EP3325597A1 - Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes - Google Patents

Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes

Info

Publication number
EP3325597A1
EP3325597A1 EP16741307.9A EP16741307A EP3325597A1 EP 3325597 A1 EP3325597 A1 EP 3325597A1 EP 16741307 A EP16741307 A EP 16741307A EP 3325597 A1 EP3325597 A1 EP 3325597A1
Authority
EP
European Patent Office
Prior art keywords
acid
dishwashing detergent
weight
machine dishwashing
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16741307.9A
Other languages
German (de)
English (en)
Other versions
EP3325597B1 (fr
Inventor
Inga Kerstin Vockenroth
Johannes Zipfel
Silke Menke
Thomas Weber
Noelle Wrubbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56497769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3325597(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL16741307T priority Critical patent/PL3325597T3/pl
Publication of EP3325597A1 publication Critical patent/EP3325597A1/fr
Application granted granted Critical
Publication of EP3325597B1 publication Critical patent/EP3325597B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/045Multi-compartment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase

Definitions

  • the present invention relates to a machine dishwashing detergent which exhibits improved cleaning performance, in particular of enzyme-sensitive soiling, the use of this dishwashing detergent and a machine dishwashing method
  • EP 2 217 690 A1 describes a composition comprising an enzyme and a bleaching compound, wherein the enzyme and the bleaching compound are each provided in distinct areas, i. spatially separated from each other, as these
  • a builder is further included in the enzyme region, wherein the builder comprises methylglycinediacetic acid (MGDA).
  • MGDA methylglycinediacetic acid
  • the invention is to provide a, preferably phosphate-free, machine dishwashing detergent, which has a further increased cleaning performance.
  • a first aspect of the present invention is therefore a machine dishwashing detergent comprising (A) an enzyme phase, wherein the enzyme phase contains at least one enzyme and is substantially free of bleaches and organic builders from the class of amino carboxylic acids and their salts; and (B) a bleaching phase, wherein the bleaching phase contains at least one bleaching agent, at least one bleach catalyst, and at least one organic builder from the class of aminocarboxylic acids and their salts, in particular methylglycinediacetic acid (MGDA) or their salts.
  • MGDA methylglycinediacetic acid
  • the present invention likewise relates to the use of a machine dishwashing detergent according to the invention in a machine dishwashing process, in particular the use for improving the cleaning performance of enzyme-sensitive soiling on dishes during its cleaning in an automatic dishwashing machine.
  • the present invention is also directed to a machine dishwashing process in which a machine dishwashing agent according to the invention is used, in particular for the purpose of improving the cleaning performance of enzyme-sensitive soiling.
  • At least one as used herein means 1 or more, ie 1, 2, 3, 4, 5, 6, 7, 8, 9 or more. With respect to an ingredient, the indication refers to the kind of the ingredient and not on the absolute number of molecules. "At least one bleach catalyst” thus means
  • At least one type of bleach catalyst that is, one type of bleach catalyst or a mixture of several different bleach catalysts may be meant.
  • the term "weight information" refers to all compounds of the specified type which are contained in the composition / mixture, ie that the composition does not contain any further compounds of this type beyond the stated amount of the corresponding compounds.
  • molecular weights herein, these references always refer to the number average molecular weight M n , unless explicitly stated otherwise.
  • the number average molecular weight can be determined, for example, by means of gel permeation chromatography (GPC) according to DIN 55672-1: 2007-08 with THF as the eluent.
  • the weight average molecular weight M w can also be determined by GPC as described for M n.
  • substantially free of or “free of” means that the ingredient in question is contained in the appropriate phase or agent in a negligible amount, especially in an amount representative of the typical functionality of the present invention
  • the enzyme phase is "substantially free of MGDA or its salts.”
  • this specification refers to amounts of 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight. % or less, more preferably 0.01% or less by weight, most preferably 0.001% or less or 0.0001% by weight or less, each based on the weight of the enzyme phase the term "phosphate-free", while the abovementioned proportions by weight are based in each case on the entire cleaning agent.
  • the bleaching phase is "substantially free of enzymes.”
  • this specification refers to amounts of enzyme protein of 0.1% by weight or less, preferably 0.05% by weight or less, more preferably 0.01% by weight. % or less, more preferably 0.001% by weight or less, most preferably 0.0005% by weight or less or 0.0001% by weight or less, each based on the weight of the bleaching phase.
  • fatty acids or fatty alcohols or their derivatives - unless otherwise stated - representative of branched or unbranched carboxylic acids or alcohols or their derivatives having preferably 6 to 22 carbon atoms.
  • the oxo alcohols or their derivatives which are obtainable, for example, by the RoELEN's oxo synthesis, can also be used correspondingly.
  • the agents of the present invention contain at least one enzyme, preferably in the form of an enzyme preparation or enzyme composition, which may contain one or more enzymes. Suitable enzymes include, but are not limited to, proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents, which are preferably used accordingly.
  • Detergents according to the invention preferably contain enzymes in total amounts of from 1 ⁇ 10 -6 to 5% by weight, based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • proteases are among the most technically important enzymes of all. For detergents and cleaners, they are the longest established and contained in virtually all modern, powerful detergents and cleaners enzymes. They cause the degradation of protein-containing stains on the items to be cleaned. Of these, in turn, proteases of the subtilisin type (subtilases, subtilopeptidases, EC 3.4.21 .62) are particularly important, which are serine proteases due to the catalytically active amino acids. They act as nonspecific endopeptidases and hydrolyze any acid amide linkages that are internal to peptides or proteins. Their pH optimum is usually in the clearly alkaline range.
  • Subtilases Subtilisin-like Proteases
  • R. Siezen pages 75-95 in "Subtilisin enzymes", edited by R. Bott and C. Betzel, New York, 1996.
  • Subtilases are naturally occurring formed by microorganisms. Of these, in particular, the subtilisins formed and secreted by Bacillus species are to be mentioned as the most important group within the subtilases.
  • proteases preferably used in detergents and cleaners from
  • Subtilisin type are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the protease from Bacillus lentus, in particular from Bacillus lentus DSM 5483,
  • Proteases are selectively or randomly modified by methods known from the prior art and thus optimized, for example, for use in detergents and cleaners. These include point mutagenesis, deletion or insertion mutagenesis or fusion with other proteins or protein parts. Thus, correspondingly optimized variants are known for most proteases known from the prior art.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from B. amyloliquefaciens, from B. stearothermophilus, from Aspergillus niger and A. oryzae as well as the further developments of the aforementioned amylases which are improved for use in cleaning agents. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from B. agaradherens
  • lipases or cutinases are also usable according to the invention.
  • lipases or cutinases in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, those originally from Humicola lanuginosa
  • Thermomyces lanuginosus available, or further developed lipases, especially those with the amino acid exchange D96L, T213R and / or N233R, particularly preferably all of the exchanges D96L, T213R and N233R.
  • enzymes can be used which are termed hemicellulases
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • oxidases oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases
  • organic, more preferably aromatic, enzyme-interacting compounds to enhance the activity of the respective oxidoreductases (enhancers) or to react at greatly varying redox potentials between the oxidizing enzymes and the
  • the agent contains at least one protease and, preferably, at least one amylase.
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Cleaning-active proteases and amylases are generally not provided in the form of the pure protein but rather in the form of stabilized, storage and transportable preparations.
  • Such prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers or further auxiliaries.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core with a water, air and / or
  • Chemical-impermeable protective layer is coated.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • the enzyme protein forms only a fraction of the total weight of conventional enzyme preparations.
  • the enzyme protein forms only a fraction of the total weight of conventional enzyme preparations.
  • Protease and amylase preparations contain between 0.1 and 40 wt .-%, preferably between 0.2 and 30 wt .-%, particularly preferably between 0.4 and 20 wt .-% and
  • agents which, based in each case on their total weight, contain 0.1 to 12% by weight, preferably 0.2 to 10% by weight and in particular 0.5 to 8% by weight, of enzyme preparations.
  • the amounts by weight of enzymes mean in each case the amount of active enzyme protein relative to the total mass of the entire composition.
  • the enzyme phase contains at least 0.0001 wt .-%, preferably at least 0.001 wt .-%, in particular at least 0.01 wt .-%, particularly preferably at least 0.05 wt .-%, most preferably at least 0 , 1 wt% protease per gram of total composition.
  • the enzyme phase contains at least 0.0001% by weight, preferably at least 0.0005% by weight,
  • the enzyme phase contains at least 0.0005 wt .-%, in particular at least 0.001 wt .-%, particularly preferably at least 0.005 wt .-%, most preferably at least 0.01 wt .-% amylase per gram of
  • Total composition and at least 0.001 wt .-%, in particular at least 0.01 wt .-%, particularly preferably at least 0.05 wt .-%, most preferably at least 0, 1 wt .-% protease per gram of the total composition.
  • compositions described herein may also include enzyme stabilizers.
  • stabilizers are reversible protease inhibitors. Benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are frequently used for this purpose, including, in particular, derivatives with aromatic groups, for example ortho, meta or para-substituted
  • Phenylboronic in particular 4-formylphenyl-boronic acid, or the salts or esters of said compounds.
  • peptide aldehydes that is, oligopeptides with reduced C-terminus, especially those of 2 to 50 monomers, or their bisulfite adducts are used for this purpose.
  • peptidic reversible protease inhibitors include ovomucoid and leupeptin.
  • specific, reversible peptide inhibitors for the protease subtilisin and fusion proteins from proteases and specific peptide inhibitors are suitable.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C12, such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable for this purpose. Other enzyme stabilizers are known to those skilled in the art.
  • the bleach catalysts useful in this invention include, but are not limited to, the group of bleach-enhancing transition metal salts and transition metal complexes, preferably Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • complexes of manganese in the oxidation state II, III, IV or IV are used, which preferably contain one or more macrocyclic ligand (s) with the
  • bleach catalyst in the compositions of the invention, which as macromolecular ligands 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me-TACN), 1, 4,7-triazacyclononane (TACN ), 1, 5,9-trimethyl-1, 5,9-triazacyclododecane (Me-TACD), 2-methyl-1, 4,7-trimethyl-1, 4,7-triazacyclononane (Me / Me-TACN) and or 2-methyl-1,4,7-triazacyclononane (Me / TACN).
  • suitable bleach catalyst s in the compositions of the invention, which as macromolecular ligands 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me-TACN), 1, 4,7-triazacyclononane (TACN ), 1, 5,9-trimethyl-1, 5,9-triazacyclododecane (Me-TACD), 2-methyl-1, 4,7-trimethyl-1, 4,7-triazacyclonon
  • Automatic dishwashing detergent characterized in that it comprises a bleach catalyst selected from the group of bleach-enhancing transition metal salts and
  • Transition metal complexes preferably from the group of the complexes of manganese with 1, 4,7-trimethyl-1,4,7-triazacyclononane (Me-TACN) or 1,2,4,7-tetramethyl-1,4,7-triazacyclononane ( Me / Me-TACN), are preferred according to the invention, since in particular the cleaning result can be significantly improved by the aforementioned bleach catalysts.
  • Central atoms Mn and Co are preferably used in an amount of up to 1% by weight, in particular from 0.001% by weight to 0.1% by weight and more preferably from 0.01% by weight to 0.05% by weight. %, in each case based on the total weight of the agent used. In special cases, however, more bleach catalyst can be used.
  • the bleaching agents which can be used according to the invention are washing or cleaning-active substances.
  • sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates,
  • Peroxophthalates diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid. Furthermore, bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids. It is also possible to use all other inorganic or organic peroxy bleaches known to the person skilled in the art.
  • As a bleaching agent and chlorine or bromine releasing substances can be used. Examples of suitable chlorine or bromine releasing materials
  • heterocyclic N-bromo- and N-chloroamides for example trichloroisocyanuric acid
  • Tribromoisocyanuric acid Tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium into consideration.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • the bleaching agent is in an amount of 1-35 wt%, and more preferably 2-30 wt%, 3.5-25 wt%, 4-20 wt%, and most preferably 5 -15 wt .-% in the dishwashing detergent according to the invention, each based on the total weight of the dishwashing detergent.
  • Preferred dishwashing detergents are further characterized in that the dishwashing detergent, based in each case on the total weight of the dishwashing detergent, contains from 2 to 20% by weight, preferably from 3 to 18% by weight and in particular from 4 to 15% by weight of sodium percarbonate.
  • Bleach-enhancing transition metal salts and transition metal complexes preferably from the group of the complexes of manganese with 1, 4,7-trimethyl-1, 4,7-triazacyclononan (Me-TACN) or 1, 2,4,7-tetramethyl-1, 4.7 triazacyclononane (Me / Me-TACN), and / or
  • the bleach catalyst is a complex of manganese with 1, 4,7-trimethyl-1, 4,7-triazacyclononane (Me-TACN), in particular [Mn lv 2 (-O) 3 (Me-TACN) 2] ( PFe) 2, or 1, 2,4,7-tetramethyl-1, 4,7-triazacyclononane (Me / Me-TACN) or a mixture thereof, and the hydrogen peroxide source sodium percarbonate.
  • the bleach catalyst and the hydrogen peroxide source are preferably present in the amounts stated above.
  • the automatic dishwashing agents additionally contain at least one bleach activator.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Of all those skilled in the art known from the prior art
  • Bleach activators are polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n- Nonanoyl or Isononanoyloxybenzolsulfonat (n- or iso-NOBS) is particularly preferably used. Very particular preference is TAED. Also combinations of conventional
  • Bleach activators can be used. These bleach activators are preferably used in amounts of up to 10% by weight, in particular 0.1 to 8% by weight, especially 2 to 8% by weight and more preferably 2 to 6% by weight, based in each case on the total weight of the agent used.
  • the bleach activators can, in contrast to the bleach and the
  • Bleach catalyst formulated in the enzyme phase of the agent.
  • this is a preferred embodiment which serves to separate the bleach and bleach activator from each other.
  • compositions according to the invention contain at least one builder from the class of aminocarboxylic acids and their salts.
  • a particularly preferred member of this class is methylglycinediacetic acid (MGDA) or salts thereof, but also glutamic diacetic acid (GLDA) or its salts or ethylenediamine diacetic acid or its salts (EDDS) can be used.
  • MGDA methylglycinediacetic acid
  • GLDA glutamic diacetic acid
  • EDDS ethylenediamine diacetic acid or its salts
  • the content of these aminocarboxylic acids, in particular of MGDA, or their salts for example, between 5 and 35 wt .-%, preferably between 10 and 25 wt .-% and
  • Aminocarboxylic acids and their salts can be used together with other builders, in particular with the phosphate-free builders which are described below.
  • the agents described herein comprise at least two separate phases, namely at least one enzyme-containing phase or at least one bleach-containing phase.
  • a phase in the sense of the present invention is a spatial area in which physical parameters and the chemical composition are homogeneous.
  • a phase is different from another phase in terms of different characteristics, such as ingredients,
  • the washing or cleaning agent according to the invention has more than one first phase, then these can likewise be distinguished from one another by the naked eye, because they can be found, for example, in the
  • Coloring differ from each other.
  • a visual differentiation of the phases for example due to a color or transparency difference is possible.
  • Phases in the sense of the present invention are thus self-contained areas that can be optically distinguished from the consumer by the naked eye.
  • the individual phases may have different properties in use, such as the speed, with which dissolves the phase in water and thus the speed and order of release of the ingredients contained in the respective phase.
  • the phases are typically spatially separated. This can be done in various embodiments such that when one or both of the phases are liquid phases, the liquid phase is separate from the other phase in a separate, sealed area, for example the chamber of a pouch.
  • Such Kon Stammionsformen are known in the art.
  • solid agents i. Means in which both phases
  • the two phases are also made up spatially separated from each other, for example in the form of a multi-chamber pouches, each of the phases is present in a separate chamber.
  • the two phases may be arranged directly adjacent to each other spatially in such a way that the phases are formulated separately and contact each other, but can not mix.
  • the agents according to the invention preferably comprise at least one further constituent, in particular at least two further constituents selected from the group consisting of further builders, surfactants, polymers, corrosion inhibitors and glass corrosion inhibitors, disintegration auxiliaries, fragrances and perfume carriers.
  • additional builders can be used.
  • the additional builders that can be used include, in particular, the zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • the agents are phosphate-free.
  • NaMSix02x + i ⁇ y H2O are used, wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1: 9 to 4, wherein particularly preferred values for x being 2, 3 or 4, and y a number from 0 to 33, preferably from 0 to 20 stands.
  • M sodium or hydrogen
  • x is a number from 1, 9 to 22, preferably from 1: 9 to 4, wherein particularly preferred values for x being 2, 3 or 4
  • y a number from 0 to 33, preferably from 0 to 20 stands.
  • layered silicates of the formula NaMSix02x + i ⁇ y H2O for example, by Clariant GmbH (Germany) under the trade name Na-SKS.
  • these silicates are Na-SKS-1 (Na 2 Si 2 2045 ⁇ x H 2 O, kenyaite), Na-SKS-2 (Na 2 Si 4 O 29 ⁇ x H 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 0i7 ⁇ x H2O) or Na-SKS-4 (Na 2 Si 4 09 ⁇ x H2O, makatite).
  • Particularly suitable for the purposes of the present invention are crystalline phyllosilicates of the formula
  • NaMSix02x + i ⁇ y H2O where x is 2.
  • Machine dishwashing detergents preferably contain a weight proportion of crystalline layered silicate of formula NaMSix02x + i y ⁇ H2O of 0.1 to 20 wt .-%, preferably from 0.2 to 15 wt .-% and in particular from 0.4 to 10 wt. -%, in each case based on the total weight of these funds.
  • amorphous sodium silicates having a modulus Na 2 O: SiO 2 of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which are preferably delayed in dissolution and secondary wash properties.
  • the dissolution delay compared to conventional amorphous sodium silicates can in various ways, for example by surface treatment, compounding, compaction / compaction or by
  • amorphous is understood to mean that the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle , cause.
  • the silicates are preferably formulated separately from the enzyme phase and, optionally, also the bleach phase, and may be included, for example, in a third phase of the agent. Examples of such a preparation are the known solid dishwashing detergent tablets with two phases and a core, in which case, for example, the core may contain the silicate.
  • the agents described herein are preferably phosphate-free.
  • the dishwashing detergents can contain as further builders in particular also phosphonates, which according to the invention are not subsumed under the phosphates.
  • the phosphonate compound used is preferably a hydroxyalkane and / or aminoalkane phosphonate.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance.
  • aminoalkanephosphonates are preferably ethylenediamine tetramethylenephosphonate (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) and their higher homologues in question.
  • Phosphonates are contained in the compositions preferably in amounts of 0.1 to 10 wt .-%, in particular in amounts of 0.5 to 8 wt .-%, each based on the total weight of the dishwashing detergent.
  • the phosphonates are also preferably formulated separately from the enzyme phase so that the enzyme phase in various embodiments does not contain phosphonates.
  • the phosphonates can be formulated, for example, in the bleaching phase.
  • alkali carriers are examples of alkali carriers.
  • alkali metal carbonates in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the optional alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 % By weight and in particular below 2% by weight, in each case based on the total weight of the automatic dishwashing detergent.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • alkali carriers are preferably made up separately from the enzyme phase and can be present, for example, in the bleach phase.
  • organic cobuilders are, in particular, polycarboxylates / polycarboxylic acids, aspartic acid, polyacetals, dextrins, other organic cobuilders and phosphonates. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • NTA nitrilotriacetic acid
  • Acidification and thus also serve to set a lower and milder pH of the automatic dishwashing detergent.
  • citric acid here are citric acid,
  • Succinic acid glutaric acid, adipic acid, gluconic acid and any mixtures thereof.
  • citric acid and / or citrates in these compositions has proved to be particularly advantageous for the cleaning and rinsing performance of agents according to the invention. Therefore, machine dishwashing detergents are preferred according to the invention, in that the automatic dishwashing agent contains citric acid or a salt of citric acid and that the weight fraction of citric acid or of the salt of citric acid is preferably more than 5 wt.%, In particular between 10 and 40 wt. is.
  • Citric acid and citrates can also be formulated in the enzyme phase.
  • compositions of the invention may contain surfactants, wherein the nonionic, the anionic, the cationic and the amphoteric surfactants are counted among the group of surfactants.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are the polyhydroxy fatty acid amides known as PHFA.
  • low-foaming nonionic surfactants are preferably used, in particular alkoxylated, especially ethoxylated, low-foaming nonionic surfactants.
  • the automatic dishwashing detergents contain nonionic surfactants from the group of the alkoxylated alcohols.
  • a class of useful nonionic surfactants which can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants are accordingly alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alkyl chain.
  • surfactants come from the groups of ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as
  • Polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are characterized by good foam control.
  • Suitable nonionic surfactants are those which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R is a straight-chain or branched, saturated or mono- or polyunsaturated Ce-24-alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -Chta, -CH2CH3, -CH2CH2-CH3, CH (CH3) 2 and the indices w, x, y, z are each independently integers 1 to 6
  • nonionic surfactants which have a C9-alkyl group with 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4
  • Preferred nonionic surfactants here are those of the general formula
  • R is -CH (OH) CH 2 O- (AO) w- (A'0) x- (A "0) y - (A '" 0) z R 2 in which
  • R is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24-alkyl or alkenyl radical;
  • R 2 is H or a linear or branched hydrocarbon radical having 2 to 26 carbon atoms;
  • A, ⁇ ', A "and A'” independently represent a radical from the group
  • w, x, y and z are values between 0.5 and 120, where x, y and / or z can also be 0.
  • Hydrocarbon radicals having 2 to 30 carbon atoms, preferably 4 to 22
  • Carbon atoms further having a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, wherein x for values between 1 and 90, preferably for values between 10 and 80 and in particular for values between 20 and 60 stands.
  • Particularly preferred are surfactants of the above formula in which R is C7 to C13, x is an integer from 16 to 28 and R 2 is Cs to C12.
  • R is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 is a linear or branched one
  • Hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15 stands.
  • nonionic surfactants include, for example, the C2-26 fatty alcohol (PO) i- (EO) is-4o-2-hydroxyalkyl ethers, in particular the coco fatty alcohol (PO) i (EO) 22-2-hydroxydecyl ethers , Particular preference is furthermore given to those end-capped poly (oxyalkylated) nonionic surfactants of the formula R 0 [CH 2 CH 2 O] x [CH 2 CH (R 3 ) O] y CH 2 CH (OH) R 2 in which R and R 2 independently of one another are linear or branched , saturated or single or multiple
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 0 [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] jOR 2 where R and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic
  • Hydrocarbon radicals having 1 to 30 carbon atoms R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical, x is Values between 1 and 30, k and j represent values between 1 and 12, preferably between 1 and 5.
  • k and j represent values between 1 and 12, preferably between 1 and 5.
  • R and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22
  • Carbon atoms, with radicals having 8 to 18 carbon atoms are particularly preferred.
  • R 3 H, -Chta or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x> 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • R 1 RO [CH 2 CH (R 3 ) O] x CH 2 CH (OH) CH 2 OR 2 simplified.
  • R 1 R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R and R 2 Have 9 to 14 carbon atoms, R 3 is H and x assumes values of 6 to 15.
  • nonionic surfactants of the general formula R -CH (OH) CH 2 O- (AO) w -R 2 have proved to be particularly effective, in which
  • R stands for a straight-chain or branched, saturated or mono- or polyunsaturated C 6 2 4 alkyl or alkenyl radical
  • R 2 is a linear or branched hydrocarbon radical having 2 to 26
  • A is a radical from the group CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH (CH 3 ),
  • w stands for values between 1 and 120, preferably 10 to 80, in particular 20 to 40
  • the group of these nonionic surfactants includes, for example, the C4-22 fatty alcohol (EO) io-8o-2-hydroxyalkyl ethers, in particular also the C8-12 fatty alcohol (EO) 22-2-hydroxydecyl ethers and the C4-22 fatty alcohol (EO) 4o 8o-2-hydroxyalkyl ethers.
  • R 2 is hydrogen and R, R 3 , A, ⁇ ', A ", A'", w, x, y and z are as defined above.
  • compositions described herein which comprise at least one nonionic surfactant, preferably a nonionic surfactant from the group of hydroxy mixed ethers, contain the surfactant in various embodiments in an amount based on the total weight of the composition of at least 2 wt.%, Preferably at least 5 wt. %.
  • the amounts used per application may be in the range of 0.5-10 g / job, preferably in the range of 0.5-5 g / job.
  • nonionic surfactants which have a melting point above
  • Nonionic surfactant (s) having a melting point above 20 ° C, preferably above 25 ° C, more preferably between 25 and 60 ° C and especially between 26.6 and 43.3 ° C, is / are particularly preferred ,
  • Suitable anionic surfactants in dishwashing detergents are all anionic surfactants. These are characterized by a water-solubilizing, anionic group such as. As a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 8 to 30 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • Suitable anionic surfactants are preferably present in the form of the sodium, potassium and ammonium as well as mono-, di- and trialkanolammonium salts having 2 to 4 C atoms in the alkanol group, but also zinc, manganese (II), magnesium, calcium or Mixtures of these can serve as counterions.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and
  • Ethercarbon yarn having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule.
  • cationic and / or amphoteric surfactants such as betaines or quaternary ammonium compounds.
  • the agents described herein may further contain various polymers.
  • homopolymers of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids can be used according to the invention.
  • unsaturated carboxylic acids ⁇ , ⁇ -ethylenically unsaturated carboxylic acids
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl-acrylic acid, maleic acid,
  • Methylenmalonic acid sorbic acid, cinnamic acid or mixtures thereof.
  • acrylic acid very particular preference is given to acrylic acid.
  • the homopolymer is therefore a polyacrylic acid.
  • the carboxylic acid groups may be wholly or partially in neutralized form, i. in that the acidic carbon atom of the carboxylic acid group in some or all of the carboxylic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or completely neutralized polymers is preferred according to the invention.
  • the molecular weight of the homopolymers used can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred dishwashing detergents are characterized in that the homopolymers, in particular the polyacrylic acids, have molar masses M n of 1000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molecular weights of from 1100 to 10 000 g / mol, and particularly preferably from 1200 to 5000 g / mol, may again be preferred from this group.
  • the agents further comprise at least one sulfopolymer.
  • the polymers which can be used in this context are, in particular, copolymers which may have two, three, four or more different monomer units, where at least one monomer unit carries a sulfonic acid group.
  • Preferred copolymers contain, in addition to sulfonic acid-containing (s) monomer (s) at least one monomer from the group of unsaturated carboxylic acids.
  • unsaturated carboxylic acid As the unsaturated carboxylic acid (s), the above-described unsaturated carboxylic acids are / are used with particular preference. Acrylic acid is very particularly preferred.
  • R 5 (R 6 ) C C (R 7 ) -X-SO 3 H in which R 5 to R 7, independently of one another, is -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with alkyl or alkenyl radicals substituted by -NH 2 , -OH or -COOH, or by -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3 Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfo - Propylmethacrylat, sulfomethacrylamide, sulfomethylmethacrylamide and mixtures of said acids or their water-
  • the acid groups may be wholly or partially in neutralized form, i. in that the acidic hydrogen atom of the sulfonic and / or carboxylic acid group in some or all acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • the monomer distribution of the copolymers preferably used in the case of copolymers which contain only monomers containing carboxylic acid groups and monomers containing sulfonic acid groups is preferably in each case from 5 to 95% by weight, with the proportion of
  • Sulfonic acid group-containing monomers 50 to 90 wt .-% and the proportion of
  • the copolymers may contain other monomers, particularly unsaturated carboxylic acid ester group-containing monomers.
  • Particularly preferred unsaturated carboxylic acid esters are alkyl esters of monocarboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid,
  • Crotonic acid a-phenyl-acrylic acid, sorbic acid, cinnamic acid or mixtures thereof.
  • C1-8-alkyl esters of acrylic acid such as methyl acrylate, ethyl acrylate,
  • the molecular weight of the copolymers used can be varied in order to adapt the properties of the polymers to the desired use.
  • Preferred dishwashing detergents are characterized in that the copolymers have molecular weights M n of 2000 to 200,000 g / mol, preferably from 4000 to 25,000 g / mol and in particular from 5000 to 15,000 g / mol.
  • the above-described homopolymers and copolymers may each be used in amounts of from 0.5 to 10% by weight, preferably from 1 to 5% by weight, based on the total weight of the composition. Absolute amounts are typically in the range of 0.1 to 2 g / job, preferably in the range of 0.2 to 1.0 g / job.
  • the mass ratio of the polymers to each other, i. Homopolymer to copolymer is in various embodiments, 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
  • the dishwashing agents may alternatively or additionally contain other polymers.
  • Suitable polymers include, in particular, the cleaning-active amphoteric, zwitterionic or cationic polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • Preferred usable amphoteric polymers are from the group of
  • Alkylacrylamide / acrylic acid copolymers the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers , the alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / alkymethacrylate / alkylaminoethylmethacrylate / alkylmethacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally further ionic or nonionic monomers.
  • Further usable zwitterionic polymers are from the group of acrylamidoalkyl trialkyl ammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the Methacroylethylbetain / methacrylate copolymers.
  • Useful cationic polymers come from the groups of quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric
  • Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 indicated polymers.
  • the abovementioned amphoteric, zwitterionic or cationic polymers are present in prefabricated form.
  • For the preparation of the polymers is suitable inter alia
  • Coating compositions preferably by means of water-insoluble coating agents from the group of waxes or paraffins having a melting point above 30 ° C;
  • Support materials from the group of washing or cleaning-active substances particularly preferably from the group of builders (builders) or cobuilders.
  • Machine dishwashing detergents preferably contain the abovementioned cationic and / or amphoteric polymers in amounts of from 0.01 to 10% by weight, based in each case on the total weight of the automatic dishwashing detergent. In the context of the present application, however, preference is given to those automatic dishwashing detergents in which the
  • Weight fraction of the cationic and / or amphoteric polymers between 0.01 and 8 wt .-%, preferably between 0.01 and 6 wt .-%, preferably between 0.01 and 4 wt .-%, particularly preferably between 0.01 and 2 wt .-% and in particular between 0.01 and 1 wt .-%, each based on the total weight of the automatic dishwashing detergent, is.
  • the pH of the dishwashing detergent can be adjusted by means of customary pH regulators, the pH value being chosen as a function of the desired intended use.
  • the pH is in a range of 5.5 to 1 1, preferably 5.5 to 10.5, more preferably 7 to 10.5, especially greater than 7, especially in the range 8 to 10.
  • pH -Stellell serve acids and / or alkalis, preferably alkalis.
  • Suitable acids are in particular organic acids such as acetic acid, citric acid, glycolic acid, lactic acid, succinic acid, adipic acid, malic acid, tartaric acid and gluconic acid or amidosulfonic acid.
  • the mineral acids hydrochloric acid,
  • Suitable bases are selected from the group of alkali and alkaline earth metal hydroxides and carbonates, in particular the alkali metal hydroxides, of which potassium hydroxide and especially sodium hydroxide is preferred.
  • volatile alkali for example in the form of ammonia and / or alkanolamines, which may contain up to 9 carbon atoms in the molecule.
  • the alkanolamine here is preferably selected from the group consisting of mono-, di-, triethanol- and -propanolamine and mixtures thereof.
  • the composition according to the invention may also contain one or more buffer substances (INCI Buffering Agents), usually in amounts of 0.001 to 5 wt .-%. Preference is given to buffer substances which are at the same time complexing agents or even chelating agents (chelating agents, INCI chelating agents). Particularly preferred buffer substances are citric acid or citrates, in particular the sodium and potassium lead,
  • trisodium citrate 2H20 and tripotassium citrate ⁇ 2 ⁇ for example, trisodium citrate 2H20 and tripotassium citrate ⁇ 2 ⁇ .
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and zinc salts and magnesium and zinc complexes.
  • the content of zinc salt in dishwasher detergents is preferably between 0.1 to 5% by weight, preferably between 0.2 to 4% by weight and in particular between 0.4 and 3% by weight
  • the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight .-%, in each case based on the
  • Salts in particular the zinc salts
  • polyethyleneimines such as those available under the name Lupasol® (BASF)
  • BASF Lupasol®
  • perfume oils or perfumes within the scope of the present invention, individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouli, rose or ylang-ylang oil.
  • preservatives may be included in the compositions. Suitable examples are preservatives from the groups of alcohols, aldehydes, antimicrobial acids and / or their salts, carboxylic acid esters, acid amides, phenols, phenol derivatives, diphenyls, diphenylalkanes, urea derivatives, oxygen, nitrogen acetals and formals, benzamidines, isothiazoles and derivatives thereof such as isothiazolines and isothiazolinones, phthalimide derivatives, pyridine derivatives, antimicrobial surface active compounds, guanidines, antimicrobial amphoteric compounds, quinolines, 1, 2-dibromo-2,4-dicyanobutane, iodo-2-propynyl-butyl-carbamate, iodine, iodophores and peroxides.
  • Preferred antimicrobial agents are preferably selected from the group comprising ethanol, n-propanol, i-propanol, 1, 3-butanediol, phenoxyethanol, 1, 2-propylene glycol, glycerol, undecylenic acid, citric acid, lactic acid, benzoic acid, salicylic acid, Thymol, 2-benzyl-4-chlorophenol, 2,2'-methylenebis (6-bromo-4-chlorophenol), 2,4,4'-trichloro-2'-hydroxydiphenyl ether, N- (4-chlorophenyl) N- (3,4-dichlorophenyl) urea, N, N '- (1, 10-decanediyldi-1-pyridinyl-4-ylidene) bis (1-octanamine) dihydrochloride, N, N'-bis - (4-chlorophenyl) -3,12-diimino-2,4,1,1,13-te
  • compositions comprising salicylic acid, quaternary surfactants, in particular benzalkonium chloride and isothiazoles and their derivatives such as isothiazolines and isothiazolinones.
  • the formulation of automatic dishwashing agents described herein can be carried out in different ways.
  • the agents may be in solid or liquid form as well as in a combination of solid and liquid forms.
  • As fixed offer forms are suitable
  • liquid supply forms based on water and / or organic solvents may be thickened, in the form of gels.
  • the funds are made up in the form of multiphase products.
  • the individual phases of such multiphase agents may be the same or different
  • the dishwashing detergents can be present as shaped bodies. In order to facilitate the disintegration of such prefabricated moldings, it is possible Disintegrationstosmittel, so-called
  • Tablet disintegrants to incorporate into these agents to shorten the disintegration times.
  • tablet disintegrants or disintegrants are meant excipients which ensure the rapid disintegration of tablets in water or other media and for the rapid release of the active ingredients.
  • Desintegrationstosmittel in amounts of 0.5 to 10 wt .-%, preferably 3 to 7 wt .-% and in particular 4 to 6 wt .-%, each based on the
  • the automatic dishwashing agents described herein are preferably prefabricated into dosage units. These dosage units are then also as multiphase products
  • Preferred metering units have a weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 15 and 22 g.
  • the volume of the aforementioned metering units and their spatial form are chosen with particular preference so that a metering of the prefabricated units on the metering a
  • the volume of the dosing unit is therefore preferably between 10 and 35 ml, preferably between 12 and 30 ml.
  • the automatic dishwashing agents in particular the prefabricated metering units, have a water-soluble coating, with particular preference.
  • the water-soluble coating is preferably formed from a water-soluble film material selected from the group consisting of polymers or polymer blends.
  • the wrapper may be formed of one or two or more layers of the water-soluble film material.
  • the water-soluble film material of the first layer and the further layers, if present, may be the same or different. Particularly preferred are films which, for example, can be glued and / or sealed to packages such as hoses or cushions after being filled with an agent.
  • the water soluble package may have one or more chambers.
  • the agent may be contained in one or more chambers, if any, of the water soluble envelope.
  • the amount of agent preferably corresponds to the full or half dose needed for a rinse.
  • the water-soluble coating be polyvinyl alcohol or a
  • Water-soluble coatings containing polyvinyl alcohol or a polyvinyl alcohol copolymer have a good stability with a sufficiently high water solubility, in particular cold water solubility on.
  • Suitable water-soluble films for producing the water-soluble coating are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose
  • Molecular weight in the range of 5,000 to 1,000,000 gmol ⁇ 1 , preferably from 20,000 to 500,000 gmol 1 , more preferably from 30,000 to 100,000 gmol -1 and in particular from 40,000 to 80,000 gmol.
  • polyvinyl alcohol is usually carried out by hydrolysis of polyvinyl acetate, since the direct synthesis route is not possible.
  • polyvinyl alcohol copolymers which are prepared from correspondingly polyvinyl acetate copolymers. It is preferred if at least one layer of the water-soluble coating comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • a polymer selected from the group comprising a polyvinyl alcohol-containing sheet material suitable for producing the water-soluble sheath is selected from the group comprising a polyvinyl alcohol-containing sheet material suitable for producing the water-soluble sheath
  • (Meth) acrylic acid-containing (co) polymers polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers, polylactic acid or mixtures of the above polymers may be added.
  • a preferred additional polymer is polylactic acids.
  • Preferred polyvinyl alcohol copolymers include, in addition to vinyl alcohol, dicarboxylic acids as further monomers. Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and
  • polyvinyl alcohol copolymers include, in addition to vinyl alcohol, an ethylenically unsaturated carboxylic acid, its salt or its esters.
  • Such polyvinyl alcohol copolymers particularly preferably contain, in addition to vinyl alcohol, acrylic acid, methacrylic acid, acrylates, methacrylates or mixtures thereof.
  • the film material contains further additives.
  • the film material may include, for example, plasticizers such as dipropylene glycol, ethylene glycol, diethylene glycol,
  • Additives include, for example, release aids, fillers, crosslinking agents, surfactants, antioxidants, UV absorbers, antiblocking agents, detackifiers, or mixtures thereof.
  • water-soluble packaging according to the invention are films marketed by MonoSol LLC, for example under the designation M8630, C8400 or M8900.
  • Other suitable films include films named Solublon® PT, Solublon® GA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray.
  • the multi-phase dishwashing detergent is closely enveloped by a water-soluble film
  • the water-soluble film which is preferably used in the narrow enclosure, particularly preferably comprises polyvinyl alcohol, as described above, wherein the starting thickness
  • the envelope is even under tension, which is not absolutely necessary.
  • This dense covering of the envelope is conducive to disintegration: upon first contact with water, the envelope will pass a small amount of water at some point, and at first it does not need to dissolve at all. At this point, the disintegrant contained in the tablet begins to swell. This causes the wrapper to increase in volume as a result of the volume increase the tablet abruptly ruptures and releases the tablet. In a non-close fitting
  • the mechanism described here does not work as the tablet can swell without bursting the cladding thereby.
  • the use of a swellable disintegrating agent is superior to a gas-developing system, since its explosive effect in each case leads to a rupture of the casing.
  • the explosive effect may "fizzle out" of the enclosure by leakage of the gas from a leak.
  • Preferred detergent or cleaning agent portions according to the invention are characterized in that the distance between the disposable portion and water-soluble coating over the entire surface is 0.1 to 1000 ⁇ , preferably 0.5 to 500 ⁇ , particularly preferably 1 to 250 ⁇ and in particular 2.5 to 100 ⁇ , is.
  • the film wrapping is first laid loosely around a washing or cleaning agent portion and welded and then shrunk onto it, so that a close contact between the film package and the detergent concentrate is given.
  • washing or cleaning agent disposable portions according to the invention are characterized in that the wrapping is a film packaging shrunk onto the latter.
  • this wrapping can be done by placing a water-soluble lower film on a conveyor chain or a mold (s) tool, then one or more detergent or cleaning agent portion (s) are placed on the lower film; then a water-soluble upper film is placed on the washing or cleaning agent portion (s) on the lower film and this is then fixed on the lower film, including the washing or cleaning agent portion (s),
  • this step can also be done by a single-stranded film, which is then placed around the disposable portions as a tube. This is followed by sealing and optional cutting of the films. Subsequently, then the shrinking of the film by the use of hot air or infrared radiation, optionally with pressing done.
  • Exemplary formulations of the agents according to the invention also include, in particular, phosphate-free dishwashing detergents.
  • An exemplary formulation in which those described herein Polymers in the indicated amounts can be used as an additional constituent, is the following:
  • the corresponding use of the automatic dishwasher detergents according to the invention is likewise an object of the invention.
  • the invention likewise relates to a dishwashing process, in particular a machine dishwashing process, in which a dishwashing detergent according to the invention is used.
  • the subject matter of the present application is therefore furthermore a process for the cleaning of dishes in a dishwashing machine, in which the agent according to the invention is passed into the interior of a dishwasher during the passage of a dishwashing program before the main wash cycle or during the main wash cycle
  • Dishwasher is metered.
  • the metering or the entry of the invention Means into the interior of the dishwasher can be done manually, but preferably the agent is metered by means of the metering chamber into the interior of the dishwasher.
  • Nonionic surfactants 5.1 5.1
  • Nonionic surfactants 1, 5 1, 5 are nonionic surfactants 1, 5 1, 5
  • Nonionic surfactant 0,2 0,2
  • the cleaning performance was determined in Miele GSL dishwashers in the 45 ° C program. Water hardness 21 ° dH. For this purpose, 20 g of the above formulations (tab) were used. After completion of the rinse cycle, the dishes were visually peeled off on a scale of 1-10. The higher the value, the better the cleaning performance. It can be seen that the formulation E1 according to the invention, which contains MGDA in the bleach phase, shows a better cleaning performance on enzyme-sensitive soils, such as minced meat, compared to the comparison formulation V1, which contains MGDA in the enzyme phase (Table 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La présente invention concerne des lessives lave-vaisselle renfermant (A) une phase enzyme contenant au moins une enzyme et exempte d'agents de blanchiment et d'adjuvants organiques de la catégorie des acides aminocarboxyliques et leurs sels ; et (B) une phase de blanchiment contenant au moins un agent de blanchiment, au moins un catalyseur de blanchiment et au moins un adjuvant organique de la catégorie des acides aminocarboxyliques et leurs sels. L'invention concerne également l'utilisation des ces lessives dans un procédé de lavage en lave-vaisselle et des procédés correspondants pour le lavage en lave-vaisselle.
EP16741307.9A 2015-07-23 2016-07-20 Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes Active EP3325597B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16741307T PL3325597T3 (pl) 2015-07-23 2016-07-20 Środek do maszynowego mycia naczyń zawierający środki wybielające, wypełniacze aktywne i enzymy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015213940.9A DE102015213940A1 (de) 2015-07-23 2015-07-23 Maschinelles Geschirrspülmittel enthaltend Bleichmittel, Builder und Enzyme
PCT/EP2016/067263 WO2017013159A1 (fr) 2015-07-23 2016-07-20 Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes

Publications (2)

Publication Number Publication Date
EP3325597A1 true EP3325597A1 (fr) 2018-05-30
EP3325597B1 EP3325597B1 (fr) 2020-07-01

Family

ID=56497769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741307.9A Active EP3325597B1 (fr) 2015-07-23 2016-07-20 Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes

Country Status (5)

Country Link
EP (1) EP3325597B1 (fr)
DE (1) DE102015213940A1 (fr)
ES (1) ES2810750T3 (fr)
PL (1) PL3325597T3 (fr)
WO (1) WO2017013159A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212561A1 (de) * 2017-07-21 2019-01-24 Henkel Ag & Co. Kgaa Geschirrspülmittel enthaltend Citratdihydrat und -anhydrat
CN111225970A (zh) 2017-11-14 2020-06-02 埃科莱布美国股份有限公司 固体控释苛性碱洗涤剂组合物
JP2022549666A (ja) 2019-09-27 2022-11-28 エコラボ ユーエスエー インコーポレイティド 濃縮2in1食器洗浄機洗剤およびすすぎ補助剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245262A1 (de) 2002-05-24 2004-04-08 Henkel Kgaa Einspülkammer-dosierbare Tabletten-Portionen II
DE10245260A1 (de) 2002-09-27 2004-04-15 Henkel Kgaa Verfahren zur Herstellung umhüllter Wasch- oder Reinigungsmittel-Portionen
GB0718944D0 (en) 2007-09-28 2007-11-07 Reckitt Benckiser Nv Detergent composition
GB201014328D0 (en) 2010-08-27 2010-10-13 Reckitt Benckiser Nv Detergent composition comprising manganese-oxalate
US20140018278A1 (en) * 2012-07-11 2014-01-16 Xinbei Song Dishwashing composition with improved protection against aluminum corrosion
US20140179585A1 (en) 2012-12-20 2014-06-26 The Procter & Gamble Company Detergent composition with silicate coated bleach
EP2746381A1 (fr) 2012-12-21 2014-06-25 The Procter & Gamble Company Kit de nettoyage
EP2857487A1 (fr) 2013-10-07 2015-04-08 WeylChem Switzerland AG Poche à compartiments multiples comprenant des compositions de nettoyage, processus de lavage et utilisation de produits de lavage et de nettoyage de textiles et plats
DE102013225485A1 (de) * 2013-12-10 2015-06-11 Henkel Ag & Co. Kgaa Reinigungskraftverstärker für maschinelle Geschirrspülmittel

Also Published As

Publication number Publication date
DE102015213940A1 (de) 2017-01-26
EP3325597B1 (fr) 2020-07-01
ES2810750T3 (es) 2021-03-09
PL3325597T3 (pl) 2020-12-28
WO2017013159A1 (fr) 2017-01-26

Similar Documents

Publication Publication Date Title
EP3209762B1 (fr) Détergent pour lave-vaisselle contenant des complexes métalliques
EP3325596B1 (fr) Lessive lave-vaisselle contenant des agents de blanchiment et des polymères
EP2220205A1 (fr) Produit de nettoyage
EP3325592B1 (fr) Utilisation d'une combinaison d'un agent complexant et d'un tensioactif pour améliorer l'efficacité de rinçage
EP2225357A1 (fr) Détergents
EP3080236A1 (fr) Lessive lave-vaisselle contenant des agents complexants à base de n
EP3325597B1 (fr) Lessive lave-vaisselle contenant des agents de blanchiment et des enzymes
EP3325591B1 (fr) Produit pour lave-vaisselle multiphase à noyau tensioactif
EP3431575B1 (fr) Détergent pour lave-vaisselle comportant un citrate dihydraté et anhydre
EP3502224A1 (fr) Détergent pour lave-vaisselle à performance de nettoyage améliorée, procédé reposant sur l'utilisation dudit détergent ainsi que l'utilisation dudit détergeant
WO2015086475A1 (fr) Lessive lave-vaisselle contenant des agents complexants à base de n
EP4008764A1 (fr) Nettoyage amélioré au moyen du carbonate d'hydrogène dans le détergent de lavage en machine
EP3481936A1 (fr) Produit vaisselle contenant de l'ose acide et de l'acide aminocarboxylique
EP3078732A1 (fr) Produit de rinçage pour lave vaisselle comprenant des complexants a base d'azote et mgda
DE102017212348A1 (de) Verwendung eines Reinigungsmittels enthaltend Aminocarbonsäuren und Sulfopolymere zur Belagsinhibierung
WO2015091147A1 (fr) Détergents liquides pour laver la vaisselle, présentant une viscosité optimisée
DE102013226440A1 (de) Maschinelles Geschirrspülmittel enthaltend Emulgatoren
WO2018138121A1 (fr) Procédé de fabrication d'un corps moulé
EP3502220A1 (fr) Détergent pour lave-vaisselle à performance de rinçage et de nettoyage améliorée, procédé reposant sur l'utilisation dudit détergent ainsi que l'utilisation dudit détergent
DE102017223120A1 (de) Maschinelles Geschirrspülmittel mit verbesserter Reinigungsleistung, Verfahren unter Einsatz dieses Mittels sowie Verwendung des Mittels
WO2018002178A1 (fr) Détergent permettant de réduire la corrosion du verre
DE102013226432A1 (de) Maschinelles Geschirrspülmittel enthaltend Emulgatoren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1286196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010386

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2810750

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016010386

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20210312

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

R26 Opposition filed (corrected)

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20210312

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1286196

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230705

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 8

Ref country code: GB

Payment date: 20230721

Year of fee payment: 8

Ref country code: ES

Payment date: 20230926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230707

Year of fee payment: 8

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230719

Year of fee payment: 8