EP3080236A1 - Lessive lave-vaisselle contenant des agents complexants à base de n - Google Patents

Lessive lave-vaisselle contenant des agents complexants à base de n

Info

Publication number
EP3080236A1
EP3080236A1 EP14812172.6A EP14812172A EP3080236A1 EP 3080236 A1 EP3080236 A1 EP 3080236A1 EP 14812172 A EP14812172 A EP 14812172A EP 3080236 A1 EP3080236 A1 EP 3080236A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
coox
amylase
dishwashing detergent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14812172.6A
Other languages
German (de)
English (en)
Inventor
Thomas Eiting
Christian Kropf
Mareile Job
Christian Umbreit
Nina Mussmann
Konstantin Benda
Thorsten Bastigkeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3080236A1 publication Critical patent/EP3080236A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38609Protease or amylase in solid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38618Protease or amylase in liquid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the present invention relates to the use of nitrogen-based chelating agents in a machine dishwashing process to increase the cleaning performance of amylase on starchy soils and a corresponding method for machine
  • the present invention relates to a machine
  • Dishwashing detergent which exhibits an improved cleaning performance when removing starchy stains, the use of this dishwashing detergent and a method for automatic dishwashing using this dishwashing detergent.
  • Dishwashing detergents with increased cleaning performance there is a general trend, for environmental reasons, to omit phosphates for automatic dishwashing. The problem thus arises of providing phosphate-free automatic dishwashing detergents without impairing the cleaning performance.
  • the object of the present invention was therefore to provide a, preferably phosphate-free, machine dishwashing agent which has an increased cleaning performance.
  • a first object of the present invention is therefore the use of an N-based complexing agent of the formula
  • X is H, an alkali metal or ammonium
  • R1 is H, C1-C10 alkyl or C (R6) (R7) COOX;
  • R2 is H, C1-C10 alkyl or CH2COOX
  • R 3 is H, C 1 -C 10 alkyl or COOX;
  • R4, R5, R6 and R7 are independently H, OH or C1-C10 alkyl; and n is 0 or 1;
  • the complex image is preferably contained in a machine dishwashing detergent. This may be additional an amylase-containing
  • Another object of the present invention is a method for increasing the
  • Yet another object of the present invention is a machine dishwashing detergent containing at least one amylase-containing enzyme composition and at least one N-based complex image of the formula
  • X is H, an alkali metal or ammonium
  • R1 is H or C1-C10 alkyl
  • R2 is H, C1-C10 alkyl or CH2COOX
  • R 3 is H, C 1 -C 10 alkyl or COOX
  • R4, R5, R6 and R7 are independently H, OH or C1-C10 alkyl
  • n 0 or 1
  • At least one includes, but is not limited to, 1, 2, 3, 4, 5, 6 and more.
  • a machine dishwashing detergent according to the invention for improving the cleaning performance of amylase at starch-containing stains on dishes during its cleaning in an automatic dishwashing machine.
  • the present invention is also directed to a machine dishwashing process in which a machine dishwashing agent according to the invention is used, in particular for the purpose of improving the cleaning performance of amylase at starch-containing stains.
  • fatty acids or fatty alcohols or their derivatives - unless otherwise stated - representative of branched or unbranched carboxylic acids or alcohols or their derivatives having preferably 6 to 22 carbon atoms.
  • the oxo alcohols or their derivatives which are obtainable, for example, by the RoELEN's oxo synthesis, can also be used correspondingly.
  • alkaline earth metals are referred to below as counterions for monovalent anions, this means that the alkaline earth metal is present only in half - as sufficient to charge balance - amount of substance as the anion.
  • the indication CAS means that the following sequence of numbers is a name of the Chemical Abstracts Service.
  • the N-based complexing agents used according to the invention are compounds of the formula
  • X is H, an alkali metal or ammonium
  • R1 is H, C1-C10 alkyl or C (R6) (R7) COOX
  • R 2 is H, C 1 -C 10 -alkyl or CH 2 COOX
  • R 3 is H, C 1 -C 10 -alkyl or COOX
  • R4, R5, R6 and R7 independently of one another are H, OH or Ci-Cio-alkyl
  • n is 0 or 1.
  • Alkyl as used herein refers to saturated straight or branched chain
  • Hydrocarbons having 1-10, preferably 1-4 carbon atoms include, but are not limited to, methyl, ethyl, n -propyl, iso -propyl, n -butyl, sec -butyl, iso -butyl and tert -butyl.
  • R 1 is H or C 1 -C 10 -alkyl, in particular H or methyl.
  • R 2 is CH 2 COOX
  • R 3 is H or COOX
  • R 4 is H or OH
  • R1 is H or Ci-Cio-alkyl
  • R2 is H
  • R3 is COOX
  • R4 is OH
  • R1 is H or Ci-Cio-alkyl
  • R2 is Ci-Cio-alkyl
  • R3 is COOX
  • R4 is OH
  • R1 is H or Ci-Cio-alkyl
  • R2 is CH2COOX
  • R3 is H
  • R4 is H
  • R1 is H or C1-C10 alkyl
  • R2 is CH2COOX
  • R3 is COOX
  • R4 is H
  • R1 is H or C1-C10 alkyl
  • R2 is CH2COOX
  • R3 is H
  • R4 is OH
  • R1 is H or Ci-Cio-alkyl
  • R2 is CH2COOX
  • R3 is COOX
  • R4 is OH
  • N-based chelating agents useful in the present invention include, but are not limited to, N- (1,2-dicarboxy-2-hydroxyethyl) glycine, N- (1,2-dicarboxy-2-hydroxyethyl) alanine, N , N-biscarboxymethyl-.beta.-alanine, N- (1,2-dicarboxy-2-hydroxyethyl) -sarcosine, and N- (1,2-dicarboxy-2-hydroxyethyl) -iminodiacetic acid.
  • Embodiments may be used both the free acids and the corresponding salts, in particular the alkali metal salts, preferably the Na salts.
  • the N-based chelating agents used according to the invention which are as defined above, have the property of improving the performance of amylases contained in the dishwashing detergent and therefore lead to an improved cleaning performance on starch-containing soils.
  • the improvement in the amylase performance or the improvement in the cleaning performance is to be understood as meaning that when the dishwashing agent according to the invention is used the removal of stains, in particular starchy stains, on dishes when cleaning in an automatic dishwasher compared to the
  • the complexing agents are usually used in amounts of 0, 1 to 40 wt .-%, based on the total formulation of the agent used. Preferred amounts are 2 to 35% by weight and in particular 10 to 30% by weight.
  • Containing enzyme composition and the at least one N-based complexing agent may be solid or liquid in nature and in particular as powdered solids, in nachverêtten particle form, as homogeneous solutions or suspensions.
  • the automatic dishwashing detergent is present in a pre-portioned form.
  • the automatic dishwashing detergent has several spatially separated
  • compositions whereby it is possible to separate incompatible ingredients from each other, or to offer compositions in combination, which are used at different times in the dishwasher. This is particularly advantageous if the automatic dishwashing detergents are present in pre-portioned form. At least one of the compositions is solid and / or at least one of the
  • Enzyme composition may be present in at least one of the compositions, but may also be present in several compositions.
  • the enzyme preparations or enzyme compositions of the invention contain at least one amylase and optionally one or more other enzymes.
  • suitable enzymes include, but are not limited to, proteases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents, which are preferably used accordingly.
  • the agents described herein preferably contain each enzyme in a total amount of 1 x 10 -6 to 5 wt%, more preferably 0.001 to 1 wt%, more preferably 0.003 to 0.1 wt%, based on active protein.
  • the protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens, from ⁇ . stearothermophilus, from Aspergillus niger and A. oryzae, as well as the improved developments of the aforementioned amylases. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from ⁇ . agaradherens
  • proteases are virtually included in all modern, powerful detergents and cleaners. They cause the degradation of protein-containing stains on the items to be cleaned.
  • proteases of the subtilisin type (subtilases, subtilopeptidases, EC 3.4.21.62), which are serine proteases due to the catalytically active amino acids. They act as nonspecific endopeptidases and hydrolyze any acid amide linkages that are internal to peptides or proteins. Their pH optimum is usually in the clearly alkaline range.
  • Subtilases are natural formed by microorganisms. Of these, in particular, the subtilisins formed and secreted by Bacillus species are to be mentioned as the most important group within the subtilases.
  • proteases preferably used in detergents and cleaners from
  • Subtilisin type are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the protease from Bacillus lentus, in particular from Bacillus lentus DSM 5483,
  • Proteases are selectively or randomly modified by methods known from the prior art and thus optimized, for example, for use in detergents and cleaners. These include point mutagenesis, deletion or
  • lipases or cutinases are also usable according to the invention.
  • lipases or cutinases in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, those originally from Humicola lanuginosa
  • enzymes can be used which are termed hemicellulases
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • organic, particularly preferably aromatic, compounds which interact with the enzymes in order to enhance the activity of the relevant oxidoreductases (enhancers) or in the case of strong
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Cleaning-active proteases and amylases are generally not provided in the form of the pure protein but rather in the form of stabilized, storage and transportable preparations.
  • Such prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers or further auxiliaries.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core with a water, air and / or
  • Chemical-impermeable protective layer is coated.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • the enzyme protein forms only a fraction of the total weight of conventional enzyme preparations.
  • Protease and amylase preparations preferably used according to the invention contain between 0.1 and 40% by weight, preferably between 0.2 and 30% by weight, particularly preferably between 0.4 and 20% by weight and in particular between 0, 8 and 10 wt .-% of the enzyme protein.
  • Total weight 0, 1 to 12 wt .-%, preferably 0.2 to 10 wt .-% and in particular 0.5 to 8 wt .-% enzyme preparations.
  • the agents according to the invention preferably comprise at least one further constituent, in particular at least two further constituents selected from the group consisting of builders, surfactants, polymers, bleaches, bleach activators, bleach catalysts, in particular manganese or cobalt-based catalysts, corrosion inhibitors and
  • additional builders can be used.
  • the additional builders that can be used include, in particular, the zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • the agents are phosphate-free.
  • NaMSix02x + i ⁇ y H2O are used, wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1: 9 to 4, wherein particularly preferred values for x being 2, 3 or 4, and y a number from 0 to 33, preferably from 0 to 20 stands.
  • silicates Na-SKS-1 (Na 2 Si 2 2045 ⁇ x H 2 O, kenyaite), Na-SKS-2 (Na 2 Si 4 O 29 ⁇ x H 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 0i7 ⁇ x H2O) or Na-SKS-4 (Na 2 Si 4 09 ⁇ x H2O, makatite).
  • Particularly suitable for the purposes of the present invention are crystalline phyllosilicates of the formula
  • Na-SKS-5 a-Na2Si20s
  • Na-SKS-7 .beta.-Na2 Si2 05, natrosilite
  • Na-SKS-9 NaHSi 2 0 5 ⁇ H2O
  • Na-SKS-10 NaHSi 2 0 5 ⁇ 3 H2O, kanemite
  • Na-SKS-1 1 t-Na 2 Si 2 05
  • Na-SKS-13 Na-SKS-13
  • Machine dishwashing detergents preferably contain a weight proportion of crystalline layered silicate of formula NaMSix02x + i y ⁇ H2O of 0.1 to 20 wt .-%, preferably from 0.2 to 15 wt .-% and in particular from 0.4 to 10 wt. -%, in each case based on the total weight of these funds.
  • amorphous sodium silicates having a modulus Na 2 O: SiO 2 of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which are preferably delayed in dissolution and secondary wash properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • amorphous is understood to mean that the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle , cause.
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids in which one
  • Metaphosphoric acids (HP03) n and orthophosphoric acid H3PO4 can distinguish in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • the agents are phosphate-free. If phosphates are used as washing or cleaning substances in machine dishwashing detergent in the present application, preferred agents comprise this phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate ), in amounts of 5 to 80 wt .-%, preferably from 15 to 75 wt .-% and in particular from 20 to 70 wt .-%, each based on the weight of the automatic dishwashing detergent.
  • s alkali metal phosphate
  • sodium or potassium tripolyphosphate sodium or potassium tripolyphosphate
  • alkali carriers are examples of alkali carriers.
  • Alkali metal sesquicarbonates the said alkali metal silicates, alkali metal silicates, and mixtures of the abovementioned substances, preference being given within the meaning of this invention to the use of the alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the optional alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 % By weight and in particular below 2% by weight, in each case based on the total weight of the automatic dishwashing detergent.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • compositions which, based on the weight of the automatic dishwashing agent, are less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight and
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders and phosphonates. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, Maleic acid, fumaric acid, sugar acids, nitrilotriacetic acid (NTA), provided such use is not objectionable for environmental reasons, and mixtures thereof.
  • NTA nitrilotriacetic acid
  • the free acids typically also have the property of a
  • Acidification and thus also serve to set a lower and milder pH of the automatic dishwashing detergent.
  • citric acid here are citric acid,
  • Succinic acid glutaric acid, adipic acid, gluconic acid and any mixtures thereof.
  • citric acid and / or citrates in these compositions has proved to be particularly advantageous for the cleaning and rinsing performance of agents according to the invention. Therefore, according to the invention, preference is given to automatic dishwasher detergents, characterized in that the automatic dishwashing agent contains citric acid or a salt of citric acid and the weight proportion of citric acid or of the salt of citric acid is preferably more than 10% by weight, preferably more than 15% by weight and in particular between 20 and 40 wt .-% is.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of automatic dishwashing detergents on (co) polymers can be used either as a powder or as an aqueous solution.
  • Polycarboxylates is preferably 0.5 to 20 wt .-% and in particular 3 to 10 wt .-%.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • copolymers are those which are used as monomers acrolein and
  • Acrylic acid / acrylic acid salts or acrolein and vinyl acetate are examples of acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • all compounds capable of forming complexes with alkaline earth ions can be used as builders.
  • compositions of the invention may contain surfactants, wherein the nonionic, the anionic, the cationic and the amphoteric surfactants are counted among the group of surfactants.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which determines the distribution of
  • Specifying monoglycosides and oligoglycosides is any number between 1 and 10;
  • x is 1, 2 to 1, 4.
  • nonionic surfactants which can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated
  • Fatty acid alkyl esters preferably having 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are the polyhydroxy fatty acid amides known as PHFA.
  • Low-foaming nonionic surfactants can be used as preferred surfactants.
  • the automatic dishwashing detergents contain nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example Ci2-i4-alcohols with 3 EO or 4 EO, C9-n-alcohol with 7 EO, C13 15 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 2 -i8 -Alcohols with 3 EO, 5 EO or 7 EO and Mixtures of these, such as mixtures of Ci2-i4-alcohol with 3 EO and Ci2-is-alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number. preferred
  • Alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • NRE narrow rank ethoxylates
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants which have a melting point above
  • Nonionic surfactant (s) having a melting point above 20 ° C, preferably above 25 ° C, more preferably between 25 and 60 ° C and especially between 26.6 and 43.3 ° C, is / are particularly preferred ,
  • surfactants come from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols.
  • Anionic surfactants can also be used as a component of automatic dishwashing detergents. These include in particular alkylbenzenesulfonates, (fatty) alkyl sulfates, (fatty) alkyl ether sulfates and alkanesulfonates.
  • the content of the anionic surfactant is usually 0 to 10% by weight.
  • cationic active substances for example, cationic compounds of the following formulas can be used:
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Machinery
  • Dishwashing detergents containing no cationic or amphoteric surfactants are particularly preferred.
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • the washing or cleaning-active polymers for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in automatic dishwashing detergents in addition to nonionic polymers.
  • “Cationic polymers” for the purposes of the present invention are polymers which carry a positive charge in the polymer molecule, which can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate and methacrylate, the vinylpyrrolidone-methoimidazolinium chloride Copolymers, the quaternized polyvinyl alcohols or the INCI names
  • Polyquaternium 2 Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 indicated polymers.
  • amphoteric polymers furthermore have, in addition to a positively charged group in the polymer chain, negatively charged groups or monomer units, for example, these may be carboxylic acids, sulfonic acids or phosphonic acids.
  • Preferred usable amphoteric polymers are from the group of
  • Alkylacrylamide / acrylic acid copolymers the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the
  • Carboxylic acids and optionally other ionic or nonionic monomers are Carboxylic acids and optionally other ionic or nonionic monomers.
  • Preferred zwitterionic polymers are from the group of acrylamidoalkyl trialkyl ammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the Methacroylethylbetain / methacrylate copolymers.
  • the polymers are present in prefabricated form. To prepare the polymers u.a.
  • Coating compositions preferably by means of water-insoluble coating agents from the group of waxes or paraffins having a melting point above 30 ° C;
  • Support materials from the group of washing or cleaning-active substances particularly preferably from the group of builders (builders) or cobuilders.
  • Machine dishwashing detergents preferably contain the abovementioned cationic and / or amphoteric polymers in amounts of from 0.01 to 10% by weight, based in each case on the total weight of the automatic dishwashing detergent. In the context of the present application, however, preference is given to those automatic dishwashing detergents in which the
  • Weight fraction of the cationic and / or amphoteric polymers between 0.01 and 8 wt .-%, preferably between 0.01 and 6 wt .-%, preferably between 0.01 and 4 wt .-%, particularly preferably between 0.01 and 2 wt .-% and in particular between 0.01 and 1 wt .-%, each based on the total weight of the automatic dishwashing detergent, is.
  • the bleaching agents are a substance which can be used with particular preference for washing or cleaning.
  • sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaches which can be used are, for example, peroxypyrophosphates, citrate perhydrates and peroxygenic salts or peracids yielding H2O2, such as perbenzoates.
  • bleaching agent As a bleaching agent and chlorine or bromine releasing substances can be used. Examples of suitable chlorine or bromine releasing materials
  • heterocyclic N-bromo- and N-chloroamides for example trichloroisocyanuric acid
  • Tribromoisocyanuric acid Tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium into consideration.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • automatic dishwashing agents which contain from 1 to 35% by weight, preferably from 2.5 to 30% by weight, particularly preferably from 3.5 to 20% by weight and in particular from 5 to 15% by weight of bleaching agent, preferably sodium percarbonate , contain.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT) Glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS) are particularly preferably used.
  • TAED tetraacetylethylenediamine
  • DADHT 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine
  • Glycolurils in particular tetraacety
  • bleach activators are preferably used in amounts of up to 10% by weight, in particular 0.1 to 8% by weight, especially 2 to 8% by weight and more preferably 2 to 6% by weight, based in each case on the total weight of
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Glass corrosion inhibitors come from the group of magnesium and zinc salts as well as magnesium and zinc complexes.
  • the content of zinc salt in dishwasher detergents is preferably between 0.1 and 5 wt.%, Preferably between 0.2 and 4 wt.% And in particular between 0.4 and 3 wt the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight .-%, each based on the total weight of the glass corrosion inhibitor-containing agent.
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or disintegrants excipients which ensure the rapid disintegration of tablets in water or other media and for the rapid release of the active ingredients.
  • Desintegration aids may preferably be used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • perfume oils or fragrances can be selected from individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, Alcohols and hydrocarbons are used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as those available from vegetable sources, for example pine, citrus, jasmine, patchouli, rose or ylang-ylang oil.
  • the agents may be in solid or liquid form as well as in a combination of solid and liquid forms. As fixed offer forms are suitable
  • the liquid supply forms based on water and / or organic solvents may be thickened, in the form of gels.
  • the agents can be formulated in the form of single-phase or multi-phase products.
  • automatic dishwashing detergents with one, two, three or four phases are preferred.
  • Machine dishwashing detergent characterized in that it is in the form of a prefabricated dosing unit with two or more phases, are particularly preferred.
  • the individual phases of multiphase agents may have the same or different states of matter.
  • Machine dishwashing detergents which have at least two different solid phases and / or at least two liquid phases and / or at least one solid and at least one solid phase are preferred.
  • the automatic dishwashing agents described herein are preferably prefabricated into dosage units. These metering units preferably comprise the necessary for a cleaning cycle amount of washing or cleaning-active substances. Preferred metering units have a weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 16 and 22 g.
  • the automatic dishwashing agents in particular the prefabricated metering units, have a water-soluble coating, with particular preference.
  • the water-soluble coating is preferably formed from a water-soluble film material selected from the group consisting of polymers or polymer blends.
  • the wrapper may be formed of one or two or more layers of the water-soluble film material.
  • the water-soluble film material of the first layer and the other layers, if any, may be the same or different. Particularly preferred are films which, for example, can be glued and / or sealed to packages such as hoses or cushions after being filled with an agent.
  • the water-soluble coating be polyvinyl alcohol or a
  • Water-soluble coatings containing polyvinyl alcohol or a polyvinyl alcohol copolymer have a good stability with a sufficiently high water solubility, in particular cold water solubility on.
  • Suitable water-soluble films for producing the water-soluble coating are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose
  • Molecular weight in the range of 10,000 to 1,000,000 gmol "1 , preferably from 20,000 to 500,000 gmol, more preferably from 30,000 to 100,000 gmol " 1 and in particular from 40,000 to 80,000 gmol.
  • polyvinyl alcohol is usually carried out by hydrolysis of polyvinyl acetate, since the direct synthesis route is not possible.
  • polyvinyl alcohol copolymers which are prepared from correspondingly polyvinyl acetate copolymers. It is preferred if at least one layer of the water-soluble coating comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • a polymer selected from the group comprising a polyvinyl alcohol-containing sheet material suitable for producing the water-soluble sheath is selected from the group comprising a polyvinyl alcohol-containing sheet material suitable for producing the water-soluble sheath
  • (Meth) acrylic acid-containing (co) polymers polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers, polylactic acid or mixtures of the above polymers may be added.
  • a preferred additional polymer is polylactic acids.
  • Preferred polyvinyl alcohol copolymers include, in addition to vinyl alcohol, dicarboxylic acids as further monomers.
  • Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and mixtures thereof, with itaconic acid being preferred.
  • polyvinyl alcohol copolymers include, in addition to vinyl alcohol, an ethylenically unsaturated carboxylic acid, its salt or its esters.
  • Such polyvinyl alcohol copolymers particularly preferably contain, in addition to vinyl alcohol, acrylic acid, methacrylic acid, acrylates, methacrylates or mixtures thereof.
  • the film material contains further additives.
  • the film material may include, for example, plasticizers such as dipropylene glycol, ethylene glycol, diethylene glycol,
  • Additives include, for example, release aids, fillers, crosslinking agents, surfactants, antioxidants, UV absorbers, antiblocking agents, detackifiers, or mixtures thereof.
  • release aids for example, release aids, fillers, crosslinking agents, surfactants, antioxidants, UV absorbers, antiblocking agents, detackifiers, or mixtures thereof.
  • water-soluble packaging according to the invention are films marketed by MonoSol LLC, for example under the designation M8630, C8400 or M8900.
  • Other suitable films include films named Solublon® PT, Solublon® GA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray.
  • the corresponding use of the automatic dishwasher detergents according to the invention is likewise an object of the invention.
  • the invention likewise relates to a dishwashing process, in particular a machine dishwashing process, in which a dishwashing detergent according to the invention is used.
  • the subject matter of the present application is therefore furthermore a process for the cleaning of dishes in a dishwashing machine, in which the
  • Dishwasher is metered.
  • the metering or the entry of the agent according to the invention into the interior of the dishwasher can be done manually, but preferably the agent is metered by means of the metering chamber into the interior of the dishwasher.
  • a typical framework formulation for a machine dishwashing detergent preferably used, for example in tablet form comprises the following substances:
  • Polycarboxylate 0, 1-10% by weight
  • Nonionic surfactant 0.5-10% by weight
  • Amylase 0.1-5% by weight the data in% by weight being based on the total agent.
  • the N-based chelating agents described herein or mixtures of two or three of these substances may be employed. Examples
  • 0.1 mol of NaOH are dissolved in 50 ml of water and then 0.1 mol of glycine is added. To the resulting solution is added 0.1 mol of epoxy succinic acid (or the disodium salt thereof) and refluxed for 8 hours. The resulting solution is concentrated and the corresponding product is isolated.
  • Dishwashing tablet (20 g, composition see Table 1) with (M1; M2) and without (V1; V2) inventive N-based complexing agent and 100 g starchy soiling (mixture of corn, rice, wheat and potato starch) rinsed and after determines the cleaning performance according to IKW for each rinsing cycle (gravimetric determination of the removal of the starch after the cleaning cycle, removal of 0-100% or 0-10, the higher the value, the better the performance, differences of +/- 10% or + / - 1 are significant).
  • IKW gravimetric determination of the removal of the starch after the cleaning cycle, removal of 0-100% or 0-10, the higher the value, the better the performance, differences of +/- 10% or + / - 1 are significant.
  • Formulations are listed in Table 2 as arithmetic mean values. Higher values mean better cleaning performance.
  • Amylase-containing 0.7 0.7 0.7 0.7 enzyme composition Amylase-containing 0.7 0.7 0.7 0.7 enzyme composition
  • Residues perfume, dyes, ad 100 ad 100 ad 100 ad 100 ad 100 preservatives, water (% by weight)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention porte sur l'utilisation d'agents complexants à base d'azote dans un procédé de lavage automatique en lave-vaisselle, afin de renforcer le pouvoir nettoyant de l'amylase vis-à-vis de salissures contenant de l'amidon, ainsi que des lessives lave-vaisselle contenant ces agents complexants, et des procédés de lavage en lave-vaisselle correspondants.
EP14812172.6A 2013-12-11 2014-12-05 Lessive lave-vaisselle contenant des agents complexants à base de n Withdrawn EP3080236A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013225584.5A DE102013225584A1 (de) 2013-12-11 2013-12-11 Maschinelles Geschirrspülmittel enthaltend N-basierte Komplexbildner
PCT/EP2014/076788 WO2015086474A1 (fr) 2013-12-11 2014-12-05 Lessive lave-vaisselle contenant des agents complexants à base de n

Publications (1)

Publication Number Publication Date
EP3080236A1 true EP3080236A1 (fr) 2016-10-19

Family

ID=52101302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14812172.6A Withdrawn EP3080236A1 (fr) 2013-12-11 2014-12-05 Lessive lave-vaisselle contenant des agents complexants à base de n

Country Status (3)

Country Link
EP (1) EP3080236A1 (fr)
DE (1) DE102013225584A1 (fr)
WO (1) WO2015086474A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839026A1 (fr) 2019-11-28 2021-06-23 Henkel AG & Co. KGaA Procédé d'augmentation de la stabilité des détergents
DE102020132593A1 (de) 2020-12-08 2022-06-09 Henkel Ag & Co. Kgaa Stufenweise Zugabe von Verdicker bei der Herstellung von Wasch- und Reinigungsmitteln zur Verbesserung der Prozessierbarkeit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050950B1 (fr) 2015-02-02 2018-09-19 The Procter and Gamble Company Nouvelle utilisation de polymères sulfonés
DE102015213942A1 (de) 2015-07-23 2017-01-26 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel enthaltend Bleichmittel und Polymere
JP2021515057A (ja) 2018-02-23 2021-06-17 ユニリーバー・ナームローゼ・ベンノートシヤープ アミノポリカルボキシレートと無機酸とを含む洗剤固体組成物
CN111606818A (zh) * 2020-05-12 2020-09-01 南京艾普拉斯化工有限公司 螯合剂、清洗剂及螯合剂的制备方法
EP4012011A1 (fr) * 2020-12-14 2022-06-15 Henkel AG & Co. KGaA Détergeant, en particulier pour un robot de cuisine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019458A1 (de) * 2007-04-25 2008-10-30 Basf Se Phosphatfreies Maschinengeschirrspülmittel mit ausgezeichneter Klarspülleistung
CN103074177A (zh) * 2013-01-21 2013-05-01 上海艳紫化工科技有限公司 家用碱性清洁剂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522658D0 (en) * 2005-11-07 2005-12-14 Reckitt Benckiser Nv Composition
DE102007003885A1 (de) * 2007-01-19 2008-07-24 Lanxess Deutschland Gmbh Geschirrreinigungsmittel
DE102007047433A1 (de) * 2007-10-04 2009-04-09 Lanxess Deutschland Gmbh Flüssigwasch- und Flüssigreinigungsmittel
DE102012218019A1 (de) * 2012-10-02 2014-04-03 Henkel Ag & Co. Kgaa Leistungsgesteigerte Wasch- oder Reinigungsmittel mit Komplexbildnern I

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019458A1 (de) * 2007-04-25 2008-10-30 Basf Se Phosphatfreies Maschinengeschirrspülmittel mit ausgezeichneter Klarspülleistung
CN103074177A (zh) * 2013-01-21 2013-05-01 上海艳紫化工科技有限公司 家用碱性清洁剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201373, Derwent World Patents Index; AN 2013-Q19922 *
See also references of WO2015086474A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839026A1 (fr) 2019-11-28 2021-06-23 Henkel AG & Co. KGaA Procédé d'augmentation de la stabilité des détergents
DE102020132593A1 (de) 2020-12-08 2022-06-09 Henkel Ag & Co. Kgaa Stufenweise Zugabe von Verdicker bei der Herstellung von Wasch- und Reinigungsmitteln zur Verbesserung der Prozessierbarkeit

Also Published As

Publication number Publication date
DE102013225584A1 (de) 2015-06-11
WO2015086474A1 (fr) 2015-06-18

Similar Documents

Publication Publication Date Title
EP2992093B1 (fr) Produit détergent contenant des protéases
EP3209762B1 (fr) Détergent pour lave-vaisselle contenant des complexes métalliques
WO2015086474A1 (fr) Lessive lave-vaisselle contenant des agents complexants à base de n
EP3161119B1 (fr) Produit détergent contenant des amylases
DE102014206082A1 (de) Automatisches Geschirrspülmittel mit verbesserter Bleichleistung
EP3161118A1 (fr) Produit de nettoyage contenant des amylases
DE102015213942A1 (de) Maschinelles Geschirrspülmittel enthaltend Bleichmittel und Polymere
EP3161116B1 (fr) Produit détergent contenant des protéases
EP3080237A1 (fr) Lessive lave-vaisselle contenant des agents complexants à base de n
EP3325597A1 (fr) Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes
EP3078732A1 (fr) Produit de rinçage pour lave vaisselle comprenant des complexants a base d'azote et mgda
EP3502224A1 (fr) Détergent pour lave-vaisselle à performance de nettoyage améliorée, procédé reposant sur l'utilisation dudit détergent ainsi que l'utilisation dudit détergeant
EP3431575A1 (fr) Détergent pour lave-vaisselle comportant un citrate dihydraté et anhydre
EP3481936A1 (fr) Produit vaisselle contenant de l'ose acide et de l'acide aminocarboxylique
EP4008764A1 (fr) Nettoyage amélioré au moyen du carbonate d'hydrogène dans le détergent de lavage en machine
DE102013226440A1 (de) Maschinelles Geschirrspülmittel enthaltend Emulgatoren
DE102014206148A1 (de) Maschinelles Geschirrspülmittel enthaltend Phosphonopolycarbonsäure
DE102013226432A1 (de) Maschinelles Geschirrspülmittel enthaltend Emulgatoren
EP2882836B1 (fr) Agent de lavage au lave-vaisselle contenant des polysaccharides à modification hydrophobe
DE102014206866A1 (de) Maschinelles Geschirrspülmittel enthaltend Polysiloxan
WO2018002178A1 (fr) Détergent permettant de réduire la corrosion du verre
DE102014226904A1 (de) Copolymere zur Verbesserung der Klarspülleistung
WO2017186263A1 (fr) Copolymères pour améliorer les performances de rinçage
EP2733194A1 (fr) Produit de rinçage de vaisselle pour lave-vaisselle contenant des copolymères en bloc de polyalkylène-glycols

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KROPF, CHRISTIAN

Inventor name: MUSSMANN, NINA

Inventor name: EITING, THOMAS

Inventor name: UMBREIT, CHRISTIAN

Inventor name: JOB, MAREILE

Inventor name: BENDA, KONSTANTIN

Inventor name: BASTIGKEIT, THORSTEN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180926