EP3084048B1 - Method for producing a protective layer on a thermally stressed component and component having such a protective layer - Google Patents

Method for producing a protective layer on a thermally stressed component and component having such a protective layer Download PDF

Info

Publication number
EP3084048B1
EP3084048B1 EP14851435.9A EP14851435A EP3084048B1 EP 3084048 B1 EP3084048 B1 EP 3084048B1 EP 14851435 A EP14851435 A EP 14851435A EP 3084048 B1 EP3084048 B1 EP 3084048B1
Authority
EP
European Patent Office
Prior art keywords
protective layer
component
particles
set forth
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14851435.9A
Other languages
German (de)
French (fr)
Other versions
EP3084048A1 (en
Inventor
Alexander Kopp
Christoph PTOCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Meotec GmbH and Co KG
Original Assignee
Volkswagen AG
Meotec GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102014219819.4A external-priority patent/DE102014219819A1/en
Application filed by Volkswagen AG, Meotec GmbH and Co KG filed Critical Volkswagen AG
Publication of EP3084048A1 publication Critical patent/EP3084048A1/en
Application granted granted Critical
Publication of EP3084048B1 publication Critical patent/EP3084048B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • C25D13/14Tubes; Rings; Hollow bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the present invention relates to a method for producing a protective layer on a thermally stressed component and to a component having such a protective layer.
  • the present invention relates to an electrochemical process for producing an oxidation, wear or corrosion protection layer on a component of an internal combustion engine or a component of an exhaust system.
  • Such components are used in particular in motor vehicles.
  • motor vehicles there is an effort to reduce the total weight of the vehicle and therefore its individual components, so as to increase the efficiency. It therefore makes sense to resort to particularly lightweight materials, in particular so-called light metals such as aluminum, titanium, or their alloys.
  • a problem or disadvantage of these materials is the relatively good thermal conductivity, so that the use of these materials, especially for components that are exposed to higher temperatures, for example, about 300 ° C, not readily possible.
  • Due to the system such high temperatures occur in motor vehicles in the internal combustion engine and in the exhaust system.
  • an exhaust gas turbocharger may be mentioned, in which temperatures of over 900 ° C may occur. At such temperatures, so-called hot gas corrosion may occur due to the particularly hot gas (the hot gas).
  • the surface In order to enable the use of such materials even with thermally stressed components, the surface must be provided with a protective layer, by which in particular the heat conduction coefficient is reduced.
  • spraying processes for example thermal spraying or plasma spraying
  • a disadvantage of this solution is that in such spray coatings the connection between the sprayed protective layer and the component is achieved by a mechanical clamping of the layer material (eg by flakes) on the substrate, ie the surface of the component, or by adhesion processes or diffusion processes. In operation, it can therefore cause problems due to spalling or due to a lack of abrasion resistance.
  • the known spray methods are expensive and energy consuming.
  • an oxide layer has recently been proposed as a protective layer. That's how it shows DE 10 2012 002 284 A1
  • a turbine wheel on or in the surface of a halide from the group corridor, chlorine or bromine or is introduced and on the surface of an oxidation layer is formed by the so-called halogen effect in a heat treatment.
  • the halogens are applied in particular by ion implantation.
  • a disadvantage of such methods for producing a protective layer on a thermally stressed component based on the halogen effect is that the oxide layers formed are very thin. Thus, there is only a limited improvement in corrosion resistance, so that the wear protection is not optimal. Furthermore, owing to the relatively thin oxide layer, no major influence on the electrical or thermal insulation of the component is to be expected.
  • an oxide layer by electrochemical methods is proposed. From the DE 10 2012 218 666 A1 is such a method known.
  • a turbine wheel of a titanium alloy turbocharger is subjected to electrochemical anodization, which constructs an oxide film as a protective layer and thus protects the component from further oxidation. Furthermore, the component is thus protected against further environmental influences.
  • EP 2 371 996 A1 discloses a method of electrolytic ceramic coating on metal, wherein at least one metal is used as an anode to perform anodization treatment of an anode surface in a given electrolytic solution for ceramic coating by generating glow discharge and / or arc discharge, thereby forming a ceramic coating on the metal surface wherein the average current density during the application of the positive side is in the range of 0.5 A / dm 2 to 40 A / dm 2 , and wherein the anodization treatment at a positive side operating time ratio (T1) of 0.02 to 0.5, an operating time ratio of the negative side (T2) of 0 to 0.5, a non-application time ratio (T3) of 0.35 to 0.95 and wherein these ratios simultaneously satisfy the following formulas: 0 ⁇ T2 / T1 ⁇ 10 and 0.5 ⁇ T3 / (T1 + T2) ⁇ 20.
  • T1 positive side operating time ratio
  • T2 operating time ratio of the negative side
  • T3 non-application time
  • the EP 2 103 718 A1 discloses another method of applying a ceramic film to a metal which can form a dense metal-based film such as magnesium alloys.
  • the formed ceramic film has excellent abrasion resistance, hardly attacks a corresponding material, and moreover has an excellent abrasion performance.
  • the CA 2 479 032 A1 discloses a coating consisting of an oxide / lubricant composite coating on light alloys based on plasma oxidation in conjunction with solid lubricant agents which are rubbed against an oxide surface during coating formation.
  • EP 2 721 270 A1 there is disclosed a method of reducing emissions and / or reducing friction in an internal combustion engine, wherein a portion of the combustion chamber of aluminum and / or titanium is coated with titanium oxide, further comprising dopants in and / or on the adhered titanium oxide coating.
  • the resulting zirconium coating consists of tetragonal zirconia of monoclinic zirconia and of gamma-type alumina.
  • the thickness of the coating is 20 ⁇ m to 300 ⁇ m.
  • the coating is suitable for complex structures and has a strong bond with the carrier. Furthermore, it is characterized by a high hardness of 1700 HV to 1800 HV.
  • the object of the present invention to provide an inexpensive method for producing a protective layer on a thermally stressed component, which allows the application of a protective layer even on hard to reach surfaces, has a good adhesion to the surface and thus an optimal oxidation , Wear and corrosion protection offers.
  • local temperature maxima are to be reduced in a combustion chamber, which is to be thermally insulated at the same time.
  • a method for producing a protective layer on a thermally loaded component which consists at least partially of a valve metal, wherein the protective layer is produced by an electrochemical process.
  • the method according to the invention is characterized in that the electrochemical process is a plasma electrolytic oxidation (PEO) using an electrolyte and applying an electrical power.
  • the method is characterized in that particles are deposited in the protective layer, which relative to a base material of the protective layer, a relative have low or high thermal conductivity, wherein the particles are provided with relatively high thermal conductivity in a first sub-layer of the protective layer and the particles with relatively low thermal conductivity in a second, separated by the first sub-layer sub-layer.
  • a valve metal is here understood to mean a metal in which the surface can be converted by an electrochemical process into an oxide ceramic layer or an oxide layer, such as titanium (Ti), aluminum (Al), magnesium (Mg) or zirconium (Zr) or their alloys.
  • the surface reacts by applying an electrical power in a local plasma via spark discharge and forms an oxide ceramic or layer.
  • the electrolyte-exposed surface is "scanned”, governs electrochemically with the cleaved oxygen and / or the electrolyte to an oxide ceramic or layer (for example, Al 2 O 3 , spinels, mixed oxides, etc.).
  • a PEO process is an anodic oxidation process using a specially modulated AC voltage, resulting in a temporary and localized spark discharge due to plasma discharges.
  • the PEO process is therefore also referred to as anodic oxidation with spark discharge (ANOF).
  • ANOF anodic oxidation with spark discharge
  • An ANOF process or a PEO process according to the invention is a combined process from the fields of plasma technology and electrochemistry, by means of which surfaces of components which are formed of so-called valve metals can be provided with a protective layer of an oxide ceramic.
  • native barrier layer formers such as aluminum, magnesium or titanium come into the selection as valve metals.
  • the generation of the protective layer can in particular take place in aqueous electrolytes.
  • the component to be oxidized is poled anodically and immersed in the electrolyte together with a counter electrode (cathode).
  • the component initially forms a purely chemically induced passive layer. The growth of this passive layer can be achieved by applying a potential between the anodically poled component and the cathode.
  • the oxide layer of the component to be coated will penetrate locally, wherein plasma-chemical solid-state reactions, the spark discharges, are triggered.
  • This process does not take place nationwide but at those points where the thickness of the oxide layer and thus the local electrical resistance is lowest. Since the plasma reactions thus always take place at those points of the passive layer which locally have the lowest layer thickness, and there ensure a layer thickness growth, the surface is coated with a very uniform protective layer.
  • the applied electric potential is increased so long that the desired layer thickness of the protective layer is reached.
  • the inventive method has the advantage that the layer formed has a defined thermal conductivity according to their ceramic character, which is well below the thermal conductivity of the substrate material, for example aluminum. Due to the smaller planteleitkoe slaughteren and the low thermal conductivity of the protective layer thus higher wall temperatures are possible, so that the surface provided with the protective layer against the adjacent medium, such as hot gas, is thermally insulated.
  • the protective layer produced by the method according to the invention is therefore constructed as follows: Adjacent to the substrate is a thin, dense and closed layer, the so-called barrier layer, followed by a compact and low-pore layer. This is followed by a porous and less compact layer which, depending on the layer thickness, becomes both more porous and more brittle.
  • this layer is openly porous and characterized by small channels which are perpendicular to the surface and protrude from the surface to the adjacent barrier layer in the direction of the substrate.
  • the layer has an interconnecting pore network and / or a non-interconnecting pore network, which is characterized by closed inclusions of air or electrolyte.
  • the electrolyte has an electrolyte base, wherein the electrolyte base is phosphoric acid (H 3 PO 4 ), potassium hydroxide (KOH), water glass (Na 2 SiO 3 ), deionized water or a zirconium-containing compound.
  • An electrolyte base here is a substance from a variety of substances, the amount (in g / L) in addition to water and urotropin is most common in an electrolyte.
  • Zirconium sulfate (ZrSO 4 ) or zirconium tungstate (ZrWO 4 ) is particularly suitable as the zirconium-containing compound. This has the advantage that with such an electrolyte composition, a component of, for example, aluminum or titanium or of the corresponding alloys can be plasma-electrochemically oxidized at all.
  • the electrical power is voltage controlled, the current is limited, or is current-controlled, the voltage is limited, or is power-controlled.
  • the electrical power is applied at a frequency of 1 Hz to 10 kHz, in particular with a frequency of 1 Hz to 1000 Hz.
  • the voltage is applied in a range between 150 volts and 1500 volts, preferably in a range between 210 volts and 650 volts, and if the current has a current density in a range between 0.001 A / dm 2 and 1000 A / dm 2 , preferably in a range between 0.5 A / dm 2 to 15 A / dm 2 is applied.
  • the applied current and / or the applied voltage is supermodulated by a higher-frequency current and / or a higher-frequency voltage. Furthermore, it is advantageous if the applied current and / or the applied voltage is rectified or has the form of a symmetrical wave, an asymmetric wave, a rectangle or a trapezoid.
  • the shape of a wave is advantageous.
  • a temperature in the range between 0 ° C and 80 ° C is selected as the process temperature for the PEO. More preferably, the temperature is between 18 ° C and 50 ° C.
  • the abovementioned process parameters make it possible for a particularly oxide-rich protective layer to grow closed on the component and thus to form a particularly dense and therefore safe protective layer.
  • the component can be protected so safe and long-term stability against external influences, for example, from undesirable oxidation.
  • components can be produced in mass production with corresponding quality requirements. Furthermore, a practicable production speed can be achieved in this way, which makes mass production possible at all.
  • the electrolyte is carried out as a dispersion, wherein one or more of the following particles are added to the electrolyte: Al 2 O 3 , TiO 2 , SiO 2 , tungsten carbide (WC), ZrO 2 , iron oxide, graphite and / or MoS 2 .
  • the electrolyte is subjected to an electrolyte base by the addition of said particles.
  • the particles can be either globular, ellipsoidal or sparse, in the form of flakes or the like.
  • the particles can be made of an oxide, a carbide or another material, as long as the particles are incorporated as a foreign body into the protective layer or react chemically, electrochemically or physically with the substrate or the electrolyte to form a different compound.
  • particles of Al 2 O 3 , TiO 2 , SiO 2 , tungsten carbide (WC), ZrO 2 , iron oxide have a significantly reduced thermal conductivity, so that the incorporation of these particles in the protective layer further improves the insulating effect of the protective layer.
  • zirconium oxide (ZrO 2 ) has proved to be advantageous.
  • lubricant particles such as graphite, MoS 2 or other corresponding particles which are incorporated into the protective layer, the coefficient of friction is reduced.
  • particles are provided in the protective layer of a material deviating from a base or matrix material of the protective layer, which have a relatively high or low thermal conductivity compared to the base or matrix material of the protective layer. Specifically, both those particles are provided which have a relatively high thermal conductivity compared to the base or matrix material of the protective layer, as well as those which have a relatively low thermal conductivity.
  • This aspect of the invention is based, on the one hand, on the recognition that the protective layer produced in the context of the method according to the invention represents an advantageous compromise with regard in particular to thermal insulation and durability, but alternative materials are present which are characterized by an even lower thermal conductivity and thus a lower thermal conductivity further distinguished improved thermal insulation.
  • these can not be used for the complete formation of a protective layer.
  • By introducing particles of one or more of these alternative materials into the protective layer produced according to the invention their average thermal conductivity can be further lowered and thus the thermal insulating properties can be further improved without this to a relevant extent on the further advantageous properties of the protective layer according to the invention, ie especially good durability and low surface roughness, has a negative impact.
  • Y-stabilized zirconia Zr (Y) O 2
  • alumina Al 2 O 3
  • spinel Al 2 O 3 / MgO
  • mullite Al 2 O 3 / SiO 2
  • zirconium corundum Al 2 O 3 / ZrO 2
  • titanium oxide TiO 2
  • silicon oxide SiO 2
  • the thermal conductivity of the introduced particles in their pure bulk state is not lower than that of the matrix
  • the thermal conductivity of the composite material of the protective layer formed from both can nevertheless be lower overall since the particles introduced act as impurities for the propagation of the crystal oscillations (phonons).
  • the concretization "with relatively low thermal conductivity" according to the invention is not limited exclusively to an actual material property of the particles, but should also include a heat conductivity reducing effect within the matrix.
  • the particles with a relatively high thermal conductivity can advantageously be used to avoid or reduce localized peaks of the wall temperature of the surface provided with the protective layer, as a result of these particles being able to achieve a relatively high local transition of heat energy from, for example, a combustion chamber or an exhaust gas guide as well as possible a larger area of the protective layer is distributed.
  • the formation of locally high wall temperatures which can have a negative effect on the ignition delay (ie the period between the injection of fuel into the combustion chamber and the ignition of the fuel), can be avoided.
  • This may be sufficient if the particles with relatively high thermal conductivity in only one or more sections, but not in the entire protective layer (based on the area and preferably also the layer thickness) are provided.
  • Such a localized provision of particles with relatively high thermal conductivity does not therefore have to be associated with a relevant deterioration in the mean thermal conductivity of the entire protective layer.
  • a relatively large ignition delay, achieved by avoiding locally high wall temperatures, is particularly important for self-igniting internal combustion engines, i. diesel engines, in particular, so that the method according to the invention can be used particularly advantageously in the improvement of such a self-igniting internal combustion engine.
  • the method according to the invention can be used particularly advantageously in the improvement of such a self-igniting internal combustion engine.
  • the particles having a relatively high thermal conductivity for example, copper, iron, beryllium, aluminum, copper, silver, silicon, molybdenum, tungsten, carbon, beryllium, beryllium nitrite, silicon nitrite and / or silicon carbide and mixtures and / or alloys thereof come into consideration.
  • both particles with relatively low thermal conductivity and particles with relatively high thermal conductivity are provided.
  • Their distribution in the protective layer should be provided in such a way that the mean thermal conductivity of the protective layer, which is locally increased by the particles having a relatively high thermal conductivity, does not lead to a significantly higher heat transfer to the region of the coated, the combustion chamber and / or the exhaust gas guide-limiting component arranged below the protective layer leads.
  • This is achieved in an advantageous manner in that the particles with relatively high thermal conductivity exclusively in a first, adjacent to the combustion chamber and / or the exhaust gas guide sub-layer of the protective layer and the particles with relatively low thermal conductivity in a second, from the combustion chamber and / or the Exhaust system can be provided by the first sub-layer separate sub-layer.
  • the particles with a relatively high thermal conductivity can then ensure the most uniform possible distribution of heat energy transferred into the protective layer within the first sub-layer, while the second sub-layer with the particles having relatively low thermal conductivity has a particularly good thermal insulating effect and consequently a heat transfer from the first sub-layer reduced lying below the protective layer region of the component.
  • Anodic oxidation under spark discharge makes it possible to arrange particles in the protective layer in a relatively simple manner. This is especially true in the case of an anodic oxidation with spark discharge by means of an alternating voltage, in which either the positive or negative voltage phases can be alternately used to attach the particles contained in the electrolyte to the growing protective layer, while the corresponding other voltage phases for the growing training the protective layer can be used.
  • the particle size of the particles can be in the range from 0.001 ⁇ m to 5000 ⁇ m, in particular in a range between 0.1 ⁇ m to 100 ⁇ m. Such particle sizes have proven to be practicable.
  • an ultrasonic vibrator can be used for uniform dispersion of the particles.
  • the dispersion of the particles in the electrolyte can be done inexpensively and quickly.
  • the particles can be polarized by the use or addition of surfactants.
  • the surfactants may be neutral, positive or especially cationic surfactants (e.g., ester squares) such that the polarized particles are e.g. in the cathodic part of a half-wave are pulled to the surface and in the anodic part of a half wave - in the context of the spark discharge - are integrated into the surface.
  • the object is also achieved by a component with a protective layer, which was produced by the method according to the invention.
  • the component consists at least partially of a valve metal or an alloy of a valve metal.
  • the component is made of aluminum, an aluminum alloy, magnesium, a magnesium alloy, titanium or a titanium alloy.
  • the layer thickness of the protective layer is in a range between 1 .mu.m and 1500 .mu.m.
  • the layer thickness is preferably in a range between 25 ⁇ m and 600 ⁇ m.
  • the component may be a combustion chamber, an engine block, a crankcase, a crankcase interior, a cylinder liner, a cylinder head, an intake manifold, an exhaust manifold, a turbocharger compressor wheel, a turbocharger interior, an exhaust gas recirculation or a cylinder piston.
  • the component is thus thermally less stressed, on the other hand, the temperature of the medium (for example of the hot gas) can thus be maintained over a longer path and time. Furthermore, this leads to the fact that certain aggregates of the automobile respond faster, and also the stored in the gas thermal energy can not be purely thermally dissipated but can be recovered by other aggregates or components.
  • the medium for example of the hot gas
  • the protective layers produced by the process according to the invention have a good resistance to wear, oxidation, erosion and corrosion, which is required in a number of components. Furthermore, as the life of the components is improved. This particularly affects the cylinder bore (tribological wear due to solid, transitional, mixed and / or sliding friction), the compressor wheel of the turbocharger (erosion wear) or the manifold (corrosion resistance).
  • a further advantage of the method according to the invention lies in the applicability and ability to selectively and nevertheless homogeneous coating in cavities, channels or complex geometries with undercuts.
  • a homogeneous protective layer is formed everywhere on the surface where the electrolyte wets the component surface. So undercuts or depressions or channels can be provided with a protective layer.
  • the surface is converted by reaction of the electrolyte with the substrate. That is, there will be no locally dependent on the prevailing field lines material deposition according to the local distribution of the current density, which would be necessary, for example, in complex geometries and undercuts the use of auxiliary electrodes, but it will generate local sparking anywhere where the process-related potential is applied.
  • a protective layer can be produced selectively by means of PEO on the surface sections to be thermally insulated.
  • a concept 1 in the form of an electrolytic cell for the production of a protective layer in a component 2 is shown.
  • the component 2 may for example be a manifold. It is therefore the application of a method shown, in which not the entire component 2 is immersed in the electrolyte for the application of PEO, but the electrolyte is flushed through lying in the interior of the component 2 channels, so that on the inside of the channels of the component 2 selectively generates a suitable protective layer.
  • the interior of the component 2 is sealed with two flanges 3, each having a seal.
  • the electrolyte is pumped through a line assembly 6 through the component 2. In this cycle, the electrolyte is cooled or tempered by the electrolytic cooling 5.
  • the concept 1 has a power supply 7 as a power source, which, as shown, may be a DC power supply or an AC power supply.
  • the component 2 and a counter electrode 9 is connected. Via the flanges 3 and the counter electrode 9 is introduced into the space to be coated in the interior of the component 2.
  • the counter electrode 9 is the cathode, the component 2 representing the anode 10.
  • Fig. 2 a second embodiment is shown.
  • Fig. 2 is made in two parts, with in Fig. 2 Part 1, the plant 1 for producing a protective layer on a component 2, in this example, a cylinder piston head, is shown, and in Fig. 2 Part 2 of the procedural part of the plant with respect to the electrolyte.
  • a component 2 in this example, a cylinder piston head
  • the cylinder piston head 2 in the system 1 is charged with an electrolyte, which is fed by a pump 4 through an inlet valve 11.
  • the circulation of the electrolyte is done via a discharge 12, for example via an extraction, wherein the suction pipe shown is made of a stainless steel, for example made of V2A.
  • the system 1 has a cooling system 13 for the cylinder piston head 2.
  • the power supply 7 is designed such that the discharge 12 simultaneously the counter electrode 9 and the cylinder piston head 2, the anode 10.
  • the in the Fig. 3 shown internal combustion engine includes an example operating on the diesel principle internal combustion engine 110, which is formed for example as a four-cylinder reciprocating internal combustion engine.
  • the internal combustion engine 110 is supplied with fresh gas (ambient air) via a fresh gas train 112.
  • fresh gas ambient air
  • the fresh gas is compressed after being aspirated from the environment by means of a compressor 114.
  • the compressed fresh gas is then passed through a charge air cooler 116, in which the fresh gas heated as a result of the compression is cooled until it reaches the desired temperature for entry into the internal combustion engine 110.
  • a suction pipe 118 the fresh gas enters into combustion chambers 120 of the internal combustion engine 110, in which this or the oxygen contained therein is burned in a known manner with directly injected into the combustion chambers 120 fuel.
  • Exhaust line 122 includes an exhaust manifold 124 in which the exhaust gas flowing out of the individual combustion chambers 120 is brought together, and a turbine 126 arranged downstream thereof.
  • Turbine 126 forms an exhaust gas turbocharger together with compressor 114 and is controlled by means of an adjustable bypass 128 (wastegate ) executed passable.
  • the bypass 128 serves, in certain operating states of the internal combustion engine 110 leading to a large exhaust gas mass flow, to pass part of the exhaust gas mass flow past the turbine 126 in order to limit the charge pressure in the fresh gas train 112.
  • an exhaust aftertreatment device is further integrated.
  • the exhaust aftertreatment devices may include, for example, an oxidation catalyst 130 and a particulate filter 132.
  • the Fig. 4 shows a cross section through the internal combustion engine 110 in the region of a cylinder.
  • the engine 110 includes a cylinder housing 134 that forms the individual cylinders. In each of the cylinders, a piston 136 is guided movable up and down. Above the cylinder housing 134, a cylinder head 138 connects.
  • the cylinder housing 134, the cylinder head 138, and the pistons 136 are formed of aluminum alloys.
  • the intake ports 140 are part of the fresh gas train 112 of the internal combustion engine and connect the suction pipe 118 fluid-conductively with the respective cylinders.
  • the exhaust ports 142 are part of the exhaust line 122 and connect the respective cylinders to the exhaust manifold 124. Via gas exchange valves 144, introduction of the fresh gas into the cylinders and exhaust of the exhaust from the cylinders are controlled in a known manner. In this case, the gas exchange valves 144 are actuated, for example, by means of one or more (not shown) camshafts.
  • the combustion chambers 120 formed by the individual cylinders are each bounded by a portion of the inner wall of the associated cylinder, by the top of the associated piston 136, a portion of the underside of the cylinder head 138, and by the bottoms of the associated gas exchange valves 144.
  • a protective layer 146 is applied by means of anodic oxidation with spark discharge, in particular on the surfaces formed by the upper sides (of main bodies) of the pistons 136.
  • This protective layer 146 consists essentially of aluminum oxide (Al 2 O 3), which forms as part of the anodic oxidation under spark discharge at the tops of the piston 136.
  • the protective layer 146 which may have a layer thickness of, for example, about 200 microns, already characterized in principle due to their training of alumina by a high wear resistance and good thermal resistance, whereby their use to limit the combustion chambers 120 of the engine 110 is possible , Furthermore, the protective layer 146 is characterized by a relatively low thermal conductivity and a relatively low heat capacity compared to the aluminum alloy, from which the piston 136 are formed. This achieves the desired thermal insulation of the combustion chambers and consequently a relatively low heat transfer of gases in the combustion chambers 120 to the pistons 136.
  • the base body of the pistons 136 In order to further reduce a heat transfer from the combustion chambers to the base body of the pistons 136, it is provided to embed particles 148 of, for example, zirconium oxide, which have an even lower thermal conductivity compared to the aluminum oxide. As is clear from the Fig. 5 is provided to provide the particles 148 of zirconia over the entire surface of the protective layer 146 in a (second) sub-layer extending between the surface of the body of the corresponding Piston 136 and another, adjacent to the combustion chamber 120 (first) sub-layer is arranged.
  • the particles 150 of a material for example copper, which is characterized by a relatively high thermal conductivity compared to the matrix material serving as alumina. It is envisaged to provide the particles 150 of copper in those regions of the first sub-layer of the protective layer 146 in which experience has shown that relatively high local wall temperatures may result during the operation of such an internal combustion engine.
  • the particles 150 of copper serve to reduce such locally high wall temperatures by forwarding the increased introduction of heat energy at these points as well as possible to the entire second partial layer.
  • the particles 150 of copper can be arranged, for example, at the edge transitions of a piston recess 152 and in the region of a central elevation of the piston recess 152.
  • the Fig. 5 also shows that also the density of the distribution of the particles 150 of copper, ie the number of particles per unit volume; in the formation of the protective layer 146 by means of anodic oxidation under spark discharge can be controlled (also possible for the particles 148 of zirconia). It is thus provided that in those sections of the first partial layer in which particles 150 of copper are provided, in each case a higher density of particles 150 in a central region and to the edge of the respective section decreasing density of particles 150 provide.
  • the subdivision of the protective layer 146 into the first sublayer and the second sublayer results merely from the different embedding of the different particles 148, 150 and from the different functionalities for the protective layer 146 achieved thereby.
  • a structural parting plane is not formed between the two sublayers.
  • the particles 148, 150 may, for example, have a size of .ltoreq.5 .mu.m.
  • a corresponding protective layer 146 in order to further improve the thermal insulation of the combustion chambers 120.
  • the Fig. 4 shows by way of example that both the inner walls of the cylinders (at least in those sections which delimit the combustion chambers 120), the corresponding portions of the underside of the cylinder head 138 and the lower sides of the gas exchange valves 144, each having a protective layer 146 which was formed by spark discharge anodization , can be coated.
  • FIG. 4 shows the possibility of providing the outlet ducts 142 of the internal combustion engine 110 serving as exhaust gas ducts with corresponding protective layers 146.
  • other surfaces of the exhaust tract 122 of the internal combustion engine serving for exhaust gas routing for example walls of an exhaust manifold and / or a turbine of an exhaust gas turbocharger, can be provided with corresponding protective layers 146.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Erzeugung einer Schutzschicht auf einem thermisch belasteten Bauteil sowie ein Bauteil mit einer derartigen Schutzschicht. Insbesondere betrifft die vorliegende Erfindung ein elektrochemisches Verfahren zur Erzeugung einer Oxidations-, Verschleiß- oder Korrosionsschutzschicht auf einem Bauteil einer Verbrennungsmaschine oder einem Bauteil eines Abgassystems.The present invention relates to a method for producing a protective layer on a thermally stressed component and to a component having such a protective layer. In particular, the present invention relates to an electrochemical process for producing an oxidation, wear or corrosion protection layer on a component of an internal combustion engine or a component of an exhaust system.

Derartige Bauteile werden insbesondere bei Kraftfahrzeugen eingesetzt. Bei Kraftfahrzeugen gibt es die Bestrebung, dass Gesamtgewicht des Fahrzeugs und daher seiner einzelnen Komponenten zu reduzieren, um so den Wirkungsgrad zu erhöhen. Es bietet sich daher an, auf besonders leichte Materialien zurückzugreifen, insbesondere auf sogenannte Leichtmetalle, wie beispielsweise Aluminium, Titan, oder deren Legierungen. Ein Problem oder Nachteil dieser Materialien ist aber die relativ gute Wärmeleitfähigkeit, sodass der Einsatz von diesen Materialen insbesondere bei Bauteilen, die höheren Temperaturen von beispielsweise über 300°C ausgesetzt sind, nicht ohne weiteres möglich ist. Systembedingt treten derartig hohe Temperaturen bei Kraftfahrzeugen bei der Verbrennungsmaschine sowie im Abgassystem auf. Als Beispiel sei hier ein Abgasturbolader genannt, bei welchem Temperaturen von über 900°C auftreten können. Bei derartigen Temperaturen kann es aufgrund des besonders heißen Gases (des Heißgases) zur sogenannten Heißgaskorrosion kommen.Such components are used in particular in motor vehicles. In motor vehicles, there is an effort to reduce the total weight of the vehicle and therefore its individual components, so as to increase the efficiency. It therefore makes sense to resort to particularly lightweight materials, in particular so-called light metals such as aluminum, titanium, or their alloys. However, a problem or disadvantage of these materials is the relatively good thermal conductivity, so that the use of these materials, especially for components that are exposed to higher temperatures, for example, about 300 ° C, not readily possible. Due to the system, such high temperatures occur in motor vehicles in the internal combustion engine and in the exhaust system. As an example, an exhaust gas turbocharger may be mentioned, in which temperatures of over 900 ° C may occur. At such temperatures, so-called hot gas corrosion may occur due to the particularly hot gas (the hot gas).

Um einen Einsatz von derartigen Materialien auch bei thermisch belasteten Bauteilen zu ermöglichen, muss die Oberfläche mit einer Schutzschicht versehen werden, durch welche insbesondere der Wärmeleitkoeffizient herabgesetzt wird. Aus dem Stand der Technik sind hier insbesondere Spritzverfahren, beispielsweise thermisches Spritzen oder Plasmaspritzen bekannt. Nachteilig an dieser Lösung ist aber, dass bei derartigen Spritzschichten die Verbindung zwischen der gespritzten Schutzschicht und dem Bauteil durch eine mechanische Verklammerung des Schichtmateriales (z.B. durch Flakes) am Substrat, d.h. der Oberfläche des Bauteils, oder durch Adhäsionsvorgänge bzw. Diffusionsvorgänge zustande kommt. Im Betrieb kann es daher zu Problemen durch Abplatzungen oder aufgrund einer mangelnden Abriebfestigkeit kommen. Auch sind die bekannten Spritzverfahren teuer und energieaufwändig. Insbesondere beim Innenraumspritzen, d.h. beim Auftragen einer Spritzschicht in einen Hohlraum, ist spezielles Spritzwerkzeug notwendig, sofern ein Spritzverfahren überhaupt möglich ist. Als Beispiel sei hier auf einen Krümmer eines Abgassystems verwiesen, der aus diesem Grund nicht aus einem der eingangs genannten Materialien hergestellt werden kann, sondern in der Regel als Gusseisenteil oder gebautes Edelstahlteil bereitgestellt wird.In order to enable the use of such materials even with thermally stressed components, the surface must be provided with a protective layer, by which in particular the heat conduction coefficient is reduced. In particular spraying processes, for example thermal spraying or plasma spraying, are known from the state of the art. A disadvantage of this solution is that in such spray coatings the connection between the sprayed protective layer and the component is achieved by a mechanical clamping of the layer material (eg by flakes) on the substrate, ie the surface of the component, or by adhesion processes or diffusion processes. In operation, it can therefore cause problems due to spalling or due to a lack of abrasion resistance. Also, the known spray methods are expensive and energy consuming. In particular, in the interior spraying, ie when applying a sprayed layer into a cavity, special injection molding tool is necessary, if a spraying process is even possible. As an example, reference is made to a manifold of an exhaust system, which for this reason can not be made of any of the aforementioned materials, but is usually provided as a cast iron part or built stainless steel part.

Aus diesen Gründen wird neuerdings die Ausbildung einer Oxidschicht als Schutzschicht vorgeschlagen. So zeigt die DE 10 2012 002 284 A1 beispielsweise ein Turbinenrad, auf oder in dessen Oberfläche ein Halogenid aus der Gruppe Flur, Chlor oder Brom auf bzw. eingebracht wird und auf dessen Oberfläche eine Oxidationsschicht durch den sogenannten Halogeneffekt im Rahmen einer Wärmebehandlung ausgebildet wird. Die Halogene werden insbesondere durch Ionenimplantation aufgetragen.For these reasons, the formation of an oxide layer has recently been proposed as a protective layer. That's how it shows DE 10 2012 002 284 A1 For example, a turbine wheel, on or in the surface of a halide from the group corridor, chlorine or bromine or is introduced and on the surface of an oxidation layer is formed by the so-called halogen effect in a heat treatment. The halogens are applied in particular by ion implantation.

Ein Nachteil von derartigen Verfahren zur Erzeugung einer Schutzschicht auf einem thermisch belasteten Bauteil die auf dem Halogeneffekt basieren, ist darin zu sehen, dass die ausgebildeten Oxidschichten sehr dünn sind. Mithin ergibt sich nur eine begrenzte Verbesserung der Korrosionsbeständigkeit, sodass auch der Verschleiß schutz nicht optimal ist. Ferner ist aufgrund der relativ dünnen Oxidschicht kein größerer Einfluss auf die elektrische oder thermische Isolation des Bauteils zu erwarten.A disadvantage of such methods for producing a protective layer on a thermally stressed component based on the halogen effect is that the oxide layers formed are very thin. Thus, there is only a limited improvement in corrosion resistance, so that the wear protection is not optimal. Furthermore, owing to the relatively thin oxide layer, no major influence on the electrical or thermal insulation of the component is to be expected.

Alternativ wird die Ausbildung einer Oxidschicht durch elektrochemische Verfahren vorgeschlagen. Aus der DE 10 2012 218 666 A1 ist ein derartiges Verfahren bekannt. Hierin wird ein Turbinenrad eines Turboladers aus einer Titanlegierung einer elektrochemischen Anodisation unterworfen, welche eine Oxidschicht als Schutzschicht aufbaut und so das Bauteil vor weiterer Oxidation schützt. Weiterhin wird das Bauteil so auch gegenüber weiteren Umwelteinflüssen geschützt.Alternatively, the formation of an oxide layer by electrochemical methods is proposed. From the DE 10 2012 218 666 A1 is such a method known. Herein, a turbine wheel of a titanium alloy turbocharger is subjected to electrochemical anodization, which constructs an oxide film as a protective layer and thus protects the component from further oxidation. Furthermore, the component is thus protected against further environmental influences.

Obwohl durch die elektrochemische Anodisation eine technisch nutzbare Schicht bereitgestellt wird, welche im Gegensatz zu bisher genannten Verfahren nicht nur kostengünstig ist, sondern neben dem Oxidations- auch einen Verschleißschutz und weitere positive Eigenschaften aufweist, verbleiben die für dieses Verfahren üblichen Limitierungen. Ein Nachteil der in der DE 10 2012 218 666 A1 gezeigten Schutzschicht ist es, dass die Schicht verfahrensbedingt einen hohen Porenanteil aufweist.Although a technically usable layer is provided by the electrochemical anodization, which in contrast to previously mentioned method is not only inexpensive, but in addition to the oxidation also a wear protection and other positive properties, the usual limitations for this process remain. A disadvantage of in the DE 10 2012 218 666 A1 shown protective layer is that the layer has a high pore ratio due to the process.

Hierdurch kann selbst unter Anwendung optimaler Parameter nur ein begrenzter Schutz realisiert werden, der beispielsweise qualitativ nicht an eine durch Ionenimplantation hergestellte Schutzschicht heranreicht. Des Weiteren kann im Rahmen der Anodisation nur ein begrenzter Verschleiß- und Korrosionsschutz hergestellt werden. Ein großer Nachteil ist das Aufbrechen und begrenzte Ausbilden der Schutzschicht im Bereich von Kanten und spitzen Übergängen. Mithin ist insbesondere bei kritischen Bauteilbereichen kein ausreichender Schutz durch eine mangelnde Ausbildung der Schutzschicht gegeben.As a result, even with the use of optimal parameters, only a limited protection can be realized which, for example, does not approach the quality of a protective layer produced by ion implantation. Furthermore, as part of the anodization only limited wear and corrosion protection can be produced. A major disadvantage is the breaking and limited formation of the protective layer in the region of edges and sharp transitions. Consequently, no adequate protection is given by a lack of training of the protective layer, especially in critical component areas.

Ferner ist aus der EP 2 371 996 A1 ein Verfahren zur elektrolytischen Keramikbeschichtung auf Metall bekannt, bei welchem mindestens ein Metall als Anode verwendet wird, um eine Anodisierungsbehandlung einer Oberfläche der Anode in einer bestimmten Elektrolyselösung zur Keramikbeschichtung durchzuführen, indem Glimmentladung und/oder Bogenentladung generiert wird, um dadurch einen Keramiküberzug auf der Metalloberfläche zu erzeugen, wobei die durchschnittliche Stromdichte während der Anwendung der Positivseite im Bereich von 0,5 A/dm2 bis 40 A/dm2 liegt und wobei die Anodisierungsbehandlung bei einem Betriebszeitverhältnis der Positivseite (T1) von 0,02 bis 0,5, einem Betriebszeitverhältnis der Negativseite (T2) von 0 bis 0,5, einem Zeitverhältnis der Nicht-Anwendung pro Zeiteinheit (T3) von 0,35 bis 0,95 durchgeführt wird und wobei diese Verhältnisse gleichzeitig folgende Formeln erfüllen: 0 ≤ T2/T1 ≤ 10 und 0,5 ≤ T3/(T1+T2) ≤ 20.Furthermore, from the EP 2 371 996 A1 discloses a method of electrolytic ceramic coating on metal, wherein at least one metal is used as an anode to perform anodization treatment of an anode surface in a given electrolytic solution for ceramic coating by generating glow discharge and / or arc discharge, thereby forming a ceramic coating on the metal surface wherein the average current density during the application of the positive side is in the range of 0.5 A / dm 2 to 40 A / dm 2 , and wherein the anodization treatment at a positive side operating time ratio (T1) of 0.02 to 0.5, an operating time ratio of the negative side (T2) of 0 to 0.5, a non-application time ratio (T3) of 0.35 to 0.95 and wherein these ratios simultaneously satisfy the following formulas: 0 ≦ T2 / T1 ≦ 10 and 0.5 ≦ T3 / (T1 + T2) ≦ 20.

In der EP 2 511 401 A2 ist ein Verfahren zur Herstellung einer Beschichtung auf der Oberfläche eines Substrats auf Basis von Leichtmetallen durch plasmaelektrolytische Oxidation beschrieben, bei welchem das Substrat als eine Elektrode zusammen mit einer Gegenelektrode in eine Elektrolytflüssigkeit eingetaucht und eine ausreichende elektrische Spannung zur Erzeugung von Funkenentladung an der Oberfläche des Substrats angelegt wird, wobei der Elektrolyt darin dispergierte Tonpartikel umfasst.In the EP 2 511 401 A2 A method for producing a coating on the surface of a light metal based substrate by plasma electrolytic oxidation is described in which the substrate is immersed as an electrode together with a counter electrode in an electrolyte liquid and a sufficient voltage for generating spark discharge on the surface of the substrate is applied, wherein the electrolyte comprises clay particles dispersed therein.

Die EP 2 103 718 A1 offenbart ein weiteres Verfahren zum Aufbringen eines Keramikfilms auf ein Metall, welches einen dichten Film auf Basis von Metallen bilden kann, wie beispielsweise Magnesiumlegierungen. Der gebildete Keramikfilm besitzt eine ausgezeichnete Abriebsfestigkeit, greift ein korrespondierendes Material kaum an und weist darüber hinaus ein exzellentes Abriebsverhalten auf.The EP 2 103 718 A1 discloses another method of applying a ceramic film to a metal which can form a dense metal-based film such as magnesium alloys. The formed ceramic film has excellent abrasion resistance, hardly attacks a corresponding material, and moreover has an excellent abrasion performance.

Die CA 2 479 032 A1 offenbart eine Beschichtung bestehend aus einer Oxid/Schmiermittel-Verbundbeschichtung an Leichtmetalllegierungen auf Basis einer Plasmaoxidation in Verbindung mit Festschmierstoffmitteln, welche während der Beschichtungsbildung gegen eine Oxidoberfläche gerieben werden.The CA 2 479 032 A1 discloses a coating consisting of an oxide / lubricant composite coating on light alloys based on plasma oxidation in conjunction with solid lubricant agents which are rubbed against an oxide surface during coating formation.

In der EP 2 721 270 A1 ist ein Verfahren zur Emissionsminderung und/oder Reibungsreduzierung in einem Verbrennungsmotor offenbart, bei welchem ein Teil der Verbrennungskammer aus einer Aluminium und/oder Titan umfassenden Oberfläche mit Titanoxid beschichtet wird, wobei darüber hinaus Dotierungsmittel in und/oder auf der anhaftenden Titanoxidbeschichtung vorhanden sind.In the EP 2 721 270 A1 For example, there is disclosed a method of reducing emissions and / or reducing friction in an internal combustion engine, wherein a portion of the combustion chamber of aluminum and / or titanium is coated with titanium oxide, further comprising dopants in and / or on the adhered titanium oxide coating.

In der CN 102 234 828 A ist ein Verfahren beschrieben, um mit einer Plasma-Electrolytic-Oxidation (PEO) eine extra starke, selbstschmierende Keramikbeschichtung zu erzeugen.In the CN 102 234 828 A For example, a method is described for producing an extra strong self-lubricating ceramic coating by plasma electrolytic oxidation (PEO).

In der CN 101 429 671 A ist schließlich noch eine Zirkonium-Beschichtung auf einer Aluminiumlegierungsoberfläche sowie ein Herstellungsverfahren unter Zuhilfenahme einer Plasma-Electrolytic-Oxidation (PEO) dafür beschrieben. Die dabei hergestellte Zirkonium-Beschichtung besteht aus tetragonalem Zirkoniumdioxid aus monoklinem Zirkoniumdioxid sowie aus gamma-typ Aluminiumoxid. Die Dicke der Beschichtung beträgt 20 µm bis 300 µm. Die Beschichtung eignet sich für komplexe Strukturen und besitzt eine starke Bindung mit dem Träger. Ferner zeichnet sie sich durch eine hohe Härte von 1700 HV bis 1800 HV aus.In the CN 101 429 671 A Finally, a zirconium coating on an aluminum alloy surface and a production process using a plasma Electrolytic Oxidation (PEO) for it is described. The resulting zirconium coating consists of tetragonal zirconia of monoclinic zirconia and of gamma-type alumina. The thickness of the coating is 20 μm to 300 μm. The coating is suitable for complex structures and has a strong bond with the carrier. Furthermore, it is characterized by a high hardness of 1700 HV to 1800 HV.

Vor diesem Hintergrund ist es die Aufgabe der vorliegenden Erfindung, ein preiswertes Verfahren zur Erzeugung einer Schutzschicht auf einem thermisch belasteten Bauteil aufzuzeigen, welches das Aufbringen einer Schutzschicht auch auf schwer zugängliche Oberflächen ermöglicht, eine gute Anhaftung auf der Oberfläche aufweist und so einen optimalen Oxidations-, Verschleiß- und Korrosionsschutz bietet. Dabei sollen lokale Temperaturmaxima in einem Verbrennungsraum verringert werden, wobei dieser gleichzeitig thermisch isoliert werden soll. Ferner ist es Aufgabe der Erfindung ein Bauteil mit einer derartigen Schutzschicht aufzuzeigen.Against this background, it is the object of the present invention to provide an inexpensive method for producing a protective layer on a thermally stressed component, which allows the application of a protective layer even on hard to reach surfaces, has a good adhesion to the surface and thus an optimal oxidation , Wear and corrosion protection offers. In this case, local temperature maxima are to be reduced in a combustion chamber, which is to be thermally insulated at the same time. It is another object of the invention to show a component with such a protective layer.

Die Lösung der Aufgabe gelingt mit einem Verfahren nach Anspruch 1 sowie einem Bauteil nach Anspruch 10. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen beschrieben.The object is achieved by a method according to claim 1 and a component according to claim 10. Advantageous developments are described in the dependent claims.

Erfindungsgemäß wird ein Verfahren zur Erzeugung einer Schutzschicht auf einem thermisch belasteten Bauteil vorgeschlagen, welches zumindest teilweise aus einem Ventilmetall besteht, wobei die Schutzschicht durch einen elektrochemischen Prozess erzeugt wird. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass der elektrochemische Prozess eine plasmaelektrolytische Oxidation (PEO) unter Verwendung eines Elektrolyten und unter Anlegung einer elektrischen Leistung ist. Ferner zeichnet sich das Verfahren dadurch aus, dass in der Schutzschicht Partikel abgeschieden werden, die im Vergleich zu einem Grundmaterial der Schutzschicht eine relativ niedrige oder hohe Wärmeleitfähigkeit aufweisen, wobei die Partikel mit relativ hoher Wärmeleitfähigkeit in einer ersten Teilschicht der Schutzschicht und die Partikel mit relativ niedriger Wärmeleitfähigkeit in einer zweiten, durch die erste Teilschicht getrennten Teilschicht vorgesehen sind.According to the invention, a method is proposed for producing a protective layer on a thermally loaded component which consists at least partially of a valve metal, wherein the protective layer is produced by an electrochemical process. The method according to the invention is characterized in that the electrochemical process is a plasma electrolytic oxidation (PEO) using an electrolyte and applying an electrical power. Furthermore, the method is characterized in that particles are deposited in the protective layer, which relative to a base material of the protective layer, a relative have low or high thermal conductivity, wherein the particles are provided with relatively high thermal conductivity in a first sub-layer of the protective layer and the particles with relatively low thermal conductivity in a second, separated by the first sub-layer sub-layer.

Unter einem Ventilmetall wird hier ein Metall verstanden, bei welchem die Oberfläche durch einen elektrochemischen Prozess in eine Oxidkeramikschicht bzw. eine Oxidschicht umgewandelt werden kann, wie beispielsweise Titan (Ti), Aluminum (Al), Magnesium (Mg) oder Zirconium (Zr) bzw. deren Legierungen. Bei diesen auch als "sperrschichtbildende Metalle" bekannten Metallen reagiert die Oberfläche durch Anlegen einer elektrischen Leistung in einem lokalen Plasma über Funkenentladung und bildet eine Oxidkeramik bzw. -schicht aus. Die elektrolytexponierte Oberfläche wird "abgerastert", regiert elektrochemisch mit dem gespaltenen Sauerstoff und/oder dem Elektrolyt zu einer Oxidkeramik bzw. -schicht (beispielsweise Al2O3, Spinelle, Mischoxide etc.).A valve metal is here understood to mean a metal in which the surface can be converted by an electrochemical process into an oxide ceramic layer or an oxide layer, such as titanium (Ti), aluminum (Al), magnesium (Mg) or zirconium (Zr) or their alloys. In these metals, which are also known as "barrier-layer-forming metals", the surface reacts by applying an electrical power in a local plasma via spark discharge and forms an oxide ceramic or layer. The electrolyte-exposed surface is "scanned", governs electrochemically with the cleaved oxygen and / or the electrolyte to an oxide ceramic or layer (for example, Al 2 O 3 , spinels, mixed oxides, etc.).

Bei einem PEO-Verfahren handelt es sich um ein Verfahren zur anodischen Oxidation, bei dem eine speziell modulierte Wechselspannung zum Einsatz kommt, was temporär und lokal begrenzt zu einer Funkenentladung infolge von Plasmaentladungen führt. Das PEO-Verfahren wird daher auch als anodische Oxidation mit Funkenentladung (ANOF) bezeichnet. Das aus der Funkenentladung resultierende, lokale Aufschmelzen der zu beschichtenden Oberfläche soll zu einer besonders verschleißfesten Beschichtung führen.A PEO process is an anodic oxidation process using a specially modulated AC voltage, resulting in a temporary and localized spark discharge due to plasma discharges. The PEO process is therefore also referred to as anodic oxidation with spark discharge (ANOF). The resulting from the spark discharge, local melting of the surface to be coated should lead to a particularly wear-resistant coating.

Bei einem erfindungsgemäßen ANOF-Verfahren bzw. einem PEO-Verfahren handelt es sich um ein kombiniertes Verfahren aus den Bereichen Plasmatechnik und Elektrochemie, durch das Oberflächen von Bauteilen, die aus sogenannten Ventilmetallen ausgebildet sind, mit einer Schutzschicht aus einer Oxidkeramik versehen werden können. Als Ventilmetalle kommen dabei insbesondere native Sperrschichtbildner wie Aluminium, Magnesium oder Titan in die Auswahl. Die Erzeugung der Schutzschicht kann insbesondere in wässrigen Elektrolyten erfolgen. Das zu oxidierende Bauteil wird dabei anodisch gepolt und zusammen mit einer Gegenelektrode (Kathode) in den Elektrolyten eingetaucht. Das Bauteil bildet dabei zunächst eine rein chemisch induzierte Passivschicht aus. Das Wachstum dieser Passivschicht lässt sich durch Anlegen eines Potentials zwischen dem anodisch gepolten Bauteil und der Kathode erreichen. Dabei wird die Oxidschicht des zu beschichtenden Bauteils lokal durchschlagen, wobei plasmachemische Festkörperreaktionen, die Funkenentladungen, ausgelöst werden. Dieser Vorgang läuft nicht flächendeckend sondern an denjenigen Stellen ab, an denen die Dicke der Oxidschicht und somit der lokale elektrische Widerstand am geringsten ist. Da die Plasmareaktionen somit stets an denjenigen Stellen der Passivschicht, die lokal die geringste Schichtdicke aufweisen, stattfinden und dort für ein Schichtdickenwachstum sorgen, wird die Oberfläche mit einer sehr gleichmäßigen Schutzschicht überzogen. Um die sich erhöhende dielektrische Eigenschaft der wachsenden Oxidschicht dauerhaft mit einer Durchschlagsspannung zu durchbrechen, wird das dazu angelegte elektrische Potential so lange erhöht, die die gewünschte Schichtdicke der Schutzschicht erreicht ist.An ANOF process or a PEO process according to the invention is a combined process from the fields of plasma technology and electrochemistry, by means of which surfaces of components which are formed of so-called valve metals can be provided with a protective layer of an oxide ceramic. In particular, native barrier layer formers such as aluminum, magnesium or titanium come into the selection as valve metals. The generation of the protective layer can in particular take place in aqueous electrolytes. The component to be oxidized is poled anodically and immersed in the electrolyte together with a counter electrode (cathode). The component initially forms a purely chemically induced passive layer. The growth of this passive layer can be achieved by applying a potential between the anodically poled component and the cathode. In this case, the oxide layer of the component to be coated will penetrate locally, wherein plasma-chemical solid-state reactions, the spark discharges, are triggered. This process does not take place nationwide but at those points where the thickness of the oxide layer and thus the local electrical resistance is lowest. Since the plasma reactions thus always take place at those points of the passive layer which locally have the lowest layer thickness, and there ensure a layer thickness growth, the surface is coated with a very uniform protective layer. In order to permanently break the increasing dielectric property of the growing oxide layer with a breakdown voltage, the applied electric potential is increased so long that the desired layer thickness of the protective layer is reached.

Das erfindungsgemäße Verfahren hat den Vorteil, dass die gebildete Schicht entsprechend ihrem keramischen Charakter eine definierte Wärmeleitfähigkeit aufweist, die deutlich unterhalb der Wärmeleitfähigkeit des Substratmaterials, beispielswiese Aluminium liegt. Durch den kleineren Wärmeleitkoeeffizienten und die geringe Temperaturleitfähigkeit der Schutzschicht werden somit höhere Wandtemperaturen ermöglicht, sodass die mit der Schutzschicht versehene Oberfläche gegenüber dem angrenzenden Medium, beispielsweise Heißgas, thermisch isoliert ist.The inventive method has the advantage that the layer formed has a defined thermal conductivity according to their ceramic character, which is well below the thermal conductivity of the substrate material, for example aluminum. Due to the smaller Wärmeleitkoeeffizienten and the low thermal conductivity of the protective layer thus higher wall temperatures are possible, so that the surface provided with the protective layer against the adjacent medium, such as hot gas, is thermally insulated.

Die durch das erfindungsgemäße Verfahren erzeugte Schutzschicht ist deshalb wie folgt aufgebaut: An das Substrat grenzt eine dünne, dichte und geschlossene Schicht, die sogenannte Sperrschicht, gefolgt von einer kompakten und porenarmen Schicht. Hieran schließt sich eine poröse und weniger kompakte Schicht an, welche abhängig von der Schichtdicke sowohl poröser als auch spröder wird. Insbesondere ist diese Schicht offen porös und durch kleine Kanäle gekennzeichnet, welche senkrecht zur Oberfläche stehen und von der Oberfläche bis zur angrenzenden Sperrschicht in Richtung des Substrates hineinragen. Zusätzlich oder alternativ weist die Schicht ein interkonnektierendes Porennetzwerk und/oder ein nicht interkonnektierendes Porennetzwerk auf, welches durch abgeschlossene Einschlüsse von Luft oder Elektrolyt gekennzeichnet ist.The protective layer produced by the method according to the invention is therefore constructed as follows: Adjacent to the substrate is a thin, dense and closed layer, the so-called barrier layer, followed by a compact and low-pore layer. This is followed by a porous and less compact layer which, depending on the layer thickness, becomes both more porous and more brittle. In particular, this layer is openly porous and characterized by small channels which are perpendicular to the surface and protrude from the surface to the adjacent barrier layer in the direction of the substrate. Additionally or alternatively, the layer has an interconnecting pore network and / or a non-interconnecting pore network, which is characterized by closed inclusions of air or electrolyte.

Zweckmäßigerweise hat der Elektrolyt eine Elektrolytbasis, wobei die Elektrolytbasis Phosphorsäure (H3PO4), Kaliumhydroxid (KOH), Wasserglas (Na2SiO3), deionisiertes Wasser oder eine zirkoniumhaltige Verbindung ist. Eine Elektrolytbasis ist hierbei ein Stoff aus einer Vielzahl von Stoffen, der mengenmäßig (in g/L) neben Wasser und Urotropin am Häufigsten in einem Elektrolyten vorkommt. Als zirkoniumhaltige Verbindung kommt insbesondere Zirkoniumsulfat (ZrSO4), oder Zirkoniumwolframat (ZrWO4) in Betracht. Dies hat den Vorteil, dass mit einer derartigen Elektrolytzusammensetzung ein Bauteil aus beispielsweise Aluminium oder Titan bzw. aus den entsprechenden Legierungen überhaupt plasmaelektrolytisch oxidiert werden kann.Conveniently, the electrolyte has an electrolyte base, wherein the electrolyte base is phosphoric acid (H 3 PO 4 ), potassium hydroxide (KOH), water glass (Na 2 SiO 3 ), deionized water or a zirconium-containing compound. An electrolyte base here is a substance from a variety of substances, the amount (in g / L) in addition to water and urotropin is most common in an electrolyte. Zirconium sulfate (ZrSO 4 ) or zirconium tungstate (ZrWO 4 ) is particularly suitable as the zirconium-containing compound. This has the advantage that with such an electrolyte composition, a component of, for example, aluminum or titanium or of the corresponding alloys can be plasma-electrochemically oxidized at all.

Hierbei ist es von Vorteil, wenn die elektrische Leistung spannungsgeregelt ist, wobei die Stromstärke begrenzt ist, oder stromgeregelt ist, wobei die Spannung begrenzt ist, oder leistungsgeregelt ist. Zweckmäßigerweise wird die elektrische Leistung mit einer Frequenz von 1 Hz bis 10 kHz, insbesondere mit einer Frequenz von 1 Hz bis 1000 Hz angelegt. Es ist von Vorteil, wenn die Spannung in einem Bereich zwischen 150 Volt und 1500 Volt, vorzugsweise in einem Bereich zwischen 210 Volt und 650 Volt, angelegt wird und wenn der Strom mit einer Stromdichte in einem Bereich zwischen 0,001 A/dm2 und 1000 A/dm2, vorzugsweise in einem Bereich zwischen 0,5 A/dm2 bis 15 A/dm2 angelegt wird. Denkbar ist, dass der angelegte Strom und/oder die angelegte Spannung durch einen höherfrequenten Strom und/oder eine höherfrequente Spannung obermoduliert wird. Ferner ist es vorteilhaft, wenn der angelegte Strom und/oder die angelegte Spannung gleichgeregelt wird oder die Form einer symmetrischen Welle, einer asymmetrischen Welle, eines Rechtecks oder eines Trapezes hat. Hierbei ist die charakteristische Form mit einem Tastgrad und einem Offset im Bereich von 0% bis 100% versehen und kann somit sowohl uni- als auch bipolar ausgeführt sein. Insbesondere die Form einer Welle ist vorteilhaft.It is advantageous if the electrical power is voltage controlled, the current is limited, or is current-controlled, the voltage is limited, or is power-controlled. Conveniently, the electrical power is applied at a frequency of 1 Hz to 10 kHz, in particular with a frequency of 1 Hz to 1000 Hz. It is advantageous if the voltage is applied in a range between 150 volts and 1500 volts, preferably in a range between 210 volts and 650 volts, and if the current has a current density in a range between 0.001 A / dm 2 and 1000 A / dm 2 , preferably in a range between 0.5 A / dm 2 to 15 A / dm 2 is applied. It is conceivable that the applied current and / or the applied voltage is supermodulated by a higher-frequency current and / or a higher-frequency voltage. Furthermore, it is advantageous if the applied current and / or the applied voltage is rectified or has the form of a symmetrical wave, an asymmetric wave, a rectangle or a trapezoid. Here, the characteristic shape with a duty cycle and an offset in the range of 0% to 100% and can thus be executed both uni- and bipolar. In particular, the shape of a wave is advantageous.

Auch ist es vorteilhaft, wenn als Prozesstemperatur für die PEO eine Temperatur im Bereich zwischen 0°C und 80°C gewählt wird. Besonders bevorzugt beträgt die Temperatur zwischen 18°C und 50°C.It is also advantageous if a temperature in the range between 0 ° C and 80 ° C is selected as the process temperature for the PEO. More preferably, the temperature is between 18 ° C and 50 ° C.

Die vorgenannten Prozessparameter ermöglichen, dass eine besonders oxidreiche Schutzschicht auf dem Bauteil geschlossen aufwächst und somit eine besonders dichte und damit sichere Schutzschicht ausgebildet wird. Das Bauteil kann so sicher und langzeitstabil vor äußeren Einflüssen, beispielsweise vor unerwünschten Oxidationen geschützt werden. Ferner können mit dem erfindungsgemäßen Verfahren Bauteile in Großserie mit entsprechenden Qualitätsanforderungen produziert werden. Ferner kann so auch eine praktikable Produktionsgeschwindigkeit erreicht werden, die überhaupt eine Großserienfertigung ermöglicht.The abovementioned process parameters make it possible for a particularly oxide-rich protective layer to grow closed on the component and thus to form a particularly dense and therefore safe protective layer. The component can be protected so safe and long-term stability against external influences, for example, from undesirable oxidation. Furthermore, with the method according to the invention components can be produced in mass production with corresponding quality requirements. Furthermore, a practicable production speed can be achieved in this way, which makes mass production possible at all.

Es ist von Vorteil, wenn der Elektrolyt als Dispersion ausgeführt wird, wobei dem Elektrolyten einer oder mehrere der folgenden Partikel zugegeben werden: Al2O3, TiO2, SiO2, Wolframcarbid (WC), ZrO2, Eisenoxid, Graphit und/oder MoS2. Hierbei wird der Elektrolyt mit einer Elektrolytbasis durch die Zugabe der genannten Partikel beaufschlagt. Die Partikel können sowohl globular, ellipsoid oder spratzig, in Form von Flakes oder dergleichen ausgeführt sein. Ferner können die Partikel aus einem Oxid, einem Karbid oder einem anderen Werkstoff sein, solange die Partikel verfahrensbedingt als Fremdkörper in die Schutzschicht eingebaut werden oder zusammen mit dem Substrat oder dem Elektrolyt zu einer anderweitigen Verbindung chemisch, elektrochemisch oder physikalisch reagieren.It is advantageous if the electrolyte is carried out as a dispersion, wherein one or more of the following particles are added to the electrolyte: Al 2 O 3 , TiO 2 , SiO 2 , tungsten carbide (WC), ZrO 2 , iron oxide, graphite and / or MoS 2 . In this case, the electrolyte is subjected to an electrolyte base by the addition of said particles. The particles can be either globular, ellipsoidal or sparse, in the form of flakes or the like. Furthermore, the particles can be made of an oxide, a carbide or another material, as long as the particles are incorporated as a foreign body into the protective layer or react chemically, electrochemically or physically with the substrate or the electrolyte to form a different compound.

Insbesondere Partikel aus Al2O3, TiO2, SiO2, Wolframcarbid (WC), ZrO2, Eisenoxid, haben eine deutlich reduzierte thermische Leitfähigkeit, sodass der Einbau dieser Partikel in die Schutzschicht die Isolationswirkung der Schutzschicht weiter verbessert. Insbesondere Zirkonoxid (ZrO2) hat sich als vorteilhaft erwiesen.In particular, particles of Al 2 O 3 , TiO 2 , SiO 2 , tungsten carbide (WC), ZrO 2 , iron oxide, have a significantly reduced thermal conductivity, so that the incorporation of these particles in the protective layer further improves the insulating effect of the protective layer. In particular, zirconium oxide (ZrO 2 ) has proved to be advantageous.

Ferner wird durch die Zugabe von Schmierstoffpartikeln wie Graphit, MoS2 oder durch andere entsprechende Partikel, die in die Schutzschicht eingelagert werden, der Reibwert reduziert.Furthermore, the addition of lubricant particles such as graphite, MoS 2 or other corresponding particles which are incorporated into the protective layer, the coefficient of friction is reduced.

Erfindungsgemäß ist vorgesehen, dass in der Schutzschicht Partikel aus einem von einem Grund- beziehungsweise Matrixmaterial der Schutzschicht abweichenden Material vorgesehen werden, die im Vergleich zu dem Grund- beziehungsweise Matrixmaterial der Schutzschicht eine relativ hohe oder niedrige Wärmeleitfähigkeit aufweisen. Konkret sind dabei sowohl solche Partikel vorgesehen, die im Vergleich zu dem Grund- beziehungsweise Matrixmaterial der Schutzschicht eine relativ hohe Wärmeleitfähigkeit aufweisen, als auch solche, die eine relativ niedrige Wärmeleitfähigkeit aufweisen.According to the invention, particles are provided in the protective layer of a material deviating from a base or matrix material of the protective layer, which have a relatively high or low thermal conductivity compared to the base or matrix material of the protective layer. Specifically, both those particles are provided which have a relatively high thermal conductivity compared to the base or matrix material of the protective layer, as well as those which have a relatively low thermal conductivity.

Dieser Aspekt der Erfindung beruht zum einen auf der Erkenntnis, dass die im Rahmen des erfindungsgemäßen Verfahrens erzeugte Schutzschicht zwar einen vorteilhaften Kompromiss hinsichtlich insbesondere der thermischen Isolation und der Haltbarkeit darstellt, jedoch alternative Materialien vorhanden sind, die sich durch eine noch geringere Wärmeleitfähigkeit und somit eine weiter verbesserte thermische Isolation auszeichnen. Diese können jedoch aus verschiedenen Gründen nicht zur vollständigen Ausbildung einer Schutzschicht genutzt werden. Durch ein Einbringen von Partikeln von einem oder mehreren dieser alternativen Materialien in die erfindungsgemäß erzeugte Schutzschicht kann deren mittlere Wärmeleitfähigkeit weiter abgesenkt und somit die thermisch isolierenden Eigenschaften weiter verbessert werden, ohne dass sich dies im relevanten Maße auf die weiteren vorteilhaften Eigenschaften der erfindungsgemäßen Schutzschicht, d.h. insbesondere eine gute Haltbarkeit und eine geringe Oberflächenrauhigkeit, negativ auswirkt.This aspect of the invention is based, on the one hand, on the recognition that the protective layer produced in the context of the method according to the invention represents an advantageous compromise with regard in particular to thermal insulation and durability, but alternative materials are present which are characterized by an even lower thermal conductivity and thus a lower thermal conductivity further distinguished improved thermal insulation. However, for various reasons, these can not be used for the complete formation of a protective layer. By introducing particles of one or more of these alternative materials into the protective layer produced according to the invention, their average thermal conductivity can be further lowered and thus the thermal insulating properties can be further improved without this to a relevant extent on the further advantageous properties of the protective layer according to the invention, ie especially good durability and low surface roughness, has a negative impact.

Als Material für die Partikel mit relativ geringer Wärmeleitfähigkeit kommen beispielsweise Y-stabilisiertes Zirkonoxid (Zr(Y)O2), Aluminiumoxid (Al2O3), Spinell (Al2O3/MgO), Mullit (Al2O3/SiO2), Zirkonkorund (Al2O3/ZrO2), Titanoxid (TiO2) oder Siliziumoxid (SiO2) sowie Mischkeramiken mit wesentlichen Bestandteilen genannter Oxide in Betracht.As material for the particles with relatively low thermal conductivity, for example, Y-stabilized zirconia (Zr (Y) O 2 ), alumina (Al 2 O 3 ), spinel (Al 2 O 3 / MgO), mullite (Al 2 O 3 / SiO 2 ), zirconium corundum (Al 2 O 3 / ZrO 2 ), titanium oxide (TiO 2 ) or silicon oxide (SiO 2 ) and mixed ceramics with essential constituents of said oxides into consideration.

Selbst wenn die Wärmeleitfähigkeit der eingebrachten Partikel in deren reinem Bulkzustand nicht geringer als die der Matrix ausfällt, kann die Wärmeleitfähigkeit des aus beidem ausgebildeten Kompositmaterials der Schutzschicht trotzdem insgesamt niedriger sein, da die eingebrachten Partikel als Störstellen für die Ausbreitung der Kristallschwingungen (Phononen) wirken. Insofern ist die konkretisierende Angabe "mit relativ geringer Wärmeleitfähigkeit" erfindungsgemäß nicht ausschließlich auf eine tatsächlichen Werkstoffeigenschaft der Partikel beschränkt, sondern soll auch eine Wärmeleitfähigkeit reduzierende Wirkung innerhalb der Matrix umfassen.Even if the thermal conductivity of the introduced particles in their pure bulk state is not lower than that of the matrix, the thermal conductivity of the composite material of the protective layer formed from both can nevertheless be lower overall since the particles introduced act as impurities for the propagation of the crystal oscillations (phonons). In this respect, the concretization "with relatively low thermal conductivity" according to the invention is not limited exclusively to an actual material property of the particles, but should also include a heat conductivity reducing effect within the matrix.

Die Partikel mit relativ großer Wärmeleitfähigkeit können dagegen vorteilhaft dazu eingesetzt werden, lokale Spitzen der Wandtemperatur der mit der Schutzschicht versehenen Oberfläche zu vermeiden oder zu reduzieren, indem durch diese Partikel ein relativ hoher lokaler Übergang von Wärmeenergie aus beispielsweise einem Brennraum oder einer Abgasführung möglichst gut auf einen größeren Bereich der Schutzschicht verteilt wird. Dadurch kann die Ausbildung lokal hoher Wandtemperaturen, die einen negativen Effekt auf den Zündverzug (d.h. den Zeitraum zwischen der Einspritzung von Kraftstoff in den Brennraum und der Zündung des Kraftstoffs) haben können, vermieden werden. Dazu kann ausreichend sein, wenn die Partikel mit relativ hoher Wärmeleitfähigkeit in nur einem oder mehreren Abschnitten, nicht jedoch in der gesamten Schutzschicht (bezogen auf die Fläche und vorzugsweise auch die Schichtstärke) vorgesehen werden. Ein solches lokal begrenztes Vorsehen von Partikeln mit relativ hoher Wärmeleitfähigkeit muss daher nicht mit einer relevanten Verschlechterung der mittleren Wärmeleitfähigkeit der gesamten Schutzschicht verbunden sein.On the other hand, the particles with a relatively high thermal conductivity can advantageously be used to avoid or reduce localized peaks of the wall temperature of the surface provided with the protective layer, as a result of these particles being able to achieve a relatively high local transition of heat energy from, for example, a combustion chamber or an exhaust gas guide as well as possible a larger area of the protective layer is distributed. As a result, the formation of locally high wall temperatures, which can have a negative effect on the ignition delay (ie the period between the injection of fuel into the combustion chamber and the ignition of the fuel), can be avoided. This may be sufficient if the particles with relatively high thermal conductivity in only one or more sections, but not in the entire protective layer (based on the area and preferably also the layer thickness) are provided. Such a localized provision of particles with relatively high thermal conductivity does not therefore have to be associated with a relevant deterioration in the mean thermal conductivity of the entire protective layer.

Ein durch die Vermeidung lokal hoher Wandtemperaturen erreichter, relativ großer Zündverzug ist insbesondere für selbstzündende Brennkraftmaschinen, d.h. insbesondere Dieselmotoren, von Bedeutung, so dass das erfindungsgemäße Verfahren besonders vorteilhaft bei der Verbesserung einer solchen selbstzündenden Brennkraftmaschine zum Einsatz kommen kann. Es können sich jedoch auch Vorteile bei der Anwendung des Verfahrens zur Verbesserung von fremdgezündeten Brennkraftmaschinen, insbesondere Ottomotoren, ergeben.A relatively large ignition delay, achieved by avoiding locally high wall temperatures, is particularly important for self-igniting internal combustion engines, i. diesel engines, in particular, so that the method according to the invention can be used particularly advantageously in the improvement of such a self-igniting internal combustion engine. However, there may also be advantages in the application of the method for improving spark-ignited internal combustion engines, in particular gasoline engines.

Als Material für die Partikel mit relativ hoher Wärmeleitfähigkeit kommt beispielsweise Kupfer, Eisen, Beryllium, Aluminium, Kupfer, Silber, Silizium, Molybdän, Wolfram, Kohlenstoff, Berylliumoxid, Berylliumnitrit, Siliziumnitrit und/oder Siliziumcarbit sowie Mischungen und/oder Legierungen daraus in Betracht.As a material for the particles having a relatively high thermal conductivity, for example, copper, iron, beryllium, aluminum, copper, silver, silicon, molybdenum, tungsten, carbon, beryllium, beryllium nitrite, silicon nitrite and / or silicon carbide and mixtures and / or alloys thereof come into consideration.

Erfindungsgemäß sind sowohl Partikel mit relativ niedriger Wärmeleitfähigkeit als auch Partikel mit relativ hoher Wärmeleitfähigkeit vorgesehen. Deren Verteilung in der Schutzschicht sollte so vorgesehen werden, dass die lokal durch die Partikel mit relativ hoher Wärmeleitfähigkeit erhöhte mittlere Wärmeleitfähigkeit der Schutzschicht nicht zu einem relevant höheren Wärmeübergang auf den unterhalb der Schutzschicht angeordneten Bereich des beschichteten, den Brennraum und/oder die Abgasführung begrenzenden Bauteils führt. Dies wird in vorteilhafter Weise dadurch erreicht, dass die Partikel mit relativ hoher Wärmeleitfähigkeit ausschließlich in einer ersten, an den Brennraum und/oder die Abgasführung angrenzenden Teilschicht der Schutzschicht und die Partikel mit relativ niedriger Wärmeleitfähigkeit in einer zweiten, von dem Brennraum und/oder der Abgasführung durch die erste Teilschicht getrennten Teilschicht vorgesehen werden. Die Partikel mit relativ hoher Wärmeleitfähigkeit können dann für eine möglichst gleichförmige Verteilung der in die Schutzschicht übergehenden Wärmeenergie innerhalb der ersten Teilschicht sorgen, während die zweite Teilschicht mit den Partikel mit relativ niedriger Wärmeleitfähigkeit besonders gut thermisch isolierend wirkt und folglich einen Wärmeübergang von der ersten Teilschicht auf den unterhalb der Schutzschicht liegenden Bereich des Bauteils reduziert.According to the invention, both particles with relatively low thermal conductivity and particles with relatively high thermal conductivity are provided. Their distribution in the protective layer should be provided in such a way that the mean thermal conductivity of the protective layer, which is locally increased by the particles having a relatively high thermal conductivity, does not lead to a significantly higher heat transfer to the region of the coated, the combustion chamber and / or the exhaust gas guide-limiting component arranged below the protective layer leads. This is achieved in an advantageous manner in that the particles with relatively high thermal conductivity exclusively in a first, adjacent to the combustion chamber and / or the exhaust gas guide sub-layer of the protective layer and the particles with relatively low thermal conductivity in a second, from the combustion chamber and / or the Exhaust system can be provided by the first sub-layer separate sub-layer. The particles with a relatively high thermal conductivity can then ensure the most uniform possible distribution of heat energy transferred into the protective layer within the first sub-layer, while the second sub-layer with the particles having relatively low thermal conductivity has a particularly good thermal insulating effect and consequently a heat transfer from the first sub-layer reduced lying below the protective layer region of the component.

Eine anodische Oxidation unter Funkenentladung ermöglicht auf relativ einfache Weise ein gezieltes Anordnen von Partikeln in der Schutzschicht. Dies gilt insbesondere bei einer Anwendung einer anodischen Oxidation unter Funkenentladung mittels einer Wechselspannung, bei der entweder die positiven oder negativen Spannungsphasen wechselweise dazu genutzt werden können, die in dem Elektrolyten enthaltenen Partikel an der wachsenden Schutzschicht anzulagern, während die entsprechenden anderen Spannungsphasen für die wachsende Ausbildung der Schutzschicht genutzt werden.Anodic oxidation under spark discharge makes it possible to arrange particles in the protective layer in a relatively simple manner. This is especially true in the case of an anodic oxidation with spark discharge by means of an alternating voltage, in which either the positive or negative voltage phases can be alternately used to attach the particles contained in the electrolyte to the growing protective layer, while the corresponding other voltage phases for the growing training the protective layer can be used.

Die Korngröße der Partikel kann im Bereich von 0,001 µm bis 5000 µm, insbesondere in einem Bereich zwischen 0,1 µm bis 100 µm, liegen. Derartige Korngrößen haben sich als praktikabel erwiesen.The particle size of the particles can be in the range from 0.001 μm to 5000 μm, in particular in a range between 0.1 μm to 100 μm. Such particle sizes have proven to be practicable.

Zur gleichmäßigen Dispersion der Partikel kann ein Ultraschallschwinger genutzt werden. Hierdurch kann die Dispersion der Partikel im Elektrolyt kostengünstig und schnell erfolgen.For uniform dispersion of the particles, an ultrasonic vibrator can be used. As a result, the dispersion of the particles in the electrolyte can be done inexpensively and quickly.

Des Weiteren können die Partikel durch die Verwendung bzw. Zugabe von Tensiden polarisiert werden. Die Tenside können neutrale, positive oder insbesondere kationische Tenside (z.B. Esterquads) sein, sodass die polarisierten Partikel z.B. im kathodischen Teil einer Halbwelle zur Oberfläche gezogen werden sowie im anodischen Teil einer Halbwelle - im Rahmen der Funkenentladung - in die Oberfläche integriert werden.Furthermore, the particles can be polarized by the use or addition of surfactants. The surfactants may be neutral, positive or especially cationic surfactants (e.g., ester squares) such that the polarized particles are e.g. in the cathodic part of a half-wave are pulled to the surface and in the anodic part of a half wave - in the context of the spark discharge - are integrated into the surface.

Die Lösung der Aufgabe gelingt ferner durch ein Bauteil mit einer Schutzschicht, die durch das erfindungsgemäße Verfahren erzeugt wurde. Das Bauteil besteht hierbei erfindungsgemäß zumindest teilweise aus einem Ventilmetall bzw. einer Legierung eines Ventilmetalls. Mithin ist es von Vorteil, wenn das Bauteil aus Aluminium, einer Aluminiumlegierung, Magnesium, einer Magnesiumlegierung, Titan oder einer Titanlegierung hergestellt ist.The object is also achieved by a component with a protective layer, which was produced by the method according to the invention. According to the invention, the component consists at least partially of a valve metal or an alloy of a valve metal. Thus, it is advantageous if the component is made of aluminum, an aluminum alloy, magnesium, a magnesium alloy, titanium or a titanium alloy.

Zweckmäßigerweise liegt die Schichtdicke der Schutzschicht in einem Bereich zwischen 1 µm und 1500 µm. Vorzugsweise liegt die Schichtdicke in einem Bereich zwischen 25 µm und 600 µm.Advantageously, the layer thickness of the protective layer is in a range between 1 .mu.m and 1500 .mu.m. The layer thickness is preferably in a range between 25 μm and 600 μm.

Erfindungsgemäß kann das Bauteil ein Verbrennungsraum, ein Motorblock, ein Kurbelgehäuse, ein Kurbelgehäuseinnenraum, eine Zylinderlaufbahn, ein Zylinderkopf, ein Ansaugkrümmer, ein Abgaskrümmer, ein Turboladerverdichterrad, ein Turboladerinnenraum, eine Abgasrückführung oder ein Zylinderkolben sein. Mithin ist es von Vorteil, wenn eine Verbrennungsmaschine und/oder ein Kraftfahrzeug mit einem erfindungsgemäßen Bauteil bereitgestellt wird bzw. werden.According to the invention, the component may be a combustion chamber, an engine block, a crankcase, a crankcase interior, a cylinder liner, a cylinder head, an intake manifold, an exhaust manifold, a turbocharger compressor wheel, a turbocharger interior, an exhaust gas recirculation or a cylinder piston. Thus, it is advantageous if an internal combustion engine and / or a motor vehicle is provided with a component according to the invention or be.

Durch die teilweise oder vollständige Erzeugung einer Schutzschicht bei den genannten Bauteilen mit einem erfindungsgemäßen Verfahren zumindest an den zum Medium, beispielsweise zum Heißgas angrenzenden Oberflächen wird die Systemgrenze des thermisch belasteten Bauteils thermisch isoliert. Mit anderen Worten ergibt sich der Vorteil, dass die thermische Leitfähigkeit an der Systemgrenze herabgesetzt wird.The partial or complete generation of a protective layer in the abovementioned components with a method according to the invention, at least at the surfaces adjacent to the medium, for example to the hot gas, thermally isolates the system boundary of the thermally loaded component. In other words, there is the advantage that the thermal conductivity at the system boundary is reduced.

Zum einen wird so das Bauteil thermisch weniger belastet, zum anderen kann so die Temperatur des Mediums (z.B. des Heißgases) über einen längeren Weg und Zeitraum hinweg erhalten bleiben. Des Weiteren führt dies dazu, dass bestimmte Aggregate des Automobils schneller ansprechen, und ferner auch die im Gas gespeicherte thermische Energie nicht rein thermisch dissipiert sondern durch anderweitige Aggregate oder Komponenten rückgewonnen werden kann.On the one hand, the component is thus thermally less stressed, on the other hand, the temperature of the medium (for example of the hot gas) can thus be maintained over a longer path and time. Furthermore, this leads to the fact that certain aggregates of the automobile respond faster, and also the stored in the gas thermal energy can not be purely thermally dissipated but can be recovered by other aggregates or components.

Neben der thermischen Isolation weisen die durch das erfindungsgemäße Verfahren erzeugten Schutzschichten eine gute Verschleiß-, Oxidations-, Erosions- und Korrosionsbeständigkeit auf, welche in einer Reihe von Bauteilen gefordert wird. Ferner wird so die Lebensdauer der Bauteile verbessert. Hiervon betroffen sind insbesondere die Zylinderlaufbahn (tribologisch bedingter Verschleiß durch Festkörper-, Übergangs-, Misch- und/oder Gleitreibung), das Verdichterrad des Turboladers (Erosionsverschleiß) oder der Krümmer (Korrosionsbeständigkeit).In addition to the thermal insulation, the protective layers produced by the process according to the invention have a good resistance to wear, oxidation, erosion and corrosion, which is required in a number of components. Furthermore, as the life of the components is improved. This particularly affects the cylinder bore (tribological wear due to solid, transitional, mixed and / or sliding friction), the compressor wheel of the turbocharger (erosion wear) or the manifold (corrosion resistance).

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens liegt in der Anwendbarkeit und Fähigkeit zur selektiven und trotzdem homogenen Beschichtung in Kavitäten, Kanälen oder komplexen Geometrien mit Hinterschnitten. Im Gegensatz zum thermischen Spritzen, bei welchem die zu beschichtende Oberfläche vom Spritzstrahl direkt erreichbar seien muss, wird beim erfindungsgemäßen Verfahren überall dort eine homogene Schutzschicht auf der Oberfläche ausgebildet, wo der Elektrolyt die Bauteiloberfläche benetzt. So können auch Hinterschnitte oder Vertiefungen bzw. Kanäle mit einer Schutzschicht versehen werden.A further advantage of the method according to the invention lies in the applicability and ability to selectively and nevertheless homogeneous coating in cavities, channels or complex geometries with undercuts. In contrast to thermal spraying, in which the surface to be coated has to be directly attainable by the spray jet, in the process according to the invention a homogeneous protective layer is formed everywhere on the surface where the electrolyte wets the component surface. So undercuts or depressions or channels can be provided with a protective layer.

Verfahrensbedingt wird so auch, im Gegensatz zu bei galvanischen Verfahren, die Oberfläche durch Reaktion des Elektrolyten mit dem Substrat umgewandelt. Das heißt, es findet keine lokal von den vorherrschenden Feldlinien abhängige Stoffabscheidung entsprechend der lokalen Verteilung der Stromdichte statt, wodurch zum Beispiel bei komplexen Geometrien und Hinterschnitten der Einsatz von Hilfselektroden notwendig werden würde, sondern es werden lokale Funkendurchschläge überall dort erzeugt, wo das prozessbedingte Potenzial anliegt.As a result of the method, in contrast to galvanic methods, the surface is converted by reaction of the electrolyte with the substrate. That is, there will be no locally dependent on the prevailing field lines material deposition according to the local distribution of the current density, which would be necessary, for example, in complex geometries and undercuts the use of auxiliary electrodes, but it will generate local sparking anywhere where the process-related potential is applied.

Durch die Verwendung leitfähiger Elektrolyte verteilt sich dieses Potenzial gleichmäßig über den Elektrolyten und es können daher auch komplizierte Geometrien oder innenliegende Flächen homogen mit einer Schutzschicht versehen werden. Verfahrensbedingt ist bei einer PEO für eine gute Durchmischung des Elektrolyten Sorge zu tragen. Desweiteren kann so, durch eine geeignete Anlagentechnik, eine Schutzschicht mittels PEO selektiv an den thermisch zu isolierenden Oberflächenabschnitten hergestellt werden.By using conductive electrolytes, this potential is distributed evenly across the electrolyte and therefore even complicated geometries or internal surfaces can be homogeneously provided with a protective layer. Due to the process, a good mixing of the electrolyte must be ensured in a PEO. Furthermore, by means of a suitable system technology, a protective layer can be produced selectively by means of PEO on the surface sections to be thermally insulated.

Durch den keramischen Charakter der durch PEO erzeugten Schutzschichten weisen diese darüber hinaus gegenüber den aus dem Stand der Technik bekannten anodisierten Oberflächen eine verbesserte Isolationswirkung durch eine schlechtere thermische Leitfähigkeit auf. Dies deshalb, da die Oberflächen aus dem Stand der Technik keine klassische keramische Struktur aufweisen und somit eher Hybride sind. Im Gegensatz zu anodisierten Oberflächen weisen mit PEO erzeugte Schutzschichten kein regelmäßig angeordnetes Porenmuster auf, sondern ein chaotisches Porennetzwerk, welches im Gegensatz zur Anodisation auch interkonnektierende Verbindungen aufweisen kann.In addition, due to the ceramic character of the protective layers produced by PEO, they have an improved insulating effect due to a poorer thermal conductivity than the anodized surfaces known from the prior art. This is because the prior art surfaces do not have a classical ceramic structure and thus are rather hybrids. In contrast to Anodized surfaces have protective layers produced with PEO no regularly arranged pore pattern, but a chaotic pore network, which in contrast to the anodization may also have interconnecting compounds.

Nachfolgend wird die Erfindung anhand von in den Figuren gezeigten Ausführungsbeispielen näher erläutert. Hierbei zeigen schematisch:

Fig. 1
ein Konzept für die Erzeugung einer Schutzschicht bei einem Bauteil mittels Durchspülung der innenliegenden Kanäle;
Fig. 2
eine Anlage zur Erzeugung einer Schutzschicht mit einem erfindungsgemäßen Verfahren für einen Zylinderkolbenkopf;
Fig. 3
eine Brennkraftmaschine in einer schematischen Darstellung;
Fig. 4
einen Querschnitt durch einen Verbrennungsmotor der Brennkraftmaschine; und
Fig. 5
einen Bereich der Fig. 4 in einer vergrößerten Darstellung
The invention will be explained in more detail with reference to embodiments shown in the figures. Here are shown schematically:
Fig. 1
a concept for the production of a protective layer in a component by flushing the internal channels;
Fig. 2
a system for producing a protective layer with a method according to the invention for a cylinder piston head;
Fig. 3
an internal combustion engine in a schematic representation;
Fig. 4
a cross section through an internal combustion engine of the internal combustion engine; and
Fig. 5
an area of Fig. 4 in an enlarged view

In Fig. 1 ist ein Konzept 1 in Form einer Elektrolytzelle für die Erzeugung einer Schutzschicht bei einem Bauteil 2 dargestellt. Das Bauteil 2 kann beispielsweise ein Krümmer sein. Es wird also die Anwendung eines Verfahrens dargestellt, bei welcher nicht das gesamte Bauteil 2 zur Anwendung der PEO in den Elektrolyt getaucht wird, sondern der Elektrolyt durch die im Inneren des Bauteils 2 liegenden Kanäle hindurch gespült wird, sodass an der Innenseite der Kanäle des Bauteils 2 selektiv eine geeignete Schutzschicht erzeugt wird. Hierzu wird das Innere des Bauteils 2 mit zwei Flanschen 3 abgedichtet, die jeweils eine Dichtung aufweisen. Mittels einer Pumpe 4 wird der Elektrolyt durch eine Leitungsanordnung 6 durch das Bauteil 2 gepumpt. In diesem Kreislauf wird der Elektrolyt durch die Elektrolytkühlung 5 gekühlt bzw. temperiert. Ferner weist das Konzept 1 eine Energieversorgung 7 als Storm- bzw. Spannungsquelle auf, die, wie dargestellt, eine Gleichstromversorgung oder eine Wechselstromversorgung sein kann.In Fig. 1 a concept 1 in the form of an electrolytic cell for the production of a protective layer in a component 2 is shown. The component 2 may for example be a manifold. It is therefore the application of a method shown, in which not the entire component 2 is immersed in the electrolyte for the application of PEO, but the electrolyte is flushed through lying in the interior of the component 2 channels, so that on the inside of the channels of the component 2 selectively generates a suitable protective layer. For this purpose, the interior of the component 2 is sealed with two flanges 3, each having a seal. By means of a pump 4, the electrolyte is pumped through a line assembly 6 through the component 2. In this cycle, the electrolyte is cooled or tempered by the electrolytic cooling 5. Furthermore, the concept 1 has a power supply 7 as a power source, which, as shown, may be a DC power supply or an AC power supply.

Über eine elektrische Kabelleitung 8 wird das Bauteil 2 und eine Gegenelektrode 9 angeschlossen. Über die Flansche 3 wird auch die Gegenelektrode 9 in den zu beschichtenden Raum im Inneren des Bauteils 2 eingeführt. Die Gegenelektrode 9 ist die Kathode, wobei das Bauteil 2 die Anode 10 darstellt.About an electrical cable 8, the component 2 and a counter electrode 9 is connected. Via the flanges 3 and the counter electrode 9 is introduced into the space to be coated in the interior of the component 2. The counter electrode 9 is the cathode, the component 2 representing the anode 10.

In Fig. 2 ist ein zweites Ausführungsbeispiel dargestellt. Fig. 2 ist zweiteilig ausgeführt, wobei in Fig. 2 - Teil 1 die Anlage 1 zur Erzeugung einer Schutzschicht auf einem Bauteil 2, in diesem Beispiel ein Zylinderkolbenkopf, dargestellt ist, und in Fig. 2 Teil 2 der verfahrenstechnische Teil der Anlage bezüglich des Elektrolyten.In Fig. 2 a second embodiment is shown. Fig. 2 is made in two parts, with in Fig. 2 Part 1, the plant 1 for producing a protective layer on a component 2, in this example, a cylinder piston head, is shown, and in Fig. 2 Part 2 of the procedural part of the plant with respect to the electrolyte.

Wie zu erkennen ist, wird der Zylinderkolbenkopf 2 in der Anlage 1 mit einem Elektrolyten beaufschlagt, welcher über eine Pumpe 4 durch ein Einlassventil 11 aufgegeben wird. Die Umwälzung des Elektrolyten geschieht über eine Abführung 12, beispielsweise über eine Absaugung, wobei das dargestellte Absaugrohr aus einem Edelstahl, beispielsweise aus V2A hergestellt ist. Ferner weist die Anlage 1 eine Kühlung 13 für den Zylinderkolbenkopf 2 auf.As can be seen, the cylinder piston head 2 in the system 1 is charged with an electrolyte, which is fed by a pump 4 through an inlet valve 11. The circulation of the electrolyte is done via a discharge 12, for example via an extraction, wherein the suction pipe shown is made of a stainless steel, for example made of V2A. Furthermore, the system 1 has a cooling system 13 for the cylinder piston head 2.

Die Energieversorgung 7 ist derart ausgestaltet, dass die Abführung 12 gleichzeitig die Gegenelektrode 9 und der Zylinderkolbenkopf 2 die Anode 10 darstellt.The power supply 7 is designed such that the discharge 12 simultaneously the counter electrode 9 and the cylinder piston head 2, the anode 10.

Die in der Fig. 3 gezeigte Brennkraftmaschine umfasst einen beispielsweise nach dem Diesel-Prinzip arbeitenden Verbrennungsmotor 110, der beispielsweise als vierzylindriger Hubkolbenverbrennungsmotor ausgebildet ist. Der Verbrennungsmotor 110 wird über einen Frischgasstrang 112 mit Frischgas (Umgebungsluft) versorgt. Dazu wird das Frischgas nach dem Ansaugen aus der Umgebung mittels eines Verdichters 114 verdichtet. Das verdichtete Frischgas wird dann durch einen Ladeluftkühler 116 geführt, in dem das infolge der Verdichtung erwärmte Frischgas bis zum Erreichen der gewünschten Temperatur für den Eintritt in den Verbrennungsmotor 110 gekühlt wird. Über ein Saugrohr 118 tritt das Frischgas in Brennräume 120 des Verbrennungsmotors 110 ein, in denen dieses beziehungsweise der darin enthaltene Sauerstoff in bekannter Weise mit direkt in die Brennräume 120 eingespritztem Kraftstoff verbrannt wird.The in the Fig. 3 shown internal combustion engine includes an example operating on the diesel principle internal combustion engine 110, which is formed for example as a four-cylinder reciprocating internal combustion engine. The internal combustion engine 110 is supplied with fresh gas (ambient air) via a fresh gas train 112. For this purpose, the fresh gas is compressed after being aspirated from the environment by means of a compressor 114. The compressed fresh gas is then passed through a charge air cooler 116, in which the fresh gas heated as a result of the compression is cooled until it reaches the desired temperature for entry into the internal combustion engine 110. Via a suction pipe 118, the fresh gas enters into combustion chambers 120 of the internal combustion engine 110, in which this or the oxygen contained therein is burned in a known manner with directly injected into the combustion chambers 120 fuel.

Das bei der Verbrennung des Kraftstoff-Frischgas-Gemisches entstehende Abgas wird über einen Abgasstrang 122 der Brennkraftmaschine abgeführt. Der Abgasstrang 122 umfasst einen Abgaskrümmer 124, in dem das aus den einzelnen Brennräumen 120 ausströmende Abgas zusammengeführt wird, sowie eine davon stromab angeordnete Turbine 126. Die Turbine 126 bildet zusammen mit dem Verdichter 114 einen Abgasturbolader aus und ist mittels eines regelbaren Bypasses 128 (Wastegate) umgehbar ausgeführt. Der Bypass 128 dient dazu, in bestimmten, zu einem großen Abgasmassenstrom führenden Betriebszuständen des Verbrennungsmotors 110, einen Teil des Abgasmassenstroms an der Turbine 126 vorbeizuführen, um so den Ladedruck im Frischgasstrang 112 zu begrenzen.The exhaust gas produced during combustion of the fuel-fresh gas mixture is removed via an exhaust line 122 of the internal combustion engine. Exhaust line 122 includes an exhaust manifold 124 in which the exhaust gas flowing out of the individual combustion chambers 120 is brought together, and a turbine 126 arranged downstream thereof. Turbine 126 forms an exhaust gas turbocharger together with compressor 114 and is controlled by means of an adjustable bypass 128 (wastegate ) executed passable. The bypass 128 serves, in certain operating states of the internal combustion engine 110 leading to a large exhaust gas mass flow, to pass part of the exhaust gas mass flow past the turbine 126 in order to limit the charge pressure in the fresh gas train 112.

In den Abgasstrang 122 ist stromab der Turbine 126 weiterhin eine Abgasnachbehandlungseinrichtung integriert. Die Abgasnachbehandlungseinrichtungen kann dabei beispielsweise einen Oxidationskatalysator 130 sowie einen Partikelfilter 132 umfassen.In the exhaust line 122 downstream of the turbine 126, an exhaust aftertreatment device is further integrated. The exhaust aftertreatment devices may include, for example, an oxidation catalyst 130 and a particulate filter 132.

Die Fig. 4 zeigt einen Querschnitt durch den Verbrennungsmotor 110 im Bereich eines Zylinders. Der Verbrennungsmotor 110 umfasst ein Zylindergehäuse 134, das die einzelnen Zylinder ausbildet. In jedem der Zylinder ist ein Kolben 136 auf und ab beweglich geführt. Oberhalb des Zylindergehäuses 134 schließt sich ein Zylinderkopf 138 an. Das Zylindergehäuse 134, der Zylinderkopf 138 und die Kolben 136 sind aus Aluminiumlegierungen ausgebildet. In den Zylinderkopf 138 sind für jeden Zylinder mindestens ein Einlasskanal 140 und mindestens ein Auslasskanal 142 integriert. Die Einlasskanäle 140 sind Teil des Frischgasstrangs 112 der Brennkraftmaschine und verbinden das Saugrohr 118 fluidleitend mit den jeweiligen Zylindern. Die Auslasskanäle 142 sind Teil des Abgasstrangs 122 und verbinden die jeweiligen Zylinder mit dem Abgaskrümmer 124. Über Gaswechselventile 144 wird in bekannter Weise ein Einbringen des Frischgases in die Zylinder und ein Ausbringen des Abgases aus den Zylindern gesteuert. Dabei werden die Gaswechselventile 144 beispielsweise mittels einer oder mehrerer (nicht dargestellter) Nockenwellen betätigt.The Fig. 4 shows a cross section through the internal combustion engine 110 in the region of a cylinder. The engine 110 includes a cylinder housing 134 that forms the individual cylinders. In each of the cylinders, a piston 136 is guided movable up and down. Above the cylinder housing 134, a cylinder head 138 connects. The cylinder housing 134, the cylinder head 138, and the pistons 136 are formed of aluminum alloys. Into the cylinder head 138 at least one inlet channel 140 and at least one outlet channel 142 are integrated for each cylinder. The intake ports 140 are part of the fresh gas train 112 of the internal combustion engine and connect the suction pipe 118 fluid-conductively with the respective cylinders. The exhaust ports 142 are part of the exhaust line 122 and connect the respective cylinders to the exhaust manifold 124. Via gas exchange valves 144, introduction of the fresh gas into the cylinders and exhaust of the exhaust from the cylinders are controlled in a known manner. In this case, the gas exchange valves 144 are actuated, for example, by means of one or more (not shown) camshafts.

Die von den einzelnen Zylindern ausgebildeten Brennräume 120 werden jeweils von einem Abschnitt der Innenwand des dazugehörigen Zylinders, von der Oberseite des dazugehörigen Kolbens 136, einem Abschnitt der Unterseite des Zylinderkopfs 138 sowie von den Unterseiten der dazugehörigen Gaswechselventile 144 begrenzt.The combustion chambers 120 formed by the individual cylinders are each bounded by a portion of the inner wall of the associated cylinder, by the top of the associated piston 136, a portion of the underside of the cylinder head 138, and by the bottoms of the associated gas exchange valves 144.

Um die Brennräume 120 thermisch zu isolieren ist insbesondere auf die von den Oberseiten (von Grundkörpern) der Kolben 136 ausgebildeten Oberflächen eine Schutzschicht 146 mittels anodischer Oxidation unter Funkenentladung aufgebracht. Diese Schutzschicht 146 besteht im Wesentlichen aus Aluminiumoxid (Al2O3), das sich im Rahmen der anodischen Oxidation unter Funkenentladung an den Oberseiten der Kolben 136 ausbildet.In order to thermally insulate the combustion chambers 120, a protective layer 146 is applied by means of anodic oxidation with spark discharge, in particular on the surfaces formed by the upper sides (of main bodies) of the pistons 136. This protective layer 146 consists essentially of aluminum oxide (Al 2 O 3), which forms as part of the anodic oxidation under spark discharge at the tops of the piston 136.

Die Schutzschicht 146, die eine Schichtstärke von beispielsweise ca. 200 µm aufweisen kann, zeichnet sich bereits grundsätzlich infolge ihrer Ausbildung aus Aluminiumoxid durch eine hohe Verschleiß festigkeit und eine gute thermische Beständigkeit aus, wodurch deren Nutzung zur Begrenzung der Brennräume 120 des Verbrennungsmotors 110 möglich ist. Weiterhin zeichnet sich die Schutzschicht 146 auch durch eine im Vergleich zu der Aluminiumlegierung, aus der die Kolben 136 ausgebildet sind, relativ niedrige Wärmeleitfähigkeit sowie eine relativ geringe Wärmekapazität aus. Dadurch wird die gewünschte thermische Isolierung der Brennräume und folglich ein relativ geringer Wärmeübergang von in den Brennräumen 120 befindlichen Gasen auf die Kolben 136 erreicht.The protective layer 146, which may have a layer thickness of, for example, about 200 microns, already characterized in principle due to their training of alumina by a high wear resistance and good thermal resistance, whereby their use to limit the combustion chambers 120 of the engine 110 is possible , Furthermore, the protective layer 146 is characterized by a relatively low thermal conductivity and a relatively low heat capacity compared to the aluminum alloy, from which the piston 136 are formed. This achieves the desired thermal insulation of the combustion chambers and consequently a relatively low heat transfer of gases in the combustion chambers 120 to the pistons 136.

Um einen Wärmeübergang aus den Brennräumen auf die Grundkörper der Kolben 136 weiter zu reduzieren ist vorgesehen, in die aus Aluminiumoxid als Matrixmaterial bestehende Schutzschicht 146 Partikel 148 aus beispielsweise Zirkonoxid einzubetten, die sich im Vergleich zu dem Aluminiumoxid durch eine noch niedrigere Wärmeleitfähigkeit auszeichnen. Wie sich aus der Fig. 5 ergibt ist vorgesehen, die Partikel 148 aus Zirkonoxid über die gesamte Fläche der Schutzschicht 146 in einer (zweiten) Teilschicht vorzusehen, die sich zwischen der Oberfläche des Grundkörpers des entsprechenden Kolbens 136 und einer weiteren, an den Brennraum 120 angrenzenden (ersten) Teilschicht angeordnet ist.In order to further reduce a heat transfer from the combustion chambers to the base body of the pistons 136, it is provided to embed particles 148 of, for example, zirconium oxide, which have an even lower thermal conductivity compared to the aluminum oxide. As is clear from the Fig. 5 is provided to provide the particles 148 of zirconia over the entire surface of the protective layer 146 in a (second) sub-layer extending between the surface of the body of the corresponding Piston 136 and another, adjacent to the combustion chamber 120 (first) sub-layer is arranged.

In der ersten Teilschicht der Schutzschicht 146 sind keine Partikel 148 aus Zirkonoxid vorgesehen, jedoch lokal Partikel 150 aus einem Material, beispielsweise Kupfer, das sich im Vergleich zu dem als Matrixmaterial dienenden Aluminiumoxid durch eine relativ hohe Wärmeleitfähigkeit auszeichnet. Vorgesehen ist, die Partikel 150 aus Kupfer in solchen Bereichen der ersten Teilschicht der Schutzschicht 146 vorzusehen, in denen sich im Betrieb einer solchen Brennkraftmaschine erfahrungsgemäß relativ hohe lokale Wandtemperaturen ergeben können. Die Partikel 150 aus Kupfer dienen dazu, solche lokal hohen Wandtemperaturen zu verringern, indem diese die an diesen Stellen erhöhte Einbringung von Wärmeenergie möglichst gut auf die gesamte zweite Teilschicht weiterleiten. In der Fig. 5 ist dargestellt, dass die Partikel 150 aus Kupfer beispielsweise an den randseitigen Übergängen einer Kolbenmulde 152 sowie im Bereich einer zentralen Erhebung der Kolbenmulde 152 angeordnet sein können. Die Fig. 5 zeigt zudem, dass auch die Dichte der Verteilung der Partikel 150 aus Kupfer, d.h. die Anzahl an Partikeln je Volumeneinheit; bei der Ausbildung der Schutzschicht 146 mittels anodischer Oxidation unter Funkenentladung gesteuert werden kann (ebenso für die Partikel 148 aus Zirkonoxid möglich). So ist vorgesehen, in denjenigen Abschnitten der ersten Teilschicht, in denen Partikel 150 aus Kupfer vorgesehen sind, jeweils eine höhere Dichte an Partikeln 150 in einem zentralen Bereich und eine zum Rand des jeweiligen Abschnitts hin abnehmende Dichte an Partikeln 150 vorzusehen.In the first sub-layer of the protective layer 146, no particles 148 of zirconium oxide are provided, but locally particles 150 of a material, for example copper, which is characterized by a relatively high thermal conductivity compared to the matrix material serving as alumina. It is envisaged to provide the particles 150 of copper in those regions of the first sub-layer of the protective layer 146 in which experience has shown that relatively high local wall temperatures may result during the operation of such an internal combustion engine. The particles 150 of copper serve to reduce such locally high wall temperatures by forwarding the increased introduction of heat energy at these points as well as possible to the entire second partial layer. In the Fig. 5 It is shown that the particles 150 of copper can be arranged, for example, at the edge transitions of a piston recess 152 and in the region of a central elevation of the piston recess 152. The Fig. 5 also shows that also the density of the distribution of the particles 150 of copper, ie the number of particles per unit volume; in the formation of the protective layer 146 by means of anodic oxidation under spark discharge can be controlled (also possible for the particles 148 of zirconia). It is thus provided that in those sections of the first partial layer in which particles 150 of copper are provided, in each case a higher density of particles 150 in a central region and to the edge of the respective section decreasing density of particles 150 provide.

Die Unterteilung der Schutzschicht 146 in die erste Teilschicht und die zweite Teilschicht ergibt sich lediglich durch die unterschiedliche Einbettung der verschiedenen Partikel 148, 150 und durch die damit erreichten, unterschiedlichen Funktionalitäten für die Schutzschicht 146. Eine strukturelle Trennebene ist zwischen den zwei Teilschichten nicht ausgebildet.The subdivision of the protective layer 146 into the first sublayer and the second sublayer results merely from the different embedding of the different particles 148, 150 and from the different functionalities for the protective layer 146 achieved thereby. A structural parting plane is not formed between the two sublayers.

Die Partikel 148,150 können beispielsweise eine Größe von ≤ 5 µm aufweisen.The particles 148, 150 may, for example, have a size of .ltoreq.5 .mu.m.

Neben den Oberseiten der Kolben 136 können auch einzelne oder alle anderen die Brennräume 120 des Verbrennungsmotors 110 begrenzenden Oberflächen mit einer entsprechenden Schutzschicht 146 versehen werden, um die thermische Isolation der Brennräume 120 weiter zu verbessern. Die Fig. 4 zeigt beispielhaft, dass sowohl die Innenwände der Zylinder (zumindest in denjenigen Abschnitten, die die Brennräume 120 begrenzen), die entsprechenden Abschnitte der Unterseite des Zylinderkopfs 138 und die Unterseiten der Gaswechselventile 144 mit jeweils einer Schutzschicht 146, die durch anodische Oxidation unter Funkenentladung ausgebildet wurde, beschichtet sein können.In addition to the upper sides of the pistons 136, individual or all other surfaces delimiting the combustion chambers 120 of the internal combustion engine 110 may also be provided with a corresponding protective layer 146 in order to further improve the thermal insulation of the combustion chambers 120. The Fig. 4 shows by way of example that both the inner walls of the cylinders (at least in those sections which delimit the combustion chambers 120), the corresponding portions of the underside of the cylinder head 138 and the lower sides of the gas exchange valves 144, each having a protective layer 146 which was formed by spark discharge anodization , can be coated.

Auch zeigt die Fig. 4 die Möglichkeit, die als Abgasführungen dienenden Auslasskanäle 142 des Verbrennungsmotors 110 mit entsprechenden Schutzschichten 146 zu versehen. Ebenso können andere einer Abgasführung dienende Oberflächen des Abgasstrangs 122 der Brennkraftmaschine, beispielsweise Wandungen eines Abgaskrümmers und/oder einer Turbine eines Abgasturboladers, mit entsprechenden Schutzschichten 146 versehen werden.Also shows the Fig. 4 the possibility of providing the outlet ducts 142 of the internal combustion engine 110 serving as exhaust gas ducts with corresponding protective layers 146. Likewise, other surfaces of the exhaust tract 122 of the internal combustion engine serving for exhaust gas routing, for example walls of an exhaust manifold and / or a turbine of an exhaust gas turbocharger, can be provided with corresponding protective layers 146.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Konzept/ Elektrolytzelle/ AnlageConcept / electrolytic cell / plant
22
Bauteilcomponent
33
Flanschflange
44
Pumpepump
55
Elektrolytkühlungelectrolyte cooling
66
Leitungsanordnungline arrangement
77
Energieversorgungpower supply
88th
elektrische Kabelleitungelectrical cable line
99
Gegenelektrode/ KathodeCounter electrode / cathode
1010
Anodeanode
1111
Einlassventilintake valve
1212
Abführungremoval
1313
Kühlungcooling
110110
Verbrennungsmotorinternal combustion engine
112112
FrischgasstrangFresh gas line
114114
Verdichtercompressor
116116
LadeluftkühlerIntercooler
118118
Saugrohrsuction tube
120120
Brennraumcombustion chamber
122122
Abgasstrangexhaust gas line
124124
Abgaskrümmerexhaust manifold
126126
Turbineturbine
128128
Bypassbypass
130130
Oxidationskatalysatoroxidation catalyst
132132
Partikelfilterparticulate Filter
134134
Zylindergehäusecylinder housing
136136
Kolbenpiston
138138
Zylinderkopfcylinder head
140140
Einlasskanalinlet channel
142142
Auslasskanalexhaust port
144144
GaswechselventilGas exchange valve
146146
Schutzschichtprotective layer
148148
Partikel mit relativ niedriger WärmeleitfähigkeitParticles with relatively low thermal conductivity
150150
Partikel mit relativ hoher WärmeleitfähigkeitParticles with relatively high thermal conductivity
152152
Kolbenmuldepiston bowl

Claims (15)

  1. A method for producing a protective layer (146) on a thermally stressed component (2) that is composed at least in part of a metal whose surface can be converted into an oxide ceramic layer or an oxide layer by an electrochemical process, with the protective layer (146) being produced by an electrochemical process, and with the electrochemical process being plasma electrolytic oxidation using an electrolyte with application of electric power, characterized in that particles (148, 150) are deposited in the protective layer (146) that have a relatively low or high level of thermal conductivity in comparison to a base material of the protective layer (146), wherein the particles (150) having a relatively high level of thermal conductivity are provided in a first sublayer of the protective layer (146) and the particles (148) having a relatively low level of thermal conductivity are provided in a second sublayer, with the first sublayer being separated from the component (2) by the second sublayer.
  2. The method as set forth in claim 1, characterized in that the electrolyte has an electrolyte base, with the electrolyte base being phosphoric acid, potassium hydroxide, water glass, deionized water, or a zirconium-containing compound.
  3. The method as set forth in any one of the preceding claims, characterized in that the electric power is voltage-controlled, with the current intensity being limited, or current-controlled, and with the voltage being limited, or power-controlled.
  4. The method as set forth in any one of the preceding claims, characterized in that the electric power is applied at a frequency of from 1 Hz to 10 kHz, particularly at a frequency of from 1 Hz to 1000 Hz.
  5. The method as set forth in any one of claims 3 or 4, characterized in that the voltage is applied in a range between 150 volts and 1500 volts, preferably in a range between 210 volts and 650 volts.
  6. The method as set forth in any one of the preceding claims, characterized in that the electrolyte is embodied as a dispersion, with one or more of the following particles (148, 150) being added to the electrolyte: Al2O3, TiO2, SiO2, WC, ZrO2, iron oxide, graphite, and/or MoS2.
  7. The method as set forth in any one of claims 1 to 6, characterized in that the particles (148) having a relatively low level of thermal conductivity are applied over the entire surface of the protective layer (146) in the second sublayer.
  8. The method as set forth in any one of claims 1 to 7, characterized in that the particles (150) having a relatively high level of thermal conductivity are provided only in one or more portions of the first sublayer (146).
  9. The method as set forth in any one of claims 1 to 8, characterized in that copper, iron, beryllium, aluminum, silver, silicon, molybdenum, tungsten, carbon, beryllium oxide, beryllium nitrite, silicon nitrite, and/or silicon carbide and mixtures and/or alloys thereof is/are used for the particles (150) having a relatively high level of thermal conductivity.
  10. A component (2) with a protective layer (146), wherein the protective layer (146) has been produced by means of a method as set forth in any one of claims 1 to 9, wherein the component (2) is composed at least in part of a metal whose surface can be converted by an electrochemical process into an oxide ceramic layer or an oxide layer, and particles (148, 150) are deposited in the protective layer (146) that have a relatively low or high level of thermal conductivity in comparison to a base material of the protective layer (146, 150), wherein the particles (150) having a relatively high level of thermal conductivity are provided in a first sublayer of the protective layer (146) and the particles (148) having a relatively low level of thermal conductivity are provided in a second sublayer, and wherein the first sublayer is separated from the component (2) by the second sublayer.
  11. The component (2) as set forth in claim 10, characterized in that the component (2) is made of aluminum, an aluminum alloy, magnesium, a magnesium alloy, titanium, or a titanium alloy.
  12. The component (2) as set forth in claim 10 or 11, characterized in that the protective layer (146) has a layer thickness between 1 µm and 1500 µm, preferably between 25 and 600 µm.
  13. The component (2) as set forth in any one of the preceding claims 10 to 12, characterized in that the component (2) is an engine block, a crankcase, a cylinder head (138), an intake manifold, an exhaust manifold (124), a turbocharger compressor wheel, a turbocharger interior, an exhaust gas return, or a cylinder piston (136).
  14. An internal combustion engine with a component (2) as set forth in claim 13.
  15. A motor vehicle with a component (2) as set forth in claim 13.
EP14851435.9A 2013-12-17 2014-12-17 Method for producing a protective layer on a thermally stressed component and component having such a protective layer Active EP3084048B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013021272 2013-12-17
DE102014219819.4A DE102014219819A1 (en) 2014-09-30 2014-09-30 Method for the thermal insulation of a combustion chamber and / or an exhaust system of an internal combustion engine
PCT/DE2014/000637 WO2015090267A1 (en) 2013-12-17 2014-12-17 Method for producing a protective layer on a thermally stressed component and component having such a protective layer

Publications (2)

Publication Number Publication Date
EP3084048A1 EP3084048A1 (en) 2016-10-26
EP3084048B1 true EP3084048B1 (en) 2018-08-01

Family

ID=52810909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14851435.9A Active EP3084048B1 (en) 2013-12-17 2014-12-17 Method for producing a protective layer on a thermally stressed component and component having such a protective layer

Country Status (3)

Country Link
EP (1) EP3084048B1 (en)
DE (1) DE112014005973A5 (en)
WO (1) WO2015090267A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212325A1 (en) * 2015-07-01 2017-01-05 Bosch Mahle Turbo Systems Gmbh & Co. Kg Method for producing a housing part for a turbine of an exhaust gas turbocharger
DE102015212330A1 (en) * 2015-07-01 2017-01-19 Bosch Mahle Turbo Systems Gmbh & Co. Kg Process for coating an impeller, in particular a turbine wheel and / or compressor wheel, of an exhaust gas turbocharger
DE102015120288A1 (en) 2015-11-24 2017-02-16 Meotec GmbH & Co. KG Method for producing a surface layer on a surface of a component by means of plasma electrolytic oxidation
DE102017206722A1 (en) 2016-04-26 2017-10-26 Ford Global Technologies, Llc Process for producing a coated surface of a tribological system
CN107541763A (en) * 2017-10-11 2018-01-05 四川恒诚信电子科技有限公司 A kind of oxidation treatment method of high thermal conductivity aluminum matrix plate
DE102017221733A1 (en) 2017-12-01 2019-06-06 Volkswagen Aktiengesellschaft Layer stack for arrangement in a combustion chamber of an internal combustion engine, in particular a piston, and a method for its production
CN107937965B (en) * 2017-12-18 2019-07-23 嘉兴学院 A kind of magnesium alloy anodic oxidation electrolyte and anodic oxidation method for magnesium alloy
CN113445100B (en) * 2021-06-29 2022-07-15 潍柴动力股份有限公司 Preparation method of piston, piston and cathode tool
DE102022106581A1 (en) 2022-03-21 2023-09-21 Medical Magnesium GmbH Osteosynthesis system with bone plate and bone anchor made of magnesium alloys

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2479032C (en) * 2004-09-13 2009-04-21 Jingzeng Zhang Multifunctional composite coating and process
JP4125765B2 (en) * 2006-09-28 2008-07-30 日本パーカライジング株式会社 Method of coating ceramic film of metal, electrolytic solution used therefor, ceramic film and metal material
CN101429671B (en) * 2008-11-20 2011-08-03 中国科学院上海硅酸盐研究所 Preparation method of zirconium oxide coating on aluminum alloy surface
KR101285485B1 (en) * 2008-12-26 2013-07-23 니혼 파커라이징 가부시키가이샤 Method of electrolytic ceramic coating for matal, electrolysis solution for electrolytic ceramic coating for metal, and metallic material
CN102234828A (en) * 2010-04-28 2011-11-09 中国科学院力学研究所 In situ preparation method of self-lubricating ceramic coating on aluminium alloy surface
DE102011007424B8 (en) * 2011-04-14 2014-04-10 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH A method of forming a coating on the surface of a light metal based substrate by plasma electrolytic oxidation and coated substrate
EP2721270B1 (en) * 2011-06-15 2019-08-28 Henkel AG & Co. KGaA Method and apparatus for reducing emissions and/or reducing friction in an internal combustion engine
DE102012002284B4 (en) 2012-02-06 2014-08-21 Audi Ag Method for producing a turbine rotor of an exhaust gas turbocharger and use of a turbine rotor
DE102012218666A1 (en) 2012-10-12 2014-04-17 Robert Bosch Gmbh Producing protective layer on component which is partially made of titanium-aluminum alloy comprising e.g. titanium and aluminum, comprises subjecting component to electrochemical anodization for forming aluminum oxide-rich protective layer

Also Published As

Publication number Publication date
EP3084048A1 (en) 2016-10-26
DE112014005973A5 (en) 2016-10-13
WO2015090267A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
EP3084048B1 (en) Method for producing a protective layer on a thermally stressed component and component having such a protective layer
JP5696351B2 (en) Engine combustion chamber structure
RU2551017C2 (en) Ice and method of its operation
CN104562128B (en) A kind of method for preparing thermal protection ceramic layer on metal or metallic composite surface
CN101158401A (en) Ceramic cylinder and producing technology thereof
Yar-Mukhamedova et al. Mixed alumina and cobalt containing plasma electrolytic oxide coatings
US6245436B1 (en) Surfacing of aluminum bodies by anodic spark deposition
CN108977865A (en) A kind of preparation method of 5XXX aluminium and the high anti-corrosion single fine and close differential arc oxidation film layer of aluminum alloy surface
Krishtal Effect of structure of aluminum-silicon alloys on the process of formation and characteristics of oxide layer in microarc oxidizing
Karakurkchi et al. Cobalt and manganese oxide catalytic systems on valve metals in ecotechnologies
DE102017128511A1 (en) Thermal barrier coatings for turbocharger heat shield
CN1554807A (en) Electrolytic solution for aluminium alloy cast piece micro arc oxidation treatment
DE102015120288A1 (en) Method for producing a surface layer on a surface of a component by means of plasma electrolytic oxidation
CN107201538A (en) A kind of inner wall of metal tube chromium oxide alumina composite coating production
DE102014219819A1 (en) Method for the thermal insulation of a combustion chamber and / or an exhaust system of an internal combustion engine
WO2019106026A1 (en) Layer stack for arrangement in a combustion chamber of an internal combustion engine, in particular a piston, and a method for producing same
CN110983408B (en) Method for preparing nano ceramic coating by utilizing ceramic particle chemical self-sintering micro-arc oxidation technology
DE102017206722A1 (en) Process for producing a coated surface of a tribological system
CN108531962B (en) Magnesium alloy surface enhancement treatment method
CN106947991B (en) A kind of preparation method of aluminum alloy surface wear-and corrosion-resistant anti-thermal shock coating
EP0884405B1 (en) Process for obtaining hard oxide layers on the surface of a light metal based substrate
TWI571536B (en) Method for growing a colored oxide film during micro-arc oxidation process
EP1460151A1 (en) Cylinder head for reciprocating internal combustion engines
CN114836804B (en) Ceramic-based self-lubricating composite coating on surface of textured substrate and preparation method thereof
CN107345309A (en) A kind of silumin plasma electrolytic oxidation ceramic coating preparation method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOPP, ALEXANDER

Inventor name: PTOCK, CHRISTOPH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171122

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1024423

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009080

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181217

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014009080

Country of ref document: DE

Representative=s name: BUNGARTZ, FLORIAN, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009080

Country of ref document: DE

Owner name: MEOTEC GMBH, DE

Free format text: FORMER OWNERS: MEOTEC GMBH & CO. KG, 52074 AACHEN, DE; VOLKSWAGEN AKTIENGESELLSCHAFT, 38440 WOLFSBURG, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009080

Country of ref document: DE

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNERS: MEOTEC GMBH & CO. KG, 52074 AACHEN, DE; VOLKSWAGEN AKTIENGESELLSCHAFT, 38440 WOLFSBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200514 AND 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1024423

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231204

Year of fee payment: 10