EP3079919B1 - Document de sécurité comportant une caractéristique de sécurité masquée - Google Patents

Document de sécurité comportant une caractéristique de sécurité masquée Download PDF

Info

Publication number
EP3079919B1
EP3079919B1 EP14809654.8A EP14809654A EP3079919B1 EP 3079919 B1 EP3079919 B1 EP 3079919B1 EP 14809654 A EP14809654 A EP 14809654A EP 3079919 B1 EP3079919 B1 EP 3079919B1
Authority
EP
European Patent Office
Prior art keywords
colour
impression
print information
imaging
environmental conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14809654.8A
Other languages
German (de)
English (en)
Other versions
EP3079919A2 (fr
Inventor
Stefan TRÖLENBERG
Jörg Fischer
Olga Kulikovska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Original Assignee
Bundesdruckerei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH filed Critical Bundesdruckerei GmbH
Publication of EP3079919A2 publication Critical patent/EP3079919A2/fr
Application granted granted Critical
Publication of EP3079919B1 publication Critical patent/EP3079919B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/02Testing electrical properties of the materials thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/369Magnetised or magnetisable materials
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Definitions

  • the invention relates to a security document and to a method for producing a security document which, under given ambient conditions, comprises an area which produces a uniform color impression but in which two different printing information are stored. Furthermore, the invention relates to a method for verifying such a security document.
  • Security documents are known in the prior art in which different information is stored in a region that can not be distinguished from one another due to the color impressions of the two printing information produced.
  • An example of this is printing the area with the first and second printing information, which fill the area completely and are printed with metameric colors.
  • Metameric colors are those colors that produce the same color impression on a human observer when illuminated with white light from a black body radiator, but whose spectrally resolved reflectance spectra are distinguishable when viewed under white light excitation. If the reflectance light is passed through a color filter or excitation during the observation does not take place with a continuous white light spectrum, but with a light spectrum in which certain excitation wavelengths are missing, the information printed with different metameric colors can be differentiated due to the then different color impressions.
  • Such a feature makes it possible to store covert information in a document which can be verified upon verification as to whether it actually exists.
  • the content of the first and second printing information can, of course, additionally be evaluated and included in a verification decision.
  • Security documents include ID cards, Driving licenses, identity cards, as well as banknotes, postage stamps, visas, as well as forgery-proofed labels and packaging, tickets or the like.
  • printing inks are also known from the prior art, the color impression of which is brought about via nano- or microparticles contained in the printing ink, which are arranged aligned with one another in a crystal-like structure.
  • printing inks which comprise in a printing medium a multiplicity of particles which are dispersed in the medium and have electrical or magnetic properties such that they align with one another in a crystal structure when an electric or magnetic field is applied.
  • This crystal structure ensures that light of certain wavelengths can propagate only along certain directions or not at all in the crystal structure and is reflected accordingly. This causes a color impression due to the wavelength-selectively reflected light.
  • a body color can be spoken here of a structural color.
  • a security element with an optical appearance that can be changed by an external magnetic field is known. It is described that the security element has a multiplicity of microcapsules which contain a suspension of a carrier liquid and magnetic nanoparticles which reversibly form a photonic crystal in an external magnetic field in the microcapsules.
  • the security element comprises a multiplicity of microcapsules which contain a suspension of a carrier liquid and magnetic nanoparticles which reversibly form a photonic crystal in an external magnetic field of a magnet in the microcapsules.
  • WO 2009/074284 A2 is an optically variable security element for hedging valuables with an optically variable ink layer is known, the first, optically variable effect pigments for generating a viewing angle-dependent visual impression, and contains the second, by an external magnetic field reversibly alignable effect pigments, wherein the degree of expression of the viewing angle dependent visual impression of the optically variable effect pigments depends on the orientation of the magnetically alignable effect pigments relative to the plane of the color layer.
  • a security feature for securing value documents with a plurality of microcapsules, each having a wall and in each of which a liquid medium is contained, in which a plurality of magnetic particles are distributed, which are movable in the liquid medium and their arrangement within the microcapsule is changeable by the action of a magnetic field, wherein the magnetic particles are adapted to be arranged within the microcapsule so that they form a light-diffracting regular structure.
  • the object of the invention is an improved security document, a novel method for verification of a security document and a method for manufacturing of the security document, which comprise a novel security feature in which covert information can be stored.
  • the invention is based on the idea to form in a security document an area in which a first print information and a second print information are printed so that under predetermined environmental conditions, for example predetermined conditions with respect to an electric field and a magnetic field in the region of the printed area uniform color impression arises in a white light observation with light from a black body radiator.
  • predetermined environmental conditions for example predetermined conditions with respect to an electric field and a magnetic field in the region of the printed area uniform color impression arises in a white light observation with light from a black body radiator.
  • These two print information are applied with a different ink or inks.
  • the second printing information is in this case printed with an ink or printing ink, which has a structure color whose evoked color impression is variable via excitation in such a way that a color impression of the structure color of the second printing information during the action of the excitation of the color impression of the first printing information and distinguishes the color impression that the structure color of the second printing information in the non-excited state, ie the state at predetermined environmental conditions having.
  • a document designed in this way can then be verified by determining a uniform color impression for the first printing information and the second printing information, which is determined under given environmental conditions, for example with regard to an electric field and / or a magnetic field in the region of the area in the security document Discrimination of the first printing information and the second printing information due to the caused color impressions not possible.
  • a uniform homogeneous color impression for the first printing information and the second printing information is to be determined. If the area is printed over the entire area with the first and the second color information, a color uniformly homogeneous surface can be detected under the given ambient conditions.
  • a change in the color impression produced occurs, at least at those points where the second printing information is applied. since the structure color, with which the second printing information is formed, changes under the excitation in the changed environmental conditions so that a different color impression is caused.
  • the first print information is not changed with respect to the color impression or deviating from the second print information.
  • first areas and second areas which cause an identical color impression in the first image, but in the further figure, which is detected during the application of an excitation to change the color impression of the second printing information, cause a different color impression and the second regions in the image captured during the application of an excitation have a color impression that deviates from the color impression in the image that is detected under the given ambient conditions. If these areas are not found, the document can be classified as not genuine in a simple verification. It is important that the change of the color impression of the second printing information is caused by a structural change in the structure color and not by other effects. The color impression is thus based only on the remission and / or transmission properties of the document. A color impression caused by light emission is distinguished therefrom.
  • the excitation of the structure color is such that it does not trigger light emission of the structure color.
  • the structure color always acts passively in such a way that the color impression is not caused by a generation of photons, but only by the wavelength-selective light reflection and / or light transmission.
  • a preparation that can be used to print information is also referred to as ink or ink.
  • a preparation whose color impression produced in the printed state is caused by pigments which absorb and / or remit / reflect certain wavelengths of light independently of ambient conditions are referred to as body colors.
  • Printing preparations or inks or inks whose color impression in the printed state is caused by the fact that a plurality of particles in one are arranged crystal-like regular structure, so that a light propagation of individual wavelengths through the crystal structure only in certain directions or not at all possible and this is a color impression is caused, are referred to as structural colors.
  • the EP 2 463 111 A2 are known pressure preparations, which are structural colors.
  • printing formulations comprising a plurality of nano- or microparticles having electrical or magnetic properties which are arranged in an electric or magnetic field relative to each other in a crystal-like regular structure.
  • the crystal-like structures can be photonic crystals.
  • a photonic crystal is a regular periodic structure that promotes or suppresses light propagation for single or multiple wavelengths due to quantum mechanical effects. This creates a color impression of the corresponding photonic crystal.
  • Structure colors which have a changed color impression when excited, are also in the EP 2 463 111 A2 described.
  • the printing preparation comprises microcapsules enclosing a substrate in which a plurality of colloidal particles are arranged, which again have an electrical or magnetic property and in an electric or magnetic field relative to each other to a crystal or a Arrange crystal-like structure.
  • the colloidal particles may be, for example, charged particles comprising, for example, aluminum, copper, silver, tin, titanium, tungsten, zirconium, zinc, silicon, iron, nickel, goblin or the like.
  • the particles may further comprise a substance containing a polymer material, for example, polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyethylene terephthalate (PET), etc.
  • uncharged particles may have a be charged material loaded.
  • particles may be coated with organometallic oxides such as silicon oxide SiO x , titanium oxide TiO x , etc. But polymer material coated particles coated with ion exchange resins and many more can also be used.
  • organometallic oxides such as silicon oxide SiO x , titanium oxide TiO x , etc.
  • polymer material coated particles coated with ion exchange resins and many more can also be used.
  • EP 2 463 111 A2 a variety of exemplary embodiments is described.
  • the substance in which the colloidal particles are arranged in the microcapsules may be a phase change material. This means that the material can be present in different phases, which have a different viscosity. Depending on the phase in which the substance is located, the colloidal particles dispersed therein may or may not align to a crystal structure upon external excitation. Also, it is possible that a crystal structure induced by external excitation in one phase of the substance is "frozen” by a change of the phase of the substance, so that the crystal structure is obtained even after removal / removal of the excitation for alignment of the colloidal particles remains.
  • the viscosity of the substance in the microcapsules, in which the colloidal particles are dispersed, which arrange themselves upon application of an electric or magnetic field to a crystal structure, is always maintained.
  • An electrorheological fluid is a fluid whose viscosity is adjustable or controllable via an electric field strength. In a room where no electric field is applied, an electrorheological fluid has a low viscosity. Colloidal particles dispersed therein thus have high mobility. When an electric field is applied, the viscosity sharply increases, so that mobility of particles dispersed therein is greatly restricted or inhibited.
  • a magnetorheological fluid is a fluid whose viscosity is adjustable or controllable via a magnetic field strength. In a space where no magnetic field is applied, a magnetorheological fluid has a low viscosity. Colloidal particles dispersed therein thus have high mobility. When a magnetic field is applied, the viscosity sharply increases, so that mobility of particles dispersed therein is greatly restricted or inhibited.
  • Field-free is a space in which neither an electric nor a magnetic field is present. For the purposes of the objects described here, this is understood to mean the absence of an externally adjusted electrical or magnetic field. A field caused by magnetic particles or electrically charged particles intrinsically present in an article is left unattended. Likewise, the magnetic field strength caused by the geomagnetic field is considered to be irrelevant, so that a room despite the existing geomagnetic field is field-free, if no additional magnetic field is present in the room.
  • the space is considered to be field-free if there is no electric field even if, for example, a magnetic field is applied to influence a magenta-rheological fluid in the room in terms of its viscosity ,
  • the space is field-free if there is no "outer" magnetic field with a field strength in the space that is greater than the field strength of the Earth's magnetic field.
  • a security document according to the invention is defined in claim 1 and comprises an area in which a first print information and a second print information are stored, which produce an identical color impression under predetermined ambient conditions, so that under the given ambient conditions a homogeneous, uniform color impression for the first print information and the second printing information in the area is caused and the first printing information and the second printing information are indistinguishable due to the color impression caused, wherein it is provided that the second printing information is formed by an ink / ink having a structure color whose evoked color impression on a stimulus is changeable.
  • a set of state variables such as temperature, light irradiation, viewing angle, but in particular an electric field strength, a magnetic field strength and its direction, homogeneity, possible gradients and the like understood.
  • the advantage of a security document executed in this way is that, under the given environmental conditions, the first and second printing information are indistinguishable and thus can not be perceived separately.
  • the given environmental conditions coincide with normal conditions, ie a temperature around the 21 ° C in a field-free space, and a consideration in a lighting with white light of a black body radiator is made, the first and the second pressure information are not separately perceived. The fact that different information exists at all can not be found in the security document under these conditions.
  • the structure color with which the second printing information is formed is changed by an excitation, for example by generating an electric or magnetic field in the area of the security document or of the area in which the first and second printing information are stored or changes a crystal structure and this the transmission and / or remission or reflection properties of the structure color to the effect that only light of individual wavelengths or no wavelength of the visible spectral range and only in individual directions are transmitted through the crystal structure and for the other wavelengths or A reflection takes place.
  • the with the structure color, with which the second printing information is printed is selected and designed so that a color impression of the second printing information of the color impression of the first printing information in the presence of excitation, ie suitably changed environmental conditions stands out.
  • the first printing information is formed by means of a further structure color whose evoked color impression is also changeable via the excitation, wherein the further structure color, with which the first printing information is formed, during the action of the same excitation due to an induced change of an internal structure has a color impression that is different from the color impression of the second printing information.
  • Both pressure information are inventively formed by structural colors, but behave differently when excited. Both structural colors have colloidal particles which have different diameters or sizes, or in which, alternatively or additionally, the substances in which the particles are dispersed differ in their properties.
  • a method according to the invention for verifying such a security document is defined in claim 8.
  • the verification method reliably makes it impossible to authenticate security documents that do not have the above-described security feature.
  • Such a security document can be produced by the method according to the invention as defined in claim 17.
  • the first printing information is formed with an ink or printing ink whose color impression is determined by pigments having a body color.
  • the color impression of the first information does not change.
  • the color impression in the first areas of all captured images is always the same regardless of the environmental conditions, i. encouraging independent.
  • the first printing information and the second printing information may be printed such that they are printed side by side and overlap each other at most at the edges where the surfaces printed with the different printing information or different inks are contiguous.
  • the first printing information is printed over the entire surface in the area and the second printing information is printed in partial areas which do not cover the entire area with which the printing ink having a structural color is printed above it.
  • the first printing information can be formed with color pigments, which in one embodiment not according to the invention have a body color, or in one embodiment according to the invention by means of a further structure color.
  • the second printing information may also first be printed over part of the area and the first printing information subsequently be printed over the entire area over the entire area. Regardless of whether the printing information or the surfaces printed therewith overlap each other, always first areas and second areas can be found which have a different color impression under changed environmental conditions.
  • the first areas found in the verification need not necessarily cover the entire area printed in the area with the first printing information.
  • first areas can always be found whose color impression does not change even when the environmental conditions change.
  • second areas can be found which change their color impression when the environmental conditions change.
  • the area is a closed contiguous area which as a whole is a simple geometric structure, For example, a square, a rectangle, a triangle, a circle, an ellipse, a star or the like as a base.
  • the structure color and, if present, additionally or alternatively the further structure color such that they comprise microcapsules in which colloidal particles, for example colloidal nanoparticles, are contained, which can be aligned with one another by means of an electrical and / or a magnetic field in order to create and / or modify a crystal structure, wherein distances between the particles are decisive for the color impression of the respective structure color.
  • the microcapsules with the nanoparticles contained therein, which are arranged in a crystalline structure under suitable environmental conditions thus provide the color impression of the respective structure color or respective structure ink.
  • microcapsules can be easily processed with a variety of chemical additives to printing inks, which provide the desired properties for printing such an ink and thus adapted to a corresponding printing process and the substrate to be printed can be tuned.
  • the substance in the microcapsules is such that, under suitable environmental conditions, it ensures mobility of the colloidal particles contained therein to allow alignment of the colloidal particles in an electric and / or magnetic field, such that a structural change of the colloidal particles Entity is possible.
  • an electric field and / or a magnetic field are thus generated and / or changed in the security document when the environmental conditions change. This change must be brought about at least in the area in which the first and the second printing information are printed.
  • the colloidal particles are preferably charged or paramagnetic. Depending on this configuration, they may be "excited” by an electric field or a magnetic field to form a crystal structure-like arrangement. Electrically charged particles align, for example, in an electric field and try to move along (positively charged particles) or (negatively charged particles) against the electric field lines. However, due to the inclusion in the microcapsule, the colloidal particles are restricted in their movement.
  • the colloidal particles all have at least the same sign of charge, preferably the same charge, and Repel similar charges, counteracts this repulsive force caused by the applied field directed force. This results in the formation of a crystal lattice through the colloidal particles.
  • the magnitude of the field strength affects the relationship between the force induced by the field and the repulsive force of the particles and, via this, an interparticle spacing in the crystal lattice, which in turn is responsible for the optical properties in the interaction with light.
  • the verification method thus provides that an electric field and / or a magnetic field in the security document are changed when the predetermined environmental conditions in the security document and when the environmental conditions are changed.
  • the colloidal particles contained in the microcapsules are arranged in a crystal structure which leads to a color impression in the visible wavelength range when the microcapsules are in a field-free space, and the same by the first pressure information and the second pressure information Color impression is caused in a reflection of incident light in field-free space.
  • the security feature realized via the printing information introduced with different inks in the one area is not verifiable and unrecognizable when the security document is viewed in field-free space. It is only when forming an electric field or magnetic field in the area of the security document that a change in the crystal structure of the colloidal particles takes place and, as a result, the change in the optical properties which change the color impression.
  • a verification method is accordingly provided that when creating the predetermined environmental conditions in the security document a field-free space with respect to an electric field and / or a magnetic field is created.
  • the microcapsules are such that the nanoparticles contained in the microcapsules are not arranged in a crystal structure which results in a color impression in the visible wavelength range when the capsules are in a field-free space.
  • the first printing information is printed with an ink which causes a color impression in the visible wavelength range under the given ambient conditions.
  • the predetermined environmental conditions are associated with a specific predetermined electrical and / or magnetic field, which causes an identical color impression in the structure color of the second printing information. Accordingly, in the verification of such a security document, a predetermined electric and / or magnetic field is generated in the one region when the predetermined environmental conditions are established. Compared to these predetermined ambient conditions, a change is then carried out by increasing the field strength, which then leads to a change in the crystal structure at least in the one structure color of the second printing information which produces a different color impression for the second printing information in the visible wavelength range. Magnetic field strengths to effect such changes are typically in the range of 5 mT to 30 mT.
  • a document body of the security document has at least two electrodes and the second pressure information is arranged between the at least two electrodes.
  • the electrodes are connected to contacts which are led to one or different surfaces of the document body in order to form the electric field between the electrodes by applying a voltage to the contacts.
  • a coil structure may be formed in the document body, which encloses, for example, the area in which the first and second printing information are printed.
  • the terminals of the coil may again be routed to contacts on one or several surfaces, so that a current can be fed into the coil via the contacts, which generates a magnetic field in the area in which the first and second printing information are printed.
  • a verification process may have further improvements.
  • additional mappings are captured and evaluated with the first and the at least one further image and the evaluation of the additional mappings additionally for each of the additional mappings a search of first areas which do not change their color impression compared to the first image, and second Includes areas that produce the same color impression in the first image as the first areas, but produce a different color impression in the respective additional image, and when the verification decision is made classifies a document as non-genuine, if not in at least one of the additional illustrations first areas, which do not change their color impression in relation to the first image, and second areas are found, which have a color impression in the at least one of the additional images, which of the F Arteindruck this second areas in the first figure is different.
  • the second regions of the further image and the at least one additional image in which second regions are found can be evaluated with regard to the color impressions and it can be checked whether these differ between the further and the additional image , If these do not differ despite changes in the environmental conditions, the document can be classified as non-genuine. However, if the color change corresponds to an expected color change, then the document can be classified as genuine.
  • this evaluation can also be applied additionally or alternatively to the expected color changes of the first regions under the different environmental conditions.
  • first regions are sought which differ in terms of their color impression from that of the second regions in the respective image and the color impression in the first image.
  • the verification can be further improved by pattern recognition being performed for detected second regions, information being derived therefrom and the derived information being compared with predetermined information and when the verification decision is made classifying a document as non-genuine if the derived Information does not match the given information. If a match is reached, a positive verification decision can also be made.
  • the derivation of information can be, for example, that the pattern recognition alphanumeric characters are determined, which are represented by the second printing information and these alphanumeric characters are compared with predetermined alphanumeric characters. In the pattern recognition but also geometric figures such as circles, triangles, diamonds, trapezoids or the like can be derived as information content.
  • the color impression or the color impressions of the found second regions may be compared with expected color impressions, and in the case of the verification decision, a document may be classified as non-genuine if the color impressions of the one or more second regions are not within the framework of given tolerances with the expected color impressions match.
  • a detected color gradient can be compared to an expected color gradient as the electrical or magnetic field strength increases. If the first print information is printed with the further structure color, an analog evaluation for the first areas can be carried out.
  • the substance or substances contained in the microcapsules can or may assume different phase states, which have a different viscosity or bring about a different mobility of the colloidal particles.
  • the microcapsules contain a substance which changes its viscosity depending on an internal energy.
  • substances which, for example, significantly increase their viscosity when the internal energy is increased include, for example, electrorheological and magnetorheological fluids.
  • a temperature-dependent phase transition from a solid phase to a liquid phase at a melting or solidification temperature which is for example in the temperature range of 35 ° C to 50 ° C.
  • the colloidal particles are then immobile in normal ambient temperatures in the range of about 21 ° C in the substance and are "held” by this.
  • the colloidal particles are invariable with respect to their mutual orientation, so that neither a crystal structure can be induced nor changed.
  • This makes it possible, for example, to "store" a particular color impression corresponding to a certain field strength prevailing in the microcapsule, when the phase transition from the low viscosity in the liquid state to the high viscosity in the state of solid state has taken place. Accordingly, a verification which causes a color change by changing the electric or magnetic field is only successful if, for example, the temperature of the security document in the area is increased, for example.
  • An embodiment of the verification method thus provides that when the predetermined ambient conditions are brought about, a temperature of the security document above a predetermined melting temperature of the substance in the microcapsules is brought about or maintained.
  • Other embodiments may provide that when the environmental conditions are changed and the environmental conditions are changed, first the environmental conditions relating to the electric and magnetic fields are set and varied as specified, but a temperature of the security document below a melting temperature the substance is held in the microcapsules and a first set of images is captured comprising the first image and the at least one further image or the first image comprising at least one further and the additional images captured at the temperature below the temperature threshold and are evaluated, and then in the security document a temperature above the melting temperature of the substance in the microcapsules is brought about and the induction and variation of the environmental conditions with respect to the electric and / or magnetic field are carried out again and a set of images is detected, the a first map and the at least one further map or image, at least one additional map and additional mappings that are captured and evaluated analogously to the first set of maps
  • the first printing information is printed with the further structure color
  • a substance in the microcapsules which has an approximately identical melting temperature or approximately the same phase transition condition must also be selected here.
  • the two imaging series should be recorded once for a temperature below both melting temperatures, and once for a temperature that is above both melting temperatures.
  • a verification method may be configured when an electrorheological fluid or a magnetorheological fluid is used as a substance in the microcapsules.
  • the field clearance with respect to an electric field in an electrorheological fluid and the field clearance with respect to a magnetic field in a magnetorheological fluid correspond to the liquid phase in the above example.
  • one embodiment of the verification method envisages that when the environmental conditions are changed and the environmental conditions are changed on the one hand the ambient conditions with respect to the electric or magnetic field used to change the color impression of the structure color are set and varied as predetermined, but one physical parameter of the Environmental conditions in the security document are set such that a substance in which colloidal particles are dispersed which imprint a color impression of the structure color through alignment with each other in a crystal-like structure inhibits or greatly restricts mobility of these particles, and a first set of figures, the first image and the at least one further image or the first image, which comprises at least one further image and the additional images, is detected and evaluated, and on the other hand the physi is adjusted according to the predetermined environmental conditions in the security document, so that the mobility of the substance dispersed colloidal particles, which are characterized by an alignment with one another in the crystal-like structure the color impression of the structure color given for a rearrangement and alignment, and the inducing and Varying the environmental conditions with respect to the electric or magnetic field used to change the color impression of
  • a metameric color impression of the first printing information and the second printing information occurs at the predetermined environmental conditions, wherein at the given environmental conditions the structure color with which the second printing information is formed and the further structure color with which the first printing information is formed Color impression at the given ambient conditions in each case due to a caused by an external excitation according to the predetermined environmental conditions structure of the respective nano- and / or microparticles particles, the structure at the given environmental conditions each differ from a structure in field freedom.
  • the metameric color impression is produced under given environmental conditions, in which both structure colors have a color-causing structure of the microparticles or nanoparticles, which are caused by an electric and / or magnetic field, which is different from zero.
  • the predetermined ambient conditions are thus selected and set so that the electrical and / or magnetic field strength each offset the structure colors in a changed color state compared to the color state, which prevails in field freedom.
  • This requires a precise matching and selection of structural colors, as they have to react differently to the external excitations, but nevertheless produce a metameric color impression under the given ambient conditions in which no field freedom prevails.
  • This is caused in each case by the crystal structure of the particles arranged on excitation and thus by a "real" structure color effect.
  • the metameric color impression is caused by the structural color effects of the structure color and the further structure color at given environmental conditions, in which no field freedom prevails.
  • it is checked whether the metameric color impression arises under the given ambient conditions.
  • the first and second printing information can be distinguished, since the structure color and the further structure color are different.
  • a structure color contains a multiplicity of such microcapsules, which are responsible for the color impression of the structure color.
  • the microcapsules 10 each have a shell 11 which encloses a transparent substance 12 with colloidal particles, eg nanoparticles 13, contained therein.
  • the sheath 11 is formed of a transparent material.
  • the substrate 12 is also transparent and constitutes a fluid in which the nanoparticles 13 according to the embodiments Fig. 1a to 1d, 2a to 2d can move.
  • the nanoparticles are for example clusters of iron oxide with a charged layer or plastic nanospheres with a charged coating. In other embodiments, they may also be paramagnetic particles. With regard to concrete embodiments of both the sheaths, the substances contained therein and the nanoparticles is in particular on the EP 2 463 111 A2 directed. In addition, structural paints containing such microcapsules are also available from Nanobrick, Gyeonggi-do, Korea.
  • the colloidal nanoparticles are arranged irregularly in field-free space.
  • the capsules have no special optical property, so that they do not significantly influence the color impression of the structure color in which they are contained. This can thus be regarded, for example, as almost transparent in the printed state.
  • E1 electric field with a field strength
  • the charged nanoparticles align themselves with one another and form a lattice-like crystal structure 15. Since the nanoparticles themselves carry a charge, this leads to a repulsion between one another.
  • a ratio of the electric field strength E1 to the own repulsion due to the charge determines a lattice spacing of the nanoparticles.
  • the crystal structure thus formed has characteristics of a photonic crystal. In these, for some wavelengths propagation is possible only along certain spatial directions. For other wavelengths, propagation may not be possible in any direction. This means that all the light of this wavelength and from all the sinks is reflected. As a result, the color of the microcapsule is conditional.
  • FIG Fig. 1b For example, when illuminated with white light from a black body radiator, a red wavelength component is reflected. If the electric field strength is increased to a value E2> E1, a distance between the nanoparticles is reduced since the ratio between the force due to the external electric field and the repulsive force between the like-charged nanoparticles is given a different ratio. This changes the crystal structure so that a blue component is now reflected, for example, from the white light of a black body radiator, so that the microcapsule provides a blue color impression.
  • FIG. 2a to 2c another embodiment of microcapsules 10 is shown schematically. These differ in that the colloidal particles already in the field-free space in the microcapsule 10 have a crystal structure 15, so that from the white light of a blackbody beam, a red color component is reflected. When the field strength is increased, the distance between the particles in the crystal lattice decreases, so that now a green color component is reflected. If the field strength continues to increase ( Fig. 2c ), the grid spacing becomes even smaller, so that again a blue color component is reflected again.
  • Fig. 3 again, another embodiment of microcapsules 10 is shown.
  • the substance in the microcapsule 10 at different temperatures to a significantly different viscosity.
  • a melting temperature TS mobility of the colloidal particles is severely limited, so that even with the application of a weak electric field with field strength E1 or a stronger field strength E2 (cf. Fig. 3b and 3c ) the crystal structure does not change.
  • the crystal structure is unchanged regardless of the electric field strength such that red light is reflected, for example, from the white light of a black body radiator.
  • the temperature is set above a melting temperature, then the substance becomes liquid, so that when an electric field E1 (FIG. Fig.
  • the embodiment of the Fig. 3a to 3f is described for a substance that has a temperature-dependent phase transition.
  • a magnetorheological fluid as a substance, one obtains an analogous behavior. That in connection with the Figures 3d to 3f described behavior shows such an embodiment when full physical size temperature is used the physical size magnetic field strength, wherein a magnetic field-free space or magnetic field-free state corresponds to the situation in which the temperature is above the melting temperature.
  • the situation of Fig. 3a to 3c occurs when a sufficiently high magnetic field is applied, so that the viscosity of the substance in the microcapsules is greatly increased.
  • the electric field strength takes over the control of the viscosity of the electrorheological fluid and thus represents the physical quantity which is analogous to the temperature in the above example.
  • a low electric field strength corresponds to a temperature above the melting temperature and a high electric field strength to a temperature below the melting temperature.
  • FIG. 4 schematically illustrates four schematic views of an area of a security document.
  • FIG. In Fig. 4a is a legend for the mediated color impressions indicated for all Fig. 4a to 7f applies.
  • first information 21 and second information 22 are printed.
  • the first information 21 and the second information 22 are printed side by side.
  • the second printing information exemplarily forms the letter "A".
  • the remaining area of the area 20 is occupied by the first printing information 21.
  • a structural ink is used, which Mirkokapseln similar to those of Fig. 1a includes.
  • the second printing information can be recognized by the fact that the corresponding printed area is colorless or transparent.
  • the first printing information has, for example, a red color impression.
  • a crystal structure is formed from the colloidal particles in the microcapsules, so that they also reflect red light. In this state, the first printing information and the second printing information are indistinguishable. These conditions are the given environmental conditions for this security document. If the electric field is increased, the particle spacing in the crystal lattice structure decreases, whereby the distance between the particles decreases with increasing field strength (cf. Fig. 4c and 4d ), so corresponding to those areas (second areas 24) which are printed with the second pressure information 22, have a different color impression, namely a green or blue color impression.
  • the weak field strength is first set to determine if a uniform area is created in which no first and second areas are perceptible due to the color. This is at the in Fig. 4b illustrated example of the case.
  • Fig. 5a to 5d is a further non-inventive embodiment shown schematically. Shown are the views of one area of a security document for different field strengths. This embodiment differs from that according to Fig. 4a to 4d in that the entire area 20 is printed over the entire area with the first printing information 21 and the second printing information, which again covers an area which represents a capital letter "A", is printed above it. Again, microcapsules are included, which are after those Fig. 1a to 1c same. In the field-free space, therefore, the printing ink with the microcapsules is almost transparent, so that the uniform homogeneous color impression is caused solely by the first printing information. Under the given environmental conditions, the structure color then assumes the same color impression as the first print information. This is in Fig. 5b shown. If the field strength is further increased, color changes of the second regions 24 printed with the second printing information 22 to the green and blue occur, resulting in the Fig. 5c and 5d is shown.
  • the second printing information 22 which is printed with the structure color already in the field-free space
  • the structure color red which is selected to be identical to the body color of the first printing information 21.
  • the field-free space again results in a homogeneous uniform color impression for the entire area 20. If the field strength increases, occurs in those areas 24 which are printed with the second printing information 22 and corresponding ink, which has a structural color, the letter "A" in different colors over green to blue.
  • the verification can be evaluated thus additionally, whether in the several recorded mappings Fig.
  • a non-inventive embodiment is shown in which the printing ink, which has a structural color, is similar to the microcapsules, as in connection with the Fig. 3a to 3f is explained.
  • the area 20 shows a uniformly homogeneous color impression both in the field-free space ( Fig. 7a ) as well as with increased electric field strengths ( Fig. 7b and 7c ). If, on the other hand, the temperature is raised above a melting temperature, it is true that in the field-free space a uniformly homogeneous area is again recorded with regard to the color impression.
  • increased field strengths Figs.
  • the verification can additionally include a check whether at a temperature below a melting temperature, despite changing the electric field, no color change can be seen, above the melting temperature, however, the color change occurs when changing the electric field.
  • an electrorheological or magnetorheological fluid as the substance in the microcapsules of the structure color
  • the electric field strength for an electrorheological fluid and the magnetic field strength for a magnetorheological fluid wherein in each case a low field strength corresponds to the temperature above the melting temperature and a high field strength with the low temperature below the melting temperature.
  • an electro-rheological fluid uses a magnetic field and, in the case of a magnetorheological fluid, an electric field analogous to the above-described case of a substance with a temperature-dependent phase transition.
  • the security document 30 comprises a total of five substrate layers 31-35 in the illustrated embodiment. Only the uppermost two substrate layers 31, 32 must be transparent in order to be able to recognize the first printing information 21 and the second printing information 22 in the area 20, which is printed on the middle substrate 33.
  • an electrically conductive planar or else grid-like structure is applied as the electrode 41, 42.
  • such an electrode 41, 42 can be formed transparently by means of zinc sulfite.
  • the electrode 42 arranged on the substrate layer 34 below the printing information is designed as a metal layer or metal grid.
  • the electrode 41 on the substrate layer 32 can also be formed by means of metallic wires or opaque conductive printed structures in the form of a grid having a high light transmission in the range of above 50% to preferably 90% in the visible wavelength range. However, it is particularly preferable to use a transparent electrode.
  • the electrodes 41, 42 are contacted by the various substrate layers with contacts 51, 52 on the uppermost substrate layer 31 in the assembled state.
  • Corresponding electrodes 53, 54 are correspondingly contacted with a conductive structure in the form of a coil on the middle substrate layer 33. This encloses the region 20.
  • a current is passed through the conductor loop 55, a magnetic field is created in the region of the region 20.
  • particles which are paramagnetic can be aligned to a crystal structure similar to charged particles via an electric field.
  • top and bottom substrate layers 31, 35 serve essentially as protective layers. All substrate layers 31, 35 are preferably joined together by a high temperature lamination process. It is understood that additional additional security features may be incorporated into the security document 30 in any combination, such as security prints, holograms, other diffractive structures, electronic circuits, etc.
  • Fig. 9a is a plan view of the security document 30 shown in the field-free space.
  • the second pressure information 22 is in a circular structure. This can not be recognized because the structure color in the field-free space has the same color impression as the pigment color, with the first Print information 21 is printed in the rest of the area 20.
  • a voltage is applied to the electrodes 41, 42, an electric field is formed in the region 20 between the electrodes 41, 41. This changes the crystal structure of the second printing information and changes its color.
  • the second region 24 (the circle) clearly protrudes from the first region 23 in which the pigment color is printed. Verification of the security document is reliable and easy.
  • electrodes and a coil are present in the security document in order to be able to vary a field strength in the region 20.
  • other embodiments may include only one of the two excitation options or none of these options.
  • the electrical and / or magnetic field strength can also be produced in any other way, in a tester or simply by means of a magnet, etc.
  • the substance used is a magnetorheological fluid in which the colloidal particles are dispersed
  • crystal structure formation or change upon variation of the electric field can be observed only in the absence of a magnetic field.
  • a magnetic field is generated in the region 20, a phase transition takes place in the substance.
  • the viscosity drops drastically.
  • the first printing information is formed with a printing ink or printing ink which has exclusively pigments which have a body color.
  • the individual embodiments can also be configured in such a way that the first print information is formed with a further structure color, which has the same color impression as the one structure color with which the second print information is printed, but in the case of a change under the given ambient conditions the environmental conditions will show a color change from the color change of a structure color is different.
  • Deviations of these alternative embodiments occur only in the sense that the first areas in the further illustration and, if necessary, if additional images are or are detected, have a color impression in the additional images which differs from the color impression in the one image. Nevertheless, first and second areas can be separated from one another because, given the same environmental conditions, which are different from the given ambient conditions, they have different color impressions and, in addition, have different color changes compared to the one image which is detected under the given ambient conditions. In this one figure, which is recorded under the given environmental conditions, the two printing information are indistinguishable due to the color impression.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Credit Cards Or The Like (AREA)
  • Printing Methods (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Claims (17)

  1. Document de sécurité (30) comprenant
    une partie (20), dans laquelle une première information d'impression (21) et une seconde information d'impression (22) sont mémorisées, lesquelles entraînent, dans des conditions environnantes prédéfinies, une perception de couleur identique si bien que dans les conditions environnantes prédéfinies, une perception de couleur homogène unitaire est entraînée pour la première information d'impression (21) et la seconde information d'impression (22) dans la partie (20) et la première information d'impression (21) et la seconde information d'impression (22) ne peuvent être distinguées du fait de la perception de couleur entraînée,
    dans lequel
    la seconde information d'impression (22) est réalisée au moyen d'une encre, laquelle présente une couleur structurale, dont la perception de couleur entraînée peut être modifiée par le biais d'une stimulation, dans lequel la couleur structurale, avec laquelle la seconde information d'impression est réalisée, présente, pendant l'action de la stimulation du fait d'une modification entraînée d'une structure interne, une perception de couleur qui est différente de la perception de couleur de la première information d'impression,
    dans lequel
    la première information d'impression (21) est réalisée au moyen d'une autre couleur structurale, dont la perception de couleur entraînée peut également être modifiée par le biais de la stimulation, dans lequel l'autre couleur structurale, avec laquelle la première information d'impression est réalisée, présente, pendant l'action de la même stimulation, du fait d'une modification entraînée d'une structure interne, une perception de couleur qui est différente de la perception de couleur de la seconde information d'impression, dans laquelle la couleur structurale et l'autre couleur structurale présentent des particules colloïdales, lesquelles présentent différents diamètres ou tailles ou en variante ou en supplément les substances dans lesquelles les particules sont dispersées se distinguent eu égard à leurs propriétés.
  2. Document de sécurité (30) selon la revendication 1, caractérisé en ce que la couleur structurale et/ou l'autre couleur structurale comprend des microcapsules (10), dans lesquelles des particules colloïdales sont contenues, qui peuvent être orientées les unes par rapport aux autres au moyen d'un champ électrique et/ou d'un champ magnétique afin de créer et/ou de modifier une structure cristalline, dans lequel des espacements entre les particules sont déterminants pour la perception de couleur de la couleur structurale respective.
  3. Document de sécurité (30) selon la revendication 2, caractérisé en ce que les particules colloïdales sont chargées ou sont paramagnétiques.
  4. Document de sécurité (30) selon la revendication 2 ou 3, caractérisé en ce que les microcapsules (10) contiennent une substance (11), laquelle modifie sa viscosité en fonction d'une énergie interne.
  5. Document de sécurité selon l'une quelconque des revendications 2 à 4, caractérisé en ce que les particules colloïdales contenues dans les microcapsules sont disposées dans une structure cristalline, laquelle donne lieu à une perception de couleur dans la plage de longueurs d'onde visible, quand les microcapsules (10) se trouvent dans un espace sans champ, et la même perception de couleur dans le cas d'une observation en lumière incidente est entraînée dans l'espace sans champ par la première information d'impression (21) et par la seconde information d'impression (22).
  6. Document de sécurité (30) selon l'une quelconque des revendications 2 à 5, caractérisé en ce que les particules colloïdales contenues dans les microcapsules (11) ne sont pas disposées dans une structure cristalline, laquelle donne lieu à une perception de couleur dans la plage de longueurs d'onde visible quand les microcapsules (11) se trouvent dans un espace sans champ.
  7. Document de sécurité (30) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un corps de document présente au moins deux électrodes (41, 42) et la seconde information d'impression (22) est disposée entre les au moins deux électrodes (41, 42).
  8. Procédé servant à vérifier le document de sécurité (30) selon l'une quelconque des revendications 1 à 7, lequel présente une partie (20), dans laquelle une première information d'impression (21) et une seconde information d'impression (22) sont mémorisées, lesquelles entraînent, dans des conditions environnantes prédéfinies, une perception de couleur identique si bien que dans les conditions environnantes prédéfinies, une perception de couleur homogène unitaire est entraînée pour la première information d'impression (21) et la seconde information d'impression (22) dans la partie (20) et la première information d'impression (21) et la seconde information d'impression (22) ne peuvent être distinguées du fait de la perception de couleur entraînée, comprenant les étapes :
    de provocation des conditions environnantes prédéfinies dans le document de sécurité (30) défini dans l'une quelconque des revendications 1 à 7, et de détection d'une première image ;
    de modification des conditions environnantes dans le document de sécurité (30) défini dans l'une quelconque des revendications 1 à 7, et de détection d'au moins une autre image ;
    d'évaluation de la première et de l'au moins une autre image, dans lequel l'évaluation comprend une recherche des premières zones et des secondes zones, lesquelles entraînent dans la première image la perception de couleur identique, toutefois entraînent dans l'au moins une autre image une perception de couleur divergente l'une de l'autre, et parmi lesquelles les secondes zones présentent dans l'au moins une autre image une perception de couleur qui est différente de la perception de couleur identique des premières et secondes zones dans la première image ;
    de prise d'une décision de vérification en fonction de l'évaluation, dans lequel le document de sécurité (30) est classé comme n'étant pas authentique quand aucune première et seconde zone n'est trouvée avec les propriétés indiquées, dans lequel un document est classé comme n'étant pas authentique quand des premières zones entraînent dans l'autre image la même perception de couleur que dans la première image.
  9. Procédé de vérification selon la revendication 8, caractérisé en ce que en cas de changement des conditions environnantes, un champ électrique et/ou un champ magnétique sont modifiés dans le document de sécurité (30).
  10. Procédé de vérification selon la revendication 8 ou 9, caractérisé en ce que des modifications supplémentaires des conditions environnantes sont effectuées et des images supplémentaires sont détectées et sont évaluées avec la première et l'au moins une autre image, et l'évaluation des images supplémentaires en supplément pour chacune des images supplémentaires comprend une recherche de premières zones, lesquelles modifient leur perception de couleur par rapport à la première image, et de secondes zones, lesquelles entraînent dans la première image la perception de couleur identique à celle des premières zones, entraînent toutefois dans l'image supplémentaire respective une perception de couleur divergente par rapport à la perception de couleur des premières zones dans la première image et à la perception de couleur des premières zones dans l'image supplémentaire respective ; et
    en cas de prise de la décision de vérification, un document (30) est classé comme n'étant pas authentique quand également des premières zones, lesquelles modifient leur perception de couleur par rapport à la première image, et des secondes zones, lesquelles présentent dans l'au moins une des images supplémentaires une perception de couleur qui est différente de la perception de couleur desdites secondes zones dans la première image, n'existent pas dans au moins une des images supplémentaires.
  11. Procédé de vérification selon la revendication 10, caractérisé en ce qu'il est vérifié lors de l'évaluation si les secondes zones trouvées de l'au moins une autre image coïncident spatialement avec des secondes zones trouvées des images supplémentaires, et qu'en cas de prise de la décision de vérification, un document (30) est classé comme n'étant pas authentique quand les secondes zones de l'au moins une autre image et de l'au moins une des images supplémentaires ne coïncident pas spatialement.
  12. Procédé de vérification selon l'une quelconque des revendications 8 à 11, caractérisé en ce que pour des secondes zones trouvées, une identification de motif est effectuée et une information est dans le cas présent déduite, et l'information déduite est comparée à une information prédéfinie et lors de la prise de la décision de vérification, un document (30) est classé comme n'étant pas authentique quand l'information déduite ne concorde pas avec l'information prédéfinie.
  13. Procédé de vérification selon l'une quelconque des revendications 8 à 12, caractérisé en ce que la perception de couleur ou les perceptions de couleur des secondes zones trouvées sont comparées à des perceptions de couleur attendues et lors de la prise de la décision de vérification, un document (30) est classé comme n'étant pas authentique quand les perceptions de couleur des secondes zones ne concordent pas avec les perceptions de couleur attendues dans le cadre de tolérances prédéfinies.
  14. Procédé de vérification selon l'une quelconque des revendications 8 à 13, caractérisé en ce que lors de la provocation des conditions environnantes prédéfinies, une température dans le document de sécurité supérieure à une température de fusion prédéfinie est provoquée ou maintenue, dans lequel la température de fusion prédéfinie correspond à la température de fusion d'une substance, laquelle est contenue dans des microcapsules d'une couleur structurale et/ou d'une autre couleur structurale et dans laquelle sont dispersées des particules colloïdales, dont la disposition en une structure réticulaire conditionne la perception de couleur de la couleur structurale et/ou de l'autre couleur structurale.
  15. Procédé de vérification selon l'une quelconque des revendications 8 à 14, caractérisé en ce que lors de la provocation des conditions environnantes et la modification des conditions environnantes, d'une part les conditions environnantes sont réglées et variées eu égard au champ électrique ou magnétique, qui est utilisé pour modifier la perception de couleur de la couleur structurale ainsi que cela est prédéfini, toutefois un paramètre physique des conditions environnantes est réglé dans le document de sécurité (30) de telle sorte qu'une substance dans laquelle des particules colloïdales sont dispersées, lesquelles empreignent une perception de couleur de la couleur structurale par une orientation les unes par rapport aux autres dans une structure de type cristalline, empêche ou restreint fortement une mobilité desdites particules colloïdales, et un premier jeu d'images, qui comprend la première image ainsi que l'au moins une autre image ou la première image, l'au moins une autre image et les images supplémentaires, est détecté et évalué, et d'autre part le paramètre physique est réglé selon les conditions environnantes prédéfinies dans le document de sécurité (30) si bien que la mobilité de particules colloïdales dispersées dans ladite substance, lesquelles empreignent, par une orientation les unes par rapport aux autres dans une structure de type cristalline une perception de couleur de la couleur structurale, est de mise pour une redisposition ou orientation, et la provocation et la variation des conditions environnantes eu égard au champ électrique ou magnétique, lequel est utilisé pour modifier la perception de couleur de la couleur structurale, sont également exécutées et un second jeu d'images, qui comprend une première image ainsi que l'au moins une autre image ou une première image, au moins une autre image et des images supplémentaires, est détecté et évalué de manière similaire au premier jeu d'images, et lors de la prise de décision de vérification, le document de sécurité (30) est vérifié comme n'étant pas authentique quand dans les images du premier jeu d'images, des secondes zones peuvent être déterminées, et un document n'est pas classé non plus comme étant authentique quand aucune seconde zone n'est trouvée dans le premier jeu d'images et toutefois, lors de l'évaluation du second jeu d'images un résultat est trouvé, lequel aurait conduit, lors de l'évaluation de seulement un jeu d'images, lors d'une sélection du paramètre physique selon les conditions environnantes prédéfinies, à une catégorisation du document de sécurité comme n'étant pas authentique.
  16. Procédé de vérification selon l'une quelconque des revendications 8 à 15, caractérisé en ce que lors de la provocation des conditions environnantes prédéfinies dans le document de sécurité (30), un espace sans champ eu égard à un champ électrique et/ou à un champ magnétique est créé.
  17. Procédé servant à fabriquer le document de sécurité (30) selon l'une quelconque des revendications 1 à 7, comprenant les étapes :
    d'impression d'une partie (20) avec une première information d'impression (21) et avec une seconde information d'impression (22), lesquelles entraînent, dans des conditions environnantes prédéfinies, une perception de couleur identique si bien que dans les conditions environnantes prédéfinies, une perception de couleur homogène unitaire est entraînée pour la première information d'impression (21) et la seconde information d'impression (22) dans la partie (20) et la première information d'impression (21) et la seconde information d'impression (22) ne peuvent être distinguées du fait de la perception de couleur entraînée,
    dans lequel
    la première information d'impression (21) et la seconde information d'impression (22) sont réalisées au moyen d'encres différentes, et
    la seconde information d'impression (22) est imprimée au moyen d'une encre, laquelle présente une couleur structurale, dont la perception de couleur entraînée peut être modifiée par le biais d'une stimulation, dans lequel la couleur structurale agit toujours de manière passive de telle manière que la perception de couleur n'est pas conditionnée par une génération de photons mais seulement par le réfléchissement de lumière et/ou la transmission de lumière sélectif/sélective en matière de longueurs d'onde,
    dans lequel
    la première information d'impression est réalisée au moyen d'une autre couleur structurale, dont la perception de couleur entraînée peut également être modifiée par le biais de la stimulation, dans lequel l'autre couleur structurale, avec laquelle la première information d'impression est réalisée, présente, pendant l'action de la même stimulation, du fait d'une modification entraînée d'une structure interne, une perception de couleur qui est différente de la perception de couleur de la seconde information d'impression, dans lequel
    la couleur structurale et l'autre couleur structurale présentent des particules colloïdales, lesquelles présentent différents diamètres ou tailles ou en variante ou en supplément, les substances dans lesquelles les particules sont dispersées se distinguent eu égard à leurs propriétés.
EP14809654.8A 2013-12-10 2014-12-10 Document de sécurité comportant une caractéristique de sécurité masquée Active EP3079919B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013225516.0A DE102013225516B4 (de) 2013-12-10 2013-12-10 Sicherheitsdokument mit verdecktem Sicherheitsmerkmal
PCT/EP2014/077288 WO2015086711A2 (fr) 2013-12-10 2014-12-10 Document de sécurité comportant une caractéristique de sécurité masquée

Publications (2)

Publication Number Publication Date
EP3079919A2 EP3079919A2 (fr) 2016-10-19
EP3079919B1 true EP3079919B1 (fr) 2019-09-11

Family

ID=52016590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809654.8A Active EP3079919B1 (fr) 2013-12-10 2014-12-10 Document de sécurité comportant une caractéristique de sécurité masquée

Country Status (3)

Country Link
EP (1) EP3079919B1 (fr)
DE (1) DE102013225516B4 (fr)
WO (1) WO2015086711A2 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217632A1 (de) * 2002-04-19 2003-11-06 Giesecke & Devrient Gmbh Sicherheitsdokument
DE102007059550A1 (de) * 2007-12-11 2009-06-25 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement
DE102009023982A1 (de) 2009-06-05 2010-12-09 Giesecke & Devrient Gmbh Sicherheitselement
DE102009025019A1 (de) 2009-06-10 2010-12-16 Giesecke & Devrient Gmbh Sicherheitsmerkmal und Verfahren zur Herstellung eines Sicherheitsmerkmals
DE102009024447A1 (de) 2009-06-10 2010-12-16 Giesecke & Devrient Gmbh Sicherheitselement mit veränderbarem optischen Erscheinungsbild
KR100953578B1 (ko) 2009-08-05 2010-04-21 주식회사 나노브릭 광결정성을 이용한 인쇄 매체, 인쇄 방법 및 인쇄 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3079919A2 (fr) 2016-10-19
WO2015086711A3 (fr) 2015-08-06
DE102013225516A1 (de) 2015-06-11
WO2015086711A2 (fr) 2015-06-18
DE102013225516B4 (de) 2018-09-06

Similar Documents

Publication Publication Date Title
EP2694299B1 (fr) Élément de sécurité variable optiquement doté d'une couche de couleur variable optiquement
DE102007059550A1 (de) Optisch variables Sicherheitselement
WO2011107271A1 (fr) Élément de sécurité avec pigments magnétiques alignés
DE102008008440A1 (de) Sicherheitselement
EP2734383B1 (fr) Microcapsule et utilisation, élément de sécurité présentant des microcapsules et support de données équipé d'un tel élément de sécurité
DE102011116488A1 (de) Optisch variables Sicherheitselement mit mikrokapselbasierter Farbschicht
EP3079920B1 (fr) Élément de sécurité à superposition et procédé de vérification
DE102014017535B4 (de) Identifikationsdokument mit Informationen aus thermochromer Tinte und Verfahren zum Herstellen eines ldentifikationsdokuments sowie Verfahren zum Verifizieren eines ldentifikationsdokuments
EP3079919B1 (fr) Document de sécurité comportant une caractéristique de sécurité masquée
EP3079917B1 (fr) Document de sécurité doté d'un système de contrôle d'un circuit et procédé de contrôle d'un circuit dans un document de sécurité
EP3079918B1 (fr) Élément de sécurité et procédé de vérification à effet optique fonction de l'excitation dans la gamme des longueurs d'onde non visibles
EP2740607B1 (fr) Système de sécurité pour papiers de sécurité, documents de valeur ou analogues
EP2915146B1 (fr) Procédé et dispositif de vérification d'un élément de sécurité
EP3079921B1 (fr) Élément de sécurité à effet dépendant d'un champ et excitable par uv, procédé de vérification d'un élément de sécurité et composition couleur structural
EP3196045B1 (fr) Élément optique variable comprenant un pigment pouvant être orienté magnétiquement
EP2867030B1 (fr) Elément de sécurité, procédé de fabrication d'un tel élément de sécurité, et procédé de vérification de l'authenticité d'un document de sécurité pourvu d'un tel élément de sécurité
EP2892728B1 (fr) Élément composite muni d'un réseau de lentilles interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160708

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1177950

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012646

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012646

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1177950

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10