EP3085202B1 - Pilote de del pour la lecture d'information provenant d'un module à del - Google Patents

Pilote de del pour la lecture d'information provenant d'un module à del Download PDF

Info

Publication number
EP3085202B1
EP3085202B1 EP14808666.3A EP14808666A EP3085202B1 EP 3085202 B1 EP3085202 B1 EP 3085202B1 EP 14808666 A EP14808666 A EP 14808666A EP 3085202 B1 EP3085202 B1 EP 3085202B1
Authority
EP
European Patent Office
Prior art keywords
led
led module
information
circuit
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14808666.3A
Other languages
German (de)
English (en)
Other versions
EP3085202A1 (fr
Inventor
Frank Lochmann
Patrick MARTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3085202A1 publication Critical patent/EP3085202A1/fr
Application granted granted Critical
Publication of EP3085202B1 publication Critical patent/EP3085202B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology

Definitions

  • the present invention relates to a module for operating at least one lamp or a lamp section, preferably at least one LED, and a driver for supplying or operating the module.
  • an LED module which, in addition to LEDs, also has an identification element for determining an operating parameter of the LED module.
  • a coding resistor can be provided in the LED module as an identification element. The LED driver connected to the LED module applies a voltage across this coding resistor. The resulting short circuit through the coding resistor is measured in order to find out information regarding the target current of the associated LED module.
  • An operating device for illuminants is known, a selection device having an impedance that can be replaced on a plurality of different impedance values being provided on a secondary side of a galvanic separation.
  • a control device is set up to recognize the set impedance value as a function of a measurement variable detected on the primary side and to control the operating device as a function thereof.
  • the invention now addresses this problem.
  • the electrical parameter of the circuit can e.g. the current through the circuit or the value of the resistance or impedance of the circuit.
  • the parameter recorded on the primary side of the transmitter is a timing parameter, such as the frequency and / or the duty cycle, of the clocked transmitter.
  • the circuit on the secondary side associated with the LED module can carry out at least one, preferably several load changes when the defined voltage is applied.
  • the electrical parameter of the circuit on the secondary side of the transmitter can provide information from a sensor that is functionally connected to the LED module, for example from a daylight, smoke or motion sensor.
  • Two or more different discrete voltage levels can be applied to the secondary circuit.
  • the circuit on the secondary side can behave differently electrically at different voltage levels, so that different information can be recorded on the primary side.
  • the circuit can have an intelligent circuit that generates defined load changes and / or an ohmic resistance.
  • the voltage on the circuit can be detected indirectly, for example by means of a measuring winding coupled to the secondary side of the transformer, on the primary side of the transformer.
  • the transformer can be a transformer that is actively clocked on the primary side, such as a flyback converter.
  • the current through the coding resistor or the resistance value of the coding resistor can be detected on the basis of a clocking parameter, for example the frequency and / or the duty cycle, of the transmitter clocked on the primary side.
  • a clocking parameter for example the frequency and / or the duty cycle, of the transmitter clocked on the primary side. This is a timing parameter that is set to achieve the defined voltage across the coding resistor.
  • the voltage drop across the coding resistor can be detected indirectly, for example by means of a measuring winding coupled to the secondary side of the transmitter, on the primary side of the transmitter.
  • an LED converter according to claim 4 is proposed.
  • the detection circuit can be designed to detect one, preferably a plurality of load changes of the circuit on the secondary side associated with the LED module.
  • the electrical parameter of the circuit on the secondary side of the transmitter can provide information from a sensor that is functionally connected to the LED module reflect, for example from a daylight, smoke or motion sensor.
  • the converter can be designed to apply two or more different discrete voltage levels to the secondary circuit.
  • the voltage drop across the coding resistor can be detected indirectly, for example by means of a measuring winding coupled to the secondary side of the transmitter, on the primary side of the transmitter.
  • the transformer can be a transformer actively clocked on the primary side by a control circuit by means of at least one switch, such as a flyback converter.
  • the voltage drop across the coding resistor can be indirect, for example by means of a with the secondary side of the Transmitter coupled measuring winding, are detected on the primary side of the transformer.
  • an LED driver having an above-described LED converter for reading out information from a connectable LED module and an LED converter for supplying the LEDs of the connectable LED module are proposed.
  • the LED lighting system 1 comprises an LED module 2 having LEDs and an LED driver 3 for operating the LED module 2.
  • the LED lighting system 1 also has a supply unit 7, which is preferably supplied with an input voltage Ve, in particular mains AC voltage.
  • This input voltage Ve is fed to a filter and rectifier unit 8, which preferably filters the input voltage Ve with the aid of, for example, at least one capacitor.
  • the filter and rectifier unit 8 comprises a rectifier, for example in the form of a bridge rectifier, for rectifying the preferably filtered input voltage Ve.
  • the rectified input voltage Ve is then fed to an actively clocked power factor correction or PFC (Power Factor Correction) circuit 9 of the supply unit 7.
  • the output voltage of the supply unit 7 is a DC voltage, which is also identified as the bus voltage Vbus.
  • a bus voltage Vbus essentially has one constant voltage with a ripple or ripple that is small compared to the amplitude of the bus voltage Vbus.
  • the supply unit 7 can comprise another converter for generating a bus voltage Vbus.
  • the supply unit 7 can optionally have a further insulation unit (not shown), which essentially has the function of insulation or galvanic isolation and, for this purpose, as a galvanic isolating element e.g. comprises a transformer.
  • This insulation unit preferably has a converter topology with electrical isolation according to e.g. a half-bridge flux converter or a resonance converter.
  • the bus voltage Vbus which can alternatively be a constant battery voltage, supplies the LED driver 3, which is connected to the LED module 2 via three connections or pins A / LED +, A / Rset and A / LED-.
  • the LED module 2 comprises three connections LED +, LEDset and LED-, which are each connected to the three connections of the LED driver 3.
  • a common ground for the LED driver 3 and the LED module 2 is provided via the connection between the connections A / LED-, LED-.
  • the connections A / LED +, LED + are connected via a line, so that LEDs 4 of the LED module 2 can be operated with current starting from the LED driver 3.
  • the LEDs 4 are arranged between the connections LED + and LED-, preferably as an LED path.
  • the LEDs 4 can be connected in series or in parallel between the LED + and LED- connections. Alternatively, a configuration with several series connections of one or more LEDs connected in parallel is also conceivable.
  • the LED module 2 can also have only one LED.
  • the LEDs 4 can all be of the same type and in particular emit the same color, such as white.
  • the LEDs of the LED module can also emit different colors, which together result in a white mixed light, for example.
  • the LED module 2 further comprises a coding circuit 6, which is provided between the LEDset and LED- connections.
  • the coding circuit 6 consists of a coding resistor Rset.
  • the coding circuit 6 can be a passive circuit. How from Fig. 1 can be seen, the LED path and the coding circuit 6 are each LED-connected to ground and connected in parallel with one another. In Fig. 1 shows how a voltage of, for example, 5 volts is applied to the coding circuit 6 between the connections A / Rset and A / LED-.
  • the output current at the connection A / Rset which also preferably corresponds to the current through the coding circuit 6, is identified by Iset.
  • the coding circuit 6 encodes information that can be transmitted to the LED driver 3.
  • This information preferably relates to the LED module 2 and serves to identify the LED module 2.
  • the LED driver 3 is then able to identify the connected LED module 2.
  • the information encoded in the coding circuit 6 can define the designation of the LED module 2 or the color generated by it.
  • the information transmitted via the coding circuit 6 can preferably be an operating parameter for the LED module 2, such as, for example, a nominal current or nominal current or a nominal power or nominal power for the LED module 2
  • the invention is based on the fact that a coding circuit 6 or a coding resistor Rset is provided on the LED module, the resistance value of which codes the setpoint value of the current for the associated LED module.
  • the LED driver receives this information and regulates the current or the power for the LED module 2 accordingly.
  • Fig. 1 the circuit of a compensation unit 5 is shown within the LED module 2, for example between the two connections LED + and LEDset.
  • This compensation unit 5 is suitable for influencing or changing the value of the operating parameter coded by the coding circuit 6.
  • the compensation unit 5 can influence the coded target current in such a way that the target current for the LEDs, which is read by the LED driver 3, is reduced if the ambient temperature is too high.
  • this measure which is called "thermal derating" in English, premature aging of the LEDs, which occurs when the ambient temperature is too high, can be countered. This also reduces the heat emitted by the LEDs.
  • This compensation unit 5 is optional and can also be omitted, so that no such compensation unit 5 is provided between the connections LED + and LEDset.
  • Fig. 2 shows a schematic representation of an embodiment of the circuitry of the LED driver 3 according to the invention.
  • Fig. 2 shows in particular an LED converter 20 which is arranged in the LED driver 3 and is responsible for reading out information from the LED module 2 or from the coding circuit 6.
  • a predefined, defined voltage drop Vset is generated according to the invention via the coding circuit 6 or via the coding resistor Rset. It is assumed that the current Iset then represents the coding variable.
  • the current Iset is the current at the output A / Rset or the current through the coding resistor Rset. Alternatively, the value of the electrical resistance of the coding resistor Rset can also represent the coding variable.
  • the voltage Vset is generated via the coding resistor Rset based on a flyback converter 21, also called flyback converter, clocked on the primary side.
  • the flyback converter is mentioned here as an example for a transformer.
  • the voltage Vset can alternatively be generated by another clocked isolated voltage supply.
  • the flyback converter 21 comprises a primary winding P1, which is coupled to a secondary winding S1.
  • the primary winding P1 is connected in series with a switch Q1, which is designed, for example, as a transistor or as a MOSFET.
  • Switch Q1 is connected to a primary ground.
  • a voltage pLVPS is present at the series circuit consisting of the primary winding P1 and the switch Q1.
  • This voltage pLVPS is preferably a DC voltage in the form of, for example, a low voltage. a low voltage, starting from the in Fig. 1 shown bus voltage Vbus can be generated.
  • Secondary winding S1 is connected on the one hand to connection A / LED-, which is a secondary-side ground Are defined. On the other hand, the secondary winding S1 is connected to the connection A / Rset via a diode D1.
  • the flyback converter also includes a capacitor C1 on the secondary side with the connections A / Rset and A / LED-.
  • the functionality of the flyback converter is known per se.
  • the switch Q1 of the flyback converter is switched on and off alternately and at high frequency by means of a control signal FLB.
  • a leading phase with switch Q1 closed is followed by a blocking phase with switch Q1 open, etc.
  • the resistor Rset is arranged on the secondary side of this clocked floating voltage supply in the form of a flyback converter.
  • a further winding P2 now generates a signal at a connection or pin ADC which, in the sense of a mirrored voltage, reproduces the voltage Vset via the coding resistor Rset.
  • This winding P2 is arranged on the primary side.
  • a resistor R2 is arranged in parallel with the further winding P2, and a series circuit comprising a diode and two resistors R3, R4 of a voltage divider.
  • the voltage at the connection ADC indirectly reflects the voltage Vset at the coding resistor Rset via the voltage divider R3, R4 and the ratio of the number of turns of the secondary winding S1 and the further primary winding P2.
  • the voltage Vset across the coding resistor Rset is regulated to a defined voltage value of, for example, 5 volts by a control unit 23.
  • the control unit 23 receives as feedback information the voltage at the connection ADC, which represents the voltage Vset.
  • the output voltage Vset can be changed by changing the timing of the switch Q1 will. For example, the voltage Vset is adjusted by changing the duty cycle tv of the control signal FLB for the switch Q1 or by changing the frequency f of the control signal FLB.
  • the control unit 23 is responsible for changing the duty cycle tv or the frequency f.
  • the voltage Vset is kept constant at the defined value.
  • the frequency f or the duty cycle tv of the switch Q1 of the flyback converter is changed until the signal ADC indicates that the voltage across the coding resistor Rset reaches and maintains the predetermined voltage, for example 5 volts.
  • the frequency f of the clocking of the flyback switch Q1 required to reach the specified voltage via the resistor Rset is now used as the quantity for the current through the resistor Rset in the case of the predetermined voltage drop of, for example, 5 volts.
  • the frequency f required for the required voltage drop Vset it is concluded that the required target current for the LED module 2 is assigned to the coding resistor Rset.
  • the pulse duty factor tv of the timing of the switch Q1 or the pulse duty factor tv of the control signal FLB can also be used.
  • the invention thus advantageously offers the possibility of finding out information from the secondary side of the SELV barrier or the galvanic isolation on the primary side, without having to rely on an optocoupler or similar component for crossing the SELV barrier.
  • the frequency f and / or the duty cycle of the control signal FLB for the switch Q1 has also stabilized to a certain value.
  • This value is used in accordance with the invention in order to be able to use the coding variable, the coding variable being, as said, either the current Iset occurring at the defined voltage or the value of the coding resistor Rset.
  • the relationship between the timing parameter - frequency f and / or the duty cycle tv of the control signal FLB - and the coding variable can e.g. by means of a look-up table or look-up table stored in the LED driver 3 or in the control unit 23.
  • the defined voltage for the voltage Vset across the coding circuit can be 5 volts.
  • the range for the value of the coding resistance Rset goes, for example, from 1k ⁇ to 100 k ⁇ . This results in a range for the current Iset from 5mA to 50 ⁇ A.
  • the relationship between the current Iset and the value of the coding resistance is in Fig. 3 shown.
  • the resistance Rset is preferably determined on the basis of the frequency f of the control signal FLB.
  • the following table is an example of a corresponding look-up table: Rset f_FLB 100 k ⁇ 34.97 kHz 90.5 k ⁇ 38.17 kHz 81.9 k ⁇ 42.37 kHz ... ... 1.4 k ⁇ 68.92 kHz 1.2 k ⁇ 78.37 kHz 1.1 k ⁇ 85.76 kHz 1 k ⁇ 95.06 kHz
  • the supply circuit Vset formed by the LED converter 20 can also be used for other purposes in the LED driver 3 as a low-voltage supply.
  • the optional compensation unit 5 of Fig. 1 can be a thermistor, for example, whose resistance changes with temperature.
  • a PTC thermistor or PTC (Positive Temperature Coefficient) resistor the electrical resistance increases with increasing temperature, and vice versa with a thermistor in the form of a thermistor or NTC (Negative Temperature Coefficient) resistor.
  • the compensation unit 5 preferably ensures that the current through the coding circuit 6 changes.
  • the compensation unit 5 can manipulate the detection of the resistance value Rset, for example at high ambient temperatures, in such a way that the detection circuit 22 does not detect the resistance value of the connected coding circuit 6, but rather a changed resistance value that corresponds to a lower target current.
  • Fig. 4 shows a schematic representation of an embodiment of an LED converter 40 for supplying a connectable LED module 2.
  • the LED converter 40 is part of the LED driver 3.
  • the LED converter 40 comprises a switching regulator, for example a half-bridge converter, having a lower-potential switch Q2 'and a higher-potential switch Q1'.
  • the half-bridge converter is used by the in Fig. 1 shown bus voltage Vbus supplied.
  • the switches of the half-bridge can be designed as transistors, for example FET or MOSFET.
  • a resonance converter in the form of an LLC converter is connected between the two switches Q2 ', Q1'.
  • the LLC converter comprises a series connection of a capacitance C1 ', an inductance L1' and a primary winding P1 'of a galvanic lock or a transformer.
  • the capacitance C1 'and the inductance L1' form an LC resonance circuit.
  • a secondary winding S1 ' is provided on the secondary side, which is coupled to the primary winding P1' and which is connected to a diode D1 '.
  • the secondary winding S1 ' is also connected to a ground sGND on the secondary side.
  • the cathode of the diodes D1 ' is with the in Fig. 1 shown connection A / LED + connected.
  • the connection A / LED- is connected to the sGND on the secondary side.
  • the LED module 2 can be connected and supplied at the connections A / LED + and A / LED-.
  • a desired current can be generated for the LED module 2.
  • This desired current is preferably the current which is encoded by the coding circuit 6.
  • a look-up table is provided in the LED driver, for example, for a certain coding size a certain value of the resistance Rset - specifies a corresponding current for the LED module.
  • the current can preferably be fed back to the control unit 23 through the LED module.
  • Other known methods for regulating the current can be used.
  • the LEDs of the LED module 2 can be operated with other converters known per se and can be supplied with current.
  • the use of a flyback converter or a buck converter is conceivable. Since a buck converter has no electrical isolation, the use of a buck converter is preferably in connection with Fig. 1 Insulation unit mentioned provided.
  • the LED converter 20 for reading out the information and the LED converter 40 for supplying the LEDs are operated independently of one another. This is advantageous in that the reading of the information has no influence on the supply of the LEDs, and vice versa.
  • digital coding of characteristic values of the LED module can also take place according to the invention in that an intelligent circuit 50 is provided on the secondary side instead of or in addition to the coding resistor Rset.
  • the intelligent circuit 50 is preferably connected between the connections LEDset and LED-.
  • the intelligent circuit 50 encodes information, for example, by generating defined load changes, these load changes then being reflected at the pin ADC and from a smart circuit connected there, such as from the control unit 23, as multiple information according to a predefined protocol can be interpreted, for example in the sense of a coding resistor for the target current of the LED module.
  • binary coding can be carried out. This binary coding is in turn decoded by the control unit.
  • this digital information can also represent sensor information, such as temperature, smoke detectors, motion detectors, daylight sensors, etc.
  • a sensor 51 is provided, which forwards measured values to the intelligent circuit 50, which in turn transmits the measured values or information derived therefrom to the primary side or to the control unit 23 according to the digital coding by means of load jumps.
  • Fig. 6 shows an exemplary embodiment of an intelligent circuit 50 according to the invention.
  • only one intelligent circuit 50 is connected between the connections LEDset and LED- of the LED module.
  • a coding resistor Rset can also be provided in parallel with the intelligent circuit 50.
  • the intelligent circuit 50 comprises a first series circuit consisting of a first resistor R60 and a first switch S60, and a second series circuit connected in parallel consisting of a second resistor R61 and a second switch S61.
  • the resistors R60, R61 have different resistance values.
  • the intelligent circuit 50 also comprises a logic (not shown) which is designed to either switch the first switch S60 on and the second switch S61 off, or conversely the first switch S60 off and the second switch S61 on.
  • the intelligent circuit 50 can thus have two different resistance values, and thus perform load jumps and binary digital coding.
  • an interface for the transmission of energy to the secondary side of the LED converter is thus provided, so that information from the secondary side can be triggered or called up without separate feedback via the SELV barrier.
  • a further embodiment is that discrete voltage levels can be generated on the secondary side in a targeted manner via the interface shown, it being possible for different readout processes to be generated at the respective different voltage levels. For example, it could be provided that at a voltage level of 5 volts, as found, an ohmic resistance is read out at the pin ADC - via the primary-side clocking parameters - and an intelligent circuit 50 in the sense of a digital signal from a different DC voltage level of, for example, 7 volts Reports protocol by load change jumps information.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Claims (9)

  1. Procédé de lecture d'une information par un module LED (2) pouvant être connecté et alimenté, dans lequel l'information est codée par un paramètre électrique (Rset),
    dans lequel le paramètre électrique (Rset) est une valeur d'une résistance de codage d'un circuit de codage (6) et
    dans lequel le circuit de codage correspond au module LED (2),
    comprenant les étapes suivantes pour la lecture de l'information par le module LED (2) pouvant être connecté et alimenté :
    - transmission galvaniquement séparée (21) d'une puissance électrique au circuit de codage (6) sur le côté secondaire d'un transmetteur (21) cadencé côté primaire, de façon à ce que, au circuit de codage (6), soit appliqué une tension régulable régulée par retour (Vset) avec une valeur prédéfinie et
    - mesure indirecte du paramètre électrique (Rset) du circuit de codage (6) ou d'une modification dans le temps du paramètre électrique (Rset) du circuit de codage (6), dans lequel la mesure indirecte a lieu à l'aide d'un paramètre qui est mesuré sur le côté primaire du transmetteur (21),
    caractérisé en ce que
    le paramètre mesuré sur le côté primaire du transmetteur (21) est un paramètre de cadencement,
    dans lequel, avant la lecture de l'information par le module LED (2) pouvant être connecté et alimenté, les étapes suivantes sont exécutées :
    - modification du paramètre de cadencement jusqu'à ce que la tension régulable régulée par retour (Vset) atteigne la valeur prédéfinie, au moyen d'une mesure indirecte de la tension régulable régulée par retour (Vset) à l'aide d'une grandeur électrique sur le côté primaire ;
    et dans lequel la mesure indirecte pour la lecture de l'information par le module LED (2) pouvant être connecté et alimenté comprend en outre :
    - la détermination de la valeur de la résistance de codage sur la base du paramètre de cadencement, qui s'ajuste afin d'obtenir la valeur prédéfinie, au moyen d'une table de consultation.
  2. Procédé selon la revendication 1,
    dans lequel le circuit de codage (6) côté secondaire, correspondant au module LED (2), comprend en outre un circuit intelligent (50) qui effectue au moins un changement de charge lors de l'application de la valeur prédéfinie dans un mode de lecture d'information.
  3. Procédé selon la revendication 2,
    dans lequel le paramètre électrique du circuit de codage (6) reproduit, sur le côté secondaire du transmetteur (21), une information provenant d'un capteur (51) relié de manière fonctionnelle au module LED (2).
  4. Convertisseur LED (20) pour la lecture d'une information par un module LED (2) pouvant être connecté et alimenté, dans lequel l'information est codée par un paramètre électrique (Rset),
    dans lequel le paramètre électrique (Rset) est une valeur d'une résistance de codage d'un circuit de codage (6) et
    dans lequel le circuit de codage correspond au module LED (2), comprenant, pour la lecture de l'information par le module LED (2) pouvant être connecté et alimenté :
    - un transmetteur (21) cadencé côté primaire, conçu pour la transmission séparée galvaniquement d'une puissance électrique au circuit de codage (6), qui peut être alimenté à partir du côté secondaire du transmetteur (21), de façon à ce que, au circuit de codage (6), est appliquée une tension régulable régulée par retour (Vset) avec une valeur prédéfinie et
    - un circuit de mesure (22) disposé sur le côté primaire du transmetteur (21), conçu pour la mesure indirecte du paramètre électrique (Rset) du circuit de codage (6) ou d'une modification dans le temps du paramètre électrique (Rset) du circuit de codage (6), dans lequel le circuit de mesure (22) est en outre conçu de façon à ce que la mesure indirecte ait lieu à l'aide d'un paramètre qui meut être mesuré sur le côté primaire du transmetteur (21),
    caractérisé en ce que
    le paramètre mesuré sur le côté primaire du transmetteur (21) est un paramètre de cadencement,
    et le convertisseur LED comprend en outre une unité de commande (23) qui est conçue pour modifier le paramètre de cadencement avant la lecture de l'information par le module LED (2) pouvant être connecté et alimenté jusqu'à ce que la tension régulable régulée par retour (Vset) atteigne la valeur prédéfinie, au moyen d'une mesure indirecte de la tension régulable régulée par retour (Vset) à l'aide d'une grandeur électrique sur le côté primaire ;
    et dans lequel, pour la mesure indirecte et la lecture de l'information par le module LED (2) pouvant être connecté et alimenté, l'unité de commande (23) est en outre conçue pour déterminer la valeur de la résistance de codage au moyen d'une table de consultation de l'unité de commande (23), sur la base du paramètre de cadencement qui s'ajuste afin d'obtenir la valeur prédéfinie.
  5. Convertisseur LED selon la revendication 4, dans lequel le circuit de codage (6) côté secondaire, correspondant au module LED (2) comprend en outre un circuit intelligent (50) qui est conçu pour effectuer au moins un changement de charge lors de l'application de la valeur prédéfinie dans un mode de lecture d'information,
    dans lequel le circuit de mesure (22) est conçu, dans le mode de lecture d'information, pour détecter un changement de charge du circuit de codage (6) correspondant au module LED.
  6. Convertisseur LED selon la revendication 5,
    dans lequel le paramètre électrique du circuit de codage (6) reproduit, sur le côté secondaire du transmetteur (21), une information provenant d'un capteur relié de manière fonctionnelle avec le module LED.
  7. Convertisseur LED selon l'une des revendications 4 à 6,
    dans lequel la tension régulable régulée par retour (Vset) peut être mesurée au moyen d'un enroulement de mesure couplé avec le côté secondaire du transmetteur (21), sur le côté primaire du transmetteur (21).
  8. Convertisseur LED selon l'une des revendications 4 à 7,
    dans lequel le transmetteur (21) est un transmetteur (21) cadencé activement côté primaire par le circuit de commande (23) au moyen d'au moins un commutateur.
  9. Pilote de LED (3) comprenant un convertisseur LED (20) selon l'une des revendications 4 à 8, pour la lecture d'une information par le module LED (2) pouvant être connecté et alimenté, et un convertisseur LED (40) pour l'alimentation des LED du module LED (2) pouvant être connecté et alimenté.
EP14808666.3A 2013-12-20 2014-12-08 Pilote de del pour la lecture d'information provenant d'un module à del Active EP3085202B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226964.1A DE102013226964A1 (de) 2013-12-20 2013-12-20 LED-Treiber zum Auslesen von Information eines LED-Moduls
PCT/EP2014/076908 WO2015091064A1 (fr) 2013-12-20 2014-12-08 Pilote de diode électroluminescente permettant de consulter une information d'un module de diode électroluminescente

Publications (2)

Publication Number Publication Date
EP3085202A1 EP3085202A1 (fr) 2016-10-26
EP3085202B1 true EP3085202B1 (fr) 2020-04-01

Family

ID=52011232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14808666.3A Active EP3085202B1 (fr) 2013-12-20 2014-12-08 Pilote de del pour la lecture d'information provenant d'un module à del

Country Status (3)

Country Link
EP (1) EP3085202B1 (fr)
DE (1) DE102013226964A1 (fr)
WO (1) WO2015091064A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT15169U1 (de) * 2014-01-30 2017-02-15 Tridonic Gmbh & Co Kg Erfassung eines LED-Moduls
RU2656875C1 (ru) * 2015-04-24 2018-06-07 Филипс Лайтинг Холдинг Б.В. Модуль твердотельного освещения, цепь освещения и способы управления освещением
JP6339300B1 (ja) 2015-04-24 2018-06-06 フィリップス ライティング ホールディング ビー ヴィ 固体照明モジュール、照明回路、及び照明制御方法
DE102016226016A1 (de) * 2016-12-22 2018-06-28 Osram Gmbh SCHALTUNGSANORDNUNG ZUM BETREIBEN VON LICHTQUELLEN UND SENSOR ZUM ANSCHLIEßEN AN EINE SCHALTUNGSANORDNUNG
FR3061624B1 (fr) * 2017-01-02 2020-11-13 Valeo Vision Gestion d'informations dans un module lumineux pour vehicule automobile comprenant des sources lumineuses a element semi-conducteur
FR3064148B1 (fr) * 2017-03-15 2021-07-16 Valeo Vision Dispositif et procede de pilotage de sources lumineuses d’un vehicule automobile
FI128615B (en) * 2018-10-02 2020-08-31 Helvar Oy Ab Method and device for controlling the output current of a driver device for semiconductor light sources
DE102020203531A1 (de) 2020-03-19 2021-09-23 Osram Gmbh Schaltungsanordnung zum betreiben einer leuchtmittel aufweisenden last

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159131A1 (fr) * 2012-04-26 2013-10-31 Tridonic Gmbh & Co Kg Appareil permettant de faire fonctionner un dispositif d'éclairage et procédé associé

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102640568B (zh) 2009-12-04 2014-08-13 欧司朗股份有限公司 用于控制电子转换器的操作的方法以及对应的电子转换器、照明系统
KR101663834B1 (ko) * 2010-07-23 2016-10-07 엘지이노텍 주식회사 Led 전원 장치
JP2012216766A (ja) * 2011-03-30 2012-11-08 Sanken Electric Co Ltd Led駆動装置及びled照明装置
CN102361525B (zh) * 2011-07-19 2013-07-17 成都芯源系统有限公司 发光二极管电路及其方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159131A1 (fr) * 2012-04-26 2013-10-31 Tridonic Gmbh & Co Kg Appareil permettant de faire fonctionner un dispositif d'éclairage et procédé associé

Also Published As

Publication number Publication date
WO2015091064A1 (fr) 2015-06-25
EP3085202A1 (fr) 2016-10-26
DE102013226964A1 (de) 2015-06-25

Similar Documents

Publication Publication Date Title
EP3085202B1 (fr) Pilote de del pour la lecture d'information provenant d'un module à del
DE102012007478B4 (de) Wandler für ein Leuchtmittel, LED-Konverter und Verfahren zum Betreiben eines Wandlers
WO2014094016A2 (fr) Détection pour un module de del
EP2891382B1 (fr) Appareil de commande permettant de commander une ligne de del
EP3175677B1 (fr) Circuit actif destiné à la détection du courant d'une diode électroluminescente
DE102013219153B4 (de) Treibermodul mit sekundärseitiger Erkennung einer primärseitigen elektrischen Versorgung
EP2992736B1 (fr) Procédé pour faire fonctionner un convertisseur led
EP3100591B1 (fr) Détection d'un module led
AT15988U1 (de) Betriebsschaltung zur Versorgung eines Leuchtmittels, LED-Konverter, System und Verfahren zum Betreiben einer Betriebsschaltung
WO2015077811A1 (fr) Module à led
EP3222119B1 (fr) Circuit de fonctionnement pour alimenter un moyen d'éclairage, convertisseur à del et procédé pour faire fonctionner un circuit de fonctionnement
DE202016106926U1 (de) Anpassen der Totzeit einer LLC-Schaltung
WO2015113090A1 (fr) Détection d'un module led
AT15120U1 (de) LED-Treiber zum Auslesen von Information eines LED-Moduls
AT16401U1 (de) Betriebsschaltung zur Versorgung eines Leuchtmittels, LED-Konverter, Leuchte und Verfahren zum Steuern einer Betriebsschaltung
AT13829U1 (de) Betriebsgerät zur Ansteuerung einer LED-Strecke mit sekundärseitiger Steuereinheit
WO2013152370A9 (fr) Transducteur pour un moyen d'éclairage, convertisseur del et procédé de fonctionnement d'un transducteur résonnant llc
WO2015077809A1 (fr) Procédé et dispositif de détection d'un module à led
EP3069571B1 (fr) Convertisseur de del et procédé de commande d'un circuit transducteur de convertisseur de del
DE102014104447A1 (de) Elektronisches Vorschaltgerät für LED-Leuchtmittel
AT13386U1 (de) LED-Konverter
DE102014216825A1 (de) Potentialgetrennte Betriebsschaltung mit sekundärseitiger Parametererfassung für den Einsatz als PFC-Schaltung
DE102014206021A1 (de) Betriebsgerät, Leuchte und Verfahren zum Betreiben eines Leuchtmittels
AT16413U1 (de) Betriebsschaltung, Leuchte und Verfahren zum Erfassen eines Steuersignals
AT14343U1 (de) Betriebsgerät, Leuchte und Verfahren zum Betreiben eines Leuchtmittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014013912

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0037020000

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 37/02 20060101AFI20181002BHEP

Ipc: H05B 33/08 20060101ALI20181002BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1253070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013912

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502014013912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1253070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 10