optical beamformer comprises a parallel plate guide (waveguide 10) consisting of two parallel metal plates 11, 12, spaced apart from one another, a lens 13 integrated in the waveguide 10, between the two metal plates, My internal horns 141, 142, ..., 14k, ... 14My, distributed periodically side by side along a focal axis of the lens 13, where My is greater than or equal to 2, My beam access ports 161, 162, ..., 16k, ... 16My, respectively associated with My internal horns and connected to a first end of the waveguide 10 and a linear radiating aperture 15 arranged at a second end of the waveguide 10.
  • waveguide 10 parallel plate guide
  • the linear aperture 15 may be associated with a linear horn or a radome common to all the quasi-optical beamformers of the hybrid beamformer.
  • the quasi-optical beamforming apparatus makes it possible to focus, in the first direction of the space, the signals received by the linear radiating aperture 15, on the My beam access ports 161, 162, ..., 16k, ... 16My, depending on the direction of arrival of these received signals.
  • the first direction of the space is parallel to the plane of the metal plates 11, 12 of the waveguides of the quasi-optical beam formers.
  • the lens 13 may be an optical lens distributed over a large part of the volume of the parallel plate waveguide 10, such as, for example, of the Rotman lens type or of the index gradient lens type, for example a Luneberg lens. .
  • the lens 13 may be a delay gradient metal lens located in a limited area of the parallel plate waveguide, as shown for example by the lens 13 illustrated in FIG. figure 2 and on the figure 4 , which extends transversely in an area of the waveguide located in front of the linear aperture 15.
  • the quasi-optical beamformer may furthermore comprise a focusing device, for example a parabolic reflector, integrated transversely into the waveguide. wave 10, between the two parallel plates.
  • the quasi-optical beamformer has a structure conventionally called pillbox.
  • Each electron beam trainer 201,..., 20Nx comprises Ny input ports respectively connected to Ny quasi-optical beamformers 101, 102,..., 10i,..., 10Ny, each electron beam formatter 201 , ..., 20Nx having Mx outputs capable of delivering Mx different beams, where Mx is greater than or equal to one.
  • Each electron beamformer 201, ..., 20Nx is connected to a selected beam access port of each of the quasi-optical beamformers Ny and applies to the signals from the corresponding beam access ports Ny a phase and amplitude control, then electronically recombines the Ny signals delivered by said beam access port of each of the Ny quasi-optical beamformers to form Mx beams according to the second direction of the orthogonal space in the first direction .
  • each of the My beam access ports of the quasi-optical beam forming trainers and the N x electron beam trainers it is necessary that the number of beam access ports My of each beam trainer quasi -optic equals the number Nx of electron beam trainers.
  • the electron beam formation is reconfigurable by changing the phase and amplitude law applied to each beam access port of the quasi-optical beamformers.
  • the electron beam formers allow reconfiguration, in the second direction of space, of the beams formed in the first direction by quasi-optical beamformers.
  • each electron beamformer 201, ..., 20Nx comprises a planar combination device 34, for example a candlestick-type combiner, capable of operating, receiving, power combining, and Ny phase control chains. and of amplitude 221, ..., 22Ny respectively connected to inputs of the combination device 34 to form the beams at the output of the combination device 34.
  • the Ny phase and amplitude control chains 221, ..., 22Ny of each electron beamformer are respectively connected to a corresponding beam port 161, ..., 16Ny of each quasi-optical beamformer 101, ..., 10Ny.
  • This electron beam trainer is therefore particularly simple and feasible because it comprises only combinations of Ny signals delivered on Ny beam access ports Ny trainers of quasi-optical beams.
  • Each phase and amplitude control chain 221,..., 22Ny comprises in series, a filter 30 connected to a port for accessing beams 16i,..., 16Ny of a quasi-optical beamformer 101 , ..., 10Ny, an amplifier 31, as well as a variable attenuator 33 and a variable phase shifter 32 for applying a phase and amplitude control to the signals coming from the corresponding beam access port of each of the Ny quasi-optical beamformers.
  • the combination device 34 there is only one beam formed at the output of the combination device 34, but depending on the desired application, it is of course possible to form several beams using more complex combination / division devices or trainers.
  • quasi-optical beams in SIW technology in English: Substrate Integrated Waveguide
  • printed circuit boards in English: Printed Circuit Board
  • the quasi-optical beamformer has the advantage of operating in a very wide frequency band because it propagates the propagation mode TEM (Transverse Electro Magnetic) which is non-dispersive in frequencies. It can therefore be used to propagate signals in two sub-bands of very separate frequencies, such as Tx transmission and reception bands Rx in the Ka and Ku bands.
  • the invention furthermore consists, in each quasi-optical beamformer, of arranging separate transmit and receive ports Tx and Rx, respectively dedicated to the transmission Tx and to the reception Rx, and to provide each port Tx, Rx with respective filters respectively centered on the transmission and reception frequency bands for separate the transmit and receive signals.
  • the figure 6a represents an example of arrangement of two 16k1 transmission and 16k2 reception ports at the end of a waveguide 10 of a quasi-optical beamformer.
  • the two ports Tx, Rx are provided with corresponding filters 181, 182 and the waveguide is provided with an enlarged end for housing the two ports Tx and Rx stacked one above the other.
  • the two distinct ports Tx, Rx can be associated with separate horns internal to the quasi-optical beamformer.
  • the physical size of the opening of the internal horns is different for the two transmitting and receiving frequency subbands so that the same size is normalized by the central wavelength corresponding to each frequency sub-band. .
  • the central reception frequency Rx is equal to 30 GHz and the central transmission frequency Tx is equal to 20 GHz
  • the beams produced at the Tx emission and at the Rx reception overlap at the same level and there are 3/2 times more reception beams Rx than emission beams Tx on the same angular sector covered by the quasi-optical beamformer.
  • the invention may furthermore consist in eliminating linear horns and replacing them with a single, partially reflective radome common to all quasi-beamformers.
  • the radome 70 has a first partially reflective surface 71 sized for the receiving frequency subband and a second partially reflecting surface 72 sized for the transmit frequency subband.
  • the two partially reflecting surfaces are respectively arranged at the output of the linear radiating openings of the different quasi-optical beam formers at a distance corresponding to the respective central wavelength of the two frequency sub-bands.
  • the two reflecting surfaces distribute the radiofrequency signals, respectively in Rx reception and Tx transmission.
  • the radiating openings are of different widths for the two frequency sub-bands Rx and Tx, the radiating emission opening being larger than the radiating opening in reception.
  • the architecture of the antenna may be different depending on whether the operation is transmitting or receiving.
  • only two out of three quasi-optical beamformers have two beam access ports equipped with respective filters 181, 182 and thus operate in the two subbands Rx, Tx.
  • the intermediate quasi-optical beamformer has only one beam access port equipped with a filter 182 dedicated to the reception and therefore operates only in the sub-band Rx.
  • This intermediate quasi-optical beamformer comprises a second filter 182 housed in the linear radiating aperture 15 in order to select, at the corresponding linear radiating aperture, only the reception band.
  • the hybrid beamformer of the invention may be used in an antenna for a user terminal requiring delivery of a slave beam on a satellite. To reduce the cost of this application, it is particularly interesting that the antenna operates Tx transmission and Rx reception.
  • An example of architecture of such an antenna is shown on the figure 8a . Only two quasi-optical beamformers 101, 102 are illustrated, but there can be many more than two.
  • the hybrid beamformer comprises at least two quasi-optical beamformers common to the Tx transmission and the Rx reception, two separate specific electron beam formers, respectively dedicated to the emission 201, and to the 203, and switches 211, 212, 231, 232 having different positions respectively able to select, depending on their position, a port of access of several beams, the selectively connecting switches, the electronic beamformer 201, 203 dedicated to transmitting, respectively on reception, to one of the transmitting or receiving ports of each quasi-optical beamformer 101, 102 of the hybrid beamformer.
  • each specific electronic beamformer 201, 203 comprises two amplitude control and amplitude control chains 221, 222, 242, 243 respectively dedicated to the two quasi-optical beamformers 101, 102, each phase and current control chain.
  • amplitude being selectively connected, via a multi-position switch 211, 212, 231, 232, to a selected beam port of the respective quasi-optical beamformer.
  • Each switch has an input connected to a phase and amplitude control chain of an electron beamformer and several outputs respectively connected to different respective ports of the various internal horns of a corresponding quasi-optical beamformer.
  • the beams preformed by the quasi-optical beamformer and delivered on the different beam access ports of the quasi-optical beamformer have orientation directions different from each other. Therefore, the beam pointing direction generated by the hybrid beamformer may be selected, depending on the switch position, by selecting one of several of the optical-to-optical beamformer ports.
  • the access ports selected by the switches in all the stacked quasi-optical beam formers and connected to the same electron beam trainer, can have an identical orientation direction and cover an identical geographical area.
  • the hybrid beamformer points in the geographical area covered by the corresponding access ports of each quasi-optical beamformer. Since, for each quasi-optical beamformer, the geographical areas covered by two adjacent access ports overlap with attenuations of between 3 dB and 6 dB, the hybrid beamformer will also exhibit attenuation of the same beam. order of magnitude in the two corresponding directions. To improve the gain of the antenna including the hybrid beamformer, it is possible to point a beam in an intermediate direction between two adjacent geographical areas.
  • the invention consists in alternating the access ports selected in different successive quasi-optical beam formers so that a first part of the selected access ports covers a first geographical area and a second part of the ports of access. Selected access covers a second geographic area, adjacent to the first geographical area.
  • the number of access ports selected in each of the two adjacent geographic areas depends on the desired intermediate pointing direction for the corresponding beam.
  • the figure 8b illustrates an example of intermediate pointing of the beam located between two adjacent beams.
  • the two ellipses 81, 82 represented in dotted lines represent the two beams generated in a first direction of space, by two adjacent quasi-optical beam formers and the three circles 83, 84, 85 in solid lines represent the beams delivered.
  • Each of the two outer circles 83, 84 is obtained by selecting, for the two quasi-optical beam formers, access ports covering a first geographic area, respectively a second geographic area adjacent to the first geographic area.
  • the two outer circles therefore correspond to two adjacent geographical areas.
  • the intermediate circle 85 located between the two outer circles 83, 84 is obtained by selecting, for a first half, the access ports covering the first geographical area and, for a second half, access ports covering the second geographical area. adjacent to the first geographic area.
  • the hybrid beamformer of the invention can also be used in a transmit and receive multibeam antenna as shown in the antenna example of FIG. figure 9 in the case where the spots cover a predetermined geographical area.
  • the quasi-optical beam formers are identical to those described in connection with the figure 8a . Only the number of specific electron beam trainers dedicated to transmission and reception is increased according to the number of beams to be developed. On the figure 9 , two beams are developed on the show and two beams are developed at the reception.
  • the electron beam trainer comprises Ny phase and amplitude control chains, each phase and amplitude control channel dedicated to the transmission, respectively to the reception, being selectively connected, via a switch to several different positions, for example four positions on the figure 9 at a chosen port of a respective quasi-optical beamformer, the ports being able to to be selected at the sending, respectively at the reception, by a first switch being different from the ports that can be selected on transmission, respectively on reception, by a second switch.
  • each phase and amplitude control chain 221, 222 connected to the quasi-optical beamformers may include a bypass 52 for splitting the phase and amplitude control chain into a plurality of different channels 221a, 221b, 222a , 222b, each channel having a phase shifter 50a, 50b, 51a, 51b dedicated.
  • a power combiner / divider recombines the channels so as to deliver several different beams Fa, Fb corresponding to different phase laws.
  • two beams are delivered at the output of each electron beamformer, but of course this is not limiting, using a number of channels greater than two, it is possible to form a number of beams greater than two.
  • each electron beamformer may include a quasi-optical 60 PCB-based formatter having a plurality of beam outputs corresponding to different phase shifts and a plurality of inputs to which the active channels are connected. 221, 222.
  • the quasi-optical beamformer in PCB technology is then used in place of the signal combiner / divider shown on the figure 8 .
  • the beams thus obtained are then inclined only according to the phase shift applied on each channel.
  • the beams formed are independent of each other and can be pointed in any direction.
  • a cluster of beams is produced, and this cluster is orientable and the beams are not independent of each other.
  • the quasi-optical beam formers can be mounted with their longitudinal axis oriented parallel to the orthogonal axis of the satellite to preform a row of beams along this orthogonal axis and to recombine the ports of these quasi-optical beam formers with the electron beam trainer. This makes it possible to follow the same geographical area on the ground during the scrolling of the satellite and also allows detaching all the beams formed along the axis of scrolling when the satellite scrolls over a low traffic area, such as oceans.

Abstract

L'architecture d'antenne comporte un formateur de faisceaux hybride constitué d'une part, de Ny formateurs de faisceaux quasi-optiques empilés, chaque formateur de faisceaux quasi-optique comportant un guide d'onde à plaques parallèles muni d'une ouverture rayonnante linéaire et intégrant une lentille (13) et des cornets internes munis de ports d'accès de faisceaux, chaque formateur de faisceaux quasi-optique étant apte à former des faisceaux dans deux bandes de fréquences d'émission et de réception, selon une première direction de l'espace, et d'autre part, d'au moins un formateur de faisceaux électronique comportant un dispositif de combinaison (34) relié à Nx chaînes de contrôle de phase et d'amplitude, chaque chaîne de contrôle de phase et d'amplitude étant connectée à un port d'accès de faisceaux respectif de chaque formateur de faisceaux quasi-optique, le formateur de faisceaux électronique étant apte à former des faisceaux selon une deuxième direction de l'espace, orthogonale à la première direction.The antenna architecture comprises a hybrid beamformer consisting of, on the one hand, Ny stacked quasi-optical beamformers, each quasi-optical beamformer having a parallel plate waveguide provided with a radiating aperture linear and incorporating a lens (13) and internal horns provided with beam access ports, each quasi-optical beamformer being able to form beams in two transmission and reception frequency bands, in a first direction space, and on the other hand, at least one electron beam trainer comprising a combination device (34) connected to Nx phase and amplitude control chains, each phase and phase control chain. amplitude being connected to a respective beam access port of each quasi-optical beamformer, the electron beamformer being adapted to form beams in a second direction of space, orthogonal to the first direction.

Description

La présente invention concerne une architecture d'antenne active à formation de faisceaux hybride reconfigurable. L'antenne peut s'appliquer au domaine terrestre ou spatial et notamment dans le domaine des télécommunications par satellite. Elle peut en particulier, être montée sur un terminal terrestre ou à bord d'un satellite.The present invention relates to a reconfigurable hybrid beam-forming active antenna architecture. The antenna can be applied to the terrestrial or space domain and in particular in the field of satellite telecommunications. In particular, it can be mounted on a terrestrial terminal or on board a satellite.

Pour faciliter la description, le mode d'opération des formateurs de faisceaux est supposé en réception, mais une description similaire pourrait être formulée en transmission.To facilitate the description, the mode of operation of the beamformers is assumed in reception, but a similar description could be formulated in transmission.

Une antenne active reconfigurable à formation de faisceaux électronique comporte plusieurs éléments rayonnants, des chaînes actives destinées à traiter les signaux reçus par les éléments rayonnants, et un formateur de faisceaux qui recombine les signaux reçus, de façon cohérente, dans différentes directions pour former différents faisceaux. Chaque élément rayonnant est connecté au formateur de faisceaux par l'intermédiaire d'une chaîne active dédiée. Lorsque la formation de faisceaux est réalisée sur des signaux hyperfréquences, les traitements réalisés par chaque chaîne active comportent un filtrage et une amplification des signaux reçus. Lorsque la formation de faisceaux est réalisée sur des signaux analogiques transposés en bande de base, les traitements réalisés par chaque chaîne active comportent en outre une transposition en fréquence. Les traitements peuvent aussi comporter une numérisation si la formation de faisceaux est réalisée sur des signaux numérisés.An electron beam-forming reconfigurable active antenna has a plurality of radiating elements, active chains for processing the signals received by the radiating elements, and a beamformer that recombines the received signals coherently in different directions to form different beams. . Each radiating element is connected to the beamformer via a dedicated active channel. When the formation of beams is carried out on microwave signals, the processing carried out by each active channel comprises a filtering and an amplification of the received signals. When the beam formation is carried out on analog signals transposed in baseband, the processing carried out by each active chain further comprises a transposition in frequency. Treatments may also include scanning if the beam formation is performed on digitized signals.

Classiquement, comme représenté sur l'exemple de la figure 1, un formateur de faisceaux planaire radiofréquence divise les signaux reçus par chaque élément rayonnant E1, E2, ..., Ei, ..., EN, en M sous-signaux qui sont véhiculés dans M canaux différents, puis applique à chacun des M sous-signaux, un déphasage et une atténuation de valeur contrôlable avant de recombiner les sous-signaux provenant des N éléments rayonnants pour former M faisceaux différents S1, S2,..., SM, appelés aussi spots. Cependant le formateur de faisceaux planaire radiofréquence nécessite de réaliser des croisements entre les canaux véhiculant les sous-signaux, le nombre de croisements étant égal au produit entre le nombre M de faisceaux et le nombre N d'éléments rayonnants. Par conséquent, plus le nombre de faisceaux à réaliser est important, plus la masse, l'encombrement et la complexité de ce formateur de faisceaux augmente. Ce formateur de faisceaux devient donc vite irréalisable lorsqu'il faut réaliser un grand nombre de faisceaux pour couvrir un large secteur angulaire.Classically, as represented on the example of the figure 1 , a planar radiofrequency beamformer divides the signals received by each radiating element E1, E2,..., Ei,..., EN, into M sub-signals which are conveyed in M different channels, then applies to each of the M sub-signals, a phase shift and a controllable value attenuation before recombining the sub-signals from the N radiating elements to form M different beams S1, S2, ..., SM, also called spots. However, the radiofrequency planar beamformer requires crossings between the channels carrying the sub-signals, the number of crossings being equal to the product between the number M of beams and the number N of radiating elements. Consequently, the larger the number of beams to be made, the greater the mass, the size and the complexity of this beamformer. This beamformer therefore quickly becomes impractical when a large number of beams have to be made to cover a wide angular sector.

Lorsque la formation de faisceaux est réalisée sur des signaux analogiques transposés en bande de base, les croisements sont plus faciles à réaliser en utilisant des ASICs. Cela permet de limiter la masse et l'encombrement du formateur de faisceaux, mais cette technologie entraîne une consommation de puissance trop importante.When beamforming is performed on analog signals transposed into baseband, crossovers are easier to achieve using ASICs. This limits the weight and bulk of the beamformer, but this technology leads to excessive power consumption.

Lorsque la formation de faisceaux est réalisée sur des signaux numériques, la numérisation des signaux sur un grand nombre d'éléments rayonnants conduit généralement à des puissances consommées importantes.When beamforming is performed on digital signals, the digitization of the signals on a large number of radiating elements generally leads to large consumed power.

Selon une autre technologie, il existe des formateurs de faisceaux quasi-optiques planaires utilisant une propagation électromagnétique des ondes radiofréquence provenant de plusieurs sources d'alimentation placées en entrée, par exemple des cornets internes, selon un mode de propagation en général TEM (en anglais : Transverse Electrique Magnétique) entre deux plaques métalliques parallèles (en anglais : parallel plates). La focalisation et la collimation des faisceaux peuvent être réalisées par une lentille, par exemple une lentille optique comme décrit notamment dans les documents US 3170158 et US 5936588 qui illustrent le cas d'une lentille de Rotman, la lentille étant insérée sur le trajet de propagation des ondes radiofréquences, entre les deux plaques métalliques parallèles. Différents types de lentilles peuvent être utilisés, ces lentilles servant essentiellement de correcteurs de phase et permettant dans la plupart des cas de convertir une, ou plusieurs, onde cylindrique émise par les sources en une, ou plusieurs, onde plane se propageant dans le guide d'onde à plaques métalliques parallèles. La lentille peut comporter deux bords opposés à profils paraboliques, respectivement d'entrée et de sortie. Alternativement, la lentille peut être une lentille diélectrique, ou une lentille à gradient d'indice, ou tout autre type de lentille. Comme cette technologie utilise des guides d'onde à plaques parallèles, en alternative à l'utilisation de plusieurs éléments rayonnants discrets alignés côte à côte, il est possible d'utiliser une ouverture linéaire rayonnante continue en sortie de chaque guide d'onde à plaques parallèles. Ces ouvertures linéaires rayonnantes, qui ne sont pas spatialement quantifiées, ont des performances très supérieures par rapport aux réseaux linéaires de plusieurs éléments rayonnants, pour les faisceaux dépointés, en raison de l'absence de quantification, et en bande passante en raison de l'absence de modes de propagation résonants.According to another technology, there are planar quasi-optical beamformers using electromagnetic propagation of radiofrequency waves from several input power sources, for example internal horns, according to a propagation mode in general TEM (in English). : Transverse Electric Magnetic) between two parallel metal plates (in English: parallel plates). The focusing and the collimation of the beams can be carried out by a lens, for example an optical lens as described in particular in the documents US 3170158 and US 5936588 which illustrate the case of a Rotman lens, the lens being inserted in the path of propagation of radio waves, between the two parallel metal plates. Different types of lenses can be used, these lenses being essentially phase correctors and allowing in most cases to convert one or more cylindrical waves emitted by the sources into one or more plane waves propagating in the waveguide. wave with parallel metal plates. The lens may comprise two opposite edges with parabolic profiles, respectively input and output. Alternatively, the lens may be a dielectric lens, or a gradient index lens, or any other type of lens. As this technology uses parallel plate waveguides, As an alternative to using a plurality of discrete radiators aligned side by side, it is possible to use a continuous linear radiating aperture at the output of each parallel plate waveguide. These linear radiating apertures, which are not spatially quantized, have much higher performances compared to the linear arrays of several radiating elements, for the depointed beams, because of the absence of quantization, and in bandwidth because of the absence of resonant propagation modes.

Un formateur de faisceaux quasi-optique est de réalisation beaucoup plus simple que les formateurs de faisceaux traditionnels à guides d'onde individuels car il ne comporte ni coupleur, ni dispositif de croisement et permet de réaliser plusieurs faisceaux qui couvrent un large secteur angulaire, sans aucune aberration. En outre, leur bande passante est très importante et ils peuvent fonctionner à la fois dans une bande d'émission Rx et dans une bande de réception Tx. Cependant, les formateurs de faisceaux planaires connus ne sont capables de former des faisceaux que selon une seule dimension de l'espace, dans une direction parallèle au plan des plaques métalliques. Pour former des faisceaux selon deux dimensions de l'espace, dans deux directions, respectivement parallèle et orthogonale au plan des plaques métalliques, il est nécessaire de combiner orthogonalement entre eux, deux ensembles de formation de faisceaux, chaque ensemble de formation de faisceaux étant constitué d'un empilement de plusieurs couches de formateurs de faisceaux unidirectionnels. Pour combiner orthogonalement deux ensembles de formation de faisceaux, il est en outre nécessaire d'aménager des interfaces de connexion, en particulier des connecteurs d'entrée/sortie, sur chaque ensemble de formation de faisceaux puis de relier deux à deux les différentes entrées et sorties correspondantes des deux ensembles de formation de faisceaux par des câbles d'interconnexion dédiés comme représenté par exemple dans le document US 5 936 588 pour des formateurs de faisceaux à lentille. Cette architecture est satisfaisante pour la formation d'un petit nombre de faisceaux, mais devient très complexe et d'encombrement trop important lorsque le nombre de faisceaux augmente.A quasi-optical beamformer is much simpler than traditional waveguide beamformers because it has no couplers or crossover devices and allows for multiple beams that cover a wide angular sector without no aberration. In addition, their bandwidth is very important and they can operate both in an Rx transmit band and in a Tx receive band. However, known planar beam formers are only able to form beams in one dimension of space, in a direction parallel to the plane of the metal plates. To form beams according to two dimensions of the space, in two directions, respectively parallel and orthogonal to the plane of the metal plates, it is necessary to combine orthogonally between them, two sets of beam forming, each beam forming assembly consisting of a stack of several layers of unidirectional beamformers. To orthogonally combine two sets of beam forming, it is further necessary to arrange connection interfaces, in particular input / output connectors, on each set of beam forming and then connect in pairs the different inputs and outputs. corresponding outputs of the two sets of beam forming by dedicated interconnection cables as shown for example in the document US 5,936,588 for lens bundle trainers. This architecture is satisfactory for the formation of a small number of beams, but becomes very complex and too much space when the number of beams increases.

Il n'existe pas de dispositif de formation de faisceaux planaire permettant de former des faisceaux selon deux dimensions de l'espace. Par ailleurs, il n'existe pas non plus de solutions simples d'interconnexion de deux formateurs de faisceaux unidirectionnels permettant de s'affranchir des interfaces de connexion et des câbles d'interconnexions.There is no planar beam forming device for forming beams in two dimensions of space. By Moreover, there are also no simple solutions for interconnecting two unidirectional beamformers to overcome connection interfaces and interconnection cables.

Le but de l'invention est de réaliser une nouvelle architecture d'antenne active reconfigurable comportant un formateur de faisceaux électronique plus simple que les formateurs de faisceaux électroniques connus, permettant de réduire le nombre de signaux à contrôler en phase et en amplitude, de réduire le nombre de signaux à recombiner électroniquement pour chaque faisceau, et de réaliser un grand nombre de faisceaux à partir d'un grand nombre d'éléments rayonnants.The object of the invention is to provide a novel reconfigurable active antenna architecture comprising a simpler electronic beamformator than the known electron beam formers, making it possible to reduce the number of signals to be controlled in phase and amplitude, to reduce the number of signals to recombine electronically for each beam, and to make a large number of beams from a large number of radiating elements.

Pour cela, l'invention concerne une architecture d'antenne active à formation de faisceaux reconfigurable, comportant un formateur de faisceaux hybride constitué d'une part,

  • de Ny formateurs de faisceaux quasi-optiques planaires empilés, où Ny est un nombre entier supérieur à un, chaque formateur de faisceaux quasi-optique comportant un guide d'onde à plaques parallèles ayant deux extrémités respectivement munies d'une ouverture rayonnante linéaire et de My ports d'accès de faisceaux, une lentille intégrée dans le guide d'onde à plaques parallèles, des cornets internes distribués périodiquement côte à côte le long d'un axe focal de la lentille, les ports d'accès de faisceaux étant respectivement associés aux cornets internes, chaque formateur de faisceaux quasi-optique étant apte à former des faisceaux dans deux bandes de fréquences séparées, respectivement d'émission et de réception, selon une première direction de l'espace parallèle au plan des guides d'ondes à plaques parallèles, et d'autre part,
  • d'au moins un formateur de faisceaux électronique planaire comportant Ny chaînes de contrôle de phase et d'amplitude et un dispositif de combinaison comportant Ny entrées respectivement reliées aux Ny chaînes de contrôle de phase et d'amplitude et au moins une sortie de faisceaux chaque chaîne de contrôle de phase et d'amplitude étant connectée à un port d'accès de faisceaux respectif de chaque formateur de faisceaux quasi-optique, le formateur de faisceaux électronique étant apte à former des faisceaux selon une deuxième direction de l'espace, orthogonale à la première direction.
For this purpose, the invention relates to a reconfigurable active beam-forming antenna architecture, comprising a hybrid beamformer constituted on the one hand,
  • of Ny planar quasi-optical stacked beam formers, where Ny is an integer greater than one, each quasi-optical beamformer having a parallel plate waveguide having two ends respectively provided with a linear aperture and My beam access ports, a lens integrated in the parallel plate waveguide, internal horns periodically distributed side by side along a focal axis of the lens, the beam access ports being respectively associated to the internal cones, each quasi-optical beamformer being able to form beams in two separate frequency bands, respectively transmitting and receiving, in a first direction of the space parallel to the plane of the plate waveguides parallel, and on the other hand,
  • at least one planar electron beamformer comprising Ny phase and amplitude control strings and a combination device having Ny inputs respectively connected to the Ny phase and amplitude control strings and at least one beam output each phase and amplitude control chain being connected to a respective beam access port of each quasi-optical beamformer, the electron beamformer being adapted to form beams in a second orthogonal space direction in the first direction.

Avantageusement, l'architecture d'antenne peut comporter en outre des commutateurs aptes à sélectionner, dans chaque formateur de faisceaux quasi-optique, un port parmi tous les ports d'accès de faisceaux disponibles, chaque commutateur comportant une entrée connectée à une chaîne de contrôle de phase et d'amplitude du formateur de faisceaux électronique et plusieurs sorties respectivement connectées à plusieurs ports d'accès de faisceaux respectifs du formateur de faisceaux quasi-optique correspondant.Advantageously, the antenna architecture may further include switches capable of selecting, in each quasi-optical beamformer, a port among all the available beam access ports, each switch having an input connected to a transmission channel. phase and amplitude control of the electron beamformer and several outputs respectively connected to a plurality of respective beam access ports of the corresponding quasi-optical beamformer.

Avantageusement, les ports d'accès de faisceaux peuvent être constitués d'une première rangée de ports d'émission disposés côte à côte le long de l'axe focal de la lentille et d'une deuxième rangée de ports de réception disposés côte à côte le long de l'axe focal de la lentille, la première et la deuxième rangées étant empilées l'une au-dessus de l'autre, les ports d'émission et les ports de réception étant distincts et de tailles différentes, chaque port d'émission, respectivement de réception, étant muni d'un filtre respectif centré sur la bande de fréquences d'émission, respectivement de réception.Advantageously, the beam access ports may consist of a first row of transmission ports arranged side by side along the focal axis of the lens and a second row of reception ports arranged side by side. along the focal axis of the lens, the first and second rows being stacked one above the other, the transmitting ports and the receiving ports being distinct and of different sizes, each port of emission, respectively receiving, being provided with a respective filter centered on the transmission frequency band, respectively receiving.

Avantageusement, les ouvertures rayonnantes linéaires des différents formateurs de faisceaux quasi-optiques peuvent être reliées en réseau à un radome partiellement réfléchissant unique, commun à tous les formateurs de faisceaux quasi-optiques, le radome comportant une première surface partiellement réfléchissante dimensionnée pour la sous-bande de fréquences de réception et une deuxième surface partiellement réfléchissante dimensionnée pour la sous-bande de fréquences d'émission, les première et deuxième surfaces partiellement réfléchissantes étant respectivement disposées en sortie des ouvertures rayonnantes linéaires, à une distance correspondant à une longueur d'onde centrale respective des deux sous-bandes de fréquences d'émission et de réception.Advantageously, the linear radiating openings of the different quasi-optical beam formers can be networked to a single, partially reflective radome, common to all quasi-optical beamformers, the radome having a first partially reflecting surface sized for the sub-reflector. receiving frequency band and a second partially reflecting surface sized for the transmitting frequency subband, the first and second partially reflecting surfaces being respectively disposed at the output of the linear radiating apertures at a distance corresponding to a wavelength each of the two transmitting and receiving frequency sub-bands.

Avantageusement, le formateur de faisceau hybride peut comporter un formateur de faisceaux quasi-optique commun à l'émission Tx et à la réception Rx, deux formateurs de faisceaux électroniques spécifiques distincts, respectivement dédiés à l'émission et à la réception, et des commutateurs comportant différentes positions respectivement aptes à sélectionner un port d'accès de faisceaux parmi plusieurs, chaque commutateur reliant sélectivement, selon sa position, une chaîne de contrôle de phase et d'amplitude du formateur de faisceaux électronique dédié à l'émission, respectivement à la réception, à l'un des ports d'émission, respectivement de réception, de chaque formateur de faisceaux quasi-optique.Advantageously, the hybrid beamformer may comprise a quasi-optical beamformer common to the Tx transmission and the Rx reception, two separate specific electron beam formers, respectively dedicated to transmission and reception, and switches having different positions respectively capable of selecting one of a plurality of beam access ports, each switch selectively connecting, depending on its position, a phase and amplitude control chain of the electron beamformer dedicated to the transmission, respectively to the receiving, at one of the transmitting or receiving ports, each quasi-optical beamformer.

Avantageusement, les ports d'accès de faisceaux, sélectionnés par les commutateurs dans tous les formateurs de faisceaux quasi-optiques empilés et reliés à un même formateur de faisceaux électronique, peuvent avoir une direction d'orientation identique et couvrir un secteur géographique identique.Advantageously, the beam access ports, selected by the switches in all stacked quasi-optical beam formers and connected to the same electron beam trainer, can have an identical direction of orientation and cover an identical geographic area.

Alternativement, une première partie des ports d'accès de faisceaux, sélectionnés par les commutateurs dans les formateurs de faisceaux quasi-optiques empilés, peuvent couvrir un premier secteur géographique et une deuxième partie des ports d'accès de faisceaux, sélectionnés par les commutateurs dans les formateurs de faisceaux quasi-optiques empilés, peuvent couvrir un deuxième secteur géographique adjacent au premier secteur géographique.Alternatively, a first portion of the beam access ports, selected by the switches in the stacked quasi-optical beamformers, may cover a first geographic area and a second portion of the beam access ports, selected by the switches in stacked quasi-optical beam trainers may cover a second geographic area adjacent to the first geographic area.

Avantageusement, le dispositif de combinaison peut être constitué par un combineur/diviseur comportant Nx entrées respectivement reliées aux Nx chaînes de contrôle de phase et d'amplitude et une sortie de faisceaux.Advantageously, the combination device may consist of a combiner / divider comprising Nx inputs respectively connected to the Nx phase and amplitude control strings and a beam output.

Avantageusement, le dispositif de combinaison peut comporter une dérivation pour scinder chaque chaîne de contrôle de phase et d'amplitude en plusieurs voies différentes, chaque voie comportant un déphaseur dédié.Advantageously, the combination device may comprise a shunt for splitting each phase and amplitude control chain into several different channels, each channel comprising a dedicated phase shifter.

Avantageusement, le dispositif de combinaison peut être constitué par un formateur de faisceaux quasi-optique en technologie PCB comportant Nx entrées respectivement reliées aux Nx chaînes de contrôle de phase et d'amplitude et plusieurs sorties de faisceaux.Advantageously, the combination device may consist of a quasi-optical beamformator in PCB technology comprising Nx inputs respectively connected to Nx channels of phase and amplitude control and several beam outputs.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1 : un schéma synoptique d'un exemple de formateur de faisceaux électronique, selon l'art antérieur ;
  • figure 2 : un schéma synoptique, en vue de côté, d'un exemple de formateur de faisceaux hybride multifaisceaux, selon l'invention;
  • figure 3 : un schéma, en perspective, de quatre formateurs de faisceaux quasi-optiques empilés, selon l'invention ;
  • figure 4 : un schéma, en vue de dessus, d'un formateur de faisceaux quasi-optique, selon l'invention ;
  • figure 5 : un schéma synoptique partiel d'un exemple de formateur de faisceaux hybride dans lequel les fonctions des formateurs de faisceaux électroniques sont détaillées, selon l'invention ;
  • figures 6a, 6b, 6c: trois schémas, respectivement en coupe longitudinale, en vue de dessus et en vue de dessous, d'un formateur de faisceaux quasi-optique comportant des ports dédiés à la réception Rx et des ports dédiés à l'émission Tx, selon l'invention ;
  • figure 7 : une vue en coupe longitudinale, d'un exemple de trois formateurs de faisceaux quasi-optiques empilés munis d'un radome commun équipé de deux surfaces partiellement réfléchissantes, selon l'invention ;
  • figure 8a : architecture d'antenne pour un terminal utilisateur asservi sur un satellite, apte à former un faisceau d'émission et un faisceau de réception avec sélection de la direction d'orientation du faisceau, selon l'invention ;
  • figure 8b : un exemple de faisceaux formés par le formateur de faisceaux hybride, dans le cas de la sélection, dans deux formateurs de faisceaux quasi- optiques adjacents, de ports d'accès de faisceaux couvrant des secteurs géographiques adjacents, selon l'invention ;
  • figure 9 : architecture d'antenne multifaisceaux d'émission et de réception avec sélection de la direction d'orientation des faisceaux, dans le cas où les faisceaux couvrent un secteur géographique prédéterminé, selon l'invention ;
  • figure 10 : architecture d'antenne multifaisceaux d'émission et de réception avec sélection de la direction d'orientation des faisceaux, dans le cas où chaque formateur de faisceaux électronique comporte plusieurs voies de déphasage différentes, selon l'invention ;
  • figure 11 : architecture d'antenne multifaisceaux d'émission et de réception avec sélection de la direction d'orientation des faisceaux, dans le cas où chaque formateur de faisceaux électronique comporte un formateur de faisceaux quasi-optique en technologie PCB, selon l'invention.
Other features and advantages of the invention will become clear in the following description given by way of purely illustrative and non-limiting example, with reference to the attached schematic drawings which represent:
  • figure 1 : a block diagram of an example of electron beam trainer, according to the prior art;
  • figure 2 : a block diagram, in side view, of an example of multibeam hybrid beamformer according to the invention;
  • figure 3 : a diagram, in perspective, of four stacked quasi-optical beam formers, according to the invention;
  • figure 4 : a diagram, in plan view, of a quasi-optical beamformer, according to the invention;
  • figure 5 : a partial block diagram of an example of a hybrid beamformer in which the functions of the electron beam formers are detailed, according to the invention;
  • Figures 6a , 6b, 6c three diagrams, respectively in longitudinal section, in plan view and in bottom view, of a quasi-optical beamformer comprising ports dedicated to reception Rx and ports dedicated to the transmission Tx, according to the invention ;
  • figure 7 : a longitudinal sectional view of an example of three stacked quasi-optical beam formers provided with a common radome equipped with two partially reflecting surfaces, according to the invention;
  • figure 8a antenna architecture for a user terminal slaved to a satellite, adapted to form a transmission beam and a reception beam with selection of the direction of beam orientation, according to the invention;
  • figure 8b an example of beams formed by the hybrid beamformer, in the case of selection, in two adjacent quasi-optical beam formers, beam access ports covering adjacent geographical areas, according to the invention;
  • figure 9 : multibeam transmission and reception antenna architecture with selection of the direction of orientation of the beams, in the case where the beams cover a predetermined geographical area, according to the invention;
  • figure 10 : multibeam transmission and reception antenna architecture with selection of the direction of beam orientation, in the case where each electron beam trainer comprises several different phase shift channels, according to the invention;
  • figure 11 : multibeam transmission and reception antenna architecture with selection of the direction of beam orientation, in the case where each electron beam trainer comprises a quasi-optical beamformator PCB technology, according to the invention.

La nouvelle architecture d'antenne active à formation de faisceaux reconfigurable selon l'invention comporte un formateur de faisceaux hybride constitué d'au moins deux formateurs de faisceaux quasi-optiques planaires empilés les uns au-dessus des autres, et d'au moins un formateur de faisceaux électronique planaire connecté sur un port respectif de chaque formateur de faisceaux quasi-optique planaire. Chaque formateur de faisceaux quasi-optique est apte à former des faisceaux selon une première direction de l'espace parallèle au plan du formateur de faisceaux quasi-optique. Le formateur de faisceaux électronique est apte à former les faisceaux selon une deuxième direction de l'espace, orthogonale à la première direction.The novel reconfigurable beam forming active antenna architecture according to the invention comprises a hybrid beamformer consisting of at least two planar quasi-optical beamformers stacked one above the other, and at least one planar electron beamformer connected to a respective port of each planar quasi-optical beamformer. Each quasi-optical beamformer is capable of forming beams in a first direction of the space parallel to the plane of the quasi-optical beamformer. The electron beamformer is able to form the beams in a second direction of space, orthogonal to the first direction.

Dans l'exemple représenté sur la figure 2, le formateur de faisceaux hybride comporte Ny formateurs de faisceaux quasi-optiques 101, 102,..., 10i,..., 10Ny, empilés les uns au-dessus des autres, et Nx formateurs de faisceaux électroniques 201, ..., 20Nx, où Nx et Ny sont des nombres entiers supérieurs à un. Par exemple, sur la figure 3, Ny est égal à quatre et sur la figure 5, Nx et Ny sont égaux à deux.In the example shown on the figure 2 , the hybrid beamformer includes Ny quasi-optical beamformers 101, 102, ..., 10i, ..., 10Ny, stacked one above the other, and Nx electron beam formers 201, ... , 20Nx, where Nx and Ny are integers greater than one. For example, on the figure 3 , Ny is equal to four and on the figure 5 , Nx and Ny are equal to two.

Comme représenté sur les figures 2, 3 et 4, chaque formateur de faisceaux quasi-optique comporte un guide d'onde 10 à plaques parallèles (en anglais : parallel guide plate) constitué de deux plaques métalliques parallèles 11, 12, espacées entre elles, une lentille 13 intégrée dans le guide d'onde 10, entre les deux plaques métalliques, My cornets internes 141, 142,..., 14k,... 14My, distribués périodiquement côte à côte le long d'un axe focal de la lentille 13, où My est supérieur ou égal à 2, My ports d'accès de faisceaux 161, 162,..., 16k,...16My, respectivement associés aux My cornets internes et connectés à une première extrémité du guide d'onde 10 et une ouverture rayonnante linéaire 15 aménagée à une deuxième extrémité du guide d'onde 10. L'ouverture rayonnante linéaire 15 peut être associée à un cornet linéaire ou à un radome commun à tous les formateurs de faisceaux quasi-optiques du formateur de faisceaux hybride. Le formateur de faisceaux quasi-optique permet de focaliser, selon la première direction de l'espace, les signaux reçus par l'ouverture rayonnante linéaire 15, sur les My ports d'accès de faisceaux 161, 162,..., 16k,...16My, en fonction de la direction d'arrivée de ces signaux reçus. La première direction de l'espace est parallèle au plan des plaques métalliques 11, 12 des guides d'onde des formateurs de faisceaux quasi-optiques. La lentille 13 peut être une lentille optique répartie dans une grande partie du volume du guide d'onde 10 à plaques parallèles, telle que par exemple du type lentille de Rotman ou du type lentille à gradient d'indice, par exemple une lentille de Luneberg. Alternativement, la lentille 13 peut être une lentille métallique à gradient de retards localisée dans une zone limitée du guide d'onde à plaques parallèles comme le montre par exemple la lentille 13 illustrée sur la figure 2 et sur la figure 4, qui s'étend transversalement dans une zone du guide d'onde située devant l'ouverture rayonnante linéaire 15. Le formateur de faisceaux quasi-optique peut en outre comporter un dispositif focalisant, par exemple un réflecteur parabolique, intégré transversalement dans le guide d'onde 10, entre les deux plaques parallèles. Dans ce cas le formateur de faisceaux quasi-optique a une structure appelée classiquement pillbox.As shown on figures 2 , 3 and 4 each quasi-optical beamformer comprises a parallel plate guide (waveguide 10) consisting of two parallel metal plates 11, 12, spaced apart from one another, a lens 13 integrated in the waveguide 10, between the two metal plates, My internal horns 141, 142, ..., 14k, ... 14My, distributed periodically side by side along a focal axis of the lens 13, where My is greater than or equal to 2, My beam access ports 161, 162, ..., 16k, ... 16My, respectively associated with My internal horns and connected to a first end of the waveguide 10 and a linear radiating aperture 15 arranged at a second end of the waveguide 10. The linear aperture 15 may be associated with a linear horn or a radome common to all the quasi-optical beamformers of the hybrid beamformer. The quasi-optical beamforming apparatus makes it possible to focus, in the first direction of the space, the signals received by the linear radiating aperture 15, on the My beam access ports 161, 162, ..., 16k, ... 16My, depending on the direction of arrival of these received signals. The first direction of the space is parallel to the plane of the metal plates 11, 12 of the waveguides of the quasi-optical beam formers. The lens 13 may be an optical lens distributed over a large part of the volume of the parallel plate waveguide 10, such as, for example, of the Rotman lens type or of the index gradient lens type, for example a Luneberg lens. . Alternatively, the lens 13 may be a delay gradient metal lens located in a limited area of the parallel plate waveguide, as shown for example by the lens 13 illustrated in FIG. figure 2 and on the figure 4 , which extends transversely in an area of the waveguide located in front of the linear aperture 15. The quasi-optical beamformer may furthermore comprise a focusing device, for example a parabolic reflector, integrated transversely into the waveguide. wave 10, between the two parallel plates. In this case the quasi-optical beamformer has a structure conventionally called pillbox.

Chaque formateur de faisceaux électronique 201, ..., 20Nx comporte Ny ports d'entrée respectivement connectés aux Ny formateurs de faisceaux quasi-optiques 101, 102,..., 10i,..., 10Ny, chaque formateur de faisceaux électronique 201,..., 20Nx comportant Mx sorties aptes à délivrer Mx faisceaux différents, où Mx est supérieur ou égal à un. Chaque formateur de faisceaux électronique 201, ..., 20Nx est relié à un port d'accès de faisceaux sélectionné de chacun des Ny formateurs de faisceaux quasi-optiques et applique sur les signaux issus des Ny ports d'accès de faisceaux correspondants, un contrôle de phase et d'amplitude, puis recombine électroniquement les Ny signaux délivrés par ledit port d'accès de faisceaux de chacun des Ny formateurs de faisceaux quasi-optiques pour former Mx faisceaux selon la deuxième direction de l'espace orthogonale à la première direction. Pour réaliser l'interconnexion entre chacun des My ports d'accès de faisceaux des Ny formateurs de faisceaux quasi-optiques et les Nx formateurs de faisceaux électroniques, il faut que le nombre My de ports d'accès de faisceaux de chaque formateur de faisceaux quasi-optique soit égal au nombre Nx de formateurs de faisceaux électroniques. La formation de faisceaux électronique est reconfigurable par modification de la loi de phase et d'amplitude appliquée sur chaque port d'accès de faisceaux des formateurs de faisceaux quasi-optiques. Les formateurs de faisceaux électroniques permettent une reconfiguration, selon la deuxième direction de l'espace, des faisceaux formés dans la première direction par les formateurs de faisceaux quasi-optiques.Each electron beam trainer 201,..., 20Nx comprises Ny input ports respectively connected to Ny quasi-optical beamformers 101, 102,..., 10i,..., 10Ny, each electron beam formatter 201 , ..., 20Nx having Mx outputs capable of delivering Mx different beams, where Mx is greater than or equal to one. Each electron beamformer 201, ..., 20Nx is connected to a selected beam access port of each of the quasi-optical beamformers Ny and applies to the signals from the corresponding beam access ports Ny a phase and amplitude control, then electronically recombines the Ny signals delivered by said beam access port of each of the Ny quasi-optical beamformers to form Mx beams according to the second direction of the orthogonal space in the first direction . To achieve the interconnection between each of the My beam access ports of the quasi-optical beam forming trainers and the N x electron beam trainers, it is necessary that the number of beam access ports My of each beam trainer quasi -optic equals the number Nx of electron beam trainers. The electron beam formation is reconfigurable by changing the phase and amplitude law applied to each beam access port of the quasi-optical beamformers. The electron beam formers allow reconfiguration, in the second direction of space, of the beams formed in the first direction by quasi-optical beamformers.

Par rapport à un formateur de faisceaux électronique classique portant sur un réseau d'éléments rayonnants à deux dimensions, cette formation de faisceaux hybride permet de réduire considérablement le nombre de signaux sur lesquels un contrôle de phase et d'amplitude doit être appliqué, puisque pour chaque formateur de faisceaux électronique, le contrôle de phase et d'amplitude ne porte que sur Ny ports d'accès de faisceaux issus de chacun des Ny formateurs de faisceaux quasi-optiques au lieu de porter sur Nx'*Ny' éléments rayonnants d'un réseau d'éléments rayonnants à deux dimensions, où Nx' serait le nombre d'éléments rayonnants selon un premier axe X et Ny' serait le nombre d'éléments rayonnants selon un deuxième axe Y.Compared to a conventional electron beamformer on a two-dimensional array of radiating elements, this hybrid beamforming considerably reduces the number of signals on which phase and amplitude control must be applied, since each electron beam trainer, the phase and amplitude control only relates to Ny beam access ports from each of the Ny quasi-optical beamformers instead of Nx '* Ny' radiating elements. a network of two-dimensional radiating elements, where N x 'would be the number of radiating elements along a first axis X and Ny' would be the number of radiating elements along a second axis Y.

L'exemple de la figure 5 illustre un schéma synoptique simplifié, en réception, d'un exemple de formateur de faisceaux hybride dans lequel seuls deux formateurs de faisceaux quasi-optiques et deux formateurs de faisceaux électroniques sont représentés et dans lequel un seul faisceau est délivré en sortie de chaque formateur de faisceaux électronique. Dans cet exemple, chaque formateur de faisceaux électronique 201,..., 20Nx comporte un dispositif de combinaison 34 planaire, par exemple un combineur de type chandelier, apte à fonctionner, à la réception, en combineur de puissance, et Ny chaînes de contrôle de phase et d'amplitude 221, ..., 22Ny respectivement reliées sur des entrées du dispositif de combinaison 34 pour former les faisceaux en sortie du dispositif de combinaison 34. Les Ny chaînes de contrôle de phase et d'amplitude 221, ..., 22Ny de chaque formateur de faisceaux électronique sont respectivement reliées à un port d'accès de faisceaux 161,..., 16Ny correspondant de chaque formateur de faisceaux quasi-optique 101,..., 10Ny. Ce formateur de faisceau électronique est donc particulièrement simple et réalisable car il ne comporte que des combinaisons de Ny signaux délivrés sur Ny ports d'accès de faisceaux des Ny formateurs de faisceaux quasi-optiques. Chaque chaîne de contrôle de phase et d'amplitude 221,..., 22Ny comporte en série, un filtre 30 connecté à un port d'accès de faisceaux 16i,..., 16Ny d'un formateur de faisceaux quasi-optique 101,..., 10Ny, un amplificateur 31, ainsi qu'un atténuateur variable 33 et un déphaseur variable 32 permettant d'appliquer un contrôle de phase et d'amplitude aux signaux issus du port d'accès de faisceaux correspondant de chacun des Ny formateurs de faisceaux quasi-optiques. Sur la figure 5, il n'y a qu'un seul faisceau formé en sortie du dispositif de combinaison 34, mais, selon l'application souhaitée, il est bien entendu possible de former plusieurs faisceaux en utilisant des dispositifs de combinaison/division plus complexes ou des formateurs de faisceaux quasi-optiques en technologie SIW (en anglais : Substrate Integrated Waveguide) réalisés sous forme de circuits imprimés PCB (en anglais : Printed Circuit Board) tels qu'illustrés par exemple sur les modes de réalisation des figures 10 et 11 décrites plus loin.The example of figure 5 illustrates a simplified block diagram, in reception, of an exemplary hybrid beamformer in which only two quasi-optical beamformers and two electron beamformers are shown and in which only one beam is outputted from each trainer of the beamformers. electron beams. In this for example, each electron beamformer 201, ..., 20Nx comprises a planar combination device 34, for example a candlestick-type combiner, capable of operating, receiving, power combining, and Ny phase control chains. and of amplitude 221, ..., 22Ny respectively connected to inputs of the combination device 34 to form the beams at the output of the combination device 34. The Ny phase and amplitude control chains 221, ..., 22Ny of each electron beamformer are respectively connected to a corresponding beam port 161, ..., 16Ny of each quasi-optical beamformer 101, ..., 10Ny. This electron beam trainer is therefore particularly simple and feasible because it comprises only combinations of Ny signals delivered on Ny beam access ports Ny trainers of quasi-optical beams. Each phase and amplitude control chain 221,..., 22Ny comprises in series, a filter 30 connected to a port for accessing beams 16i,..., 16Ny of a quasi-optical beamformer 101 , ..., 10Ny, an amplifier 31, as well as a variable attenuator 33 and a variable phase shifter 32 for applying a phase and amplitude control to the signals coming from the corresponding beam access port of each of the Ny quasi-optical beamformers. On the figure 5 there is only one beam formed at the output of the combination device 34, but depending on the desired application, it is of course possible to form several beams using more complex combination / division devices or trainers. of quasi-optical beams in SIW technology (in English: Substrate Integrated Waveguide) realized in the form of printed circuit boards (in English: Printed Circuit Board) as illustrated for example on the embodiments of figures 10 and 11 described below.

Le formateur de faisceaux quasi-optique présente l'avantage de fonctionner dans une très large bande de fréquences car il propage le mode de propagation TEM (Transverse Electro Magnétique) qui est non dispersif en fréquences. Il peut donc être utilisé pour propager des signaux dans deux sous-bandes de fréquences très séparées, comme par exemple des bandes d'émission Tx et de réception Rx dans les bandes Ka et Ku. Dans ce cas, pour réaliser une antenne d'émission et de réception, l'invention consiste en outre, dans chaque formateur de faisceaux quasi-optique, à aménager des ports d'émission Tx, et de réception Rx distincts, respectivement dédiés à l'émission Tx et à la réception Rx, et à munir chaque port Tx, Rx de filtres respectifs respectivement centrés sur les bandes de fréquences d'émission et de réception pour séparer les signaux d'émission et de réception. La figure 6a représente un exemple d'aménagement de deux ports d'émission 16k1 et de réception 16k2 en extrémité d'un guide d'onde 10 d'un formateur de faisceaux quasi-optique. Sur cette figure 6a, les deux ports Tx, Rx sont munis de filtres 181, 182 correspondants et le guide d'onde est pourvu d'une extrémité élargie permettant de loger les deux ports Tx et Rx empilés l'un au-dessus de l'autre. Les deux ports Tx, Rx distincts peuvent être associés à des cornets distincts, internes au formateur de faisceaux quasi-optique. La taille physique de l'ouverture des cornets internes est différente pour les deux sous-bandes de fréquences d'émission et de réception, de sorte à avoir une même dimension normalisée par la longueur d'onde centrale correspondant à chaque sous-bande de fréquences. A titre d'exemple non limitatif, pour un fonctionnement dans la bande Ka, dans laquelle la fréquence centrale de réception Rx est égale à 30 GHz et la fréquence centrale d'émission Tx est égale à 20 GHz, il est possible de disposer une première rangée de trois cornets de réception 14k2 côte à côte le long de l'axe focal de la lentille du formateur de faisceaux quasi-optique et dans le même encombrement, de disposer une deuxième rangée de deux cornets d'émission 14k1 côte à côte le long de l'axe focal de la lentille du formateur de faisceaux quasi-optique, comme le montrent les deux aménagements illustrés sur la figure 6b, les première et deuxième rangées étant empilées à l'intérieur du guide d'onde 10 à plaques parallèles. Dans cette configuration, les faisceaux élaborés à l'émission Tx et à la réception Rx se recoupent au même niveau et il y a 3/2 fois plus de faisceaux de réception Rx que de faisceaux d'émission Tx sur le même secteur angulaire couvert par le formateur de faisceau quasi-optique.The quasi-optical beamformer has the advantage of operating in a very wide frequency band because it propagates the propagation mode TEM (Transverse Electro Magnetic) which is non-dispersive in frequencies. It can therefore be used to propagate signals in two sub-bands of very separate frequencies, such as Tx transmission and reception bands Rx in the Ka and Ku bands. In this case, in order to produce a transmitting and receiving antenna, the invention furthermore consists, in each quasi-optical beamformer, of arranging separate transmit and receive ports Tx and Rx, respectively dedicated to the transmission Tx and to the reception Rx, and to provide each port Tx, Rx with respective filters respectively centered on the transmission and reception frequency bands for separate the transmit and receive signals. The figure 6a represents an example of arrangement of two 16k1 transmission and 16k2 reception ports at the end of a waveguide 10 of a quasi-optical beamformer. On this figure 6a , the two ports Tx, Rx are provided with corresponding filters 181, 182 and the waveguide is provided with an enlarged end for housing the two ports Tx and Rx stacked one above the other. The two distinct ports Tx, Rx can be associated with separate horns internal to the quasi-optical beamformer. The physical size of the opening of the internal horns is different for the two transmitting and receiving frequency subbands so that the same size is normalized by the central wavelength corresponding to each frequency sub-band. . By way of nonlimiting example, for operation in the Ka band, in which the central reception frequency Rx is equal to 30 GHz and the central transmission frequency Tx is equal to 20 GHz, it is possible to have a first row of three receiving horns 14k2 side by side along the focal axis of the lens of the quasi-optical beamformer and in the same footprint, to arrange a second row of two 14k1 transmit horns side by side along of the focal axis of the quasi-optical beamformer lens, as shown by the two features illustrated in FIG. figure 6b the first and second rows being stacked inside the waveguide 10 with parallel plates. In this configuration, the beams produced at the Tx emission and at the Rx reception overlap at the same level and there are 3/2 times more reception beams Rx than emission beams Tx on the same angular sector covered by the quasi-optical beamformer.

Lorsque les sous-bandes de fréquences d'émission et de réception sont très séparées l'une de l'autre, il peut y avoir apparition de lobes de réseau lors de la formation électronique des faisceaux. Ce problème est dû à la largeur d'ouverture en sortie des cornets linéaires du formateur de faisceaux quasi-optique, qui doivent avoir une ouverture dont la taille maximale correspond à une fraction de la longueur d'onde et qui ne sont donc pas adaptés pour un fonctionnement dans les deux sous-bandes de fréquences différentes Rx, Tx lorsqu'elles sont très éloignées. Pour dimensionner de façon optimale les ouvertures rayonnantes linéaires de chaque formateur de faisceaux quasi-optique, l'invention peut consister en outre, à supprimer les cornets linéaires et à les remplacer par un radome partiellement réfléchissant unique, commun à tous les formateurs de faisceaux quasi-optiques, et connecté à toutes les ouvertures rayonnantes linéaires des formateurs de faisceaux quasi-optiques, comme représenté sur l'exemple de la figure 7 qui concerne le cas de la mise en réseau de trois formateurs de faisceaux quasi-optiques. Sur cette figure 7, le radome 70 comporte une première surface partiellement réfléchissante 71 dimensionnée pour la sous-bande de fréquences de réception et une deuxième surface partiellement réfléchissante 72 dimensionnée pour la sous-bande de fréquences d'émission. Les deux surfaces partiellement réfléchissantes sont respectivement disposées en sortie des ouvertures rayonnantes linéaires des différents formateurs de faisceaux quasi-optiques, à une distance correspondant à la longueur d'onde centrale respective des deux sous-bandes de fréquences. Les deux surfaces réfléchissantes répartissent les signaux radiofréquences, respectivement en réception Rx et en émission Tx. Afin d'obtenir la même directivité en réception et en émission, en sortie des deux surfaces réfléchissantes les ouvertures rayonnantes sont de largeurs différentes pour les deux sous-bandes de fréquences Rx et Tx, l'ouverture rayonnante en émission étant plus grande que l'ouverture rayonnante en réception.When the transmitting and receiving frequency subbands are very separated from one another, there may be appearance of grating lobes during electron beam formation. This problem is due to the opening width at the output of the quasi-optical beamformer's linear horns, which must have an opening whose maximum size corresponds to a fraction of the wavelength and which are not therefore not suitable for operation in the two sub-bands of different frequencies Rx, Tx when they are very far apart. In order to optimally size the linear radiating openings of each quasi-optical beamformer, the invention may furthermore consist in eliminating linear horns and replacing them with a single, partially reflective radome common to all quasi-beamformers. -optics, and connected to all the linear radiating openings of the quasi-optical beamformers, as shown in the example of the figure 7 which concerns the case of the networking of three quasi-optical beamformers. On this figure 7 the radome 70 has a first partially reflective surface 71 sized for the receiving frequency subband and a second partially reflecting surface 72 sized for the transmit frequency subband. The two partially reflecting surfaces are respectively arranged at the output of the linear radiating openings of the different quasi-optical beam formers at a distance corresponding to the respective central wavelength of the two frequency sub-bands. The two reflecting surfaces distribute the radiofrequency signals, respectively in Rx reception and Tx transmission. In order to obtain the same directivity in reception and in emission, at the exit of the two reflecting surfaces, the radiating openings are of different widths for the two frequency sub-bands Rx and Tx, the radiating emission opening being larger than the radiating opening in reception.

En outre, l'architecture de l'antenne peut être différente selon que le fonctionnement est en émission ou en réception. Notamment, sur l'exemple de la figure 7, seuls deux formateurs de faisceaux quasi-optiques sur trois comportent deux ports d'accès de faisceaux équipés de filtres respectifs 181, 182 et fonctionnent donc dans les deux sous-bandes Rx, Tx. Le formateur de faisceaux quasi-optique intermédiaire ne comporte qu'un seul port d'accès de faisceaux équipé d'un filtre 182 dédié à la réception et ne fonctionne donc que dans la sous-bande Rx. Ce formateur de faisceaux quasi-optique intermédiaire, comporte un deuxième filtre 182 logé dans l'ouverture rayonnante linéaire 15 afin de sélectionner, au niveau de l'ouverture rayonnante linéaire correspondante, uniquement la bande de réception.In addition, the architecture of the antenna may be different depending on whether the operation is transmitting or receiving. In particular, on the example of figure 7 only two out of three quasi-optical beamformers have two beam access ports equipped with respective filters 181, 182 and thus operate in the two subbands Rx, Tx. The intermediate quasi-optical beamformer has only one beam access port equipped with a filter 182 dedicated to the reception and therefore operates only in the sub-band Rx. This intermediate quasi-optical beamformer comprises a second filter 182 housed in the linear radiating aperture 15 in order to select, at the corresponding linear radiating aperture, only the reception band.

Différentes applications sont possibles. Le formateur de faisceaux hybride de l'invention peut être utilisé dans une antenne pour un terminal utilisateur nécessitant de délivrer un faisceau asservi sur un satellite. Pour réduire le coût de cette application, il est particulièrement intéressant que l'antenne fonctionne en émission Tx et en réception Rx. Un exemple d'architecture d'une telle antenne est représenté sur la figure 8a. Seuls deux formateurs de faisceaux quasi-optiques 101, 102 sont illustrés mais il peut y en avoir beaucoup plus que deux. Dans cet exemple, le formateur de faisceau hybride comporte au moins deux formateurs de faisceaux quasi-optiques communs à l'émission Tx et à la réception Rx, deux formateurs de faisceaux électroniques spécifiques distincts, respectivement dédiés à l'émission 201, et à la réception 203, et des commutateurs 211, 212, 231, 232 comportant différentes positions respectivement aptes à sélectionner, selon leur position, un port d'accès de faisceaux parmi plusieurs, les commutateurs reliant sélectivement, le formateur de faisceaux électronique 201, 203 dédié à l'émission, respectivement à la réception, à l'un des ports d'émission, respectivement de réception, de chaque formateur de faisceaux quasi-optique 101, 102 du formateur de faisceaux hybride. Le formateur de faisceaux quasi-optique, commun à l'émission Tx et à la réception Rx, préforme les faisceaux selon la première direction de l'espace, les deux formateurs de faisceaux électroniques spécifiques 201, 203, respectivement dédiés à l'émission et à la réception, forment les faisceaux selon la deuxième direction de l'espace, orthogonale à la première direction. Sur la figure 8a, chaque formateur de faisceaux électronique spécifique 201, 203 comporte deux chaines 221, 222, 242, 243 de contrôle de phase et d'amplitude respectivement dédiées aux deux formateurs de faisceaux quasi-optiques 101, 102, chaque chaine de contrôle de phase et d'amplitude étant sélectivement reliée, par l'intermédiaire d'un commutateur à plusieurs positions 211, 212, 231, 232, à un port d'accès de faisceaux choisi du formateur de faisceaux quasi-optique respectif. Chaque commutateur comporte une entrée connectée à une chaîne de contrôle de phase et d'amplitude d'un formateur de faisceaux électronique et plusieurs sorties respectivement connectées à différents ports respectifs des différents cornets internes d'un formateur de faisceaux quasi-optique correspondant.Different applications are possible. The hybrid beamformer of the invention may be used in an antenna for a user terminal requiring delivery of a slave beam on a satellite. To reduce the cost of this application, it is particularly interesting that the antenna operates Tx transmission and Rx reception. An example of architecture of such an antenna is shown on the figure 8a . Only two quasi-optical beamformers 101, 102 are illustrated, but there can be many more than two. In this example, the hybrid beamformer comprises at least two quasi-optical beamformers common to the Tx transmission and the Rx reception, two separate specific electron beam formers, respectively dedicated to the emission 201, and to the 203, and switches 211, 212, 231, 232 having different positions respectively able to select, depending on their position, a port of access of several beams, the selectively connecting switches, the electronic beamformer 201, 203 dedicated to transmitting, respectively on reception, to one of the transmitting or receiving ports of each quasi-optical beamformer 101, 102 of the hybrid beamformer. The quasi-optical beamformer, common to the Tx emission and to the Rx reception, preforms the beams according to the first direction of the space, the two specific electron beam formers 201, 203, respectively dedicated to the emission and at the reception, form the beams according to the second direction of the space, orthogonal to the first direction. On the figure 8a each specific electronic beamformer 201, 203 comprises two amplitude control and amplitude control chains 221, 222, 242, 243 respectively dedicated to the two quasi-optical beamformers 101, 102, each phase and current control chain. amplitude being selectively connected, via a multi-position switch 211, 212, 231, 232, to a selected beam port of the respective quasi-optical beamformer. Each switch has an input connected to a phase and amplitude control chain of an electron beamformer and several outputs respectively connected to different respective ports of the various internal horns of a corresponding quasi-optical beamformer.

Les faisceaux préformés par le formateur de faisceau quasi-optique et délivrés sur les différents ports d'accès de faisceaux du formateur de faisceau quasi-optique ont des directions d'orientation différentes les unes des autres. Par conséquent, la direction de pointage du faisceau engendré par le formateur de faisceaux hybride peut être choisie, selon la position du commutateur, par sélection d'un port du formateur de faisceau quasi-optique parmi plusieurs.The beams preformed by the quasi-optical beamformer and delivered on the different beam access ports of the quasi-optical beamformer have orientation directions different from each other. Therefore, the beam pointing direction generated by the hybrid beamformer may be selected, depending on the switch position, by selecting one of several of the optical-to-optical beamformer ports.

Les ports d'accès, sélectionnés par les commutateurs dans tous les formateurs de faisceaux quasi-optiques empilés et reliés à un même formateur de faisceaux électronique, peuvent avoir une direction d'orientation identique et couvrir un secteur géographique identique. Dans ce cas, le formateur de faisceaux hybride pointe dans le secteur géographique couvert par les ports d'accès correspondants de chaque formateur de faisceaux quasi-optique. Comme, pour chaque formateur de faisceaux quasi-optique, les secteurs géographiques couverts par deux ports d'accès adjacents se recoupent avec des atténuations pouvant atteindre entre 3 dB et 6 dB, le formateur de faisceau hybride présentera alors également une atténuation d'un même ordre de grandeur dans les deux directions correspondantes. Pour améliorer le gain de l'antenne incluant le formateur de faisceaux hybride, il est possible de pointer un faisceau dans une direction intermédiaire située entre deux secteurs géographiques adjacents. Pour cela, l'invention consiste à alterner les ports d'accès sélectionnés dans différents formateurs de faisceaux quasi-optiques successifs de sorte qu'une première partie des ports d'accès sélectionnés couvre un premier secteur géographique et une deuxième partie des ports d'accès sélectionnés couvre un deuxième secteur géographique, adjacent du premier secteur géographique. Le nombre de ports d'accès sélectionnés dans chacun des deux secteurs géographiques adjacents, dépend de la direction intermédiaire de pointage souhaitée pour le faisceau correspondant. La figure 8b illustre un exemple de pointage intermédiaire du faisceau situé entre deux faisceaux adjacents. Dans cette figure 8b, les deux ellipses 81, 82 représentées en traits pointillés représentent les deux faisceaux engendrés dans une première direction de l'espace, par deux formateurs de faisceaux quasi-optiques adjacents et les trois cercles 83, 84, 85 en traits pleins représentent les faisceaux délivrés en sortie du formateur de faisceaux hybride, après formation de faisceaux électronique dans la deuxième direction de l'espace, orthogonale à la première direction. Chacun des deux cercles extérieurs 83, 84 est obtenu par sélection, pour les deux formateurs de faisceaux quasi-optiques, des ports d'accès couvrant un premier secteur géographique, respectivement un deuxième secteur géographique adjacent au premier secteur géographique. Les deux cercles extérieurs correspondent donc à deux secteurs géographiques adjacents. Le cercle intermédiaire 85 situé entre les deux cercles extérieurs 83, 84 est obtenu par sélection, pour une première moitié, des ports d'accès couvrant le premier secteur géographique et, pour une deuxième moitié, des ports d'accès couvrant le deuxième secteur géographique adjacent au premier secteur géographique.The access ports, selected by the switches in all the stacked quasi-optical beam formers and connected to the same electron beam trainer, can have an identical orientation direction and cover an identical geographical area. In this case, the hybrid beamformer points in the geographical area covered by the corresponding access ports of each quasi-optical beamformer. Since, for each quasi-optical beamformer, the geographical areas covered by two adjacent access ports overlap with attenuations of between 3 dB and 6 dB, the hybrid beamformer will also exhibit attenuation of the same beam. order of magnitude in the two corresponding directions. To improve the gain of the antenna including the hybrid beamformer, it is possible to point a beam in an intermediate direction between two adjacent geographical areas. For this, the invention consists in alternating the access ports selected in different successive quasi-optical beam formers so that a first part of the selected access ports covers a first geographical area and a second part of the ports of access. Selected access covers a second geographic area, adjacent to the first geographical area. The number of access ports selected in each of the two adjacent geographic areas, depends on the desired intermediate pointing direction for the corresponding beam. The figure 8b illustrates an example of intermediate pointing of the beam located between two adjacent beams. In this figure 8b , the two ellipses 81, 82 represented in dotted lines represent the two beams generated in a first direction of space, by two adjacent quasi-optical beam formers and the three circles 83, 84, 85 in solid lines represent the beams delivered. at the output of the hybrid beamformer, after electron beam formation in the second direction of space, orthogonal to the first direction. Each of the two outer circles 83, 84 is obtained by selecting, for the two quasi-optical beam formers, access ports covering a first geographic area, respectively a second geographic area adjacent to the first geographic area. The two outer circles therefore correspond to two adjacent geographical areas. The intermediate circle 85 located between the two outer circles 83, 84 is obtained by selecting, for a first half, the access ports covering the first geographical area and, for a second half, access ports covering the second geographical area. adjacent to the first geographic area.

En outre, dans le cas où un dépointage important est souhaité, à ce dépointage du faisceau par sélection des ports du formateur de faisceau quasi-optique, il est possible d'ajouter un dépointage mécanique du formateur de faisceaux quasi-optique afin de positionner le formateur de faisceaux quasi-optique dans la bonne direction et de réduire ainsi la complexité de la formation de faisceaux électronique.Furthermore, in the case where a large misalignment is desired, at this misalignment of the beam by selecting the ports of the quasi-optical beamformer, it is possible to add a mechanical misalignment of the quasi-optical beamformer to position the beam. quasi-optical beamformer in the right direction and thus reduce the complexity of electron beam formation.

Le formateur de faisceaux hybride de l'invention peut aussi être utilisé dans une antenne multifaisceaux d'émission et de réception comme représenté sur l'exemple d'antenne de la figure 9 dans le cas où les spots couvrent un secteur géographique prédéterminé. Dans cet exemple, les formateurs de faisceaux quasi-optiques sont identiques à celui décrit en liaison avec la figure 8a. Seul le nombre de formateurs de faisceaux électroniques spécifiques dédiés à l'émission et à la réception est augmenté en fonction du nombre de faisceaux à élaborer. Sur la figure 9, deux faisceaux sont élaborés à l'émission et deux faisceaux sont élaborés à la réception. Pour chaque faisceau à élaborer, si le formateur de faisceaux quasi-optique comporte Ny étages, avec Ny égal à deux sur l'exemple de la figure 8a, le formateur de faisceaux électronique comporte Ny chaines de contrôle de phase et d'amplitude, chaque chaine de contrôle de phase et d'amplitude dédiée à l'émission, respectivement à la réception, étant sélectivement reliée, par l'intermédiaire d'un commutateur à plusieurs positions différentes, par exemple quatre positions sur la figure 9, à un port choisi d'un formateur de faisceaux quasi-optique respectif, les ports pouvant être sélectionnés à l'émission, respectivement à la réception, par un premier commutateur étant différents des ports pouvant être sélectionnés à l'émission, respectivement à la réception, par un deuxième commutateur. Dans le cas d'une application pour laquelle il est nécessaire de réaliser n'importe quel pointage à partir de n'importe lequel des ports du formateur de faisceaux quasi-optique, la sélection des ports sera plus importante et les commutateurs seront beaucoup plus complexes. Plus la sélection des ports est complexe, plus il y a des pertes de puissance. Pour masquer les pertes de puissance, il est alors possible d'ajouter des amplificateurs distribués entre les commutateurs du formateur de faisceaux quasi-optique.The hybrid beamformer of the invention can also be used in a transmit and receive multibeam antenna as shown in the antenna example of FIG. figure 9 in the case where the spots cover a predetermined geographical area. In this example, the quasi-optical beam formers are identical to those described in connection with the figure 8a . Only the number of specific electron beam trainers dedicated to transmission and reception is increased according to the number of beams to be developed. On the figure 9 , two beams are developed on the show and two beams are developed at the reception. For each beam to be developed, if the quasi-optical beamformer has Ny stages, with Ny equal to two on the example of the figure 8a the electron beam trainer comprises Ny phase and amplitude control chains, each phase and amplitude control channel dedicated to the transmission, respectively to the reception, being selectively connected, via a switch to several different positions, for example four positions on the figure 9 at a chosen port of a respective quasi-optical beamformer, the ports being able to to be selected at the sending, respectively at the reception, by a first switch being different from the ports that can be selected on transmission, respectively on reception, by a second switch. In the case of an application for which it is necessary to perform any pointing from any of the ports of the quasi-optical beamformer, the selection of ports will be greater and the switches will be much more complex . The more complex the port selection, the more power losses there are. To mask the power losses, it is then possible to add amplifiers distributed between the switches of the quasi-optical beamformer.

Dans une autre application à une antenne multifaisceaux montée à bord d'un satellite d'une constellation de satellites défilant en orbite basse ou moyenne, il est nécessaire de pouvoir réaliser n'importe quel pointage de l'antenne à partir de n'importe lequel des ports d'accès de faisceaux des formateurs de faisceaux quasi-optiques. Dans ce cas, plusieurs faisceaux doivent être formés en sortie de chaque formateur de faisceaux électronique. Pour cela, comme représenté par exemple sur la figure 10, chaque chaîne de contrôle de phase et d'amplitude 221, 222 connectée aux formateurs de faisceaux quasi-optiques peut comporter une dérivation 52 pour scinder la chaîne de contrôle de phase et d'amplitude en plusieurs voies différentes 221 a, 221 b, 222a, 222b, chaque voie comportant un déphaseur 50a, 50b, 51 a, 51 b dédié. Cela permet d'attribuer différents déphasages à chaque port d'accès de faisceaux d'un formateur de faisceaux quasi-optique. En sortie des déphaseurs, un combineur/diviseur de puissance recombine les voies de façon à délivrer plusieurs faisceaux différents Fa, Fb correspondant à des lois de phase différentes. Sur l'exemple de la figure 10, deux faisceaux sont délivrés en sortie de chaque formateur de faisceau électronique, mais bien entendu cela n'est pas limitatif, en utilisant un nombre de voies supérieur à deux, il est possible de former un nombre de faisceaux supérieur à deux.In another application to a multibeam antenna mounted aboard a satellite of a constellation of satellites traveling in low or medium orbit, it is necessary to be able to make any pointing of the antenna from any beam access ports of quasi-optical beamformers. In this case, several beams must be formed at the output of each electron beam trainer. For this, as represented for example on the figure 10 each phase and amplitude control chain 221, 222 connected to the quasi-optical beamformers may include a bypass 52 for splitting the phase and amplitude control chain into a plurality of different channels 221a, 221b, 222a , 222b, each channel having a phase shifter 50a, 50b, 51a, 51b dedicated. This allows different phase shifts to be assigned to each beam access port of a quasi-optical beamformer. At the output of the phase shifters, a power combiner / divider recombines the channels so as to deliver several different beams Fa, Fb corresponding to different phase laws. On the example of the figure 10 two beams are delivered at the output of each electron beamformer, but of course this is not limiting, using a number of channels greater than two, it is possible to form a number of beams greater than two.

Alternativement, comme représenté sur la figure 11, pour réaliser des faisceaux multiples en sortie de chaque formateur de faisceaux électronique, chaque formateur de faisceaux électronique peut inclure un formateur quasi-optique 60 en technologie PCB comportant plusieurs sorties de faisceaux correspondant à des déphasages différents et plusieurs entrées auxquelles sont reliées les chaînes actives 221, 222. Le formateur de faisceaux quasi-optique en technologie PCB est alors utilisé à la place du combineur/diviseur de signaux représenté sur la figure 8.Alternatively, as shown on the figure 11 to achieve multiple beams at the output of each electron beamformer, each electron beamformer may include a quasi-optical 60 PCB-based formatter having a plurality of beam outputs corresponding to different phase shifts and a plurality of inputs to which the active channels are connected. 221, 222. The quasi-optical beamformer in PCB technology is then used in place of the signal combiner / divider shown on the figure 8 .

Dans les deux modes de réalisation représentés sur les figures 10 et 11, les faisceaux ainsi obtenus sont alors inclinés uniquement en fonction du déphasage appliqué sur chaque voie. Dans le cas de la figure 10, les faisceaux formés sont indépendants entre eux, et peuvent être pointés dans des directions quelconques. Dans le cas de la figure 11, une grappe de faisceaux est réalisée, et cette grappe est orientable et les faisceaux ne sont pas indépendants entre eux.In both embodiments shown on the figures 10 and 11 , the beams thus obtained are then inclined only according to the phase shift applied on each channel. In the case of figure 10 the beams formed are independent of each other and can be pointed in any direction. In the case of figure 11 a cluster of beams is produced, and this cluster is orientable and the beams are not independent of each other.

Les formateurs de faisceaux quasi-optiques peuvent être montés avec leur axe longitudinal orienté parallèlement à l'axe orthogonal au défilement du satellite afin de préformer une rangée de faisceaux selon cet axe orthogonal et de recombiner les ports de ces formateurs de faisceaux quasi-optiques avec le formateur de faisceaux électronique. Cela permet de suivre une même zone géographique au sol au cours du défilement du satellite et permet également de dépointer l'ensemble des faisceaux formés selon l'axe de défilement lorsque le satellite défile au-dessus d'une zone à faible trafic, comme les océans.The quasi-optical beam formers can be mounted with their longitudinal axis oriented parallel to the orthogonal axis of the satellite to preform a row of beams along this orthogonal axis and to recombine the ports of these quasi-optical beam formers with the electron beam trainer. This makes it possible to follow the same geographical area on the ground during the scrolling of the satellite and also allows detaching all the beams formed along the axis of scrolling when the satellite scrolls over a low traffic area, such as oceans.

Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with particular embodiments, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

Claims (10)

Architecture d'antenne active à formation de faisceaux reconfigurable, caractérisée en ce qu'elle comporte un formateur de faisceaux hybride constitué d'une part, - Ny formateurs de faisceaux quasi-optiques planaires empilés, où Ny est un nombre entier supérieur à un, chaque formateur de faisceaux quasi-optique comportant un guide d'onde (10) à plaques parallèles (11, 12) ayant deux extrémités respectivement munies d'une ouverture rayonnante linéaire (15) et de My ports d'accès de faisceaux (161, 162,..., 16k,... 16My), une lentille (13) intégrée dans le guide d'onde à plaques parallèles, des cornets internes (141, 142,..., 14k,... 14My) distribués périodiquement côte à côte le long d'un axe focal de la lentille (13), les ports d'accès de faisceaux (161, 162,..., 16k,...16My) étant respectivement associés aux cornets internes (141, 142,..., 14k,... 14My), chaque formateur de faisceaux quasi-optique étant apte à former des faisceaux dans deux bandes de fréquences séparées, respectivement d'émission et de réception, selon une première direction de l'espace parallèle au plan des guides d'ondes à plaques parallèles, et d'autre part, - d'au moins un formateur de faisceaux électronique planaire (201, 202, 203,...20Nx) comportant Ny chaînes de contrôle de phase et d'amplitude et un dispositif de combinaison (34) comportant Ny entrées respectivement reliées aux Ny chaînes de contrôle de phase et d'amplitude et au moins une sortie de faisceaux chaque chaîne de contrôle de phase et d'amplitude étant connectée à un port d'accès de faisceaux respectif de chaque formateur de faisceaux quasi-optique, le formateur de faisceaux électronique étant apte à former des faisceaux selon une deuxième direction de l'espace, orthogonale à la première direction. Active antenna architecture with reconfigurable beam formation, characterized in that it comprises a hybrid beamformer consisting on the one hand, Ny stacked planar quasi-optical beam formers, where Ny is an integer greater than one, each quasi-optical beamformer comprising a waveguide (10) with parallel plates (11, 12) having two ends respectively provided with a linear aperture (15) and My beam access ports (161, 162, ..., 16k, ... 16My), a lens (13) integrated in the parallel plate waveguide , internal horns (141, 142, ..., 14k, ... 14My) periodically distributed side by side along a focal axis of the lens (13), the beam access ports (161, 162 , ..., 16k, ... 16My) being respectively associated with internal horns (141, 142, ..., 14k, ... 14My), each quasi-optical beamformer being able to form beams in two separate frequency bands, respectively transmission and reception, in a first direction of the space parallel to the plane of the parallel plate waveguides, And on the other hand, at least one planar electronic beamformer (201, 202, 203, ... 20Nx) comprising Ny phase and amplitude control strings and a combination device (34) comprising Ny inputs respectively connected to the Ny chains phase and amplitude control and at least one beam output each phase and amplitude control chain being connected to a respective beam access port of each quasi-optical beamformer, the electron beamformer being able to form beams in a second direction of space, orthogonal to the first direction. Architecture d'antenne selon la revendication 1, caractérisée en ce qu'elle comporte en outre des commutateurs (211, 212, 231, 232) aptes à sélectionner, dans chaque formateur de faisceaux quasi-optique, un port parmi tous les ports d'accès de faisceaux disponibles, chaque commutateur comportant une entrée connectée à une chaîne de contrôle de phase et d'amplitude du formateur de faisceaux électronique et plusieurs sorties respectivement connectées à plusieurs ports d'accès de faisceaux respectifs du formateur de faisceaux quasi-optique correspondant.Antenna architecture according to claim 1, characterized in that it further comprises switches (211, 212, 231, 232) capable of selecting, in each quasi-optical beamformer, a port among all the ports of access of available beams, each switch having an input connected to a phase and amplitude control channel of the electron beamformer and several outputs respectively connected to a plurality of respective beam access ports of the corresponding quasi-optical beamformer. Architecture d'antenne selon l'une des revendications 1 ou 2, caractérisée en ce que les ports d'accès de faisceaux (161, 162,..., 16k,... 16M) sont constitués d'une première rangée de ports d'émission (16k1) disposés côte à côte le long de l'axe focal de la lentille (13) et d'une deuxième rangée de ports de réception(16k2) disposés côte à côte le long de l'axe focal de la lentille (13), la première et la deuxième rangées étant empilées l'une au-dessus de l'autre, les ports d'émission (16k1) et les ports de réception (16k2) étant distincts et de tailles différentes, chaque port d'émission, respectivement de réception, étant muni d'un filtre (181, 182) respectif centré sur la bande de fréquences d'émission, respectivement de réception.Antenna architecture according to one of claims 1 or 2, characterized in that the beam access ports (161, 162, ..., 16k, ... 16M) consist of a first row of ports transmitters (16k1) arranged side by side along the focal axis of the lens (13) and a second row of receiving ports (16k2) arranged side by side along the focal axis of the lens (13), the first and second rows being stacked one above the other, the transmit ports (16k1) and the receive ports (16k2) being distinct and of different sizes, each port of emission, respectively receiving, being provided with a respective filter (181, 182) centered on the transmission frequency band, respectively receiving. Architecture d'antenne selon l'une des revendications 1 à 3, caractérisée en ce que les ouvertures rayonnantes linéaires (15) des différents formateurs de faisceaux quasi-optiques sont reliées en réseau à un radome (70) partiellement réfléchissant unique, commun à tous les formateurs de faisceaux quasi-optiques, le radome (70) comportant une première surface partiellement réfléchissante (71) dimensionnée pour la sous-bande de fréquences de réception et une deuxième surface partiellement réfléchissante (72) dimensionnée pour la sous-bande de fréquences d'émission, les première et deuxième surfaces partiellement réfléchissantes étant respectivement disposées en sortie des ouvertures rayonnantes linéaires, à une distance correspondant à une longueur d'onde centrale respective des deux sous-bandes de fréquences d'émission et de réception.Antenna architecture according to one of Claims 1 to 3, characterized in that the linear radiating openings (15) of the different quasi-optical beam formers are connected in a network to a single, partially reflective radome (70) common to all the quasi-optical beam formers, the radome (70) having a first partially reflecting surface (71) sized for the receiving frequency sub-band and a second partially reflecting surface (72) sized for the sub-frequency band. the first and second partially reflective surfaces being respectively arranged at the output of the linear radiating openings, at a distance corresponding to a respective central wavelength of the two transmission and reception frequency subbands. Architecture d'antenne selon l'une des revendications 3 ou 4, caractérisée en ce que le formateur de faisceau hybride comporte un formateur de faisceaux quasi-optique (101, 102) commun à l'émission Tx et à la réception Rx, deux formateurs de faisceaux électroniques spécifiques (201, 203) distincts, respectivement dédiés à l'émission et à la réception et des commutateurs (211, 212, 231, 232) comportant différentes positions respectivement aptes à sélectionner un port d'accès de faisceaux parmi plusieurs, chaque commutateur reliant sélectivement, selon sa position, une chaîne de contrôle de phase et d'amplitude du formateur de faisceaux électronique dédié à l'émission, respectivement à la réception, à l'un des ports d'émission, respectivement de réception, de chaque formateur de faisceaux quasi-optique.Antenna architecture according to one of Claims 3 or 4, characterized in that the hybrid beamformer comprises a quasi-optical beamformer (101, 102) common to the Tx transmission and to the Rx receiver, two trainers separate specific electron beams (201, 203) respectively dedicated to transmission and reception and switches (211, 212, 231, 232) having different positions respectively capable of selecting a port of access of several beams, each switch selectively connecting, according to its position, a phase control and amplitude control channel of the electronic beamformer dedicated to the transmission, respectively to the reception, to one of the transmission or receiving ports, respectively each trainer of quasi-optical beams. Architecture d'antenne selon la revendication 5, caractérisée en ce que les ports d'accès de faisceaux, sélectionnés par les commutateurs dans tous les formateurs de faisceaux quasi-optiques empilés et reliés à un même formateur de faisceaux électronique, ont une direction d'orientation identique et couvrent un secteur géographique identique.Antenna architecture according to claim 5, characterized in that the beam access ports, selected by the switches in all the stacked quasi-optical beam formers and connected to the same electron beamformer, have a direction of rotation. identical orientation and cover an identical geographical area. Architecture d'antenne selon la revendication 5, caractérisée en ce qu'une première partie des ports d'accès de faisceaux, sélectionnés par les commutateurs dans les formateurs de faisceaux quasi-optiques empilés, couvre un premier secteur géographique et une deuxième partie des ports d'accès de faisceaux, sélectionnés par les commutateurs dans les formateurs de faisceaux quasi-optiques empilés, couvre un deuxième secteur géographique adjacent au premier secteur géographique.Antenna architecture according to claim 5, characterized in that a first portion of the beam access ports selected by the switches in the stacked quasi-optical beam formers covers a first geographic area and a second portion of the ports. Beam accesses, selected by the switches in the stacked quasi-optical beamformers, cover a second geographic area adjacent to the first geographic area. Architecture d'antenne selon l'une des revendications 1 à 5, caractérisée en ce que le dispositif de combinaison (34) est constitué par un combineur/diviseur comportant Nx entrées respectivement reliées aux Nx chaînes de contrôle de phase et d'amplitude et une sortie de faisceaux.Antenna architecture according to one of claims 1 to 5, characterized in that the combination device (34) consists of a combiner / divider having Nx inputs respectively connected to the Nx phase and amplitude control strings and a beam output. Architecture d'antenne selon l'une des revendications 1 à 5, caractérisée en ce que le dispositif de combinaison (34) comporte une dérivation (52) pour scinder chaque chaîne de contrôle de phase et d'amplitude en plusieurs voies différentes (221 a, 221 b, 222a, 222b), chaque voie comportant un déphaseur (50a, 50b, 51 a, 51 b) dédié.Antenna architecture according to one of claims 1 to 5, characterized in that the combining device (34) has a shunt (52) for splitting each phase and amplitude control chain into a plurality of different paths (221a). , 221b, 222a, 222b), each channel having a dedicated phase shifter (50a, 50b, 51a, 51b). Architecture d'antenne selon l'une des revendications 1 à 5, caractérisée en ce que le dispositif de combinaison (34) est constitué par un formateur de faisceaux quasi-optique en technologie PCB comportant Nx entrées respectivement reliées aux Nx chaînes de contrôle de phase et d'amplitude et plusieurs sorties de faisceaux.Antenna architecture according to one of Claims 1 to 5, characterized in that the combination device (34) is constituted by a quasi-optical beamformator in PCB technology comprising Nx inputs respectively connected to the Nx phase control chains. and amplitude and several beam outputs.
EP16199488.4A 2015-12-04 2016-11-18 Active antenna architecture with reconfigurable hybrid beam formation Active EP3176875B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1502522A FR3044832B1 (en) 2015-12-04 2015-12-04 ACTIVE ANTENNA ARCHITECTURE WITH RECONFIGURABLE HYBRID BEAM FORMATION

Publications (2)

Publication Number Publication Date
EP3176875A1 true EP3176875A1 (en) 2017-06-07
EP3176875B1 EP3176875B1 (en) 2018-06-13

Family

ID=55806388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16199488.4A Active EP3176875B1 (en) 2015-12-04 2016-11-18 Active antenna architecture with reconfigurable hybrid beam formation

Country Status (4)

Country Link
US (1) US10236589B2 (en)
EP (1) EP3176875B1 (en)
ES (1) ES2681675T3 (en)
FR (1) FR3044832B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3758146A1 (en) * 2019-06-27 2020-12-30 Thales Two-dimensional analog multibeams beamformer with reduced complexity for reconfigurable active network antennas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535394B2 (en) * 2017-07-20 2020-01-14 Samsung Electronics Co., Ltd. Memory device including dynamic voltage and frequency scaling switch and method of operating the same
FR3069713B1 (en) * 2017-07-27 2019-08-02 Thales ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS
CN112952390B (en) * 2021-02-18 2022-11-11 四川大学 Paraboloid-based substrate interchange multi-beam slot antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170158A (en) 1963-05-08 1965-02-16 Rotman Walter Multiple beam radar antenna system
US3979754A (en) * 1975-04-11 1976-09-07 Raytheon Company Radio frequency array antenna employing stacked parallel plate lenses
US5936588A (en) 1998-06-05 1999-08-10 Rao; Sudhakar K. Reconfigurable multiple beam satellite phased array antenna
US6275184B1 (en) * 1999-11-30 2001-08-14 Raytheon Company Multi-level system and method for steering an antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162803A (en) * 1991-05-20 1992-11-10 Trw Inc. Beamforming structure for modular phased array antennas
EP1148583A1 (en) * 2000-04-18 2001-10-24 Era Patents Limited Planar array antenna
GB0701087D0 (en) * 2007-01-19 2007-02-28 Plasma Antennas Ltd A displaced feed parallel plate antenna
IT1392314B1 (en) * 2008-12-18 2012-02-24 Space Engineering Spa ANTENNA A LENS DISCRETE ACTIVE APERIODIC FOR MULTI-DRAFT SATELLITE ROOFS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170158A (en) 1963-05-08 1965-02-16 Rotman Walter Multiple beam radar antenna system
US3979754A (en) * 1975-04-11 1976-09-07 Raytheon Company Radio frequency array antenna employing stacked parallel plate lenses
US5936588A (en) 1998-06-05 1999-08-10 Rao; Sudhakar K. Reconfigurable multiple beam satellite phased array antenna
US6275184B1 (en) * 1999-11-30 2001-08-14 Raytheon Company Multi-level system and method for steering an antenna

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3758146A1 (en) * 2019-06-27 2020-12-30 Thales Two-dimensional analog multibeams beamformer with reduced complexity for reconfigurable active network antennas
FR3098024A1 (en) * 2019-06-27 2021-01-01 Thales Reduced complexity two-dimensional multibeam analog formatter for reconfigurable active array antennas
US11670840B2 (en) 2019-06-27 2023-06-06 Thales Two-dimensional analogue multibeam former of reduced complexity for reconfigurable active array antennas

Also Published As

Publication number Publication date
US10236589B2 (en) 2019-03-19
FR3044832A1 (en) 2017-06-09
FR3044832B1 (en) 2018-01-05
EP3176875B1 (en) 2018-06-13
US20170162943A1 (en) 2017-06-08
ES2681675T3 (en) 2018-09-14

Similar Documents

Publication Publication Date Title
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP0600799B1 (en) An active antenna with variable polarisation synthesis
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP2807702B1 (en) Two dimensional multibeam former, antenna using such and satellite telecommunication system.
CA2821242C (en) Multi-beam antenna and antennae system including compact sources and satellite telecommunication system including at least one such antenna
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP2688142B1 (en) Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna
CA2685708A1 (en) Shared antenna feed and process for making a shared antenna feed for the development of multiple beams
FR2956252A1 (en) ONBOARD DIRECTIVE FLIGHT ANTENNA, VEHICLE COMPRISING SUCH ANTENNA AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH A VEHICLE
FR3045220A1 (en) COMPACT BIPOLARIZATION EXCITATION ASSEMBLY FOR A RADIANT ANTENNA ELEMENT AND COMPACT NETWORK COMPRISING AT LEAST FOUR COMPACT EXCITATION ASSEMBLIES
FR3007215A1 (en) SOURCE FOR PARABOLIC ANTENNA
EP0098192B1 (en) Multiplexing device for combining two frequency bands
CA2029378A1 (en) Circular polarization antenna, particularly for an antenna network
FR2704359A1 (en) Flat antenna.
EP3435480A1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
FR3098024A1 (en) Reduced complexity two-dimensional multibeam analog formatter for reconfigurable active array antennas
EP0225219A1 (en) Conical scan antenna array and radar comprising such an antenna
EP4046241A1 (en) Array antenna
FR2952759A1 (en) Reflector focal network and antenna for use in satellite to cover chosen geographical area of geostationary orbit, has sub-reflector misaligning and/or deforming beam from selected sources to produce spot near area
EP3264526A1 (en) Multi-beam source for multi-beam antenna

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20171025

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016003571

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0025000000

Ipc: H01Q0001280000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 25/00 20060101ALI20171214BHEP

Ipc: H01Q 1/28 20060101AFI20171214BHEP

Ipc: H01Q 21/00 20060101ALI20171214BHEP

Ipc: H01Q 19/13 20060101ALI20171214BHEP

Ipc: H01Q 15/00 20060101ALI20171214BHEP

Ipc: H01Q 1/42 20060101ALI20171214BHEP

Ipc: H01Q 15/02 20060101ALI20171214BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1009428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016003571

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2681675

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180914

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1009428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181013

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016003571

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161118

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 8

Ref country code: FR

Payment date: 20231024

Year of fee payment: 8

Ref country code: DE

Payment date: 20231017

Year of fee payment: 8