EP3080399B1 - Turbocompresseur à gaz d'échappement - Google Patents

Turbocompresseur à gaz d'échappement Download PDF

Info

Publication number
EP3080399B1
EP3080399B1 EP14793041.6A EP14793041A EP3080399B1 EP 3080399 B1 EP3080399 B1 EP 3080399B1 EP 14793041 A EP14793041 A EP 14793041A EP 3080399 B1 EP3080399 B1 EP 3080399B1
Authority
EP
European Patent Office
Prior art keywords
vane
turbine wheel
turbine
guide
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14793041.6A
Other languages
German (de)
English (en)
Other versions
EP3080399A1 (fr
Inventor
Ralf Böning
Ivo Sandor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3080399A1 publication Critical patent/EP3080399A1/fr
Application granted granted Critical
Publication of EP3080399B1 publication Critical patent/EP3080399B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to an exhaust gas turbocharger according to the preamble of the main claim.
  • an internal combustion engine can be additionally supplied with fresh air, whereby more fuel can be burned. Accordingly, the exhaust gas turbocharger can increase the power of the internal combustion engine. In addition, exhaust gas turbochargers can also increase the efficiency of the internal combustion engine.
  • an exhaust gas turbocharger has a turbine with a turbine wheel and a compressor with a compressor wheel, wherein the turbine wheel and the compressor wheel are mostly arranged on a common shaft.
  • the turbine wheel is in this case driven via an exhaust gas mass flow of the internal combustion engine, and this in turn drives the compressor wheel.
  • the compressor also called a compressor, compresses fresh air sucked in and feeds it to the combustion engine.
  • the common shaft of the compressor and the turbine is often stored in a bearing housing of the turbocharger.
  • the turbine of the turbine disposed in a turbine housing and, correspondingly, the compressor wheel of the compressor in a compressor housing.
  • variable turbine geometry adjustment systems In order to improve the adaptation of the turbine power to an operation of the internal combustion engine, so-called variable turbine geometry adjustment systems have been developed, in particular in diesel engines, but lately also in gasoline engines.
  • the most common form of variable turbine geometry consists of a Vorleitgitter with adjustable vanes, which are arranged in front of the turbine wheel.
  • the vanes are adjustable between an open position and a closed position depending on a current operating state of the internal combustion engine.
  • About the adjustment of the vanes and the Leitgitters can exhaust back pressure as well also the manner of inflow of the exhaust gas mass flow are influenced on the turbine wheel.
  • a flow cross section of the exhaust gas mass flow to the turbine wheel can be changed.
  • the flow cross section of the exhaust gas mass flow to the turbine wheel is in this case the largest in the open position of the guide vanes and lowest in the closed position. At a lower exhaust mass flow, the vanes are moved to the closed position. Due to the small flow cross section in the closed position, the speed of the exhaust gas mass flow increases between the guide vanes. The exhaust gas mass flow thus hits the turbine blades at a higher speed, as a result of which the rotational speed of the shaft and thus the power of the exhaust gas turbocharger increase. As a result, sufficient fresh air can be compressed by the compressor and added to the internal combustion engine even at low exhaust gas mass flow. Thus, the power of the exhaust gas turbocharger can be adjusted as needed to the operating condition of the internal combustion engine.
  • the invention has for its object to develop an improved exhaust gas turbocharger, in which the power is increased, especially in a low speed range of the internal combustion engine.
  • the exhaust gas turbocharger comprises a turbine with a turbine wheel, wherein the turbine wheel is mounted axially in a turbine housing and turbine blades each having an inlet edge for a media flow.
  • the turbine housing is an adjustable guide grid with a plurality arranged by vanes for variable adjustment of a flow cross section with respect to the leading edge of the turbine wheel.
  • the guide vanes each have a blade trailing edge facing the turbine wheel and a blade leading edge facing away from the turbine wheel.
  • a plane is spanned by an axis of rotation of the turbine wheel and at least one point lying on the leading edge.
  • a projection of the leading edge onto this plane is inclined axially (inclined leading edge) at least in a region opposite the axis of rotation of the turbine wheel.
  • the guide vanes are arranged radially around the turbine wheel at least in this area. An example of such a sloping leading edge of a turbine wheel is shown in FIG FIG. 10 shown.
  • the turbocharger according to the invention is further distinguished by the fact that, to further improve the flow guidance, at least two cross sections of a respective guide vane perpendicular to the axis of rotation each have a different shape.
  • different flow filaments each define a smallest distance on a guide blade surface leading to the media flow from the blade leading edge to the blade trailing edge, wherein the different flow threads each have an equal length.
  • the flow threads can each have an equal length. Different flow paths of the exhaust gas mass flow on the guide vane are then of equal length. As a result, the flow guidance of the medium flow from the guide blade to the turbine wheel is designed to be particularly favorable.
  • the projection of the leading edge onto the plane is understood to be a mapping of a three-dimensional leading edge onto a two-dimensional plane.
  • a turbine having such an inclined leading edge is also referred to as a radial-axial turbine or a semi-axial-flow turbine.
  • one varies radial distance of the leading edge perpendicular to the axis of rotation of the turbine wheel in said area.
  • the advantages of a semi-axial flow turbine with the advantages of a turbine having an adjustable guide grid, the guide grid having a plurality of vanes can be combined. Due to the inclined leading edge, the turbine wheel can have a lower moment of inertia than a turbine wheel with a projection of an entry edge on said plane parallel to the axis of rotation of the turbine wheel (straight leading edge), which is also called turbine wheel with radial inflow. As a result, the performance and the response of the exhaust gas turbocharger, in particular in a low-speed region of the internal combustion engine, increased.
  • the adjustable vanes also improve the performance of the engine in the low speed range.
  • the turbine wheel according to the invention can be made smaller than turbine wheels with a straight leading edge.
  • the Vorleitgitter can be made smaller and with fewer vanes. Consequently, costs can be saved.
  • the projection of the leading edge onto the plane can also be at least partially parallel to the axis of rotation of the turbine wheel.
  • the axially inclined projection of the leading edge may be inclined in sections by an angle of at least 30 ° relative to the axis of rotation of the turbine wheel. This angle can have a constant value. In typical embodiments, this angle is less than 60 °.
  • An example of an inclined projection of an entry edge at an angle ⁇ with respect to a rotational axis of a turbine wheel is shown in FIG FIG. 10 shown.
  • a projection of the blade trailing edge on said plane, at least in the said area also axially inclined relative to the axis of rotation.
  • the blade trailing edge of a respective vane is substantially parallel to the leading edge of a respective nearest turbine blade.
  • the blade trailing edge has a same inclination angle with respect to the axis of rotation of the turbine wheel as the leading edge.
  • the projection of the blade trailing edge is parallel to the projection for the projection of the leading edge.
  • a gap between the blade trailing edge and the leading edge thus has a substantially constant value. The flow guidance of the media flow from the guide vanes to the turbine wheel can thereby be improved.
  • the vanes are adjustable between an open position and a closed position. At least in the open position, a minimum radial distance of the blade trailing edge of a respective vane perpendicular to the axis of rotation of the turbine wheel may be smaller than a maximum radial distance of the leading edge of a respective nearest turbine blade perpendicular to the axis of rotation of the turbine wheel. In this case, the blade trailing edge thus undercuts in the radial direction the leading edge of a nearest turbine blade. As a result, the media flow can be performed as close as possible to the turbine wheel.
  • a gap width between the blade trailing edge and the leading edge is minimal.
  • the gap width is less than 2 mm. Taking into account manufacturing and assembly tolerances, however, the gap width is typically greater than 0.5 mm. In a preferred embodiment, the gap width is 1 mm.
  • a first cross section is in each case a guide vane perpendicular to the axis of rotation of the turbine wheel about a Angle inclined relative to a second cross section of the respective vane perpendicular to the axis of rotation of the turbine wheel. That is, the vane in this embodiment has a twisted shape. Due to the twisted shape of the guide vane, the medium flow before striking the leading edge receives, in addition to a velocity component perpendicular to the axis of rotation, a velocity component parallel to the axis of rotation, ie in the axial direction. This improves a flow guidance of the medium flow from the guide blade to the turbine wheel.
  • the first cross section may be inclined at an angle greater than 5 ° relative to the second cross section. Typically, this angle is less than 25 °.
  • profile center lines each in each case share a guide vane in each case a cross section of the vane perpendicular to the axis of rotation of its length into two equally thick halves.
  • the profile center lines extend from the blade trailing edge to the blade leading edge of the guide blade.
  • the profile center lines are curved at least in sections.
  • the at least partially curved profile center line may have a single constant radius of curvature. In other embodiments, it can also have regions of different radii of curvature. It can be provided that the profile center line is straight in a first region and curved in a second region. All profile center lines each one vane are preferably formed equal. Alternatively, the profile centerline within the respective vane may also be varied.
  • a vane surface leading to the media flow and extending from the blade trailing edge to the blade leading edge of the vane is domed.
  • the blade leading edge and the blade trailing edge of two adjacent vanes are shaped such that they form an opening in the closed position of the guide vanes for a flow guidance of the media flow to the turbine wheel.
  • a shape of the blade leading edge is conformed to a shape of the blade trailing edge to form a streamlined nozzle. In this way, a favorable flow guidance of the media flow can be realized.
  • the turbine wheel is mounted in typical embodiments together with a compressor wheel on a shaft, wherein the shaft is mounted in a bearing housing.
  • the vanes are mounted on vane shafts with the vanes shafts rotatably mounted in a vane ring.
  • a heat shield is preferably arranged to conduct fluid. The heat shield may reduce heat input into said bearing housing and may provide for improved flow routing of the media flow from the vanes to the turbine wheel.
  • FIG. 1 shows a cross section of a portion of an exhaust gas turbocharger 1.
  • a turbine 2 with a turbine wheel 4 is shown.
  • the turbine wheel 4 is mounted axially on a shaft 5 defining a rotation axis 7 in a turbine housing 6.
  • On the shaft 5 is also a not-shown compressor in a compressor housing.
  • the shaft 5 of the turbine wheel 4 and the compressor wheel is mounted in a bearing housing 9.
  • the turbine wheel 4 has a hub 3 with turbine blades 8 arranged thereon.
  • the turbine blades 8 each comprise an inlet edge 10 and an outlet edge 11 for an exhaust gas mass flow from an internal combustion engine.
  • the internal combustion engine is a diesel engine.
  • the internal combustion engine can also be a gasoline engine.
  • the exhaust gas turbocharger 1 has a variable turbine geometry, which comprises an adjustable guide grid 12 with a plurality of guide vanes 14 for variably setting a flow cross-section 16 with respect to said inlet edge 10 of the turbine wheel 4, wherein the guide grid 12 is arranged in the turbine housing 6.
  • the exhaust gas mass flow is guided to the turbine blade 8 of the turbine wheel 4 via the guide vanes 14.
  • the exhaust gas mass flow first encounters a blade leading edge 20 facing away from the turbine wheel 4 and reaches the inlet edge 10 of the turbine wheel 4 via a blade surface 19 and a blade trailing edge 18 facing the turbine wheel.
  • the vanes 14 are adjustable between an open position and a closed position.
  • the guide vanes 14 are arranged on guide blade shafts 21, which are rotatably mounted in a guide blade bearing ring 22.
  • the vanes 14 are bounded by the vane ring 22 and a disk 15.
  • the guide vanes 14 of the guide grid 12 are adjustable in dependence on an operating state of the internal combustion engine by a non-illustrated electric actuator.
  • the actuator may alternatively be designed as a pressure cell.
  • a heat shield 23 is arranged, which reduces a heat input of the exhaust gas mass flow in a bearing of the shaft 5 in the bearing housing 9.
  • the heat shield 23 is resiliently arranged on a spring arm 24 and clamped between the blade bearing ring 22 and the bearing housing 9. Further, the heat shield 23 favors a flow guidance of the exhaust gas mass flow onto the turbine wheel 4. As the guide vane shafts 21 rotate from the closed position to the open position of the guide vanes 14, the vanes 14 are pivoted over the heat shield 23.
  • FIG. 1 is a plane spanned by the axis of rotation 7 of the turbine wheel 4 and a lying on the leading edge 10 point P. It can be seen that a projection of the three-dimensional leading edge 10 is inclined axially to this plane relative to the axis of rotation 7 of the turbine wheel 4.
  • the vanes 14 are arranged radially around the leading edge 10 of the turbine wheel 4. In the figure, the projection of the entire leading edge 10 is inclined.
  • turbine 2 is thus a turbine with semi-axial inflow.
  • the exhaust gas mass flow flows predominantly radially from a flow housing, not shown, of the turbine to the front edges 20 of the guide vanes 14, while, in addition to a radial flow component, also impinges on the leading edge 10 of the turbine blades 8 with an axial flow component.
  • the axially inclined projection of the leading edge 10 on the plane is inclined by an angle ⁇ of about 48 ° relative to the axis of rotation 7 of the turbine wheel 4. It can also be seen that a projection of the blade trailing edge 18 on the said plane relative to the axis of rotation 7 is inclined axially by the same angle ⁇ of approximately 48 °.
  • the blade trailing edge 18 thus runs substantially parallel to the leading edge 10 of a respectively adjacent turbine blade 8.
  • a gap 26 between the leading edge 10 and blade trailing edge 18 is thus substantially of constant thickness and is about 1 mm.
  • guide vanes 14 are in an open position. In this position, a minimum radial distance x of the blade trailing edge 18 of a respective vane 14 perpendicular to the axis of rotation 7 is smaller than a maximum radial distance y of the leading edge 10 of a respective nearest turbine blade 14 perpendicular to the axis of rotation 7. Die Leitschaufeln 14 thus undercut the turbine blades 8 in the region of the leading edge 10.
  • FIG. 2 shows a plan view of the turbine 4 and the vanes 14 in the FIG. 1 shown turbine in the open position of the vanes 14.
  • the bearing housing 9 and the disc 15 have been omitted.
  • FIG. 3 shows an enlargement of the detail A from the FIG. 2 in a perspective view.
  • the vanes 14 have a domed vane surface 19.
  • the vane surface 19 in the top view of FIG. 2 to recognize.
  • the guide vanes 14 also have inclined blade edges 18 in order to guide the exhaust gas mass flow as close as possible to the turbine wheel 4 clean. This goes in particular from the perspective view of FIG. 3 the leading edge 10 and the blade trailing edge 18.
  • FIGS. 4 and 5 show the arrangement FIG. 2 in a central vane position or in a closed position of the guide vanes 14.
  • FIG. 5 It will be appreciated that the blade leading edge 20 and blade trailing edge 18 of two adjacent vanes 14 are shaped to form a streamlined nozzle 28 for directing flow of the exhaust gas mass flow to the turbine wheel 4.
  • the nozzle 28 can be seen in the figure as a breakthrough 28.
  • FIGS. 6A to 6D different cross sections of differently shaped vanes 14 are shown perpendicular to the axis of rotation 7.
  • a profile centerline 30 of the vane 14 divides a cross-section of the vane 14 of its length 31 into two equally thick halves.
  • the profile center line 30 in this case extends from the blade trailing edge 18 to the blade leading edge 20.
  • the profile axis is a straight line while in FIG. 6B the profile center line 30 is curved and a constant radius of curvature having a finite value.
  • the profile centerline 30 off FIG. 6C on the other hand, it has two differently curved regions, each with different radii of curvature.
  • the profile center line 30 from the FIG. 6D which is partially curved and sectionally straight.
  • FIG. 6D A perspective view of a not yet mounted vane 14 with a guide shaft 5 from the in the FIGS. 1 to 5 shown exhaust gas turbocharger 1 is for clarity again in the FIG. 7 shown.
  • the guide vane 14 On one of the disk 15 facing side 35 ', the guide vane 14 has a in the FIG. 6D shown cross section. Also on a blade bearing ring side facing 34 ', the guide vane 14 in the FIG. 6D shown cross section, wherein the two cross section are twisted against each other by an angle ⁇ of 10 ° (see. FIG. 9 ).
  • a single vane 14 all cross-sections of the FIGS. 6A to 6D having.
  • Different flow filaments 33 are each defined by a minimum distance on the vane surface 19 from the blade leading edge 20 to the blade trailing edge 18. To ensure that exhaust mass flows cover an equally long flow path on each vane surface 19 to the turbine wheel 4, different flow filaments 33 each have an equal length on.
  • FIG. 8 is another schematic view of the vane 14 of the FIGS. 1 to 5 and 7 shown.
  • the flow threads 33 in FIG. 8 have an equal length. To ensure this, the vane 14 is twisted, ie, the vane surface 19 is curved.
  • FIG. 9 are two cross sections of the in the Figures 1-5 . 7 and 8th shown guide vane 14 perpendicular to the axis of rotation 7 of the turbine wheel 4 shown. It can be seen here that a first cross section 34 of the guide blade 14 on the side facing the blade bearing ring 34 'is inclined by the angle ⁇ of 10 ° with respect to a second cross section 35 of the guide blade 14 on the side 35' facing the disk 15.
  • FIG. 10 is the turbine wheel 4 with semi-axial inflow from the FIGS. 1 to 5 again shown in a schematic representation.
  • a plane is spanned by the axis of rotation 7 of the turbine wheel 4 and at least one point P lying on the leading edge 10.
  • the projection of the leading edge 10 on this plane is inclined axially by the angle ⁇ with respect to the axis of rotation 7 of the turbine wheel 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Claims (9)

  1. Turbocompresseur à gaz d'échappement (1), comprenant une turbine (2) avec une roue de turbine (4), dans lequel la roue de turbine (4) est montée axialement dans une enceinte de turbine (6) et présente des aubes de turbine (8) avec chaque fois une arête d'entrée (10) pour un courant de fluide, dans lequel une grille directrice réglable (12) est disposée dans l'enceinte de turbine (6) avec une multiplicité d'aubes directrices (14) pour le réglage variable d'une section transversale d'écoulement (16) par rapport à l'arête d'entrée (10) de la roue de turbine (4), et les aubes directrices (14) présentent respectivement une arête arrière d'aube (18) tournée vers la roue de turbine (4) et une arête avant d'aube (20) détournée de la roue de turbine (4), un plan est défini par un axe de rotation (7) de la roue de turbine (4) et au moins un point (P) situé sur l'arête d'entrée, dans lequel une projection de l'arête d'entrée (10) sur ce plan est inclinée axialement au moins dans une région par rapport à l'axe de rotation (7) de la roue de turbine (4) et les aubes directrices (14) sont disposées au moins dans cette région radialement autour de la roue de turbine (4),
    caractérisé en ce qu'au moins deux sections transversales respectivement d'une aube directrice (14) perpendiculaires à l'axe de rotation (7) présentent respectivement une forme différente, dans lequel des filets d'écoulement différents (33) définissent chaque fois une distance très faible sur une surface d'aube directrice (19) de l'arête avant d'aube (20) jusqu'à l'arête arrière d'aube (18), dans lequel les filets d'écoulement différents (33) présentent chacun une longueur identique.
  2. Turbocompresseur à gaz d'échappement selon la revendication 1, caractérisé en ce que la projection axialement inclinée de l'arête d'entrée (10) est inclinée localement d'un angle ϕ d'au moins 30° par rapport à l'axe de rotation (7) de la roue de turbine (4).
  3. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une projection de l'arête arrière d'aube (18) sur ledit plan au moins dans ladite région est inclinée axialement par rapport à l'axe de rotation (7).
  4. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'arête arrière d'aube (18) respectivement d'une aube directrice (14) s'étend essentiellement parallèlement à l'arête d'entrée (18) d'une aube de turbine (8) respectivement la plus proche.
  5. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications précédentes, dans lequel les aubes directrices (18) sont réglables entre une position ouverte et une position fermée, et au moins dans la position ouverte une distance radiale minimale (x) de l'arête arrière d'aube (18) respectivement d'une aube directrice (14) perpendiculaire à l'axe de rotation (7) de la roue de turbine (4) est plus petite qu'une distance radiale maximale (y) de l'arête d'entrée (10) d'une aube de turbine (8) respectivement la plus proche perpendiculaire à l'axe de rotation (7) de la roue de turbine (4).
  6. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une première section transversale (34) respectivement d'une aube directrice (14) perpendiculaire à l'axe de rotation (7) de la roue de turbine (4) est inclinée d'un angle α par rapport à une deuxième section transversale (35) de l'aube directrice respective (14) perpendiculaire à l'axe de rotation (7) de la roue de turbine (4).
  7. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications précédentes, caractérisé en ce que des lignes moyennes de profil (30) respectivement d'une aube directrice (14) partagent respectivement une section transversale de l'aube directrice (14) perpendiculaire à l'axe de rotation (7) selon sa longueur en deux moitiés d'égale épaisseur et les lignes moyennes de profil (30) s'étendent de l'arête avant d'aube (20) jusqu'à l'arête arrière d'aube (18) de l'aube directrice (14), dans lequel les lignes moyennes de profil (30) sont au moins localement courbes.
  8. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une surface d'aube directrice (19) guidant le courant de fluide et s'étendant de l'arête avant d'aube (20) jusqu'à l'arête arrière d'aube (18) de l'aube directrice (14) est incurvée.
  9. Turbocompresseur à gaz d'échappement selon l'une quelconque des revendications 5 à 8, caractérisé en ce que l'arête avant d'aube (20) et l'arête arrière d'aube (18) de deux aubes directrices voisines (14) sont formées de telle manière que, dans la position fermée des aubes directrices (14), elles forment un passage (28) pour un guidage d'écoulement du courant de fluide vers la roue de turbine (4).
EP14793041.6A 2013-12-11 2014-10-22 Turbocompresseur à gaz d'échappement Active EP3080399B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013225642.6A DE102013225642B4 (de) 2013-12-11 2013-12-11 Abgasturbolader mit einem verstellbaren Leitgitter
PCT/EP2014/072600 WO2015086205A1 (fr) 2013-12-11 2014-10-22 Turbocompresseur à gaz d'échappement

Publications (2)

Publication Number Publication Date
EP3080399A1 EP3080399A1 (fr) 2016-10-19
EP3080399B1 true EP3080399B1 (fr) 2017-09-13

Family

ID=51846620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14793041.6A Active EP3080399B1 (fr) 2013-12-11 2014-10-22 Turbocompresseur à gaz d'échappement

Country Status (6)

Country Link
US (1) US10808569B2 (fr)
EP (1) EP3080399B1 (fr)
CN (1) CN105814279B (fr)
BR (1) BR112016011440B8 (fr)
DE (1) DE102013225642B4 (fr)
WO (1) WO2015086205A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211673A1 (de) * 2018-07-12 2020-01-16 Continental Automotive Gmbh Leitschaufel und mit einer solchen versehene Turbinenanordnung
US10975886B2 (en) 2016-03-25 2021-04-13 Ihi Corporation Turbocharger

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119828A1 (fr) * 2014-02-04 2015-08-13 Borgwarner Inc. Bouclier thermique pour turbocompresseurs à roue de turbine à écoulement mixte
DE102014221362A1 (de) * 2014-10-21 2016-04-21 Siemens Aktiengesellschaft Profilierung von Leitschaufeln von Leitapparaten bei Turbomaschinen, insbesondere Verdichtern
DE102015205208A1 (de) * 2015-03-23 2016-09-29 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladeeinrichtung mit variabler Turbinengeometrie
DE102016011838A1 (de) * 2016-10-01 2018-04-05 Daimler Ag Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine
EP3636880B1 (fr) * 2018-10-11 2023-06-07 BorgWarner, Inc. Roue de turbine
JP7248113B2 (ja) 2019-06-14 2023-03-29 株式会社Ihi 過給機
EP3929407A1 (fr) * 2020-06-23 2021-12-29 ABB Schweiz AG Bague de tuyère modulaire pour une étage de turbine d'une turbomachine
DE102021134071A1 (de) 2021-12-21 2023-06-22 Borgwarner Inc. Radialturbine mit vtg-leitgitter

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797858A (en) * 1954-03-22 1957-07-02 Garrett Corp Radial compressors or turbines
US3495921A (en) * 1967-12-11 1970-02-17 Judson S Swearingen Variable nozzle turbine
DE60226784D1 (de) 2002-09-05 2008-07-03 Honeywell Int Inc Turbolader mit verstellbaren leitschaufeln
EP1710415A1 (fr) * 2005-04-04 2006-10-11 ABB Turbo Systems AG Suralimentation multi-étagée
EP1790830B1 (fr) * 2005-11-25 2019-03-27 BorgWarner, Inc. Aube de guidage de Turbocompresseur et Turbocompresseur
EP1811135A1 (fr) * 2006-01-23 2007-07-25 ABB Turbo Systems AG Dispositif de guidage réglable
EP1895106A1 (fr) * 2006-08-28 2008-03-05 ABB Turbo Systems AG Joint pour des aubes variables de guidage
GB0707501D0 (en) * 2007-04-18 2007-05-30 Imp Innovations Ltd Passive control turbocharger
BRPI0810328A8 (pt) * 2007-05-04 2018-10-30 Borgwarner Inc turbocompressor e método de operação de um turbocompressor
DE102008004014A1 (de) * 2008-01-11 2009-07-23 Continental Automotive Gmbh Leitschaufel für eine variable Turbinengeometrie
CN102203396B (zh) * 2008-11-05 2014-01-29 株式会社Ihi 涡轮增压器
US8834104B2 (en) * 2010-06-25 2014-09-16 Honeywell International Inc. Vanes for directing exhaust to a turbine wheel
JP5866802B2 (ja) * 2011-05-26 2016-02-17 株式会社Ihi ノズル翼
CN202176551U (zh) 2011-08-30 2012-03-28 哈尔滨汽轮机厂有限责任公司 一种大功率燃气轮机用压气机的进口可转导叶片
US10072513B2 (en) * 2011-11-30 2018-09-11 Mitsubishi Heavy Industries, Ltd. Radial turbine
JP5916377B2 (ja) * 2011-12-27 2016-05-11 三菱重工業株式会社 過給機用タービン及び過給機の組立方法
US9057280B2 (en) * 2012-01-31 2015-06-16 Honeywell International Inc. Contacting vanes
IN2014DN07030A (fr) 2012-02-02 2015-04-10 Borgwarner Inc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975886B2 (en) 2016-03-25 2021-04-13 Ihi Corporation Turbocharger
DE102018211673A1 (de) * 2018-07-12 2020-01-16 Continental Automotive Gmbh Leitschaufel und mit einer solchen versehene Turbinenanordnung

Also Published As

Publication number Publication date
CN105814279A (zh) 2016-07-27
DE102013225642A1 (de) 2015-06-11
BR112016011440B8 (pt) 2023-04-18
BR112016011440A2 (fr) 2017-08-08
CN105814279B (zh) 2019-04-16
EP3080399A1 (fr) 2016-10-19
US20160312651A1 (en) 2016-10-27
DE102013225642B4 (de) 2020-09-17
US10808569B2 (en) 2020-10-20
WO2015086205A1 (fr) 2015-06-18
BR112016011440B1 (pt) 2021-12-28

Similar Documents

Publication Publication Date Title
EP3080399B1 (fr) Turbocompresseur à gaz d'échappement
EP2108784B1 (fr) Turbomachine dotée d'un composant d'injecteur de fluide
DE4330487C1 (de) Abgasturbolader für eine Brennkraftmaschine
EP2147216B1 (fr) Turbocompresseur à suralimentation de gaz d'échappement
EP2989298B1 (fr) Turbocompresseur à gaz d'échappement
EP2167793B1 (fr) Turbocompresseur a suralimentation de gaz d'échappement pour moteur à combustion interne
DE112009004260T5 (de) Vereinfachter Turbolader mit veränderlicher Geometrie und Schaufelringen
DE102011108195B4 (de) Turbine für einen Abgasturbolader
EP2927503B1 (fr) Compresseur de turbine à gaz, moteur d'avion et méthode de dimensionnement
WO2019052729A1 (fr) Compresseur radial comprenant un mécanisme à diaphragme iris pour un dispositif de charge d'un moteur à combustion interne, dispositif de charge et lamelle pour le mécanisme à diaphragme iris
DE102018221812A1 (de) Abgasturbine mit einer Abgasleiteinrichtung für einen Abgasturbolader und Abgasturbolader
DE112013000544T5 (de) Turbolader mit variabler Turbinengeometrie und gerillten Leitschaufeln
DE102016102732A1 (de) Mixed-Flow-Turbinenrad eines Abgasturboladers sowie Abgasturbine mit einem solchen Turbinenrad
DE102007028742A1 (de) Luftversorger, insbesondere für ein Luftversorgungssystem von Brennstoffzellen
DE102022210936A1 (de) Hitzeschild für eine aufladevorrichtung
DE112017005661T5 (de) Variable Düseneinheit und Turbolader
DE102015014900A1 (de) Radialturbinengehäuse
DE102007060044A1 (de) Variable Turbinengeometrie
EP3327258A1 (fr) Roue de guidage d'entrée pour une turbomachine
DE102009012132A1 (de) Abgasturbine mit einer verstellbaren Leitschaufel
DE102018212756B3 (de) Radialverdichter, Aufladevorrichtung und Brennkraftmaschine mit Abgasrückführeinrichtung
EP3636880B1 (fr) Roue de turbine
DE202015007926U1 (de) Abgasturbolader
EP2134925B1 (fr) Turbocompresseur à suralimentation de gaz d'échappement et son fonctionnement
DE102018221161B4 (de) Abgasturbine eines Abgasturboladers sowie Abgasturbolader mit einem strömungstechnischen Störelement im Turbinengehäuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 928366

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005475

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170913

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005475

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

26N No opposition filed

Effective date: 20180614

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014005475

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 928366

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014005475

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 10

Ref country code: DE

Payment date: 20231031

Year of fee payment: 10