EP3085202B1 - Led-treiber zum auslesen von information eines led-moduls - Google Patents

Led-treiber zum auslesen von information eines led-moduls Download PDF

Info

Publication number
EP3085202B1
EP3085202B1 EP14808666.3A EP14808666A EP3085202B1 EP 3085202 B1 EP3085202 B1 EP 3085202B1 EP 14808666 A EP14808666 A EP 14808666A EP 3085202 B1 EP3085202 B1 EP 3085202B1
Authority
EP
European Patent Office
Prior art keywords
led
led module
information
circuit
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14808666.3A
Other languages
English (en)
French (fr)
Other versions
EP3085202A1 (de
Inventor
Frank Lochmann
Patrick MARTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3085202A1 publication Critical patent/EP3085202A1/de
Application granted granted Critical
Publication of EP3085202B1 publication Critical patent/EP3085202B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology

Definitions

  • the present invention relates to a module for operating at least one lamp or a lamp section, preferably at least one LED, and a driver for supplying or operating the module.
  • an LED module which, in addition to LEDs, also has an identification element for determining an operating parameter of the LED module.
  • a coding resistor can be provided in the LED module as an identification element. The LED driver connected to the LED module applies a voltage across this coding resistor. The resulting short circuit through the coding resistor is measured in order to find out information regarding the target current of the associated LED module.
  • An operating device for illuminants is known, a selection device having an impedance that can be replaced on a plurality of different impedance values being provided on a secondary side of a galvanic separation.
  • a control device is set up to recognize the set impedance value as a function of a measurement variable detected on the primary side and to control the operating device as a function thereof.
  • the invention now addresses this problem.
  • the electrical parameter of the circuit can e.g. the current through the circuit or the value of the resistance or impedance of the circuit.
  • the parameter recorded on the primary side of the transmitter is a timing parameter, such as the frequency and / or the duty cycle, of the clocked transmitter.
  • the circuit on the secondary side associated with the LED module can carry out at least one, preferably several load changes when the defined voltage is applied.
  • the electrical parameter of the circuit on the secondary side of the transmitter can provide information from a sensor that is functionally connected to the LED module, for example from a daylight, smoke or motion sensor.
  • Two or more different discrete voltage levels can be applied to the secondary circuit.
  • the circuit on the secondary side can behave differently electrically at different voltage levels, so that different information can be recorded on the primary side.
  • the circuit can have an intelligent circuit that generates defined load changes and / or an ohmic resistance.
  • the voltage on the circuit can be detected indirectly, for example by means of a measuring winding coupled to the secondary side of the transformer, on the primary side of the transformer.
  • the transformer can be a transformer that is actively clocked on the primary side, such as a flyback converter.
  • the current through the coding resistor or the resistance value of the coding resistor can be detected on the basis of a clocking parameter, for example the frequency and / or the duty cycle, of the transmitter clocked on the primary side.
  • a clocking parameter for example the frequency and / or the duty cycle, of the transmitter clocked on the primary side. This is a timing parameter that is set to achieve the defined voltage across the coding resistor.
  • the voltage drop across the coding resistor can be detected indirectly, for example by means of a measuring winding coupled to the secondary side of the transmitter, on the primary side of the transmitter.
  • an LED converter according to claim 4 is proposed.
  • the detection circuit can be designed to detect one, preferably a plurality of load changes of the circuit on the secondary side associated with the LED module.
  • the electrical parameter of the circuit on the secondary side of the transmitter can provide information from a sensor that is functionally connected to the LED module reflect, for example from a daylight, smoke or motion sensor.
  • the converter can be designed to apply two or more different discrete voltage levels to the secondary circuit.
  • the voltage drop across the coding resistor can be detected indirectly, for example by means of a measuring winding coupled to the secondary side of the transmitter, on the primary side of the transmitter.
  • the transformer can be a transformer actively clocked on the primary side by a control circuit by means of at least one switch, such as a flyback converter.
  • the voltage drop across the coding resistor can be indirect, for example by means of a with the secondary side of the Transmitter coupled measuring winding, are detected on the primary side of the transformer.
  • an LED driver having an above-described LED converter for reading out information from a connectable LED module and an LED converter for supplying the LEDs of the connectable LED module are proposed.
  • the LED lighting system 1 comprises an LED module 2 having LEDs and an LED driver 3 for operating the LED module 2.
  • the LED lighting system 1 also has a supply unit 7, which is preferably supplied with an input voltage Ve, in particular mains AC voltage.
  • This input voltage Ve is fed to a filter and rectifier unit 8, which preferably filters the input voltage Ve with the aid of, for example, at least one capacitor.
  • the filter and rectifier unit 8 comprises a rectifier, for example in the form of a bridge rectifier, for rectifying the preferably filtered input voltage Ve.
  • the rectified input voltage Ve is then fed to an actively clocked power factor correction or PFC (Power Factor Correction) circuit 9 of the supply unit 7.
  • the output voltage of the supply unit 7 is a DC voltage, which is also identified as the bus voltage Vbus.
  • a bus voltage Vbus essentially has one constant voltage with a ripple or ripple that is small compared to the amplitude of the bus voltage Vbus.
  • the supply unit 7 can comprise another converter for generating a bus voltage Vbus.
  • the supply unit 7 can optionally have a further insulation unit (not shown), which essentially has the function of insulation or galvanic isolation and, for this purpose, as a galvanic isolating element e.g. comprises a transformer.
  • This insulation unit preferably has a converter topology with electrical isolation according to e.g. a half-bridge flux converter or a resonance converter.
  • the bus voltage Vbus which can alternatively be a constant battery voltage, supplies the LED driver 3, which is connected to the LED module 2 via three connections or pins A / LED +, A / Rset and A / LED-.
  • the LED module 2 comprises three connections LED +, LEDset and LED-, which are each connected to the three connections of the LED driver 3.
  • a common ground for the LED driver 3 and the LED module 2 is provided via the connection between the connections A / LED-, LED-.
  • the connections A / LED +, LED + are connected via a line, so that LEDs 4 of the LED module 2 can be operated with current starting from the LED driver 3.
  • the LEDs 4 are arranged between the connections LED + and LED-, preferably as an LED path.
  • the LEDs 4 can be connected in series or in parallel between the LED + and LED- connections. Alternatively, a configuration with several series connections of one or more LEDs connected in parallel is also conceivable.
  • the LED module 2 can also have only one LED.
  • the LEDs 4 can all be of the same type and in particular emit the same color, such as white.
  • the LEDs of the LED module can also emit different colors, which together result in a white mixed light, for example.
  • the LED module 2 further comprises a coding circuit 6, which is provided between the LEDset and LED- connections.
  • the coding circuit 6 consists of a coding resistor Rset.
  • the coding circuit 6 can be a passive circuit. How from Fig. 1 can be seen, the LED path and the coding circuit 6 are each LED-connected to ground and connected in parallel with one another. In Fig. 1 shows how a voltage of, for example, 5 volts is applied to the coding circuit 6 between the connections A / Rset and A / LED-.
  • the output current at the connection A / Rset which also preferably corresponds to the current through the coding circuit 6, is identified by Iset.
  • the coding circuit 6 encodes information that can be transmitted to the LED driver 3.
  • This information preferably relates to the LED module 2 and serves to identify the LED module 2.
  • the LED driver 3 is then able to identify the connected LED module 2.
  • the information encoded in the coding circuit 6 can define the designation of the LED module 2 or the color generated by it.
  • the information transmitted via the coding circuit 6 can preferably be an operating parameter for the LED module 2, such as, for example, a nominal current or nominal current or a nominal power or nominal power for the LED module 2
  • the invention is based on the fact that a coding circuit 6 or a coding resistor Rset is provided on the LED module, the resistance value of which codes the setpoint value of the current for the associated LED module.
  • the LED driver receives this information and regulates the current or the power for the LED module 2 accordingly.
  • Fig. 1 the circuit of a compensation unit 5 is shown within the LED module 2, for example between the two connections LED + and LEDset.
  • This compensation unit 5 is suitable for influencing or changing the value of the operating parameter coded by the coding circuit 6.
  • the compensation unit 5 can influence the coded target current in such a way that the target current for the LEDs, which is read by the LED driver 3, is reduced if the ambient temperature is too high.
  • this measure which is called "thermal derating" in English, premature aging of the LEDs, which occurs when the ambient temperature is too high, can be countered. This also reduces the heat emitted by the LEDs.
  • This compensation unit 5 is optional and can also be omitted, so that no such compensation unit 5 is provided between the connections LED + and LEDset.
  • Fig. 2 shows a schematic representation of an embodiment of the circuitry of the LED driver 3 according to the invention.
  • Fig. 2 shows in particular an LED converter 20 which is arranged in the LED driver 3 and is responsible for reading out information from the LED module 2 or from the coding circuit 6.
  • a predefined, defined voltage drop Vset is generated according to the invention via the coding circuit 6 or via the coding resistor Rset. It is assumed that the current Iset then represents the coding variable.
  • the current Iset is the current at the output A / Rset or the current through the coding resistor Rset. Alternatively, the value of the electrical resistance of the coding resistor Rset can also represent the coding variable.
  • the voltage Vset is generated via the coding resistor Rset based on a flyback converter 21, also called flyback converter, clocked on the primary side.
  • the flyback converter is mentioned here as an example for a transformer.
  • the voltage Vset can alternatively be generated by another clocked isolated voltage supply.
  • the flyback converter 21 comprises a primary winding P1, which is coupled to a secondary winding S1.
  • the primary winding P1 is connected in series with a switch Q1, which is designed, for example, as a transistor or as a MOSFET.
  • Switch Q1 is connected to a primary ground.
  • a voltage pLVPS is present at the series circuit consisting of the primary winding P1 and the switch Q1.
  • This voltage pLVPS is preferably a DC voltage in the form of, for example, a low voltage. a low voltage, starting from the in Fig. 1 shown bus voltage Vbus can be generated.
  • Secondary winding S1 is connected on the one hand to connection A / LED-, which is a secondary-side ground Are defined. On the other hand, the secondary winding S1 is connected to the connection A / Rset via a diode D1.
  • the flyback converter also includes a capacitor C1 on the secondary side with the connections A / Rset and A / LED-.
  • the functionality of the flyback converter is known per se.
  • the switch Q1 of the flyback converter is switched on and off alternately and at high frequency by means of a control signal FLB.
  • a leading phase with switch Q1 closed is followed by a blocking phase with switch Q1 open, etc.
  • the resistor Rset is arranged on the secondary side of this clocked floating voltage supply in the form of a flyback converter.
  • a further winding P2 now generates a signal at a connection or pin ADC which, in the sense of a mirrored voltage, reproduces the voltage Vset via the coding resistor Rset.
  • This winding P2 is arranged on the primary side.
  • a resistor R2 is arranged in parallel with the further winding P2, and a series circuit comprising a diode and two resistors R3, R4 of a voltage divider.
  • the voltage at the connection ADC indirectly reflects the voltage Vset at the coding resistor Rset via the voltage divider R3, R4 and the ratio of the number of turns of the secondary winding S1 and the further primary winding P2.
  • the voltage Vset across the coding resistor Rset is regulated to a defined voltage value of, for example, 5 volts by a control unit 23.
  • the control unit 23 receives as feedback information the voltage at the connection ADC, which represents the voltage Vset.
  • the output voltage Vset can be changed by changing the timing of the switch Q1 will. For example, the voltage Vset is adjusted by changing the duty cycle tv of the control signal FLB for the switch Q1 or by changing the frequency f of the control signal FLB.
  • the control unit 23 is responsible for changing the duty cycle tv or the frequency f.
  • the voltage Vset is kept constant at the defined value.
  • the frequency f or the duty cycle tv of the switch Q1 of the flyback converter is changed until the signal ADC indicates that the voltage across the coding resistor Rset reaches and maintains the predetermined voltage, for example 5 volts.
  • the frequency f of the clocking of the flyback switch Q1 required to reach the specified voltage via the resistor Rset is now used as the quantity for the current through the resistor Rset in the case of the predetermined voltage drop of, for example, 5 volts.
  • the frequency f required for the required voltage drop Vset it is concluded that the required target current for the LED module 2 is assigned to the coding resistor Rset.
  • the pulse duty factor tv of the timing of the switch Q1 or the pulse duty factor tv of the control signal FLB can also be used.
  • the invention thus advantageously offers the possibility of finding out information from the secondary side of the SELV barrier or the galvanic isolation on the primary side, without having to rely on an optocoupler or similar component for crossing the SELV barrier.
  • the frequency f and / or the duty cycle of the control signal FLB for the switch Q1 has also stabilized to a certain value.
  • This value is used in accordance with the invention in order to be able to use the coding variable, the coding variable being, as said, either the current Iset occurring at the defined voltage or the value of the coding resistor Rset.
  • the relationship between the timing parameter - frequency f and / or the duty cycle tv of the control signal FLB - and the coding variable can e.g. by means of a look-up table or look-up table stored in the LED driver 3 or in the control unit 23.
  • the defined voltage for the voltage Vset across the coding circuit can be 5 volts.
  • the range for the value of the coding resistance Rset goes, for example, from 1k ⁇ to 100 k ⁇ . This results in a range for the current Iset from 5mA to 50 ⁇ A.
  • the relationship between the current Iset and the value of the coding resistance is in Fig. 3 shown.
  • the resistance Rset is preferably determined on the basis of the frequency f of the control signal FLB.
  • the following table is an example of a corresponding look-up table: Rset f_FLB 100 k ⁇ 34.97 kHz 90.5 k ⁇ 38.17 kHz 81.9 k ⁇ 42.37 kHz ... ... 1.4 k ⁇ 68.92 kHz 1.2 k ⁇ 78.37 kHz 1.1 k ⁇ 85.76 kHz 1 k ⁇ 95.06 kHz
  • the supply circuit Vset formed by the LED converter 20 can also be used for other purposes in the LED driver 3 as a low-voltage supply.
  • the optional compensation unit 5 of Fig. 1 can be a thermistor, for example, whose resistance changes with temperature.
  • a PTC thermistor or PTC (Positive Temperature Coefficient) resistor the electrical resistance increases with increasing temperature, and vice versa with a thermistor in the form of a thermistor or NTC (Negative Temperature Coefficient) resistor.
  • the compensation unit 5 preferably ensures that the current through the coding circuit 6 changes.
  • the compensation unit 5 can manipulate the detection of the resistance value Rset, for example at high ambient temperatures, in such a way that the detection circuit 22 does not detect the resistance value of the connected coding circuit 6, but rather a changed resistance value that corresponds to a lower target current.
  • Fig. 4 shows a schematic representation of an embodiment of an LED converter 40 for supplying a connectable LED module 2.
  • the LED converter 40 is part of the LED driver 3.
  • the LED converter 40 comprises a switching regulator, for example a half-bridge converter, having a lower-potential switch Q2 'and a higher-potential switch Q1'.
  • the half-bridge converter is used by the in Fig. 1 shown bus voltage Vbus supplied.
  • the switches of the half-bridge can be designed as transistors, for example FET or MOSFET.
  • a resonance converter in the form of an LLC converter is connected between the two switches Q2 ', Q1'.
  • the LLC converter comprises a series connection of a capacitance C1 ', an inductance L1' and a primary winding P1 'of a galvanic lock or a transformer.
  • the capacitance C1 'and the inductance L1' form an LC resonance circuit.
  • a secondary winding S1 ' is provided on the secondary side, which is coupled to the primary winding P1' and which is connected to a diode D1 '.
  • the secondary winding S1 ' is also connected to a ground sGND on the secondary side.
  • the cathode of the diodes D1 ' is with the in Fig. 1 shown connection A / LED + connected.
  • the connection A / LED- is connected to the sGND on the secondary side.
  • the LED module 2 can be connected and supplied at the connections A / LED + and A / LED-.
  • a desired current can be generated for the LED module 2.
  • This desired current is preferably the current which is encoded by the coding circuit 6.
  • a look-up table is provided in the LED driver, for example, for a certain coding size a certain value of the resistance Rset - specifies a corresponding current for the LED module.
  • the current can preferably be fed back to the control unit 23 through the LED module.
  • Other known methods for regulating the current can be used.
  • the LEDs of the LED module 2 can be operated with other converters known per se and can be supplied with current.
  • the use of a flyback converter or a buck converter is conceivable. Since a buck converter has no electrical isolation, the use of a buck converter is preferably in connection with Fig. 1 Insulation unit mentioned provided.
  • the LED converter 20 for reading out the information and the LED converter 40 for supplying the LEDs are operated independently of one another. This is advantageous in that the reading of the information has no influence on the supply of the LEDs, and vice versa.
  • digital coding of characteristic values of the LED module can also take place according to the invention in that an intelligent circuit 50 is provided on the secondary side instead of or in addition to the coding resistor Rset.
  • the intelligent circuit 50 is preferably connected between the connections LEDset and LED-.
  • the intelligent circuit 50 encodes information, for example, by generating defined load changes, these load changes then being reflected at the pin ADC and from a smart circuit connected there, such as from the control unit 23, as multiple information according to a predefined protocol can be interpreted, for example in the sense of a coding resistor for the target current of the LED module.
  • binary coding can be carried out. This binary coding is in turn decoded by the control unit.
  • this digital information can also represent sensor information, such as temperature, smoke detectors, motion detectors, daylight sensors, etc.
  • a sensor 51 is provided, which forwards measured values to the intelligent circuit 50, which in turn transmits the measured values or information derived therefrom to the primary side or to the control unit 23 according to the digital coding by means of load jumps.
  • Fig. 6 shows an exemplary embodiment of an intelligent circuit 50 according to the invention.
  • only one intelligent circuit 50 is connected between the connections LEDset and LED- of the LED module.
  • a coding resistor Rset can also be provided in parallel with the intelligent circuit 50.
  • the intelligent circuit 50 comprises a first series circuit consisting of a first resistor R60 and a first switch S60, and a second series circuit connected in parallel consisting of a second resistor R61 and a second switch S61.
  • the resistors R60, R61 have different resistance values.
  • the intelligent circuit 50 also comprises a logic (not shown) which is designed to either switch the first switch S60 on and the second switch S61 off, or conversely the first switch S60 off and the second switch S61 on.
  • the intelligent circuit 50 can thus have two different resistance values, and thus perform load jumps and binary digital coding.
  • an interface for the transmission of energy to the secondary side of the LED converter is thus provided, so that information from the secondary side can be triggered or called up without separate feedback via the SELV barrier.
  • a further embodiment is that discrete voltage levels can be generated on the secondary side in a targeted manner via the interface shown, it being possible for different readout processes to be generated at the respective different voltage levels. For example, it could be provided that at a voltage level of 5 volts, as found, an ohmic resistance is read out at the pin ADC - via the primary-side clocking parameters - and an intelligent circuit 50 in the sense of a digital signal from a different DC voltage level of, for example, 7 volts Reports protocol by load change jumps information.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Modul für den Betrieb wenigstens eines Leuchtmittels bzw. einer Leuchtmittelstrecke, vorzugsweise wenigstens einer LED, sowie einen Treiber zum Versorgen bzw. Betreiben des Moduls.
  • Aus der Druckschrift US 2012/0235598 A1 ist ein LED-Modul bekannt, der neben LEDs zusätzlich noch ein Identifizierungselement zum Ermitteln eines Betriebsparameters des LED-Moduls aufweist. Als Identifizierungselement kann ein Kodierwiderstand in dem LED-Modul vorgesehen sein. Der am LED-Modul angeschlossene LED-Treiber legt dabei eine Spannung über diesen Kodierwiderstand an. Der sich einstellende Stromschluss durch den Kodierwiderstand wird gemessen, um somit eine Information bzgl. des Sollstroms des zugeordneten LED-Moduls in Erfahrung zu bringen.
  • Bei dieser bekannten Schaltungsanordnung besteht allerdings das Problem, dass bei Vorsehen eines galvanisch getrennten LED-Treibers eine Information von der Sekundärseite der SELV-Barriere (safety extra low voltage barrier) auf die Primärseite zurückgeführt werden muss. Insbesondere ist es notwendig, den gemessenen Parameter über eine derartige SELV-Barriere zurückzuführen. Dieses Zurückführen einer Information von der Sekundärseite der SELV-Barriere auf die Primärseite verursacht einen zusätzlichen Aufwand und zusätzliche Kosten, da z.B. dann ein Optokoppler vorgesehen sein muss.
  • Aus der WO 2013/159131 A1 ist ein Betriebsgerät für Leuchtmittel bekannt, wobei auf einer Sekundärseite einer galvanischen Trennung eine Auswahleinrichtung mit einer auf einer Mehrzahl unterschiedlicher Impedanzwerte ersetzbaren Impedanz vorgesehen ist. Eine Steuereinrichtung wird dazu eingerichtet, abhängig von einer primärseitigen Schaltung erfassten Messgröße den gesetzten Impedanzwert zu erkennen und das Betriebsgerät abhängig davon zu steuern.
  • Die Erfindung setzt nunmehr an diesem Problem an.
  • Erfindungsgemäß wird vorgeschlagen ein Verfahren zum Auslesen von Information von einem LED-Modul nach Anspruch 1.
  • Der elektrische Parameter der Schaltung kann z.B. der Strom durch die Schaltung oder der Wert des Widerstands bzw. der Impedanz der Schaltung sein. Der auf der Primärseite des Übertragers erfasste Parameter ist ein Taktungsparameter, wie die Frequenz und/oder das Tastverhältnis, des getakteten Übertragers.
  • Bei dem Verfahren kann die sekundärseitige, dem LED-Modul zugeordnete Schaltung bei Anliegen der definierten Spannung wenigstens einen, vorzugsweise mehrere Lastwechsel ausführen.
  • Der elektrische Parameter der Schaltung kann auf der Sekundärseite des Übertragers eine Information von einem mit dem LED-Modul funktional verbundenen Sensor widergeben, bspw. von einem Tageslicht-, Rauch- oder Bewegungssensor.
  • An die sekundärseitige Schaltung können zwei oder mehr unterschiedliche diskrete Spannungspegel anlegbar sein. Die sekundärseitige Schaltung kann sich bei unterschiedlichen Spannungspegeln elektrisch unterschiedlich verhalten, so dass unterschiedliche Informationen an der Primärseite erfassbar sind.
  • Die Schaltung kann eine intelligente Schaltung, die definierte Lastwechsel erzeugt, und/oder einen Ohm'schen Widerstand aufweisen.
  • Die Spannung an der Schaltung kann indirekt, bspw. mittels einer mit der Sekundärseite des Übertragers gekoppelten Messwicklung, an der Primärseite des Übertragers erfasst werden.
  • Erfindungsgemäß wird vorgeschlagen ein Verfahren zum Auslesen des Werts eines Kodierwiderstands eines LED-Moduls, aufweisend die Schritte:
    • galvanisch getrenntes Übertragen einer elektrischen Leistung zu dem Kodierwiderstand, der auf der Sekundärseite eines Übertragers angeordnet ist, derart, dass an dem Kodierwiderstand eine definierte Spannung anliegt, und
    • indirektes Erfassen des Stroms durch den Kodierwiderstand oder des Widerstandswerts des Kodierwiderstands anhand eines Parameters, der auf der Primärseite des Sekundärseite des Übertragers erfasst wird.
  • Der Übertrager kann ein primärseitig aktiv getakteter Übertrager sein, wie bspw. ein Flyback-Konverter.
  • Der Strom durch den Kodierwiderstand oder der Widerstandswert des Kodierwiderstands kann anhand eines Taktungsparameters, bspw. die Frequenz und/oder das Tastverhältnis, des primärseitig getakteten Übertragers erfasst werden. Dabei handelt es sich um einen Taktungsparameter, der sich zur Erzielung der definierten Spannung an dem Kodierwiderstand einstellt.
  • Der Spannungsabfall über den Kodierwiderstand kann indirekt, bspw. mittels einer mit der Sekundärseite des Übertragers gekoppelten Messwicklung, an der Primärseite des Übertragers erfasst werden.
  • Erfindungsgemäß wird vorgeschlagen ein LED-Konverter nach Anspruch 4.
  • Die Erfassungsschaltung kann dazu ausgelegt sein, einen, vorzugsweise mehrere Lastwechsel der sekundärseitigen, dem LED-Modul zugeordneten Schaltung zu erfassen.
  • Der elektrische Parameter der Schaltung auf der Sekundärseite des Übertragers kann eine Information von einem mit dem LED-Modul funktional verbundenen Sensor widergeben, bspw. von einem Tageslicht-, Rauch- oder Bewegungssensor.
  • Der Konverter kann dazu ausgelegt sein, an die sekundärseitige Schaltung zwei oder mehr unterschiedliche diskrete Spannungspegel anzulegen.
  • Der Spannungsabfall über den Kodierwiderstand kann indirekt, bspw. mittels einer mit der Sekundärseite des Übertragers gekoppelten Messwicklung, an der Primärseite des Übertragers erfasst werden.
  • Erfindungsgemäß wird vorgeschlagen ein LED-Konverter, der zum elektrischen Versorgen und Auslesen des Werts eines Kodierwiderstands eines LED-Moduls ausgelegt ist, aufweisend:
    • einen primärseitig gespeisten Übertrager zur galvanisch getrennten Übertragung einer elektrischen Leistung zu einem dem LED-Modul zugeordneten Kodierwiderstand, der ausgehend von der Sekundärseite des Übertragers versorgbar ist, derart, dass an dem Kodierwiderstand eine definierte Spannung anliegt, und
    • eine auf der Primärseite des Übertragers angeordnete Erfassungsschaltung zum indirekten Erfassen eines elektrischen Parameters des Kodierwiderstands oder dessen zeitlicher Veränderung.
  • Der Übertrager kann ein von einer Steuerschaltung mittels wenigstens eines Schalters primärseitig aktiv getakteter Übertrager sein, wie bspw. ein Flyback-Konverter.
  • Der Spannungsabfall über den Kodierwiderstand kann indirekt, bspw. mittels einer mit der Sekundärseite des Übertragers gekoppelten Messwicklung, an der Primärseite des Übertragers erfasst werden.
  • Erfindungsgemäß wird vorgeschlagen ein LED-Treiber aufweisend einen oben beschriebenen LED-Konverter zum Auslesen von Information von einem anschließbaren LED-Modul, und einen LED-Konverter zur Versorgung der LEDs des anschließbaren LED-Modul.
  • Weitere Eigenschaften, Vorteile und Merkmale werden dem Fachmann nunmehr anhand der folgenden ausführlichen Beschreibung von Ausführungsbeispielen und unter Bezugnahme auf die Figuren der begleitenden Zeichnungen vermittelt.
  • Fig. 1
    zeigt eine schematische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen LED-Beleuchtungssystems mit LED-Treiber und LED-Modul,
    Fig. 2
    zeigt eine schematische Darstellung eines Ausführungsbeispiels des schaltungstechnischen Aufbaus eines erfindungsgemäßen LED-Konverters des LED-Treibers zum Auslesen von Information von einem anschließbaren LED-Modul,
    Fig. 3
    zeigt einen Zusammenhang zwischen dem Strom durch eine erfindungsgemäße Erfassungsschaltung und dem Widerstandswert der Erfassungsschaltung,
    Fig. 4
    zeigt eine schematische Darstellung eines Ausführungsbeispiels des schaltungstechnischen Aufbaus eines erfindungsgemäßen LED-Konverters des LED-Treibers zur Versorgung von einem anschließbaren LED-Modul,
    Fig. 5
    zeigt ein erfindungsgemäßes LED-Modul mit einer intelligenten Schaltung zum Ausführen von Lastwechseln, und
    Fig. 6
    zeigt ein Ausführungsbeispiel für eine erfindungsgemäße intelligente Schaltung zum Ausführen von Lastwechseln.
  • In Fig. 1 ist schematisch ein erfindungsgemäßes LED-Beleuchtungssystem 1 dargestellt. Das LED-Beleuchtungssystem 1 umfasst ein LED-Modul 2 aufweisend LEDs sowie einen LED-Treiber 3 zum betreiben des LED-Moduls 2.
  • Wie in Fig. 1 ersichtlich, weist das erfindungsgemäße LED-Beleuchtungssystem 1 zudem eine Versorgungseinheit 7 auf, die vorzugsweise mit einer Eingangsspannung Ve, insbesondere Netz-Wechselspannung, versorgt ist. Diese Eingangsspannung Ve wird einer Filter- und Gleichrichtereinheit 8 zugeführt, die vorzugsweise die Eingangsspannung Ve mit Hilfe von z.B. mindestens einem Kondensator filtert. Die Filter- und Gleichrichtereinheit 8 umfasst einen Gleichrichter z.B. in Form eines Brückengleichrichters zum Ausführen einer Gleichrichtung der vorzugsweise gefilterten Eingangsspannung Ve.
  • Die gleichgerichtete Eingangsspannung Ve wird anschließend einer aktiv getakteten Leistungsfaktorkorrektur- oder PFC (Power Factor Correction)-Schaltung 9 der Versorgungseinheit 7 zugeführt. Die Ausgangsspannung der Versorgungseinheit 7 ist eine DC-Spannung, die auch als Busspannung Vbus gekennzeichnet wird. Eine solche Busspannung Vbus weist bekanntermaßen eine im Wesentlichen konstante Spannung mit einer im Vergleich zur Amplitude der Busspannung Vbus kleiner Welligkeit bzw. Ripple. Die Versorgungseinheit 7 kann statt der PFC-Schaltung 9 einen anderen Konverter zum Erzeugen einer Busspannung Vbus umfassen.
  • Nach der PFC-Schaltung 9 kann die Versorgungseinheit 7 optional noch eine weitere Isolierungseinheit (nicht gezeigt) aufweisen, die im Wesentlichen die Funktion einer Isolierung bzw. galvanischen Trennung aufweist und hierzu als galvanisches Trennelement z.B. einen Transformator umfasst. Diese Isolierungseinheit weist vorzugsweise eine Wandlertopologie mit galvanischer Trennung gemäß z.B. einem Halbbrückenflusswandler oder einem Resonanzwandler.
  • Die Busspannung Vbus, die alternativ auch eine konstante Batteriespannung sein kann, versorgt den LED-Treiber 3, der über drei Anschlüsse bzw. Pins A/LED+, A/Rset und A/LED- mit dem LED-Modul 2 verbunden ist. Das LED-Modul 2 umfasst drei Anschlüsse LED+, LEDset und LED-, die jeweils an den drei Anschlüssen des LED-Treibers 3 angeschlossen sind. Über die Verbindung zwischen den Anschlüssen A/LED-, LED- wird eine gemeinsame Masse für den LED-Treiber 3 und das LED-Modul 2 bereitgestellt. Die Anschlüsse A/LED+, LED+ sind über eine Leitung verbunden, so dass LEDs 4 des LED-Moduls 2 ausgehend vom LED-Treiber 3 mit Strom betrieben werden können.
  • Die LEDs 4 sind dabei zwischen den Anschlüssen LED+ und LED- vorzugsweise als LED-Strecke angeordnet. Die LEDs 4 können zwischen den Anschlüssen LED+ und LED- in Serie oder in Parallel geschaltet sein. Alternativ ist auch eine Konfiguration mit mehreren in Parallel geschalteten Serienschaltungen von einer oder mehreren LEDs denkbar.
  • Alternativ zum Ausführungsbeispiel der Fig. 2 kann das LED-Modul 2 auch nur eine LED aufweisen. Die LEDs 4 können dabei alle vom selben Typen sein und insbesondere dieselbe Farbe emittieren, wie z.B. weiß. Auch können die LEDs des LED-Moduls verschiedene Farben, die zusammen z.B. ein weißes Mischlicht ergeben, ausstrahlen.
  • Das LED-Modul 2 umfasst weiterhin eine Kodierschaltung 6, die zwischen den Anschlüssen LEDset und LED- vorgesehen ist. Im Ausführungsbeispiel der Fig. 1 besteht die Kodierschaltung 6 aus einem Kodierwiderstand Rset. Die Kodierschaltung 6 kann eine passive Schaltung sein. Wie aus Fig. 1 ersichtlich, sind die LED-Strecke und die Kodierschaltung 6 jeweils mit Masse LED- geschaltet und zueinander parallel geschaltet. In Fig. 1 ist gezeigt, wie an der Kodierschaltung 6 zwischen den Anschlüssen A/Rset und A/LED- eine Spannung von z.B. 5 Volt angelegt wird. Der Ausgangsstrom am Anschluss A/Rset, der auch vorzugsweise dem Strom durch die Kodierschaltung 6 entspricht, ist mit Iset gekennzeichnet.
  • Erfindungsgemäß kodiert die Kodierschaltung 6 eine Information, die dem LED-Treiber 3 übermittelbar ist. Diese Information betrifft vorzugsweise das LED-Modul 2 und dient zur Kennzeichnung des LED-Moduls 2. Durch ein Ablesen dieser Information ist der LED-Treiber 3 dann in der Lage, das angeschlossene LED-Modul 2 zu identifizieren. Z.B. kann die in der Kodierschaltung 6 kodierte Information die Bezeichnung des LED-Moduls 2 oder die von diesem erzeugte Farbe definieren. Die über die Kodierschaltung 6 übermittelte Information kann vorzugsweise einen Betriebsparameter für das LED-Modul 2 sein, wie z.B. ein Sollstrom bzw. Nennstrom oder eine Sollleistung bzw. Nennleistung für das LED-Modul 2. Die Erfindung geht also insbesondere davon aus, dass eine Kodierschaltung 6 bzw. ein Kodierwiderstand Rset auf dem LED-Modul vorgesehen ist, dessen Widerstandswert den Sollwert des Stroms für das zugeordnete LED-Modul kodiert. Der LED-Treiber empfängt diese Information und regelt entsprechend den Strom oder die Leistung für das LED-Modul 2.
  • In Fig. 1 ist die Schaltung einer Kompensationseinheit 5 innerhalb des LED-Moduls 2 gezeigt, z.B. zwischen den zwei Anschlüssen LED+ und LEDset. Diese Kompensationseinheit 5 ist dazu geeignet, den Wert des durch die Kodierschaltung 6 kodierten Betriebsparameters zu beeinflussen bzw. verändern. Z.B. kann die Kompensationseinheit 5 abhängig von der Umgebungstemperatur des LED-Moduls den kodierten Sollstrom derart beeinflussen, dass bei einer zu hohen Umgebungstemperatur der von dem LED-Treiber 3 abgelesene Sollstrom für die LEDs gesenkt wird. Mit dieser Maßnahme, die im Englischen "thermal derating" genannt ist, kann einer vorzeitigen Alterung der LEDs, die bei zu hohen Umgebungstemperaturen eintritt, entgegengetreten werden. Dadurch kann auch eine die von den LEDs abgegebene Wärme reduziert werden. Diese Kompensationseinheit 5 ist optional und kann auch weggelassen werden, so dass zwischen den Anschlüssen LED+ und LEDset keine derartige Kompensationseinheit 5 vorgesehen ist.
  • Fig. 2 zeigt eine schematische Darstellung eines Ausführungsbeispiels des schaltungstechnischen Aufbaus des erfindungsgemäßen LED-Treibers 3. Fig. 2 zeigt insbesondere einen LED-Konverter 20, der im LED-Treiber 3 angeordnet ist und für das Auslesen von Information aus dem LED-Modul 2 bzw. aus der Kodierschaltung 6 zuständig ist.
  • Wie bereits im Zusammenhang mit Fig. 1 erläutert, wird erfindungsgemäß ein vorgegebener definierter Spannungsabfall Vset über die Kodierschaltung 6 bzw. über den Kodierwiderstand Rset erzeugt. Es wird davon ausgegangen, dass sich der dann einstellende Strom Iset die Kodiergröße darstellt. Der Strom Iset ist der Strom am Ausgang A/Rset bzw. der Strom durch den Kodierwiderstand Rset. Alternativ kann auch der Wert des elektrischen Widerstands des Kodierwiderstands Rset die Kodiergröße darstellen.
  • Im Ausführungsbeispiel der Fig. 2 wird die Spannung Vset über den Kodierwiderstand Rset ausgehend von einem primärseitig getakteten Flyback-Konverter 21, auch Sperrwandler genannt, erzeugt. Der Flyback-Konverter ist hier beispielhaft für einen Übertrager genannt. Die Spannung Vset kann alternativ von einem anderen getakteten potentialgetrennten Spannungsversorgung erzeugt werden.
  • Der Flyback-Konverter 21 umfasst eine Primärwicklung P1, die mit einer Sekundärwicklung S1 gekoppelt ist. Die Primärwicklung P1 ist in Serie mit einem Schalter Q1, der z.B. als Transistor bzw. als MOSFET ausgestaltet ist, geschaltet. Der Schalter Q1 ist mit einer primärseitigen Masse verbunden. An der Serienschaltung bestehend aus der Primärwicklung P1 und dem Schalter Q1 liegt eine Spannung pLVPS an. Diese Spannung pLVPS ist vorzugsweise eine DC-Spannung in Form z.B. einer Kleinspannung bwz. einer Niederspannung, die ausgehend von der in Fig. 1 dargestellten Busspannung Vbus erzeugt werden kann.
  • Die Sekundärwicklung S1 ist einerseits mit dem Anschluss A/LED- verbunden, der eine sekundärseitige Masse definiert. Andererseits ist die Sekundärwicklung S1 über eine Diode D1 mit dem Anschluss A/Rset verbunden. Der Flyback-Konverter umfasst sekundärseitig noch einen Kondensator C1 den Anschlüssen A/Rset und A/LED-.
  • Die Funktionsweise des Flyback-Konverters ist an sich bekannt. Der Schalter Q1 des Flyback-Konverters wird mittels eines Steuersignals FLB alternierend und hochfrequent ein- und ausgeschaltet. Auf eine Leitphase mit geschlossenem Schalter Q1 folgt eine Sperrphase mit geöffnetem Schalter Q1 usw.
  • Der Widerstand Rset ist an der Sekundärseite dieser getakteten potentialgetrennten Spannungsversorgung in Form eines Flyback-Konverters angeordnet. Mittels einer weiteren Wicklung P2 wird nunmehr ein Signal an einem Anschluss oder Pin ADC erzeugt, das im Sinne einer gespiegelten Spannung die Spannung Vset über den Kodierwiderstand Rset wiedergibt. Diese Wicklung P2 ist primärseitig angeordnet. Parallel zu der weiteren Wicklung P2 ist ein Widerstand R2 angeordnet, sowie eine Reihenschaltung umfassend eine Diode und zwei Widerstände R3, R4 eines Spannungsteilers. Die Spannung am Anschluss ADC gibt über den Spannungsteiler R3, R4 und über das Verhältnis der Windungszahlen von der Sekundärwicklung S1 und der weiteren Primärwicklung P2 die Spannung Vset am Kodierwiderstand Rset indirekt wieder.
  • Die Spannung Vset an dem Kodierwiderstand Rset wird auf einen definierten Spannungswert von z.B. 5 Volt von einer Steuereinheit 23 geregelt. Die Steuereinheit 23 erhält als Rückführ-Information die Spannung am Anschluss ADC, die die Spannung Vset wiedergibt. Durch Änderung der Taktung des Schalters Q1 kann die Ausgangsspannung Vset verändert werden. Beispielsweise wird die Spannung Vset durch Veränderung des Tastverhältnisses tv des Steuersignals FLB für den Schalter Q1 oder durch Veränderung der Frequenz f des Steuersignals FLB angepasst. Für die Veränderung des Tastverhältnisses tv bzw. der Frequenz f ist die Steuereinheit 23 zuständig.
  • Erfindungsgemäß wird die Spannung Vset auf den definierten Wert konstant gehalten. Hierzu wird die Frequenz f bzw. das Tastverhältnis tv des Schalters Q1 des Flyback-Konverters solange verändert bis das Signal ADC anzeigt, dass die Spannung über den Kodierwiderstand Rset die vorgegebene Spannung von beispielsweise 5 Volt erreicht und beibehält.
  • Als Größe für den Strom durch den Widerstand Rset bei dem vorgegebenen Spannungsabfall von beispielsweise 5 Volt, wird nunmehr die zum Erreichen der vorgegebenen Spannung über den Widerstand Rset notwendige Frequenz f der Taktung des Flyback-Schalters Q1 verwendet. Mit anderen Worten, aus der für den erforderlichen Spannungsabfall Vset notwendigen Frequenz f wird auf den erforderlichen Sollstrom für das LED-Modul 2 geschlossen, dass dem Kodierwiderstand Rset zugeordnet ist. Alternativ zur Frequenz f kann auch das Tastverhältnis tv der Taktung des Schalters Q1 bzw. das Tastverhältnis tv des Steuersignals FLB verwendet werden.
  • Vorteilhaft bietet also die Erfindung die Möglichkeit, eine Information von der Sekundärseite der SELV-Barriere bzw. der galvanischen Trennung primärseitig in Erfahrung zu bringen, ohne dabei auf einen Optokoppler oder ähnliches Bauelement zur Überquerung der SELV-Barriere angewiesen zu sein.
  • Sobald die Spannung Vset an der Kodierschaltung 6 auf die definierte Spannung von z.B. 5 Volt durch entsprechende Steuerung des Schalters Q1 des Flyback-Konverters eingestellt bzw. geregelt wurde, hat sich auch die Frequenz f und/oder das Tastverhältnis des Steuersignals FLB für den Schalter Q1 auf einen bestimmten Wert stabilisiert. Dieser Wert wird erfindungsgemäß herangezogen, um auf die Kodiergröße zurückgreifen zu können, wobei wie gesagt die Kodiergröße entweder der sich bei der definierten Spannung einstellende Strom Iset oder der Wert des Kodierwiderstands Rset ist.
  • Der Zusammenhang zwischen dem Taktungsparameter - Frequenz f und/oder das Tastverhältnis tv des Steuersignals FLB - und der Kodiergröße kann z.B. mittels einer im LED-Treiber 3 oder in der Steuereinheit 23 gespeicherte Look-up Tabelle oder Nachschlagtabelle hergestellt werden.
  • Gemäß einem Ausführungsbeispiel der Erfindung kann, wie bereits erwähnt, die definierte Spannung für die Spannung Vset über der Kodierschaltung 5 Volt betragen. Der Bereich für den Wert des Kodierwiderstands Rset geht z.B. von 1kΩ bis 100 kΩ. Dies ergibt ein Bereich für den Strom Iset von 5mA bis 50µA. Der Zusammenhang zwischen dem Strom Iset und dem Wert des Kodierwiderstands ist in Fig. 3 dargestellt.
  • Vorzugsweise wird der Widerstand Rset anhand der Frequenz f des Steuersignals FLB ermittelt. Die folgende Tabelle ist ein Beispiel für eine entsprechende Look-up Tabelle:
    Rset f_FLB
    100 kΩ 34,97 kHz
    90,5 kΩ 38,17 kHz
    81,9 kΩ 42,37 kHz
    ... ...
    1,4 kΩ 68,92 kHz
    1,2 kΩ 78,37 kHz
    1,1 kΩ 85,76 kHz
    1 kΩ 95,06 kHz
  • Darüber hinaus lässt sich die durch den LED-Konverter 20 gebildete Versorgungsschaltung Vset auch für anderweitige Zwecke im LED-Treiber 3 als Niederspannungsversorgung verwenden.
  • Die optionale Kompensationseinheit 5 der Fig. 1 kann z.B. ein Thermistor sein, der dessen Widerstandswert sich mit der Temperatur ändert. Bei einem Kaltleiter oder PTC (Positive Temperature Coefficient)-Widerstand vergrößert sich der elektrische Widerstand bei steigender Temperatur, und umgekehrt bei einem Thermistor in Form eines Heißleiters oder NTC (Negative Temperature Coefficient)-Widerstands. Die Kompensationseinheit 5 sorgt vorzugsweise dafür, dass sich der Strom durch die Kodierschaltung 6 ändert. Somit kann die Kompensationseinheit 5 z.B. bei hohen Umgebungstemperaturen die Erfassung des Widerstandswert Rset derart manipulieren, dass die Erfassungsschaltung 22 nicht etwa den Widerstandswert der angeschlossenen Kodierschaltung 6 erfasst, sondern einen veränderten Widerstandswert, der einem niedrigeren Sollstrom entspricht.
  • Fig. 4 zeigt eine schematische Darstellung eines Ausführungsbeispiels eines LED-Konverters 40 zur Versorgung von einem anschließbaren LED-Modul 2. Der LED-Konverter 40 ist Teil des LED-Treibers 3.
  • Der LED-Konverter 40 umfasst einen Schaltregler, z.B. einen Halbbrücken-Wandler aufweisend einen potentialniedrigeren Schalter Q2' und einen potentialhöheren Schalter Q1'. Der Halbbrücken-Wandler wird von der in Fig. 1 gezeigte Busspannung Vbus versorgt. Die Schalter der Halbbrücke können als Transistoren, z.B. FET oder MOSFET, ausgestaltet sein.
  • Am Mittelpunkt der Halbbrücke, d.h. zwischen beiden Schaltern Q2',Q1', ist ein Resonanzwandler in Form eines LLC Konverters angeschlossen. Der LLC Konverter umfasst eine Reihenschaltung aus einer Kapazität C1', einer Induktivität L1' und einer Primärwicklung P1' einer galvanischen Sperre bzw. eines Transformators. Die Kapazität C1' und die Induktivität L1' bilden einen LC Resonanzkreis.
  • Auf der Sekundärseite ist eine Sekundärwicklung S1' vorgesehen, die mit der Primärwicklung P1' gekoppelt ist und die an eine Diode D1' angeschlossen ist. Die Sekundärwicklung S1' ist auch mit einer sekundärseitigen Masse sGND verbunden. Die Kathode der Dioden D1' ist mit dem in Fig. 1 gezeigten Anschluss A/LED+ verbunden. Der Anschluss A/LED- ist mit der sekundärseitigen Masse sGND verbunden. Das LED-Modul 2 ist an den Anschlüssen A/LED+ und A/LED- anschließbar und versorgbar.
  • Durch entsprechende Steuerung der Schalter Q1', Q2' z.B. durch die Steuereinheit 23 des LED-Treibers 3 kann bekanntermaßen ein gewünschter Strom für das LED-Modul 2 erzeugt werden. Dieser gewünschte Strom ist vorzugsweise der Strom, der durch die Kodierschaltung 6 kodiert ist. Hierzu ist z.B. eine Look-Up Tabelle im LED-Treiber vorgesehen, die für eine bestimmte Kodiergröße - z.B. einen bestimmten Wert des Widerstands Rset - einen entsprechenden Strom für das LED-Modul festlegt.
  • Zur Regelung des Stroms für das LED-Modul 2 kann vorzugsweise der Strom durch das LED-Modul zur Steuereinheit 23 rückgeführt werden. Andere bekannte Verfahren zur Regelung des Stroms sind einsetzbar.
  • Statt des in Fig. 4 gezeigten LED-Konverters 40 mit LLC-Konverter können die LEDs des LED-Moduls 2 mit anderen an sich bekannten Konvertern betrieben und mit Strom versorgt werden. Denkbar ist z.B. der Einsatz eines Flyback-Konverters, oder eines Buck-Konverters. Da ein Buck-Konverter keine galvanische Trennung aufweist, ist vorzugsweise bei Benutzung eines Buck-Konverters die in Zusammenhang mit Fig. 1 erwähnte Isolierungseinheit vorgesehen.
  • Der LED-Konverter 20 zum Auslesen der Information und der LED-Konverter 40 zum Versorgen der LEDs werden unabhängig voneinander betrieben. Dies ist insofern vorteilhaft, da das Auslesen der Information keinen Einfluss auf die Versorgung der LEDs hat, und umgekehrt.
  • Wie in Fig. 5 dargestellt, kann erfindungsgemäß auch eine digitale Kodierung von Kennwerten des LED-Moduls dadurch erfolgen, dass anstelle oder zusätzlich zum Kodierwiderstand Rset eine intelligente Schaltung 50 sekundärseitig vorgesehen ist. Die intelligente Schaltung 50 ist vorzugsweise zwischen den Anschlüssen LEDset und LED- angeschlossen.
  • Diese intelligente Schaltung 50 kann beispielsweise durch Anlegen einer vordefinierten Spannung von beispielsweise Vset = 7 Volt DC in einen Informationsauslesemodus versetzt werden. In diesem Informationsauslesemodus kodiert die intelligente Schaltung 50 Information beispielsweise dadurch, dass sie definierte Lastwechsel erzeugt, wobei dann sich diese Lastwechsel an dem Pin ADC wiederspiegeln und von einer dort angeschlossenen intelligenten Schaltung, wie z.B. von der Steuereinheit 23, gemäß einem vordefinierten Protokoll als vielfache Informationen interpretieren lassen, beispielsweise im Sinne eines Kodierwiderstands für den Sollstrom des LED-Moduls.
  • Ist die intelligente Schaltung 50 dazu ausgebildet, zwischen zwei Lastzuständen zu wechseln, so kann eine binäre Kodierung vorgenommen werden. Diese binäre Kodierung wird von der Steuereinheit wiederum dekodiert.
  • Darüber hinaus kann je nach vereinbartem Protokoll diese digitale Information auch Sensorinformation, wie beispielsweise Temperatur, Rauchmelder, Bewegungsmelder, Tageslichtsensor, etc. darstellen. In Fig. 5 ist z.B. ein Sensor 51 vorgesehen, der gemessene Werte an die intelligente Schaltung 50 weiterleitet, welche wiederum gemäß der digitalen Kodierung mittels Lastsprüngen die gemessene Werte oder eine davon abgeleitete Information an die Primärseite bzw. an die Steuereinheit 23 übermittelt.
  • Fig. 6 zeigt ein Ausführungsbeispiel für eine erfindungsgemäße intelligente Schaltung 50. Zwischen den Anschlüssen LEDset und LED- des LED-Moduls ist in diesem Ausführungsbeispiel nur eine intelligente Schaltung 50 geschaltet. Alternativ kann auch parallel zur intelligenten Schaltung 50 ein Kodierwiderstand Rset vorgesehen sein.
  • Die intelligente Schaltung 50 umfasst eine erste Reihenschaltung bestehend aus einem ersten Widerstand R60 und einem ersten Schalter S60, und eine parallel dazu geschaltete zweite Reihenschaltung bestehend aus einem zweiten Widerstand R61 und einem zweiten Schalter S61. Die Widerstände R60, R61 haben unterschiedliche Widerstandswerte. Die intelligente Schaltung 50 umfasst noch eine Logik (nicht gezeigt), die dazu ausgelegt ist, entweder den ersten Schalter S60 ein- und den zweiten Schalter S61 auszuschalten, oder umgekehrt den ersten Schalter S60 aus- und den zweiten Schalter S61 einzuschalten. Somit kann die intelligente Schaltung 50 zwei unterschiedliche Widerstandswerte aufweisen, und somit Lastsprünge und eine binäre digitale Kodierung ausführen.
  • Erfindungsgemäß ist somit eine Schnittstelle zur Übertragung von Energie zu der Sekundärseite des LED-Konverters vorgesehen, um somit Informationen von der Sekundärseite ohne separate Rückführung über die SELV-Barriere auslösen bzw. abrufen zu können.
  • Eine weitere Ausgestaltung ist es, dass über die gezeigte Schnittstelle, gezielt diskrete Spannungspegel auf der Sekundärseite erzeugt werden können, wobei bei den jeweiligen unterschiedlichen Spannungspegeln unterschiedliche Auslesevorgänge erzeugt werden können. Beispielsweise könnte vorgesehen sein, dass bei einem Spannungspegel von 5 Volt wie festgestellt an dem Pin ADC ein ohmscher Widerstand ausgelesen wird - über die primärseitigen Taktungsparameter - und von einem davon abweichenden DC-Spannungspegel von beispielsweise 7 Volt eine intelligente Schaltung 50 im Sinne eines digitalen Protokolls durch Lastwechselsprünge Information wiedergibt.
  • Referenzzeichen
  • 1
    LED-Beleuchtungssystem
    2
    LED-Modul
    3
    LED-Treiber
    4
    LEDs
    5
    Kompensationseinheit
    6
    Kodierschaltung
    7
    Versorgungseinheit
    8
    Filter- und Gleichrichtereinheit
    9
    PFC-Schaltung
    20
    LED-Konverter zum Auslesen
    21
    Übertrager
    22
    Erfassungsschaltung
    23
    Steuereinheit
    40
    LED-Konverter zur Versorgung
    50
    Intelligente Schaltung
    51
    Sensor

Claims (9)

  1. Verfahren zum Auslesen von Information von einem anschließbaren und versorgbaren LED-Modul (2),
    wobei die Information durch einen elektrischen Parameter (Rset) kodiert ist,
    wobei der elektrische Parameter (Rset) ein Wert eines Kodierwiderstands einer Kodierschaltung (6) ist, und wobei die Kodierschaltung dem LED-Modul (2) zugeordnet ist,
    aufweisend die Schritte zum Auslesen der Information von dem anschließbaren und versorgbaren LED-Modul (2) :
    - galvanisch getrenntes Übertragen (21) einer elektrischen Leistung zu der Kodierschaltung (6) auf der Sekundärseite eines primärseitig getakteten Übertragers (21), derart, dass an der Kodierschaltung (6) eine regelbare rückführgeregelte Spannung (Vset) mit einem vordefinierten Wert anliegt, und
    - indirektes Erfassen des elektrischen Parameters (Rset) der Kodierschaltung (6) oder einer zeitlichen Veränderung des elektrischen Parameters (Rset) der Kodierschaltung (6), wobei das indirekte Erfassen anhand eines Parameters erfolgt, der auf der Primärseite des Übertragers (21) erfasst wird,
    dadurch gekennzeichnet, dass,
    der auf der Primärseite des Übertragers (21) erfasste Parameter ein Taktungsparameter ist,
    wobei vor dem Auslesen der Information von dem anschließbaren und versorgbaren LED-Modul (2) folgende Schritte ausgeführt werden:
    - verändern des Taktungsparameters bis die regelbare rückführgeregelte Spannung (Vset) den vordefinierten Wert erreicht, mittels indirektem Erfassen der regelbaren rückführgeregelten Spannung (Vset) anhand einer elektrischen Größe auf der Primärseite; und wobei das indirekte Erfassen zum Auslesen der Information von dem anschließbaren und versorgbaren LED-Modul (2) weiter umfasst:
    - ermitteln des Werts des Kodierwiderstands basierend auf dem Taktungsparameter, der sich zur Erzielung des vordefinierten Wertes einstellt, mittels einer Look-up Tabelle.
  2. Verfahren nach Anspruch 1,
    bei dem die sekundärseitige, dem LED-Modul (2) zugeordnete Kodierschaltung (6) zusätzlich eine intelligente Schaltung (50) aufweist, die bei Anliegen des vordefinierten Wertes in einem Informationsauslesemodus wenigstens einen Lastwechsel ausführt.
  3. Verfahren nach Anspruch 2,
    bei dem der elektrische Parameter der Kodierschaltung (6) auf der Sekundärseite des Übertragers (21) eine Information von einem mit dem LED-Modul (2) funktional verbundenen Sensor (51) widergibt.
  4. LED-Konverter (20) zum Auslesen von Information von einem anschließbaren und versorgbaren LED-Modul (2),
    wobei die Information durch einen elektrischen Parameter (Rset) kodiert ist,
    wobei der elektrische Parameter (Rset) ein Wert eines Kodierwiderstands einer Kodierschaltung (6) ist, und wobei die Kodierschaltung dem LED-Modul (2) zugeordnet ist,
    aufweisend zum Auslesen der Information von dem anschließbaren und versorgbaren LED-Modul (2):
    - einen primärseitig getakteten Übertrager (21), eingerichtet zum galvanisch getrennten Übertragen einer elektrischen Leistung zu der Kodierschaltung (6), die ausgehend von der Sekundärseite des Übertragers (21) versorgbar ist, derart, dass an der Kodierschaltung (6) eine regelbare rückführgeregelte Spannung (Vset) mit einem vordefinierten Wert anliegt, und
    - eine auf der Primärseite des Übertragers (21) angeordnete Erfassungsschaltung (22), eingerichtet zum indirekten Erfassen des elektrischen Parameters (Rset) der Kodierschaltung (6) oder einer zeitlichen Veränderung des elektrischen Parameters (Rset) der Kodierschaltung (6), wobei die Erfassungsschaltung (22) ferner dazu eingerichtet ist, dass das indirekte Erfassen anhand eines Parameters erfolgt, der auf der Primärseite des Übertragers (21) erfassbar ist,
    dadurch gekennzeichnet, dass,
    der auf der Primärseite des Übertragers (21) erfasste Parameter ein Taktungsparameter ist,
    und der LED-Konverter ferner eine Steuereinheit (23) aufweist, die dazu eingerichtet ist, vor dem Auslesen der Information von dem anschließbaren und versorgbaren LED-Modul (2) den Taktungsparameters zu verändern bis die regelbare rückführgeregelte Spannung (Vset) den vordefinierten Wert erreicht, mittels indirektem Erfassen der regelbaren rückführgeregelten Spannung (Vset) anhand einer elektrischen Größe auf der Primärseite;
    und wobei zum indirekten Erfassen und Auslesen der Information von dem anschließbaren und versorgbaren LED-Modul (2) die Steuereinheit (23) ferner dazu eingerichtet ist, den Werts des Kodierwiderstands mittels einer Look-up Tabelle der Steuereinheit (23) zu ermitteln, basierend auf dem Taktungsparameter, der sich zur Erzielung des vordefinierten Wertes einstellt.
  5. LED-Konverter nach Anspruch 4, bei dem die sekundärseitige, dem LED-Modul (2) zugeordnete Kodierschaltung (6) zusätzlich eine intelligente Schaltung (50) aufweist, die dazu eingerichtet ist bei Anliegen des vordefinierten Wertes in einem Informationsauslesemodus wenigstens einen Lastwechsel auszuführen,
    wobei die Erfassungsschaltung (22) in dem Informationsauslesemodus dazu ausgelegt ist, einen Lastwechsel der sekundärseitigen, dem LED-Modul zugeordneten Kodierschaltung (6) zu erfassen.
  6. LED-Konverter nach Anspruch 5,
    bei dem der elektrische Parameter der Kodierschaltung (6) auf der Sekundärseite des Übertragers (21) eine Information von einem mit dem LED-Modul funktional verbundenen Sensor widergibt.
  7. LED-Konverter nach einem der Ansprüche 4 bis 6,
    wobei die regelbare rückführgeregelte Spannung (Vset) mittels einer mit der Sekundärseite des Übertragers (21) gekoppelten Messwicklung an der Primärseite des Übertragers (21) erfassbar ist.
  8. LED-Konverter nach einem der Ansprüche 4 bis 7,
    wobei der Übertrager (21) ein von der Steuerschaltung (23) mittels wenigstens eines Schalters primärseitig aktiv getakteter Übertrager (21) ist.
  9. LED-Treiber (3) aufweisend einen LED-Konverter (20) nach einem der Ansprüche 4 bis 8 zum Auslesen von Information von dem anschließbaren und versorgbaren LED-Modul (2), und einen LED-Konverter (40) zur Versorgung der LEDs des anschließbaren und versorgbaren LED-Moduls (2).
EP14808666.3A 2013-12-20 2014-12-08 Led-treiber zum auslesen von information eines led-moduls Active EP3085202B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226964.1A DE102013226964A1 (de) 2013-12-20 2013-12-20 LED-Treiber zum Auslesen von Information eines LED-Moduls
PCT/EP2014/076908 WO2015091064A1 (de) 2013-12-20 2014-12-08 Led-treiber zum auslesen von information eines led-moduls

Publications (2)

Publication Number Publication Date
EP3085202A1 EP3085202A1 (de) 2016-10-26
EP3085202B1 true EP3085202B1 (de) 2020-04-01

Family

ID=52011232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14808666.3A Active EP3085202B1 (de) 2013-12-20 2014-12-08 Led-treiber zum auslesen von information eines led-moduls

Country Status (3)

Country Link
EP (1) EP3085202B1 (de)
DE (1) DE102013226964A1 (de)
WO (1) WO2015091064A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT15169U1 (de) * 2014-01-30 2017-02-15 Tridonic Gmbh & Co Kg Erfassung eines LED-Moduls
WO2016169961A1 (en) 2015-04-24 2016-10-27 Philips Lighting Holding B.V. A solid state lighting module, a lighting circuit and lighting control methods.
RU2656875C1 (ru) * 2015-04-24 2018-06-07 Филипс Лайтинг Холдинг Б.В. Модуль твердотельного освещения, цепь освещения и способы управления освещением
DE102016226016A1 (de) * 2016-12-22 2018-06-28 Osram Gmbh SCHALTUNGSANORDNUNG ZUM BETREIBEN VON LICHTQUELLEN UND SENSOR ZUM ANSCHLIEßEN AN EINE SCHALTUNGSANORDNUNG
FR3061624B1 (fr) * 2017-01-02 2020-11-13 Valeo Vision Gestion d'informations dans un module lumineux pour vehicule automobile comprenant des sources lumineuses a element semi-conducteur
FR3064148B1 (fr) * 2017-03-15 2021-07-16 Valeo Vision Dispositif et procede de pilotage de sources lumineuses d’un vehicule automobile
FI128615B (en) * 2018-10-02 2020-08-31 Helvar Oy Ab Method and device for controlling the output current of a driver device for semiconductor light sources
DE102020203531A1 (de) 2020-03-19 2021-09-23 Osram Gmbh Schaltungsanordnung zum betreiben einer leuchtmittel aufweisenden last

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159131A1 (de) * 2012-04-26 2013-10-31 Tridonic Gmbh & Co Kg Betriebsgerät für ein leuchtmittel und verfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445785B1 (ko) 2009-12-04 2014-10-01 오스람 게엠베하 전자 변환기의 동작을 제어하기 위한 방법, 및 대응하는 전자 변환기, 조명 시스템 및 소프트웨어 물건
KR101663834B1 (ko) * 2010-07-23 2016-10-07 엘지이노텍 주식회사 Led 전원 장치
JP2012216766A (ja) * 2011-03-30 2012-11-08 Sanken Electric Co Ltd Led駆動装置及びled照明装置
CN102361525B (zh) * 2011-07-19 2013-07-17 成都芯源系统有限公司 发光二极管电路及其方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159131A1 (de) * 2012-04-26 2013-10-31 Tridonic Gmbh & Co Kg Betriebsgerät für ein leuchtmittel und verfahren

Also Published As

Publication number Publication date
DE102013226964A1 (de) 2015-06-25
EP3085202A1 (de) 2016-10-26
WO2015091064A1 (de) 2015-06-25

Similar Documents

Publication Publication Date Title
EP3085202B1 (de) Led-treiber zum auslesen von information eines led-moduls
DE102012007478B4 (de) Wandler für ein Leuchtmittel, LED-Konverter und Verfahren zum Betreiben eines Wandlers
WO2014094016A2 (de) Erfassung eines led-moduls
EP2891382B1 (de) Betriebsgerät zur ansteuerung einer led-strecke
EP3175677B1 (de) Aktive schaltung zur erfassung eines leuchtmittel-stroms
DE102013219153B4 (de) Treibermodul mit sekundärseitiger Erkennung einer primärseitigen elektrischen Versorgung
EP2992736B1 (de) Verfahren zum betreiben eines led-konverters
DE102012007451B4 (de) Wandler für ein Leuchtmittel, LED- Konverter und Verfahren zum Betreiben eines LLC-Resonanzwandlers
EP3100591B1 (de) Erfassung eines led-moduls
AT15988U1 (de) Betriebsschaltung zur Versorgung eines Leuchtmittels, LED-Konverter, System und Verfahren zum Betreiben einer Betriebsschaltung
WO2015077811A1 (de) Led-modul
EP3222119B1 (de) Betriebsschaltung zur versorgung eines leuchtmittels, led-konverter, system und verfahren zum betreiben einer betriebsschaltung
DE202016106926U1 (de) Anpassen der Totzeit einer LLC-Schaltung
WO2015113090A1 (de) Erfassung eines led-moduls
AT15120U1 (de) LED-Treiber zum Auslesen von Information eines LED-Moduls
AT16401U1 (de) Betriebsschaltung zur Versorgung eines Leuchtmittels, LED-Konverter, Leuchte und Verfahren zum Steuern einer Betriebsschaltung
AT13829U1 (de) Betriebsgerät zur Ansteuerung einer LED-Strecke mit sekundärseitiger Steuereinheit
WO2013152370A9 (de) Wandler für ein leuchtmittel, led-konverter und verfahren zum betrei- ben eines llc-resonanzwandlers
WO2015077809A1 (de) Verfahren und vorrichtung zur erfassung eines led-moduls
EP3069571B1 (de) Led-konverter und verfahren zum steuern einer wandlerschaltung eines led-konverters
DE102014104447A1 (de) Elektronisches Vorschaltgerät für LED-Leuchtmittel
AT13386U1 (de) LED-Konverter
DE102014216825A1 (de) Potentialgetrennte Betriebsschaltung mit sekundärseitiger Parametererfassung für den Einsatz als PFC-Schaltung
DE102014206021A1 (de) Betriebsgerät, Leuchte und Verfahren zum Betreiben eines Leuchtmittels
AT16413U1 (de) Betriebsschaltung, Leuchte und Verfahren zum Erfassen eines Steuersignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014013912

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0037020000

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 37/02 20060101AFI20181002BHEP

Ipc: H05B 33/08 20060101ALI20181002BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1253070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013912

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502014013912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1253070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 10