EP3077491A1 - Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide - Google Patents

Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide

Info

Publication number
EP3077491A1
EP3077491A1 EP14815271.3A EP14815271A EP3077491A1 EP 3077491 A1 EP3077491 A1 EP 3077491A1 EP 14815271 A EP14815271 A EP 14815271A EP 3077491 A1 EP3077491 A1 EP 3077491A1
Authority
EP
European Patent Office
Prior art keywords
gel
use according
biofilm
mixtures
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14815271.3A
Other languages
German (de)
English (en)
Other versions
EP3077491B1 (fr
Inventor
Amélie LUDWIG
Frédéric GOETTMANN
Fabien FRANCES
Romain CASTELLANI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3077491A1 publication Critical patent/EP3077491A1/fr
Application granted granted Critical
Publication of EP3077491B1 publication Critical patent/EP3077491B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/044Hydroxides or bases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1213Oxides or hydroxides, e.g. Al2O3, TiO2, CaO or Ca(OH)2
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3956Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/24Mineral surfaces, e.g. stones, frescoes, plasters, walls or concretes

Definitions

  • the present invention relates to the use of an oxidizing alkaline gel for removing a biofilm from a surface of a solid substrate.
  • the technical field of the invention can be defined as that of the treatment of polluted surfaces, soiled, deteriorated by biofilms, in order to eliminate these biofilms from these surfaces and in particular to improve the visual appearance of these surfaces.
  • the invention can be applied to all kinds of surfaces such as organic polymer surfaces, for example plastics; surfaces made of vitreous materials; surfaces made of cementitious materials such as cements, pastes, mortars and concretes; surfaces of raw or cooked earth; brick or tile surfaces; plaster surfaces; ceramic surfaces; natural or artificial stone surfaces; plaster surfaces; fiberglass surfaces; fiber cement surfaces; asphalt or tar surfaces; metal or metal alloy surfaces, for example steel, galvanized steel or zinc; and surfaces made of cellulose-based materials such as wood. These surfaces can be painted or not.
  • the invention applies in particular to the elimination of biofilms on outdoor surfaces, located outdoors, buildings, constructions, and objects or structures.
  • the invention can also be applied to the removal of biofilms from surfaces of aquatic vehicles such as boats; land vehicles such as cars, trucks or motorcycles; aircraft such as airplanes, helicopters, seaplanes, or drones; various domestic materials and equipment such as furniture; apparatus and industrial devices, such as pipes, in particular apparatus and devices which are in very humid environments or in which cold spots are created; and agri-food products including compact agri-food products; or else medical devices or apparatus.
  • aquatic vehicles such as boats; land vehicles such as cars, trucks or motorcycles; aircraft such as airplanes, helicopters, seaplanes, or drones; various domestic materials and equipment such as furniture; apparatus and industrial devices, such as pipes, in particular apparatus and devices which are in very humid environments or in which cold spots are created; and agri-food products including compact agri-food products; or else medical devices or apparatus.
  • Construction materials outside that is to say outdoors, such as stones, bricks, plaster, tiles, are continuously exposed to different atmospheric agents that can damage them, such as wind, rain, sun, or humidity.
  • biodeterioration With the industrial era, the concentration of organic and inorganic compounds in the air has greatly increased, aggravating the formation process of these biofilms that combine the double disadvantage of being unsightly because they are mostly black, red or green and lead to accelerated deterioration of building materials, known as biodeterioration.
  • biofilm is commonly used in this field of the art and has a widely recognized and accepted meaning.
  • Biofilms can be defined as clean ecosystems consisting essentially of associations of algae, fungi, bacteria and cyanobacteria, all immersed in a gel or matrix of exopolymers that protects them from external aggressions and makes them very resistant (see document [1]).
  • biofilms are structurally surrounded and protected by exopolymers.
  • biofilms A definition of biofilms is also provided in US-A1-2012 / 0232153 [2] in paragraph [0019], to which reference may be made.
  • the interior of buildings is also free of problems related to the development of biofilms. Wetlands in particular, such as bathrooms, water features, cold spots in bedrooms, constitute a privileged ground for the appearance of black spots that are biofilms (see the book «Biofilm when microbes get organized "by R. Briandet, L. Fechner, M. Na ⁇ ali and C. Dreano, Editions Quae 2012 [3]). Besides, once again, an obvious aesthetic problem, these biofilms can pose human health problems, related to allergies that they are likely to cause in some people.
  • Table 1 List of cleaning techniques most commonly used to eliminate tasks related to biofilm formation.
  • inorganic colloidal gels called "aspirable gels", specifically formulated to be sprayed, then to dry by fracturing, while trapping and confining the radioactive contamination in the form of non-pulverulent flakes, aspirable, and directly packable and storable.
  • Document [5] describes a gel consisting of a colloidal solution comprising an inorganic viscosifying agent, generally silica or alumina, an active agent treatment which is for example an acid or an inorganic base such as sodium hydroxide or potassium hydroxide, and optionally an oxidizing agent having a normal redox potential Eo greater than 1.4 V in a strong acid medium such as Ce (IV), Co (III), or Ag (II).
  • an active agent treatment which is for example an acid or an inorganic base such as sodium hydroxide or potassium hydroxide
  • an oxidizing agent having a normal redox potential Eo greater than 1.4 V in a strong acid medium such as Ce (IV), Co (III), or Ag (II).
  • Document [6] describes a gel consisting of a colloidal solution comprising an inorganic viscosifying agent, generally silica or alumina, a surfactant, an acid or an inorganic base, optionally an oxidizing agent having a normal potential.
  • oxidation-reduction Eo greater than 1.4 V in strong acid medium such as Ce (IV), Co (III), or Ag (M).
  • the gel dries, fractures, and produces dry residues, called "flakes", adhering to the substrate and which are subsequently removed by brushing or aspiration to be directly conditioned.
  • decontamination processes that use these suction gels are therefore dry decontamination processes, generating no liquid effluent and few dry solid residues. Indeed, these dry solid residues represent on average only a quarter of the initially sprayed gel mass.
  • these methods limit the time of exposure of operators to radioactive contamination, because of their easy implementation by spraying and suctioning of dry residues, and the fact that the presence of the operator is not required during the drying of the gel.
  • This gel consists of a colloidal solution comprising at least one inorganic viscosifying agent, at least one biological decontamination agent, at least one superabsorbent polymer, and at least one surfactant.
  • the superabsorbent polymer such as sodium polyacrylate, makes it possible to improve the gel efficiency on porous materials, for example mortars.
  • the gel of the document [7] is, however, specifically intended for the biological decontamination of surfaces, in particular for the so-called post-venal decontamination of surfaces.
  • biofilms are complex systems in which populations of microorganisms are surrounded. and protected by polysaccharides and other macromolecules commonly called exopolysaccharides.
  • the problems posed by the elimination of biofilms are therefore totally different and certainly more complex and more difficult than those encountered in the simple decontamination of a surface contaminated only by isolated biological species.
  • the fact that a gel has been used successfully for the biological decontamination of a surface does not mean that the same gel may be suitable for the removal of biofilms in which the microorganisms are protected by an exopolysaccharide gel. which must first be destroyed.
  • a biofilm includes, in addition, many other components contributing in particular to its coloring little aesthetic, for example red or black, which must also be removed to give the surface its original appearance free of soiling.
  • the gel of the document [7] has a very short shelf life, for example of a few weeks.
  • the object of the present invention is to meet, among others, this need.
  • the subject of the invention is therefore the use of a gel constituted by a colloidal solution comprising, preferably consisting of:
  • a mineral base selected from alkali metal hydroxides, alkaline earth metal hydroxides, and mixtures thereof, said inorganic base being present at a level of from 0.05 to 10 mol / L of gel, preferably from 0.1 to 5 mol / L of gel;
  • the colloidal solution comprises "the rest of solvent”.
  • solvent residue means that the solvent is always present in the colloidal solution and that the amount of solvent is such that, when it is added to the quantities of the components of the colloidal solution other than the solvent (that these components are mandatory or optional components mentioned above, or other additional optional components mentioned or not mentioned), the total amount of all the components of the colloidal solution is 100% by weight.
  • the gel used according to the invention is defined first of all by the fact that it contains the combination of a specific mineral base chosen from alkali metal hydroxides, alkaline earth metal hydroxides, and their mixtures, a specific biocidal oxidizing agent which is a stable oxidizing agent in a basic medium selected from permanganates, persulfates, ozone, hypochlorites, and mixtures thereof, and a surfactant.
  • the gel used according to the invention is a basic gel, that is to say one whose pH is generally greater than 7, preferably 12 to 14, and by basic medium is meant a medium whose pH is generally greater than at 7, preferably from 12 to 14.
  • the gel used according to the invention is then defined in that it does not contain a superabsorbent polymer.
  • the combination of a specific mineral base such as an alkaline hydroxide, such as sodium hydroxide, or an alkaline earth metal hydroxide; a specific oxidizing agent such as hypochlorite, such as sodium hypochlorite which has a biocidal activity; and finally a surfactant is a true synergistic combination, as explained below.
  • a specific mineral base such as an alkaline hydroxide, such as sodium hydroxide, or an alkaline earth metal hydroxide
  • a specific oxidizing agent such as hypochlorite, such as sodium hypochlorite which has a biocidal activity
  • a surfactant is a true synergistic combination, as explained below.
  • the gel used according to the invention has a high efficiency in the context of the elimination of biofilms which is due to the combination of the decontaminating action, biocide, and bleaching of the oxidizing agent such as bleach, and the degreasing action of the mineral base, such as sodium hydroxide, and the sur
  • the specific oxidizing agent such as bleach
  • the specific oxidizing agent is not only a simple oxidizing species, it is also an excellent biocide, in other words, in addition to its degreasing action, the mineral base such as soda therefore also has a biocidal action.
  • the gel used according to the invention which contains the combination of a specific mineral base such as an alkali metal hydroxide, such as sodium hydroxide, or an alkaline earth metal hydroxide, and a specific oxidizing agent such as hypochlorite, as sodium hypochlorite, a biocidal activity enhanced especially with respect to gels, such as those of document [7] containing only a mineral base such as sodium hydroxide.
  • a specific mineral base such as an alkali metal hydroxide, such as sodium hydroxide, or an alkaline earth metal hydroxide
  • hypochlorite as sodium hypochlorite
  • the gel used according to the invention comprises two biocidal compounds, namely a first biocidal active compound which is a mineral base such as sodium hydroxide and a second biocidal active compound which is an oxidizing agent such as bleach.
  • the gel used according to the invention which thus has a high efficiency for eliminating biofilms, is however also stable, and has an increased stability over time.
  • the inventors have demonstrated that the poor stability over time of the biological decontamination gel of the document [7] was due to the superabsorbent polymer because this superabsorbent polymer modifies the rheology of the gel during its storage, which makes it makes it unsuitable for spraying and application on a vertical surface due to poor adhesion.
  • the inventors have furthermore demonstrated that the use of oxidizing agents in the presence of superabsorbent polymers considerably reduces the stability over time of the biological decontamination gel of the document [7], to a shorter duration. to a few days.
  • the gel described above can be used to remove a biofilm on solid surfaces and ensures the elimination of these biofilms with high efficiency due to the synergistic combination of actions and effects of each of its constituents.
  • a cleaned surface is obtained, freed of the biofilm, without soiling, unsightly colorings and whose appearance is close to its initial appearance before formation of the biofilm.
  • the mineral base is chosen from sodium hydroxide, potassium hydroxide, and mixtures thereof
  • the stable oxidizing agent in basic medium is chosen from hypochlorites, and mixtures thereof.
  • a particularly preferred gel contains a combination of sodium hydroxide and sodium hypochlorite.
  • the sodium hydroxide is present in a proportion of 0.05 to 10 mol / l of gel, preferably 0.5 to 5 mol / l of gel
  • the sodium hypochlorite is present in a proportion of 0.05 to 5 mol / L of gel, preferably from 0.1 to 1.5 mol / L of gel.
  • sodium hypochlorite (bleach concentrate) makes it possible to reinforce the biocidal aggressiveness of the gel used compared with a gel containing only the soda, without fundamentally modifying the physicochemical properties or the rheology.
  • Soda is also a good biocide.
  • it is an excellent stabilizer for sodium hypochlorite, and it guarantees a good preservation of the hypochlorite ion content while ensuring a biocidal function.
  • the use according to the invention does not in particular run any risk to the substrate, substrate to be treated and / or the manipulator and / or the environment.
  • the gel used according to the invention is a colloidal solution, which means that the gel used according to the invention contains inorganic solid particles, mineral, viscosity agent whose elementary particles, primary, have a size generally from 2 to 200 nm.
  • the organic matter content of the gel used according to the invention is generally less than 4% by weight, preferably less than 2% by weight. , which constitutes yet another advantage of the gels used according to the invention.
  • inorganic, solid inorganic particles act as a viscosity agent to allow the solution, for example the aqueous solution, to gel and thus adhere to the surfaces to be treated, whatever their geometry, their shape, their size, and wherever biofilms are to be removed.
  • the inorganic viscosifying agent may be chosen from metal oxides such as aluminas, metalloid oxides with the exception of silica, metal hydroxides, metalloid hydroxides, metal oxyhydroxides, oxyhydroxides of metalloids, aluminosilicates, clays such as smectite, and mixtures thereof; these viscosifying agents are stable in basic medium.
  • the inorganic viscosifying agent may be chosen from aluminas, metalloid oxides with the exception of silica, metal hydroxides, metalloid hydroxides, metal oxyhydroxides, oxyhydroxides of metalloids, aluminosilicates, clays such as smectite, and mixtures thereof; these viscosifying agents are stable in basic medium.
  • the inorganic viscosifying agent may be chosen from aluminas
  • the inorganic viscosifying agent may comprise only one alumina or a mixture thereof, namely a mixture of two different or more aluminas (mixture
  • the alumina may be chosen from calcined aluminas, crushed calcined aluminas, and mixtures thereof.
  • the inorganic viscosifying agent consists of one or more alumina (s).
  • This or these alumina (s) represent (s) generally from 5% to 30% by weight relative to the mass of the gel.
  • the alumina (s) is (are) preferably at a concentration of 8% to 17% by weight relative to the total mass of the gel (to ensure drying of the gel at a temperature of between 20 ° C. C and 50 ° C and at a relative humidity of between 20% and 60% on average in 30 minutes to 5 hours).
  • the nature of the mineral viscosifying agent especially when it consists of one or more alumina (s), unexpectedly influences the drying of the gel used according to the invention and the particle size of the residue obtained.
  • the dry gel is in the form of particles of controlled size, more precisely millimetric solid flakes, the size of which generally ranges from 1 to 10 mm, preferably from 2 to 5 mm, in particular thanks to the abovementioned compositions, in particular when the viscosing agent consists of one or more alumina (s).
  • the size of the particles generally corresponds to their largest dimension.
  • the gel used according to the invention contains a specific mineral base and a specific oxidizing active agent as defined above.
  • biocidal agent an agent which when in contact with a biological species contained in a biofilm inactivates or kills it.
  • biological species we mean any type of microorganism that can be found in a biofilm such as bacteria, fungi, yeasts, viruses, toxins, spores and protozoa.
  • the base and the oxidizing agent are used at the concentrations mentioned above, in order to guarantee a biofilm elimination capacity compatible with the gel drying time, and to ensure, for example, a drying of the gel at a temperature of between 20 ° C. C and 50 ° C and at a relative humidity of between 20% and 60% on average in 30 minutes to 5 hours.
  • the gel used according to the invention being a basic gel, it has, besides the biocidal and whitening action, a degreasing action.
  • the surfactant also contributes to this degreasing action.
  • the gel used according to the invention can have a broad concentration range of mineral base (s) ( s).
  • the mineral base is used at the concentration defined above to ensure drying of the gel at a temperature between 20 ° C and 50 ° C and relative humidity of between 20% and 60% on average in 30 minutes to 5 hours.
  • the basic pH of the gel which is induced for example by the use of sodium hydroxide or potassium hydroxide, makes it possible to avoid acid-base reactions between the material to be decontaminated and the gel, which affect the integrity of the material but also that of the gel on the surface and therefore the efficiency of the process.
  • the competition between the evaporation process of the aqueous phase and the water recovery of the sodium hydroxide or potassium hydroxide crystals favorably modifies the drying kinetics of the gel.
  • the gel used according to the invention does not contain, unlike the gel described in document [7], superabsorbent polymer, in other words, the gel used according to the invention is free of superabsorbent polymer.
  • superabsorbent polymer also referred to as “SAP” is generally meant a polymer capable, in the dry state, of spontaneously absorbing at least 10 times, preferably at least 20 times its weight of aqueous liquid, particularly water and especially distilled water.
  • SAP superabsorbent polymer
  • the gel used according to the invention contains a surfactant, or a mixture of surfactants, preferably chosen from nonionic surfactants, such as block copolymers, which are sequenced, for example block copolymers. ethylene oxide and propylene oxide, and the ethoxylated fatty acids; and their mixtures.
  • a surfactant or a mixture of surfactants, preferably chosen from nonionic surfactants, such as block copolymers, which are sequenced, for example block copolymers. ethylene oxide and propylene oxide, and the ethoxylated fatty acids; and their mixtures.
  • the surfactants are preferably block copolymers sold by BASF under the name "Pluronic * ".
  • Pluronic ® PE6200 can be used.
  • Pluronics * are block copolymers of ethylene oxide and propylene oxide.
  • the surfactant (s) have a degreasing action which contributes to the elimination of the biofilm.
  • surfactants also influence the rheological properties of the gel, including the thixotropic character of the product and the recovery time, in order to make it sprayable on floors, walls or ceilings, avoiding the appearance of sagging.
  • the surfactants also make it possible to control the adhesion of the dry waste and to control the size of the flakes of dry residue in order to guarantee the non-dustiness of the waste. These surfactants finally control the phenomenon of bleeding of the gel over time and thus improve its ability to be sprayed after storage.
  • the solvent according to the invention is generally selected from water, organic solvents, and mixtures thereof.
  • a preferred solvent is water, and in this case the solvent is therefore water, comprises 100% water.
  • the gel used according to the invention may, in addition, comprise one or more inorganic pigment (s) such as iron oxide.
  • inorganic pigment such as iron oxide.
  • the gel is applied as described above on said surface; b) the gel is maintained on the surface for at least sufficient time for the gel to destroy the biofilm, and for the gel to dry and form a dry, solid, non-powdery residue containing compounds resulting from the destruction of the biofilm;
  • the solid residue does not contain living biological species and the compounds resulting from the destruction of the biofilm do not include living biological species.
  • the biological species initially present in the biofilm are killed, destroyed by the action of the gel and the biological species destroyed, "killed”, “dead”, which are therefore part of the compounds resulting from the destruction of the biofilm, are recovered in the residue. dry and solid, ie usually in dry gel flakes.
  • the substrate is in at least one material selected from metals and alloys such as stainless steel, galvanized steel, or zinc; painted steels; organic polymers such as plastics or rubbers such as polyvinyl chloride or PVC, polypropylenes or PPs, polyethylenes or PEs, in particular high density polyethylenes or HDPEs, poly (methyl methacrylates) or PMMA, polyvinylidene fluoride or PVDF, polycarbonates or PCs; the glasses ; cementitious materials such as pastes, cements, mortars and concretes; plasters; the bricks ; tiles ; raw or cooked earth; natural or artificial stones; coatings; fiberglass; fibrocement; asphalt; tar ; slate; cellulose-based materials such as wood; and ceramics.
  • metals and alloys such as stainless steel, galvanized steel, or zinc
  • painted steels organic polymers such as plastics or rubbers such as polyvinyl chloride or PVC, polypropylenes or PPs, polyethylenes or PEs, in particular
  • the substrate can be painted or not.
  • the gel is applied to the surface of the solid substrate on which the biofilm is located at a rate of 100 g to 2000 g of gel per m 2 of surface, preferably of 500 to 1500 g of gel per m 2 of surface, of more preferably from 600 to 1000 g per m 2 of surface, which generally corresponds to a thickness of gel deposited on the surface of between 0.5 mm and 2 mm.
  • the gel is applied to the surface of the solid substrate by spraying, with a brush, or with a trowel.
  • the drying is carried out at a temperature of 1 ° C. to 50 ° C., preferably of 15 ° C. to 25 ° C., and at a relative humidity of 20% to 80%. preferably from 20% to 70%.
  • the gel is maintained on the surface for a period of 2 to 72 hours, preferably 2 to 48 hours, more preferably 3 to 24 hours.
  • the dry and solid residue is in the form of particles, for example flakes, of a size of 1 to 10 mm, preferably 2 to 5 mm.
  • the dry and solid residue is removed from the surface of the solid substrate by brushing and / or suctioning.
  • the cycle described above can be repeated for example from 1 to 10 times using the same gel during all the cycles or by using different gels during one or more cycle (s).
  • the gel before total drying, is rewetted with a solution of mineral base and oxidizing agent, preferably with the mineral base solution and oxidizing agent applied during the step a) in the solvent of this gel.
  • the gel can, before total drying, be rewetted with the mineral base solution and oxidizing agent contained in the gel already described above, which then generally avoids repeating the application of the gel on the surface and causes a reagent economy and a limited amount of waste. This rewetting operation can be repeated.
  • the use of the gel according to the invention has among others the following advantageous properties:
  • the gel is an inorganic gel that avoids the risk of projection and coloring of the surface
  • FIG. 1 presents photographs which show the appearance of the surface of the wall treated according to the invention, during the different stages of the test carried out in example 2, namely: initial state of the wall surface (A); the appearance of the wall surface after application of the brush gel on part of the wall surface (B); the appearance of the wall surface after drying for 48 hours and removal of dry gel flakes by gentle brushing (C).
  • Fig. 2B is a graph showing the results of an analysis of the gray values performed on the gray-scale converted Figure 1C image along the line shown in Fig. 2A (similar to Fig. 1C) .
  • FIG. 3 shows photographs which show the appearance of the surface of the guardrail treated according to the invention, during the different stages of the test carried out in example 3, namely : the initial state of the surface of the railing (A); the appearance of the surface of the railing after application of the gel with a brush on a part of the surface of the railing (B); the appearance of the surface of the railing after drying for 48 hours of the gel applied on a part of the surface of the railing (C); the appearance of the surface of the railing after removal of dry gel flakes by gentle brushing (D).
  • FIG. 4 shows the two surface areas of the railing (a first zone 41 being situated in the part of the surface treated by the gel and a second zone 42 being located in the part of the surface not treated with the gel) in An average gray level was calculated on the image of the 3D Figure converted into gray levels.
  • the gel used according to the invention can be easily prepared at room temperature.
  • the gel used according to the invention may be prepared by gradually adding, the inorganic viscosity agent (s), for example the alumina (s) and / or the one or more silica (s), to a solution containing the combination of an inorganic base and an oxidizing agent, the surfactant (s), and any pigment (s).
  • This solution may be prepared for example by first preparing a solution of the oxidizing agent, for example a sodium hypochlorite solution in demineralized water, and then mixing with this oxidizing agent solution, the base mineral, the surfactant (s), and any pigment (s).
  • This mixture can be produced by mechanical stirring, for example by means of a mechanical stirrer equipped with a three blade propeller. The rotational speed is for example 200 rpm, and the duration of the stirring is for example 3 to 5 minutes.
  • the addition of the inorganic viscosity agent (s) to the solution containing the mixture of an inorganic base and an oxidizing agent, the surfactant (s), and the Any pigment (s) can be made by simply pouring the viscosity agent (s) into said solution.
  • the inorganic viscosity agent (s) the solution containing the mixture of an inorganic base and an oxidizing agent, the surfactant (s), and the or the pigment (s), if any, is generally kept under mechanical stirring.
  • This agitation can be, for example, carried out by means of a mechanical stirrer equipped with a three blade propeller.
  • the stirring speed is generally increased gradually as the viscosity of the solution increases, finally reaching a stirring speed of, for example, between 400 and 600 rpm, without there being projections.
  • a stirring speed of, for example, between 400 and 600 rpm, without there being projections.
  • the stirring is continued, for example for 2 to 5 minutes, so as to obtain a perfectly homogeneous gel.
  • the gel used according to the invention must have a viscosity of less than 200 mPa.s under a shear of 1000 s 1 so as to allow spraying on the surface to be decontaminated remotely (for example at a distance of 1 to 5 m) or close (for example at a distance less than 1 m, preferably from 50 to 80 cm).
  • the recovery time of the viscosity should generally be less than one second and the viscosity under low shear greater than 10 Pa s not to sink on the wall.
  • the surfactant of the gel used according to the invention favorably and significantly influences the rheological properties of the gel used according to the invention.
  • This surfactant allows in particular that the gel used according to the invention can be implemented by spraying and avoids the risks of spreading or sagging during the treatment of vertical surfaces and ceilings. This surfactant also makes it possible to limit the phenomenon of bleeding observed during the conservation of the gel.
  • the gel thus prepared is then applied to the solid surface to be cleaned of a substrate made of a solid material.
  • Solid surface to be cleaned means a solid surface on which is a biofilm that is desired to eliminate.
  • the gel used according to the invention does not generate any alteration, erosion, attack, chemical, mechanical or physical of the treated material.
  • the gel used according to the invention is therefore in no way detrimental to the integrity of the treated materials and even allows their reuse.
  • sensitive materials such as military equipment are preserved and may after their cleaning be reused, while monuments, buildings, works of art such as sculptures, treated with the gel according to the invention are absolutely not degraded and have their visual and structural integrity preserved.
  • This material of the substrate may therefore be chosen from, for example, metals or alloys such as stainless steel, polymers such as plastics or rubbers, among which mention may be made of PVC, PP, PE, in particular HDPE, PMMA, PVDF, PC, glasses, cements, mortars and concretes, plaster, bricks, natural or artificial stone, plaster, ceramics.
  • metals or alloys such as stainless steel
  • polymers such as plastics or rubbers, among which mention may be made of PVC, PP, PE, in particular HDPE, PMMA, PVDF, PC, glasses, cements, mortars and concretes, plaster, bricks, natural or artificial stone, plaster, ceramics.
  • the treated surface can be painted or unpainted.
  • the gel used according to the invention allows the treatment of large surfaces, complex geometries, having for example hollow, angles nooks.
  • the gel used according to the invention ensures the efficient treatment not only of horizontal surfaces such as balcony floors or railings or window sills, but also of vertical surfaces such as walls, facades, or inclined or overhanging surfaces such as only ceilings.
  • the invention uses a gel, which is particularly advantageous for the treatment of large surface materials, non-transportable and implanted outside.
  • the method according to the invention because of the implementation of a gel, allows cleaning in situ by avoiding the spread of chemical solutions in the environment and the dispersion of contaminating species.
  • the gel according to the invention can be applied to the surface to be treated by all the application methods known to those skilled in the art.
  • Conventional methods are spraying, for example by spraying, or applying by means of a brush, or a trowel.
  • the colloidal solution may for example be conveyed via a low pressure pump, for example a pump that implements a pressure less than or equal to 7 bar, or about 7.10 5 Pascals.
  • the burst of the gel jet on the surface can be obtained for example by means of a jet nozzle or round jet.
  • the distance between the pump and the nozzle may be arbitrary, for example it may be from 1 to 50 m, in particular from 1 to 25 m.
  • the sufficiently short viscosity recovery time of the gels used according to the invention allows the spray gels to adhere to all surfaces, for example to walls.
  • the amount of gel deposited on the surface to be treated is generally from 100 to
  • 2000 g / m 2 preferably from 500 to 1500 g / m 2 , more preferably from 600 to 1000 g / m 2 .
  • the amount of gel deposited per unit area and, consequently, the thickness of the deposited gel influences the rate of drying.
  • the effective contact time between the gel and the materials is then equivalent to its drying time , during which time the active ingredient contained in the gel will interact with the biofilm.
  • the quantity of gel deposited and therefore the deposited gel thickness is the fundamental parameter which influences the size of the dry residues formed after drying of the gel and which thus ensures that residues Millimeter sized and not powdery residues are formed, such residues being easily removed by a mechanical process and preferably by suction.
  • the gel drying is improved and leads to a homogeneous fracturing phenomenon with a size of the mono-dispersed dry residues and an increased ability of the dry residues to detach from the support.
  • the gel is then held on the surface to be treated for the duration necessary for drying.
  • the solvent contained in the gel namely generally the water contained in the gel evaporates to the obtaining a dry and solid residue.
  • the drying time depends on the composition of the gel in the concentration ranges of its constituents given above, but also, as already mentioned, on the amount of gel deposited per unit area, that is to say the deposited gel thickness.
  • the drying time also depends on the climatic conditions, namely the temperature, the ventilation and the relative humidity of the atmosphere in which the solid surface is located.
  • the process according to the invention can be carried out under extremely wide climatic conditions, namely at a temperature T of 1 ° C. to 50 ° C. and at a relative humidity RH of 20% to 80%.
  • the drying time of the gel according to the invention is therefore generally from 1 hour to 24 hours at a temperature T of 1 ° C. to 50 ° C. and at a relative humidity RH of 20% to 80%.
  • the formulation of the gel used according to the invention especially when it contains surfactants such as "Pluronics 8" generally provides a drying time which is substantially equivalent to the contact time between the gel and the biofilm which is necessary, required to destroy, eliminate the biofilm polluting the material.
  • the formulation of the gel ensures a drying time which is none other than the time necessary to eliminate, destroy, the biofilm and which is compatible with the kinetics of destruction of the biofilm and in particular with the kinetics of destruction of biological contamination contained in the biofilm (biological organisms are killed).
  • the gel fractures homogeneously to give millimetric solid dry residues, for example of a size of 1 to 10 mm, preferably 2 to 5 mm non-pulverulent, generally in the form of solid glitter.
  • the dry and solid residues contain compounds resulting from the destruction of the biofilm.
  • Dry residues, such as flakes, obtained after drying have a poor adhesion to the surface of the cleaned material.
  • the dry residues obtained after drying of the gel can be easily recovered by simple brushing and / or aspiration.
  • the dry residues can also be evacuated by gas jet, for example by compressed air jet.
  • the dry waste can be stored or directed to a discharge die without prior treatment.
  • the mass of dry waste produced is less than 300 grams per m 2 .
  • This gel does not include superabsorbent polymer.
  • Alumina is alumina Aeroxide * Alu C marketed by EVONIK INDUSTRIES with a specific surface area of 100 m 2 / g (BET)
  • the surfactant is the surfactant Pluronic * PE6200 marketed by BASF
  • the soda is 1M sodium sold by SIGMA-ALDRICH
  • sodium hypochlorite is sodium hypochlorite 10 to 15% active chlorine, marketed by SIGMA-ALDRICH.
  • the gel used according to the invention is prepared as follows: the sodium hypochlorite solution is diluted to 50% with deionized water. This solution, the surfactant, and the sodium hydroxide are then mixed using a mechanical stirrer equipped with a stirrer with three blades, at a speed of 200 rotations / min, for 3 to 5 minutes. The alumina is then gradually added to the reaction mixture, gradually increasing the stirring speed as the viscosity increases, to arrive at about 400 to 600 revolutions / min without projections. . The gel is then stirred for 5 minutes.
  • composition of the gel studied is given in Table 2 below.
  • Table 2 Composition of the studied gel.
  • Example 2 In this example, a test is carried out with the "anti-biofilm” gel prepared in Example 1 to remove a biofilm on a vertical outer surface.
  • the "anti-biofilm” gel prepared in Example 1 is applied by brush to a portion of the surface of an outer wall coated with a traditional spray coating.
  • the test takes place at a temperature below 10 ° C, and with a relative humidity of the order of 50%.
  • FIG. 1 shows the appearance of the wall surface during the different stages of the test carried out in this example, namely:
  • This test shows the effectiveness of the use according to the invention of the alkaline oxidizing gel prepared in Example 1 to remove a biofilm on a vertical surface.
  • FIG. 1C which thus shows the surface of the wall at the end of a treatment according to the invention, has been converted into gray levels (on a scale ranging from 0, black, to 255 , white) and an analysis of the gray values was carried out along the line shown in Figure 2A (similar to Figure 1C).
  • Example 3 The average value in that portion of the non-gel treated wall surface of Example 1 is taken as a reference.
  • the graph of FIG. 2B shows the results of the image analysis, and confirms the effectiveness of the removal of the biofilm by the gel in the part of the surface of the wall treated according to the invention by the gel prepared in FIG. Example 1.
  • Example 3 The average value in that portion of the non-gel treated wall surface of Example 1 is taken as a reference.
  • the graph of FIG. 2B shows the results of the image analysis, and confirms the effectiveness of the removal of the biofilm by the gel in the part of the surface of the wall treated according to the invention by the gel prepared in FIG. Example 1.
  • Example 3 Example 3.
  • Example 2 a test is carried out with the "anti-biofilm” gel prepared in Example 1 to remove a biofilm on a horizontal outer surface.
  • the "anti-biofilm” gel prepared in Example 1 is applied by brush to a portion of the surface of a white cement balcony railing.
  • the test takes place at a temperature below 10 ° C, and with a relative humidity of the order of 50%.
  • FIG. 3 shows the appearance of the surface of the railing during the various stages of the test carried out in this example, namely:
  • the final image of FIG. 3D which thus shows the surface of the railing at the end of a treatment according to the invention has been converted into gray levels (on a scale ranging from 0, black, to 255, white).
  • the result is expressed in gray level averaged over two areas of the surface of the railing, a first area 41 being located in the part of the surface treated by the gel and a second zone 42 being located in the portion of the surface not treated with the gel ( Figure 4).
  • the untreated area has an average level of 156 while the treated area has a mean gray level of 169.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Utilisation d'un gel, constitué par une solution colloïdale comprenant, de préférence constitué par : 5% à 30% en masse, de préférence 5% à 25% en masse, de préférence encore 8% à 20% en masse par rapport à la masse du gel, d'au moins un agent viscosant inorganique; une base minérale choisie parmi les hydroxydes de métaux alcalins, les hydroxydes de métaux alcalinoterreux, et leurs mélanges, ladite base minérale étant présente à raison de 0,05 à 10 mol/L de gel, de préférence à raison de 0,1 à 5 mol/L de gel; un agent oxydant stable en milieu basique choisi parmi les permanganates, les persulfates, l'ozone, les hypochlorites, et leurs mélanges, ledit agent oxydant stable en milieu basique étant présent à raison de 0,05 à 5 mol/L de gel, de préférence de 0,1 à 2 mol/L de gel; 0,1% à 2% en masse par rapport à la masse du gel, d'au moins un agent tensio-actif; et un solvant; et le gel ne contenant pas de polymère super-absorbant; pour éliminer un biofilm se trouvant sur une surface d'un substrat solide.

Description

UTILISATION D'UN GEL ALCALIN OXYDANT POUR ELIMINER UN BIOFILM SUR UNE
SURFACE D'UN SUBSTRAT SOLIDE.
DESCRIPTION DOMAINE TECHNIQUE
La présente invention a pour objet l'utilisation d'un gel alcalin oxydant pour éliminer un biofilm se trouvant sur une surface d'un substrat solide.
Le domaine technique de l'invention peut être défini comme celui du traitement de surfaces polluées, salies, détériorées par des biofilms, en vue d'éliminer ces biofilms de ces surfaces et d'améliorer notamment l'aspect visuel de ces surfaces.
L'invention peut s'appliquer à toutes sortes de surfaces telles que les surfaces en polymères organiques, par exemple en matières plastiques ; les surfaces en matériaux vitreux ; les surfaces en matériaux cimentaires comme les ciments, les pâtes, les mortiers et les bétons ; les surfaces en terre crue ou cuite ; les surfaces en briques ou tuiles ; les surfaces en plâtre ; les surfaces en céramiques ; les surfaces en pierre naturelle ou artificielle; les surfaces en enduit ; les surfaces en fibres de verre ; les surfaces en fibrociment ; les surfaces en asphalte ou en goudron ; les surfaces en métal ou en alliage métallique par exemple en acier, en acier galvanisé ou en zinc ; et les surfaces en matériaux à base de cellulose comme le bois. Ces surfaces peuvent être peintes ou non.
L'invention s'applique en particulier à l'élimination des biofilms sur les surfaces extérieures, situées en plein air, des bâtiments, constructions, et objets ou ouvrages d'art.
Mais l'invention peut aussi s'appliquer à l'élimination des biofilms de surfaces de véhicules aquatiques tels que des bateaux ; de véhicules terrestres tels que des voitures, des camions ou des motocyclettes ; d'aéronefs tels que des avions, des hélicoptères, des hydravions, ou des drones ; de matériels et équipements domestiques divers tels que des meubles ; d'appareillages et dispositifs industriels, tels que des canalisations, en particulier d'appareillages et dispositifs qui se trouvent dans des milieux très humides ou dans lesquels se créent des points froids ; et de produits agro-alimentaires notamment de produits agroalimentaires compacts ; ou encore de dispositifs ou appareillages médicaux. Il est à noter qu'il n'existe aucune limitation quant à la surface sur laquelle peuvent se trouver les biofilms éliminés selon l'invention. En effet si sous les climats tempérés les surfaces sur lesquels peuvent se développer les biofilms sont relativement limitées, il n'en est pas de même sous les climats tropicaux humides où les biofilms sont susceptibles d'affecter quasiment toutes les surfaces.
ETAT DE LA TECHNIQUE ANTÉRIEURE
Les matériaux de construction situés à l'extérieur, c'est-à-dire en plein air, comme les pierres, les briques, les enduits, les tuiles, sont continuellement exposés à différents agents atmosphériques susceptibles de les détériorer, comme le vent, la pluie, le soleil, ou l'humidité.
A l'action de ces agents atmosphériques s'ajoute l'effet des agents biologiques tels que les micro-organismes, qui sont capables de se développer sur n'importe quelle surface sous la forme de biofilms.
Avec l'ère industrielle, la concentration en composés organiques et inorganiques dans l'air a fortement augmenté, aggravant le processus de formation de ces biofilms qui combinent le double inconvénient d'être inesthétiques car ils sont la plupart du temps de couleur noire, rouge ou verte et de conduire à une détérioration accélérée des matériaux de construction, connue sous le nom de biodétérioration.
Le terme biofilm est couramment utilisé dans ce domaine de la technique et a une signification largement reconnue et acceptée.
Les biofilms peuvent être définis comme étant des écosystèmes propres constitués pour l'essentiel d'associations d'algues, de champignons, de bactéries et de cyanobactéries, le tout baignant dans un gel ou matrice d'exopolymères qui les protège des agressions extérieures et les rend très résistants (voir le document [1]).
L'élimination des biofilms est donc bien plus difficile que l'élimination de simples micro-organismes, car dans les biofilms, les micro-organismes sont structurellement entourés, protégés, par les exopolymères.
Une définition des biofilms est également fournie dans le document US-A1-2012/0232153 [2] au paragraphe [0019], à laquelle on pourra se référer. L'intérieur des bâtiments n'est pas non plus exempt de problèmes liés au développement de biofilms. Les zones humides, en particulier, comme les salles de bain, les pièces d'eau, les points froids dans les chambres à coucher, constituent un terrain privilégié pour l'apparition de taches noires qui sont des biofilms (voir l'ouvrage « Biofilm quand les microbes s'organisent » par R. Briandet, L. Fechner, M. Naïali et C. Dreano, Editions Quae 2012 [3]). Outre, une fois encore, un problème esthétique évident, ces biofilms peuvent poser des problèmes de santé humaine, liés aux allergies qu'ils sont susceptibles de provoquer chez certaines personnes.
Pour éliminer les biofilms et les tâches liées à la formation de ces biofilms de nombreuses techniques de nettoyage, lavage, existent et sont employées aujourd'hui.
Le Tableau 1 ci-dessous dresse une liste non exhaustive de ces techniques, avec leurs principaux avantages et inconvénients.
Technique de Application Avantages Inconvénients Référence nettoyage
Jet haute pression Extérieur - Efficacité élevée - Risques de K. Ammerman,
- Possibilité de dégradation des « Algae, the traiter de matériaux (abrasion) growing grandes surfaces - Risques de projections problem »,
- Non polluant. et salissures sur Interface, Janvier d'autres parties du 2007, pages 37 à bâtiment 42 [4].
- Pas d'effet protecteur.
Nettoyage vapeur Intérieur - Non polluant. - Difficulté à éliminer
toute la coloration
- Risques
d'endommagement
des revêtements.
Lavage par des Intérieur/ - Non polluant (en - Efficacité limitée.
solutions tensio- Extérieur général)
actives - Facilité d'emploi.
Lavage par des Intérieur/ - Efficacité élevée - Composé toxique pour K. Ammerman, solutions d'eau de Extérieur - Combine une les plantes « Algae, the
Javel action - Risque de brûlure growing
désinfectante et chimique problem », blanchissante. - Effluents rinçages Interface, Janvier éliminés dans les 2007, pages 37 à circuits d'eau pluviale. 42 [4].
Lavage par des Intérieur/ - Efficacité élevée - Risque de brûlure K. Ammerman, solutions Extérieur - Combine une chimique « Algae, the peroxydes (e.g. eau action - Effluents rinçages growing oxygénée) désinfectante et éliminés dans les problem »,
blanchissante circuits d'eau pluviale. Interface, Janvier - Pas de toxicité 2007, pages 37 à résiduelle. 42 [4].
Lavage par des Intérieur/ - Efficacité - Composé toxique pour K. Ammerman, solutions basiques Extérieur moyenne (pas les plantes (à fortes « Algae, the
d'action doses) growing blanchissante). - Risque de brûlure problem »,
chimique Interface, Janvier
- Effluents rinçages 2007, pages 37 à éliminés dans les 42 [4].
circuits d'eau pluviale.
Lavage par des Intérieur/ - Efficacité élevée - Coût potentiellement G. G. Griese et al. solutions Extérieur - Combine une élevé « Acidic biofilm hydroalcooliques action - Effluents rinçages remediation » US - désinfectante et éliminés dans les Al-2012/0232153 détergente. circuits d'eau pluviale. [2]
Gels formulés Extérieur - Efficacité élevée - Coût potentiellement K. Ammerman, (Fongicides + - Assurent une élevé « Algae, the polymères) protection dans - Lixiviation du growing
le temps. fongicide dans les problem », eaux pluviales. Interface, Janvier
2007, pages 37 à 42 [4].
Tableau 1: Liste des techniques de nettoyage les plus couramment utilisées pour éliminer les tâches liées à la formation de biofilms.
Comme on peut le voir dans le Tableau 1, la plupart des techniques proposées présentent une efficacité satisfaisante. En revanche, toutes présentent un certain nombre d'inconvénients, essentiellement dus au fait qu'elles font courir des risques au support à traiter et/ou au manipulateur et/ou à l'environnement.
Par ailleurs, dans le cadre de la décontamination nucléaire, des formulations gélifiées qui permettent de s'affranchir des problèmes liés au caractère pulvérulent du déchet sec, et d'accroître l'efficacité du procédé mettant en œuvre un gel ont fait l'objet des documents [5] et [6].
Ces documents décrivent des gels colloïdaux inorganiques dits « gels aspirables », spécifiquement formulés pour être pulvérisés, puis pour sécher en se fracturant, tout en piégeant et confinant la contamination radioactive sous forme de paillettes non-pulvérulentes, aspirables, et directement conditionnables et stockables.
Le document [5] décrit un gel constitué d'une solution colloïdale comprenant un agent viscosant inorganique, généralement de la silice ou de l'alumine, un agent actif de traitement qui est par exemple un acide ou une base inorganique telle que la soude ou la potasse, et éventuellement un agent oxydant ayant un potentiel normal d'oxydoréduction Eo supérieur à 1,4 V en milieu acide fort tel que Ce(IV), Co(lll), ou Ag(ll).
Le document [6] décrit un gel constitué d'une solution colloïdale comprenant un agent viscosant inorganique, généralement de la silice ou de l'alumine, un tensio-actif, un acide ou une base inorganique, éventuellement un agent oxydant ayant un potentiel normal d'oxydoréduction Eo supérieur à 1,4 V en milieu acide fort tel que Ce(IV), Co(lll), ou Ag(M).
Ces gels colloïdaux inorganiques, du fait des différents constituants entrant dans leur composition ont une rhéologie qui permet leur pulvérisation sur une surface contaminée, puis leur adhésion à cette surface, même verticale, sans couler.
Cela permet ainsi un contact prolongé entre le contaminant et l'agent actif de décontamination, sans que les propriétés mécaniques du substrat ne soient altérées.
Suite à sa pulvérisation, le gel sèche, se fracture, et produit des résidus secs, appelés « paillettes », adhérant au substrat et qui sont par la suite évacués par brossage ou aspiration pour être directement conditionnés.
Les procédés de décontamination qui mettent en œuvre ces gels aspirables sont donc des procédés de décontamination par voie sèche, ne générant aucun effluent liquide et peu de résidus solides secs. En effet, ces résidus solides secs ne représentent en moyenne qu'un quart de la masse de gel initialement pulvérisée. De plus, ces procédés limitent le temps d'exposition des opérateurs à la contamination radioactive, du fait de leur mise en œuvre facile par pulvérisation puis aspiration des résidus secs, et du fait que la présence de l'opérateur n'est pas requise pendant le séchage du gel.
Les gels décrits dans les documents [5] et [6] sont cependant spécifiquement destinés à la décontamination radioactive de surfaces notamment dans le cadre du démantèlement d'installations nucléaires et ne sont, en aucune manière, adaptés à l'élimination de biofilms de surface ou même susceptibles d'être adaptés afin de résoudre le problème extrêmement spécifique de l'élimination de biofilms de surfaces. Les documents FR-A1-2962046 et WO-A1-2012/001046 [7] concernent un gel de décontamination biologique « aspirable » et un procédé de décontamination biologique de surfaces utilisant ce gel.
Ce gel est constitué par une solution colloïdale comprenant au moins un agent viscosant inorganique, au moins un agent de décontamination biologique, au moins un polymère super-absorbant, et au moins un agent tensio-actif.
Le polymère super-absorbant, tel que le polyacrylate de sodium, permet d'améliorer l'efficacité du gel sur les matériaux poreux, par exemple les mortiers.
Le gel du document [7] est cependant spécifiquement destiné à la décontamination biologique de surfaces notamment à la décontamination dite postévénementielle de surfaces.
Il n' y a aucune mention ni aucune suggestion dans le document [7] que le gel de ce document puisse permettre de résoudre le problème extrêmement spécifique de l'élimination de biofilms de surfaces qui est un problème totalement différent du problème la décontamination biologique -notamment post événementielle- du fait de la nature très particulière et très complexe des biofilms.
En effet, la décontamination biologique d'une surface consiste simplement à éliminer des espèces biologiques, essentiellement biotoxiques, isolées, dispersées, exposées sans protection sur cette surface, alors que les biofilms sont des systèmes complexes dans lesquels des populations de micro-organismes sont entourées et protégées par des polysaccharides et d'autres macromolécules couramment appelés exopolysaccharides. Les problèmes posés par l'élimination des biofilms sont donc totalement différents et certainement plus complexes et plus difficiles que ceux rencontrés lors de la simple décontamination d'une surface contaminée seulement par des espèces biologiques isolées. Le fait qu'un gel ait été utilisé avec succès pour la décontamination biologique d'une surface, ne signifie en rien que ce même gel puisse convenir à l'élimination de biofilms dans lesquels les micro-organismes sont protégés par un gel d'exopolysaccharide qui doit tout d'abord être détruit. De plus, un biofilm comprend, en outre, de nombreux autres composants contribuant notamment à sa coloration peu esthétique, par exemple rouge ou noire, qui doivent être aussi éliminés pour rendre à la surface son aspect original exempt de salissures.
En outre, il a été mis en évidence que le gel du document [7] a une durée de conservation très courte, par exemple de quelques semaines.
Il existe donc au regard de ce qui précède, un besoin pour une technique d'élimination des biofilms de la surface de substrats qui, tout en présentant une efficacité élevée, et au moins aussi élevée que celle des techniques énumérées dans le Tableau 1, ne présente pas les inconvénients, défauts et désavantages de ces techniques.
Le but de la présente invention est de répondre, entre autres, à ce besoin.
EXPOSÉ DE L'INVENTION
Il a été mis en évidence, de manière surprenante, selon l'invention, que l'utilisation d'un gel présentant une composition spécifique permettait d'atteindre le but précité et d'éliminer les biofilms.
L'invention a donc pour objet l'utilisation d'un gel, constitué par une solution colloïdale comprenant, de préférence constitué par :
5% à 30% en masse, de préférence 5% à 25% en masse, de préférence encore 8% à 20% en masse par rapport à la masse du gel, d'au moins un agent viscosant inorganique ;
une base minérale choisie parmi les hydroxydes de métaux alcalins, les hydroxydes de métaux alcalinoterreux, et leurs mélanges, ladite base minérale étant présente à raison de 0,05 à 10 mol/L de gel, de préférence à raison de 0,1 à 5 mol/L de gel ;
un agent oxydant stable en milieu basique choisi parmi les permanganates, les persulfates, l'ozone, les hypochlorites, et leurs mélanges, ledit agent oxydant stable en milieu basique étant présent à raison de 0,05 à 5 mol/L de gel, de préférence de 0,1 à 2 mol/L de gel ;
0,1% à 2% en masse par rapport à la masse du gel, d'au moins un agent tensio-actif ;
et un solvant ; et le gel ne contenant pas de polymère super-absorbant ;
pour éliminer un biofilm se trouvant sur une surface d'un substrat solide.
On peut généralement considérer que la solution colloïdale comprend « le reste de solvant ».
Par « reste de solvant », on entend que le solvant est toujours présent dans la solution colloïdale et que la quantité de solvant est une quantité telle que, lorsqu'elle est ajoutée aux quantités des composants de la solution colloïdale autres que le solvant (que ces composants soient des composants obligatoires ou éventuels cités plus haut, ou encore d'autres composants additionnels optionnels cités ou non cités), la quantité totale de tous les composants de la solution colloïdale est de 100% en masse.
L'utilisation du gel spécifique décrit plus haut pour éliminer un biofilm se trouvant sur une surface d'un substrat solide n'a jamais été décrite dans l'art antérieur.
Le gel utilisé selon l'invention, selon une première caractéristique fondamentale, est tout d'abord défini par le fait qu'il contient la combinaison d'une base minérale spécifique choisie parmi les hydroxydes de métaux alcalins, les hydroxydes de métaux alcalinoterreux, et leurs mélanges, d'un agent oxydant biocide spécifique qui est un agent oxydant stable en milieu basique choisi parmi les permanganates, persulfates, l'ozone, les hypochlorites, et leurs mélanges, et d'un agent tensio-actif.
Le gel utilisé selon l'invention est un gel basique, c'est-à-dire dont le pH est généralement supérieur à 7, de préférence de 12 à 14, et par milieu basique, on entend un milieu dont le pH est généralement supérieur à 7, de préférence de 12 à 14.
Le gel utilisé selon l'invention est ensuite défini par le fait qu'il ne contient pas de polymère super-absorbant.
On peut dire que l'association d'une base minérale spécifique telle qu'un hydroxyde alcalin, comme la soude, ou un hydroxyde de métal alcalinoterreux ; d'un agent oxydant spécifique tel qu'un hypochlorite, comme l'hypochlorite de sodium qui possède une activité biocide ; et enfin d'un agent tensio-actif constitue une véritable combinaison synergique, comme on l'explique plus bas. En effet, le gel utilisé selon l'invention possède une efficacité élevée dans le cadre de l'élimination des biofilms qui est due à la combinaison de l'action décontaminante, biocide, et blanchissante de l'agent oxydant tel que la javel, et de l'action dégraissante de la base minérale, telle que la soude, et de l'agent tensio-actif.
C'est cette combinaison des effets dus à l'agent oxydant, à la base, et à l'agent tensio-actif qui rend le gel extrêmement efficace lors de l'élimination des biofilms.
De plus l'agent oxydant spécifique, tel que la javel, n'est pas qu'une simple espèce oxydante, c'est également un excellent biocide, en d'autres termes, outre son action dégraissante, la base minérale telle que la soude a donc aussi une action biocide.
Le gel utilisé selon l'invention qui contient la combinaison d'une base minérale spécifique telle qu'un hydroxyde de métal alcalin, comme la soude, ou un hydroxyde de métal alcalinoterreux, et d'un agent oxydant spécifique tel qu'un hypochlorite, comme l'hypochlorite de sodium, présente, une activité biocide renforcée notamment par rapport à des gels, tels que ceux du document [7] contenant seulement une base minérale telle que la soude.
On peut estimer que le gel utilisé selon l'invention comprend bien deux composés biocides, à savoir un premier composé actif biocide qui est une base minérale telle que la soude et un deuxième composé actif biocide qui est un agent oxydant tel que la javel.
C'est la combinaison de ces deux composés qui rend le gel encore plus efficace vis-à-vis des espèces biologiques du biofilm, tandis que les propriétés dégraissantes, oxydantes et blanchissantes que possède aussi le gel assurent une élimination, destruction, complète de tous les composants du biofilm. Notamment, la couleur peu esthétique, « sale » conférée à la surface par le biofilm est éliminée par le gel utilisé selon l'invention, et la surface traitée retrouve sa couleur initiale « propre » qu'elle possédait avant que le biofilm ne se forme.
De manière encore plus étonnante, le gel utilisé selon l'invention qui possède donc une grande efficacité pour éliminer les biofilms, est cependant aussi stable, et présente une stabilité dans le temps accrue. En effet, les inventeurs ont mis en évidence que la mauvaise stabilité dans le temps du gel de décontamination biologique du document [7] était due au polymère superabsorbant car ce polymère super-absorbant modifie la rhéologie du gel lors de son stockage, ce qui le rend impropre à la pulvérisation et à l'application sur une surface verticale, du fait d'une mauvaise adhérence.
Les inventeurs ont, en outre, mis en évidence que l'utilisation d'agents oxydants en présence de polymères super-absorbants réduisait encore considérablement la stabilité dans le temps du gel de décontamination biologique du document [7], jusqu'à une durée inférieure à quelques jours.
L'absence de polymère super-absorbant dans le gel qui est utilisé selon l'invention en améliore donc grandement la stabilité dans le temps.
Il est tout à fait inattendu et surprenant que, selon l'invention, le gel décrit plus haut puisse être utilisé pour éliminer un biofilm sur des surfaces solides et assure l'élimination de ces biofilms avec une grande efficacité du fait de la combinaison synergique des actions et des effets de chacun de ses constituants. Selon l'invention, on obtient à l'issue de l'utilisation du gel une surface nettoyée, débarrassée du biofilm, sans salissures, colorations peu esthétiques et dont l'aspect est voisin de son aspect initial avant formation du biofilm.
L'efficacité de l'utilisation selon l'invention est démontrée par les exemples 2, 3 et les figures illustrant ces exemples.
De préférence, la base minérale est choisie parmi l'hydroxyde de sodium, l'hydroxyde de potassium, et leurs mélanges et l'agent oxydant stable en milieu basique est choisi parmi les hypochlorites, et leurs mélanges.
Un gel particulièrement préféré contient une combinaison de soude et d'hypochlorite de sodium.
Dans ce cas, la soude est présente à raison de 0,05 à 10 mol/L de gel, de préférence 0,5 à 5 mol/L de gel, et l'hypochlorite de sodium est présent à raison de 0,05 à 5 mol/L de gel, de préférence de 0,1 à 1,5 mol/L de gel.
En effet, l'addition d'hypochlorite de sodium (concentré de Javel) permet de renforcer l'agressivité biocide du gel utilisé par rapport à un gel ne contenant que de la soude, sans en modifier fondamentalement les propriétés physico-chimiques ou la rhéologie.
La soude est quant à elle également un bon biocide. De plus c'est un excellent stabilisant de l'hypochlorite de sodium, et elle ga rantit une bonne conservation de la teneur en ion hypochlorite tout en assurant une fonction biocide.
En résumé, l'utilisation selon l'invention permet de répondre à l'ensemble des besoins mentionnés plus haut.
L'utilisation selon l'invention apporte une solution aux problèmes présentés par les techniques d'élimination de biofilms connues, telles que celles exposées dans le tableau 1, sans en présenter les inconvénients.
L'utilisation selon l'invention ne fait en particulier courir aucun risque au support, substrat à traiter et/ou au manipulateur et/ou à l'environnement.
Le gel utilisé selon l'invention est une solution colloïdale, ce qui signifie que le gel utilisé selon l'invention contient des particules solides inorganiques, minérales, d'agent viscosant dont les particules élémentaires, primaires, ont une taille généralement de 2 à 200 nm.
Du fait de la mise en œuvre d'un agent viscosant généralement exclusivement inorganique, sans agent viscosant organique, la teneur en matières organiques du gel utilisé selon l'invention est généralement inférieure à 4% en masse, de préférence inférieure à 2% en masse, ce qui constitue encore un autre avantage des gels utilisés selon l'invention.
Ces particules solides, minérales, inorganiques jouent le rôle de viscosant pour permettre à la solution, par exemple la solution aqueuse, de se gélifier et ainsi d'adhérer aux surfaces à traiter, quelles que soient leur géométrie, leur forme, leur taille, et où que se trouvent les biofilms à éliminer.
Avantageusement, l'agent viscosant inorganique peut être choisi parmi les oxydes de métaux tels que les alumines, les oxydes de métalloïdes à l'exception de la silice, les hydroxydes de métaux, les hydroxydes de métalloïdes, les oxyhydroxydes de métaux, les oxyhydroxydes de métalloïdes, les aluminosilicates, les argiles telles que la smectite, et leurs mélanges ; ces agents viscosants sont stables en milieu basique. En particulier, l'agent viscosant inorganique peut être choisi parmi les alumines
L'agent viscosant inorganique peut ne comprendre qu'une seule alumine ou un mélange de celles-ci, à savoir un mélange de deux alumines, différentes ou plus (mélange
L'alumine peut être choisie parmi les alumines calcinées, les alumines calcinées broyées, et leurs mélanges.
A titre d'exemple, on peut citer le produit vendu par la société EVONIK INDUSTRIES sous la désignation commerciale « Aeroxide Alu C » qui est de l'alumine fine pyrogénée et qui possède une surface spécifique BET de 100 m2/g-
De manière avantageuse, selon l'invention, l'agent viscosant inorganique est constitué par une ou plusieurs alumine(s). Cette ou ces alumine(s) représente(nt) généralement de 5% à 30% en masse par rapport à la masse du gel.
Dans ce cas, le ou les alumine(s) est(sont) de préférence à une concentration de 8% à 17% en masse par rapport à la masse totale du gel (pour assurer un séchage du gel à une température comprise entre 20°C et 50°C et à une humidité relative comprise entre 20% et 60% en moyenne en 30 minutes à 5 heures).
La nature de l'agent viscosant minéral, notamment lorsqu'il est constitué d'une ou plusieurs alumine(s), influence de manière inattendue le séchage du gel utilisé selon l'invention et la granulométrie du résidu obtenu.
En effet, le gel sec se présente sous la forme de particules de taille contrôlée, plus précisément de paillettes solides millimétriques, dont la taille va généralement de 1 à 10 mm, de préférence de 2 à 5 mm grâce notamment aux compositions précitées, en particulier lorsque l'agent viscosant est constitué par une ou plusieurs alumine(s).
Précisons que la taille des particules correspond généralement à leur plus grande dimension.
Le gel utilisé selon l'invention contient une base minérale spécifique et un agent actif oxydant spécifique tel que définis plus haut.
Cette base et cet agent oxydant spécifiques peuvent être notamment qualifiés d'agents biocides. Par agent biocide, on entend un agent, qui lorsqu'il est mis en contact avec une espèce biologique contenue dans un biofilm permet d'inactiver ou de tuer celle-ci.
Par espèce biologique, on entend tout type de micro-organisme qui peut se trouver dans un biofilm tel que les bactéries, les champignons, les levures, les virus, les toxines, les spores et les protozoaires.
La base et l'agent oxydant sont utilisés aux concentrations mentionnées plus haut, afin de garantir un pouvoir d'élimination du biofilm compatible avec le temps de séchage du gel, et pour assurer par exemple un séchage du gel à une température comprise entre 20°C et 50°C et à une humidité relative comprise entre 20% et 60 % en moyenne en 30 minutes à 5 heures.
Il est à noter de nouveau que le gel utilisé selon l'invention étant un gel basique, il a, outre l'action biocide et blanchissante, une action de dégraissage. L'agent tensio-actif contribue aussi à cette action dégraissante.
De manière à atteindre une efficacité totale, y compris dans les conditions climatiques les plus défavorables vis-à-vis du temps de séchage du gel, le gel utilisé selon l'invention peut présenter une large gamme de concentration en base(s) minérale(s).
En effet, l'augmentation de la concentration en base minérale comme NaOH ou KOH, jouant notamment le rôle d'agent biocide, permet d'accroître considérablement les vitesses d'élimination du biofilm.
La base minérale est utilisée à la concentration définie plus haut pour assurer un séchage du gel à température comprise entre 20°C et 50°C et humidité relative comprise entre 20% et 60% en moyenne en 30 minutes à 5 heures.
Dans le cas du traitement d'une matrice cimentaire, le pH basique du gel, qui est induit par exemple par l'utilisation de la soude ou de la potasse, permet d'éviter les réactions acido-basiques, entre le matériau à décontaminer et le gel, qui nuisent à l'intégrité du matériau mais également à celle du gel sur la surface et donc à l'efficacité du procédé.
Le caractère hygroscopique de l'hydroxyde de sodium ou de l'hydroxyde de potassium constitue également un atout considérable pour ralentir le phénomène de séchage du gel. Le temps de contact entre le gel et le biofilm s'en trouve alors considérablement augmenté.
En effet, la compétition entre le processus d'évaporation de la phase aqueuse et celui de reprise d'eau des cristaux d'hydroxyde de sodium ou d'hydroxyde de potassium modifie favorablement la cinétique de séchage du gel.
Le gel utilisé selon l'invention ne contient pas, au contraire du gel décrit dans le document [7], de polymère super-absorbant, en d'autres termes, le gel utilisé selon l'invention est exempt de polymère super-absorbant.
Par « polymère super-absorbant » également dénommé « SAP », on entend généralement un polymère capable, à l'état sec, d'absorber spontanément au moins 10 fois, de préférence au moins 20 fois son poids de liquide aqueux, en particulier d'eau et notamment d'eau distillée. De tels polymères super-absorbants ont été décrits en détail dans le document [7] déjà cité.
Le gel utilisé selon l'invention contient un agent tensio-actif, ou un mélange d'agents tensio-actifs, de préférence choisi(s) parmi les agents tensio-actifs non ioniques tels que les copolymères blocs, séquencés comme les copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène, et les acides gras éthoxylés ; et leurs mélanges.
Pour ce type de gel, les agents tensio-actifs sont de préférence des copolymères blocs commercialisés par la société BASF sous la dénomination "Pluronic*". On pourra utiliser par exemple le Pluronic® PE6200.
Les Pluronics* sont des copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène.
Comme on l'a indiqué plus haut, tout comme la base, le(s) agent(s) tensio- actif(s) ont une action dégraissante qui contribue à l'élimination du biofilm.
Ces agents tensio-actifs influencent en outre les propriétés rhéologiques du gel, notamment le caractère thixotropique du produit et le temps de reprise, afin de le rendre pulvérisable aussi bien sur les planchers, les murs ou les plafonds en évitant l'apparition de coulure.
Les tensio-actifs permettent, par ailleurs, de maîtriser l'adhésion du déchet sec et de contrôler la taille des paillettes de résidu sec pour garantir la non-pulvérulence du déchet. Ces tensio-actifs permettent enfin de contrôler le phénomène de ressuage du gel au cours du temps et améliorent donc ainsi sa capacité à être pulvérisé après stockage.
Le solvant selon l'invention est généralement choisi parmi l'eau, les solvants organiques, et leurs mélanges.
Un solvant préféré est l'eau, et dans ce cas, le solvant est donc constitué par de l'eau, comprend 100% d'eau.
Avantageusement, le gel utilisé selon l'invention peut, en outre, comprendre un ou plusieurs pigment(s) minéraux tels que de l'oxyde de fer.
Généralement, dans l'utilisation selon l'invention on réalise au moins un cycle comprenant les étapes successives suivantes :
a) on applique le gel tel que décrit plus haut sur ladite surface ; b) on maintient le gel sur la surface au moins pendant une durée suffisante pour que le gel détruise le biofilm, et pour que le gel sèche et forme un résidu sec et solide non pulvérulent contenant des composés résultant de la destruction du biofilm ;
c) on élimine le résidu sec et solide non pulvérulent contenant les composés résultant de la destruction du biofilm.
Généralement, le résidu solide ne contient pas d'espèce biologique vivante et les composés résultant de la destruction du biofilm ne comprennent pas d'espèce biologique vivante.
Les espèces biologiques initialement présentes dans le biofilm sont tuées, détruites sous l'action du gel et les espèces biologiques détruites, « tuées », « mortes », qui font donc partie des composés résultant de la destruction du biofilm, sont récupérées dans le résidu sec et solide, à savoir généralement dans les paillettes de gel sec.
Avantageusement, le substrat est en au moins un matériau choisi parmi les métaux et alliages comme l'acier inoxydable, l'acier galvanisé, ou le zinc ; les aciers peints ; les polymères organiques tels que les matières plastiques ou caoutchoucs comme les poly(chlorure de vinyle)s ou PVC, les polypropylènes ou PP, les polyéthylènes ou PE notamment les polyéthylènes haute densité ou HDPE, les poly(méthacrylate de méthyle)s ou PMMA, les poly(fluorure de vinylidène)s ou PVDF, les polycarbonates ou PC ; les verres ; les matériaux cimentaires comme les pâtes, les ciments, les mortiers et les bétons ; les plâtres ; les briques ; les tuiles ; la terre crue ou cuite ; les pierres naturelles ou artificielles ; les enduits ; la fibre de verre ; les fibrociments ; l'asphalte ; le goudron ; l'ardoise ; les matériaux à base de cellulose comme le bois ; et les céramiques.
Le substrat peut être peint ou non.
Avantageusement, le gel est appliqué sur la surface du substrat solide sur laquelle se trouve le biofilm à raison de 100 g à 2000 g de gel par m2 de surface, de préférence de 500 à 1500 g de gel par m2 de surface, de préférence encore de 600 à 1000 g par m2 de surface, ce qui correspond généralement à une épaisseur de gel déposé sur la surface comprise entre 0,5 mm et 2 mm.
Avantageusement, le gel est appliqué sur la surface du substrat solide par pulvérisation, au pinceau, ou avec une taloche.
Avantageusement (lors de l'étape b)), le séchage est réalisé à une température de 1°C à 50°C, de préférence de 15°C à 25°C, et sous une humidité relative de 20% à 80%, de préférence de 20% à 70%.
Avantageusement, le gel est maintenu sur la surface pendant une durée de 2 à 72 heures, de préférence de 2 à 48 heures, de préférence encore de 3 à 24 heures.
Avantageusement, le résidu sec et solide se présente sous la forme de particules, par exemple de paillettes, d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm.
Avantageusement, le résidu sec et solide est éliminé de la surface du substrat solide par brossage et/ou aspiration.
Avantageusement, le cycle décrit plus haut peut être répété par exemple de 1 à 10 fois en utilisant le même gel lors de tous les cycles ou en utilisant des gels différents lors d'un ou de plusieurs cycle(s).
Avantageusement, lors de l'étape b), le gel, avant séchage total, est remouillé avec une solution de base minérale et d'agent oxydant, de préférence avec la solution de base minérale et d'agent oxydant appliquée lors de l'étape a) dans le solvant de ce gel.
Autrement dit, lors de l'étape b), le gel peut avant séchage total être remouillé avec la solution de base minérale et d'agent oxydant contenue dans le gel déjà décrit plus haut, ce qui évite alors généralement de répéter l'application du gel sur la surface et occasionne une économie de réactif et une quantité de déchet limitée. Cette opération de remouillage peut être répétée.
En résumé, l'utilisation du gel selon l'invention présente entre autres les propriétés avantageuses suivantes :
- le gel est un gel inorganique qui évite les risques de projection et de coloration de la surface ;
une efficacité élevée liée à la combinaison des effets suivants :
o action décontaminante et blanchissante de l'oxydant
o action dégraissante de la base et des tensio-actifs - une grande facilité de mise en œuvre par exemple au pinceau, au pulvérisateur individuel ou au pistolet à peinture,
l'adhérence aux parois,
le traitement par voie sèche d'une gamme très large de matériaux, l'absence d'altération mécanique ou physique des matériaux à l'issue du traitement, en particulier le gel utilisé présente une innocuité totale vis-à-vis de la plupart des matériaux de construction du fait de son caractère basique,
la mise en œuvre du procédé dans des conditions climatiques variables, la réduction du volume de déchet,
la facilité de récupération du déchet sec,
- des risques de pollution limités par la formation de paillettes qui peuvent être facilement collectées par exemple par aspiration ou brossage et n'entrent donc pas dans les réseaux d'évacuation des eaux pluviales,
la faible exposition des opérateurs aux espèces biologiques contenues dans le biofilm et aux résidus.
On note finalement que l'utilisation selon l'invention ne fait, au contraire des techniques exposées plus haut (Tableau 1), courir aucun risque au support, substrat à traiter et/ou au manipulateur et/ou à l'environnement. D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description détaillée qui suit, cette description étant faite à titre illustratif et non limitatif, en liaison avec les dessins joints.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 (A, B, C) présente des photographies qui montrent l'aspect de la surface du mur traité conformément à l'invention, lors des différentes étapes de l'essai réalisé dans l'exemple 2, à savoir : l'état initial de la surface du mur (A); l'aspect de la surface du mur après application du gel au pinceau sur une partie de la surface du mur (B); l'aspect de la surface du mur après séchage pendant 48 heures et élimination des paillettes de gel sec par brossage doux (C).
La Figure 2B est un graphique qui montre les résultats d'une analyse des valeurs de gris réalisée sur l'image de la Figure 1C convertie en niveaux de gris, le long de la ligne portée sur la figure 2A (analogue à la Figure 1C).
Sur la figure 2B, en abscisse est portée la distance (en pixels), et en ordonnée est portée la valeur de gris.
La figure 3 (A, B, C, D) présente des photographies qui montrent l'aspect de la surface de la rambarde traitée conformément à l'invention, lors des différentes étapes de l'essai réalisé dans l'exemple 3, à savoir : l'état initial de la surface de la rambarde (A); l'aspect de la surface de la rambarde après application du gel au pinceau sur une partie de la surface de la rambarde (B); l'aspect de la surface de la rambarde après séchage pendant 48 heures du gel appliqué sur une partie de la surface de la rambarde (C); l'aspect de la surface de la rambarde après élimination des paillettes de gel sec par brossage doux (D).
- La Figure 4 montre les deux zones de surface de la rambarde (une première zone 41 étant située dans la partie de la surface traitée par le gel et une seconde zone 42 étant située dans la partie de la surface non traitée par le gel) dans lesquelles on a calculé un niveau de gris moyenné sur l'image de la Figure 3D convertie en niveaux de gris. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Le gel utilisé selon l'invention peut être facilement préparé à la température ambiante.
Par exemple, le gel utilisé selon l'invention peut être préparé en ajoutant de préférence progressivement, le ou les agent(s) viscosant(s) inorganique(s), par exemple la ou les alumine(s) et/ou la ou les silice(s), à une solution contenant la combinaison d'une base inorganique et d'un agent oxydant, le ou les tensio-actif(s), et le ou les pigment(s) éventuel(s). Cette solution peut être préparée par exemple en préparant tout d'abord une solution de l'agent oxydant, par exemple une solution d'hypochlorite de sodium dans de l'eau déminéralisée, puis en mélangeant à cette solution d'agent oxydant, la base minérale, le ou les tensio-actif(s), et le ou les pigment(s) éventuel(s). Ce mélange peut être réalisé par agitation mécanique, par exemple au moyen d'un agitateur mécanique équipé d'une hélice à trois pales. La vitesse de rotation est par exemple de 200 tours/minute, et la durée de l'agitation est par exemple de 3 à 5 minutes.
L'addition du ou des agent(s) viscosant(s) inorganique(s) à la solution contenant le mélange d'une base inorganique et d'un agent oxydant, le ou les tensio-actif(s), et le ou les pigment(s) éventuel(s) peut être réalisée en versant simplement le ou les agent(s) viscosant(s) dans ladite solution. Lors de l'addition du ou des agent(s) viscosant(s) inorganique(s), la solution contenant le mélange d'une base inorganique et d'un agent oxydant, le ou les tensio-actif(s), et le ou les pigment(s) éventuel(s) est généralement maintenue sous agitation mécanique.
Cette agitation peut être, par exemple, réalisée au moyen d'un agitateur mécanique équipé d'une hélice à trois pales.
La vitesse d'agitation est généralement augmentée graduellement au fur et à mesure que la viscosité de la solution augmente, pour atteindre finalement une vitesse d'agitation comprise par exemple entre 400 et 600 tours/minute, sans qu'il n'y ait eu de projections. Après la fin de l'ajout du ou des viscosant(s) minéral (aux), l'agitation est encore poursuivie, par exemple pendant 2 à 5 minutes, de manière à obtenir un gel parfaitement homogène.
Il est bien évident que d'autres protocoles de préparation des gels utilisés selon l'invention peuvent être mis en œuvre avec une addition des composants du gel dans un ordre différent de celui mentionné plus haut.
Généralement, le gel utilisé selon l'invention doit présenter une viscosité inférieure à 200 mPa.s sous un cisaillement de 1000 s 1 de manière à permettre la pulvérisation sur la surface à décontaminer, à distance (par exemple à une distance de 1 à 5 m) ou à proximité (par exemple à une distance inférieure à 1 m, de préférence de 50 à 80 cm). Le temps de reprise de la viscosité doit généralement être inférieur à une seconde et la viscosité sous faible cisaillement supérieure à 10 Pa.s pour ne pas couler sur la paroi.
Il est à noter que l'agent tensio-actif du gel utilisé selon l'invention influence favorablement et notablement les propriétés rhéologiques du gel utilisé selon l'invention. Ce tensio-actif permet notamment que le gel utilisé selon l'invention puisse être mis en œuvre par pulvérisation et évite les risques d'épandage ou de coulure lors du traitement des surfaces verticales et des plafonds. Ce tensio-actif permet également de limiter le phénomène de ressuage observé lors de la conservation du gel.
Le gel ainsi préparé est ensuite appliqué sur la surface solide à nettoyer d'un substrat en un matériau solide.
Par surface solide à nettoyer, on entend une surface solide sur laquelle se trouve un biofilm que l'on souhaite éliminer.
Hormis éventuellement les alliages de métaux légers de type aluminium, il n'existe aucune limitation quant au matériau qui constitue la surface à nettoyer, en effet le gel utilisé permet de traiter sans aucun endommagement, toutes sortes de matériaux même fragiles.
Le gel utilisé selon l'invention ne génère aucune altération, érosion, attaque, chimique, mécanique ou physique du matériau traité. Le gel utilisé selon l'invention n'est donc en aucune manière préjudiciable à l'intégrité des matériaux traités et permet même leur réutilisation. Ainsi, des matériels sensibles tels que des équipements militaires sont préservés et pourront après leur nettoyage être réutilisés, tandis que les monuments, bâtiments, œuvres d'art telles que des sculptures, traités par le gel selon l'invention ne sont absolument pas dégradés et voient leur intégrité visuelle et structurale conservée.
Ce matériau du substrat peut donc être choisi parmi par exemple les métaux ou alliages comme l'acier inoxydable, les polymères tels que les matières plastiques ou caoutchoucs parmi lesquels on peut citer les PVC, PP, PE notamment HDPE, PMMA, PVDF, PC, les verres, les ciments, mortiers et bétons, les plâtres, les briques, la pierre naturelle ou artificielle, les enduits, les céramiques.
Dans tous les cas (voir Exemples 2 et 3 et Figures), quel que soit le matériau, par exemple enduit ou ciment, l'efficacité du nettoyage selon l'invention est totale.
La surface traitée peut être peinte ou non peinte.
Il n'existe également aucune limitation quant à la forme, la géométrie et la taille de la surface à nettoyer, le gel utilisé selon l'invention permet le traitement de surfaces de grande taille, de géométries complexes, présentant par exemple des creux, angles, recoins.
Le gel utilisé selon l'invention assure le traitement efficace non seulement de surfaces horizontales telles que des planchers ou rambardes de balcon ou encore appuis de fenêtres, mais aussi de surfaces verticales telles que des murs, façades, ou de surfaces inclinées ou en surplomb telles que des plafonds.
Par rapport aux techniques existantes qui mettent en œuvre des liquides tels que des solutions, l'invention met en œuvre un gel, ce qui est particulièrement avantageux pour le traitement de matériaux de grande surface, non transportables et implantés à l'extérieur. En effet, le procédé selon l'invention du fait de la mise en œuvre d'un gel, permet le nettoyage in situ en évitant l'épandage de solutions chimiques dans l'environnement et la dispersion des espèces contaminantes.
Le gel selon l'invention peut être appliqué sur la surface à traiter par tous les procédés d'application connus de l'homme du métier.
Des procédés classiques sont la pulvérisation par exemple au pistolet ou l'application au moyen d'un pinceau, ou d'une taloche.
Pour l'application par pulvérisation du gel sur la surface à traiter, la solution colloïdale peut par exemple être véhiculée par l'intermédiaire d'une pompe basse pression, par exemple une pompe qui met en œuvre une pression inférieure ou égale à 7 bar, soit environ 7.105 Pascals.
L'éclatement du jet de gel sur la surface peut être obtenu par exemple au moyen d'une buse à jet plat ou à jet rond.
La distance entre la pompe et la buse peut être quelconque, par exemple elle peut être de 1 à 50 m, notamment de 1 à 25 m.
Le temps de reprise de la viscosité suffisamment court des gels utilisés selon l'invention permet aux gels pulvérisés d'adhérer à toutes les surfaces, par exemple à des parois.
La quantité de gel déposé sur la surface à traiter est généralement de 100 à
2000 g/m2, de préférence de 500 à 1500 g/m2, de préférence encore de 600 à 1000 g/m2.
La quantité de gel déposé par unité de surface et, par voie de conséquence, l'épaisseur du gel déposé influence la vitesse de séchage.
Ainsi, lorsque l'on pulvérise un film, couche de gel d'une épaisseur de 0,5 mm à 2 mm sur la surface à traiter, le temps de contact efficace entre le gel et les matériaux est alors équivalent à son temps de séchage, période pendant laquelle le principe actif contenu dans le gel va interagir avec le biofilm.
En outre, il a été montré de manière surprenante que la quantité de gel déposé lorsqu'elle se situe dans les plages mentionnées plus haut et en particulier lorsqu'elle est supérieure à 500 g/m2 et notamment dans la plage de 500 à 1500 g/m2, ce qui correspond à une épaisseur minimale de gel déposé par exemple supérieure à 500 μιη pour une quantité de gel déposé supérieure à 500 g/m2, permettait après séchage du gel d'obtenir une fracturation du gel sous la forme de paillettes millimétriques, par exemple d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm aspirables.
La quantité de gel déposé et donc l'épaisseur de gel déposé, de préférence supérieure à 500 g/m2 soit 500 μιη, est le paramètre fondamental qui influence la taille des résidus secs formés après séchage du gel et qui assure ainsi que des résidus secs de taille millimétrique et non des résidus pulvérulents soient formés, de tels résidus étant facilement éliminés par un procédé mécanique et de préférence par aspiration. Cependant, il est également à noter que grâce à l'agent tensio-actif à faible concentration, le séchage du gel est amélioré et conduit à un phénomène de fracturation homogène avec une taille des résidus secs mono-dispersés et une aptitude accrue des résidus secs à se détacher du support.
Le gel est ensuite maintenu sur la surface à traiter pendant toute la durée nécessaire à son séchage. Au cours de cette étape de séchage dont on peut considérer qu'elle constitue la phase active du procédé selon l'invention, le solvant contenu dans le gel, à savoir généralement l'eau contenue dans le gel s'évapore jusqu'à l'obtention d'un résidu sec et solide.
La durée de séchage dépend de la composition du gel dans les gammes de concentration de ses constituants données plus haut, mais aussi, comme on l'a déjà précisé, de la quantité de gel déposé par unité de surface c'est-à-dire de l'épaisseur de gel déposé.
La durée de séchage dépend aussi des conditions climatiques à savoir de la température, de la ventilation et de l'humidité relative de l'atmosphère dans laquelle se trouve la surface solide.
Le procédé selon l'invention peut être mis en œuvre dans des conditions climatiques extrêmement larges, à savoir à une température T de 1°C à 50°C et à une humidité relative HR de 20% à 80%.
La durée de séchage du gel selon l'invention est donc généralement de 1 heure à 24 heures à une température T de 1°C à 50°C et à une humidité relative HR de 20% à 80%.
Il est à noter que la formulation du gel utilisé selon l'invention notamment lorsqu'elle contient des tensio-actifs tels que les « Pluronics8 » assure généralement un temps de séchage qui est sensiblement équivalent au temps de contact entre le gel et le biofilm qui est nécessaire, requis pour détruire, éliminer le biofilm polluant le matériau. En d'autres termes, la formulation du gel assure un temps de séchage qui n'est autre que le temps nécessaire pour éliminer, détruire, le biofilm et qui est compatible avec la cinétique de destruction du biofilm et notamment avec la cinétique de destruction de la contamination biologique contenue dans le biofilm (les organismes biologiques sont tués). A l'issue du séchage du gel, le gel se fracture de manière homogène pour donner des résidus secs solides millimétriques, par exemple d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm non pulvérulents, généralement sous la forme de paillettes solides. Les résidus secs et solides contiennent des composés résultant de la destruction du biofilm.
Les résidus secs, tels que des paillettes, obtenus à l'issue du séchage présentent une faible adhérence à la surface du matériau nettoyé. De ce fait, les résidus secs obtenus après séchage du gel peuvent être facilement récupérés par simple brossage et/ou aspiration. Toutefois, les résidus secs peuvent aussi être évacués par jet de gaz, par exemple par jet d'air comprimé.
Ainsi, aucun rinçage n'est nécessaire et le procédé selon l'invention ne génère aucun effluent secondaire.
Selon l'invention, on réalise donc ainsi tout d'abord une importante économie de réactifs chimiques par rapport à un procédé de décontamination par lavage avec une solution. Ensuite du fait qu'un déchet sous la forme d'un résidu sec directement aspirable est obtenu, une opération de rinçage avec de l'eau ou avec un liquide est évitée. Il en résulte bien évidemment une diminution de la quantité d'effluents produits mais aussi une simplification notable en termes de filière de traitement et d'exutoire. En particulier, selon l'invention les déchets obtenus à la fin du traitement ne sont pas entraînés dans les réseaux d'évacuation des eaux pluviales en violation des réglementations.
En raison de la composition majoritairement minérale du gel utilisé selon l'invention et de la faible quantité de déchets produits, le déchet sec peut être stocké ou dirigé vers une filière d'évacuation sans traitement préalable.
A titre d'exemple, dans le cas courant où l'on applique 1000 grammes de gel par m2 de surface traitée, la masse de déchet sec produite est inférieure à 300 grammes par m2.
L'invention va maintenant être décrite en référence aux exemples suivants, donnés à titre illustratif et non limitatif. Exemples :
Exemple 1 :
Dans cet exemple, on décrit et on prépare le gel « anti-biofilm » étudié dans les exemples 2 et 3 qui suivent.
Il s'agit d'un gel minéral, basique, alcalin, oxydant, comprenant de l'eau, de la soude 1M, de l'hypochlorite de sodium, de l'alumine, et un tensio-actif.
Ce gel ne comprend pas de polymère super-absorbant.
L'alumine est de l'alumine Aeroxide* Alu C commercialisée par EVONIK INDUSTRIES d'une surface spécifique de 100 m2/g (BET), le tensio-actif est le tensio-actif Pluronic* PE6200 commercialisé par BASF, la soude est de la soude 1M commercialisée par SIGMA-ALDRICH, et l'hypochlorite de sodium est de l'hypochlorite de sodium à 10 à 15% en chlore actif, commercialisée par SIGMA-ALDRICH.
Le gel utilisé selon l'invention est préparé de la manière suivante : la solution d'hypochlorite de sodium est diluée à 50% avec de l'eau déminéralisée. Cette solution, le tensio-actif, et la soude sont ensuite mélangés à l'aide d'un agitateur mécanique, muni d'un agitateur à trois pales, à une vitesse de 200 rotations/min, pendant 3 à 5 minutes. L'alumine est ensuite ajoutée progressivement dans le mélange réactionnel, en augmentant graduellement la vitesse d'agitation au fur et à mesure que la viscosité croît, pour arriver à environ 400 à 600 tours/min sans qu'il n'y ait de projections. Le gel est ensuite maintenu sous agitation pendant 5 minutes.
La composition du gel étudié est donnée dans le Tableau 2 ci-dessous.
Tableau 2 : Composition du gel étudié.
Composition Pourcentages massiques (%) NaOH 1M 44,5
Hypochlorite de sodium (10-15% c.a.) dilué à 50% 42,5
Alumine 12
Pluronic" PE6200 1
Exemple 2 Dans cet exemple, on réalise un essai avec le gel « anti-biofilm » préparé dans l'exemple 1 pour éliminer un biofilm sur une surface extérieure verticale.
Le gel « anti-biofilm » préparé dans l'exemple 1 est appliqué au pinceau sur une partie de la surface d'un mur extérieur revêtu d'un enduit projeté traditionnel.
L'essai a lieu à une température inférieure à 10°C, et avec une humidité relative de l'ordre de 50%.
Après 48h de séchage, les paillettes formées sont éliminées par brossage doux. La figure 1 (A, B, C) montre l'aspect de la surface du mur lors des différentes étapes de l'essai réalisé dans cet exemple, à savoir :
l'état initial de la surface du mur (A);
l'aspect de la surface du mur après application du gel au pinceau sur une partie de la surface du mur, cette partie de la surface du mur est donc recouverte de gel humide (B);
l'aspect de la surface après séchage pendant 48 heures et élimination des paillettes de gel sec par brossage doux (C).
On constate visuellement que le biofilm a été effectivement éliminé de la partie de la surface du mur traitée, nettoyée conformément à l'invention, en utilisant le gel préparé dans l'exemple 1.
Cet essai montre l'efficacité de l'utilisation selon l'invention du gel oxydant alcalin préparé dans l'exemple 1 pour éliminer un biofilm sur une surface verticale.
Afin de mieux quantifier l'action du gel, on a procédé à une analyse d'image grâce au logiciel ImageJ.
Pour ce faire, l'image finale de la Figure 1C qui montre donc la surface du mur à l'issue d'un traitement selon l'invention a été convertie en niveaux de gris (sur une échelle allant de 0, noir, à 255, blanc) et une analyse des valeurs de gris a été réalisée le long de la ligne portée sur la figure 2A (analogue à la Figure 1C).
La valeur moyenne dans la partie de la surface du mur non traitée par le gel de l'exemple 1 est prise comme référence. Le graphique de la Figure 2B montre les résultats de l'analyse d'image, et confirme l'efficacité de l'élimination du biofilm par le gel dans la partie de la surface du mur traitée conformément à l'invention par le gel préparé dans l'exemple 1. Exemple 3.
Dans cet exemple, on réalise un essai avec le gel « anti-biofilm » préparé dans l'exemple 1 pour éliminer un biofilm sur une surface extérieure horizontale.
Le gel « anti-biofilm » préparé dans l'exemple 1 est appliqué au pinceau sur une partie de la surface d'une rambarde de balcon en ciment blanc.
L'essai a lieu à une température inférieure à 10°C, et avec une humidité relative de l'ordre de 50%.
Après 48h de séchage, les paillettes formées sont éliminées par brossage doux. La figure 3 (A, B, C, D) montre l'aspect de la surface de la rambarde lors des différentes étapes de l'essai réalisé dans cet exemple, à savoir :
- l'état initial de la surface de la rambarde (A);
l'aspect de la surface de la rambarde après application du gel au pinceau sur une partie de la surface de la rambarde, cette partie de la surface de la rambarde est donc recouverte de gel humide (B);
l'aspect de la surface après séchage pendant 48 heures du gel appliqué sur une partie de la surface de la rambarde, cette partie de la surface de la rambarde est donc recouverte de gel sec (C) ;
l'aspect de la surface de la rambarde après élimination des paillettes de gel sec par brossage doux (D). On constate visuellement que le biofilm a été effectivement éliminé de la partie de la surface de la rambarde traitée, nettoyée conformément à l'invention, en utilisant le gel préparé dans l'exemple 1.
Cet essai montre l'efficacité de l'utilisation selon l'invention du gel oxydant alcalin préparé dans l'exemple 1 pour éliminer un biofilm sur une surface horizontale. Afin de mieux quantifier l'action du gel, on a procédé à une analyse d'image grâce au logiciel ImageJ, comme dans l'exemple 2.
Pour ce faire, comme dans l'exemple 2, l'image finale de la Figure 3D qui montre donc la surface de la rambarde à l'issue d'un traitement selon l'invention a été convertie en niveaux de gris (sur une échelle allant de 0, noir, à 255, blanc).
En revanche, la différence étant moins marquée (fort bruit de fond), le résultat est exprimé en niveau de gris moyenné sur deux zones de la surface de la rambarde, une première zone 41 étant située dans la partie de la surface traitée par le gel et une seconde zone 42 étant située dans la partie de la surface non traitée par le gel (Figure 4).
On note que la zone non traitée a un niveau moyen de 156 alors que la zone traitée a un niveau moyen de gris de 169.
Les résultats de l'analyse d'images confirment l'efficacité de l'élimination du biofilm par le gel dans la partie de la surface de la rambarde traitée conformément à l'invention par le gel préparé dans l'exemple 1.
REFERENCES
[1] Rapport NOBATEK :
http://www.nobatek om/downloads/Etudes%20publiques/ENSEL%20Micro%20biologie
%20_N OBATEK_.pdf
[2] US-A1-2012/0232153.
[3] « Biofilm quand les microbes s'organisent » par R. Briandet, L. Fechner, M. Naïali et
C. Dreano, Editions Quae 2012 .
[4] K. Ammerman, « Algae, the growing problem », Interface, Janvier 2007, pages 37-42.
[5] FAURE S., FOURNEL B., FUENTES P., LALLOT Y. "Procédé de traitement d'une surface par un gel de traitement, et gel de traitement", FR-A1-2 827 530.
[6] FAURE S., FUENTES P., LALLOT Y. "Gel aspirable pour la décontamination de surfaces et utilisation", FR-A1-2 891 470.
[7] CUER F., FAURE S. « Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel », FR-A1-2962046 et
WO-A1-2012/001046.

Claims

REVENDICATIONS
1. Utilisation d'un gel, constitué par une solution colloïdale comprenant, de préférence constitué par :
- 5% à 30% en masse, de préférence 5% à 25% en masse, de préférence encore 8% à 20% en masse par rapport à la masse du gel, d'au moins un agent viscosant inorganique ;
une base minérale choisie parmi les hydroxydes de métaux alcalins, les hydroxydes de métaux alcalinoterreux, et leurs mélanges, ladite base minérale étant présente à raison de 0,05 à 10 mol/L de gel, de préférence à raison de 0,1 à 5 mol/L de gel ;
un agent oxydant stable en milieu basique choisi parmi les permanganates, les persulfates, l'ozone, les hypochlorites, et leurs mélanges, ledit agent oxydant stable en milieu basique étant présent à raison de 0,05 à 5 mol/L de gel, de préférence de 0,1 à 2 mol/L de gel ;
- 0,1% à 2% en masse par rapport à la masse du gel, d'au moins un agent tensio-actif ;
et un solvant ;
et le gel ne contenant pas de polymère super-absorbant ;
pour éliminer un biofilm se trouvant sur une surface d'un substrat solide.
2. Utilisation selon la revendication 1, dans laquelle la base minérale est choisie parmi l'hydroxyde de sodium, l'hydroxyde de potassium, et leurs mélanges, et l'agent oxydant stable en milieu basique est choisi parmi les hypochlorites, et leurs mélanges.
3. Utilisation selon la revendication 2, dans laquelle le gel contient une combinaison de soude et d'hypochlorite de sodium.
4. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle l'agent viscosant inorganique est choisi parmi les oxydes de métaux tels que les alumines, les oxydes de métalloïdes à l'exception de la silice, les hydroxydes de métaux, les hydroxydes de métalloïdes, les oxyhydroxydes de métaux, les oxyhydroxydes de métalloïdes, les aluminosilicates, les argiles telles que la smectite, et leurs mélanges.
5. Utilisation selon la revendication 4, dans laquelle l'agent viscosant inorganique est constitué par une ou plusieurs alumine(s).
6. Utilisation selon la revendication 5, dans laquelle la ou les alumine(s) représente(nt) de 5% à 30% en masse, de préférence de 8% à 17% en masse par rapport à la masse totale du gel.
7. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle l'agent tensio-actif est choisi parmi les agents tensio-actifs non ioniques tels que les copolymères blocs, séquencés comme les copolymères séquencés d'oxyde d'éthylène et d'oxyde de propylène, et les acides gras éthoxylés ; et leurs mélanges.
8. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le solvant est choisi parmi l'eau, les solvants organiques, et leurs mélanges.
9. Utilisation selon l'une quelconque des revendications précédentes, qui comprend en outre un ou plusieurs pigment(s) minéraux.
10. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle le substrat est en au moins un matériau choisi parmi les métaux et alliages comme l'acier inoxydable, l'acier galvanisé, ou le zinc ; les aciers peints ; les polymères organiques tels que les matières plastiques ou caoutchoucs comme les poly(chlorure de vinyle)s ou PVC, les polypropylènes ou PP, les polyéthylènes ou PE notamment les polyéthylènes haute densité ou HDPE, les poly(méthacrylate de méthyle)s ou PMMA, les poly(fluorure de vinylidène)s ou PVDF, les polycarbonates ou PC ; les verres ; les matériaux cimentaires comme les pâtes, les ciments, les mortiers et les bétons ; les plâtres ; les briques ; les tuiles ; la terre crue ou cuite ; les pierres naturelles ou artificielles ; les enduits ; la fibre de verre ; les fibrociments ; l'asphalte ; le goudron ; l'ardoise ; les matériaux à base de cellulose comme le bois ; et les céramiques.
11. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle on réalise au moins un cycle comprenant les étapes successives suivantes :
a) on applique le gel sur ladite surface ;
b) on maintient le gel sur la surface au moins pendant une durée suffisante pour que le gel détruise le biofilm, et pour que le gel sèche et forme un résidu sec et solide non pulvérulent contenant des composés résultant de la destruction du biofilm ;
c) on élimine le résidu sec et solide non pulvérulent contenant les composés résultant de la destruction du biofilm.
12. Utilisation selon la revendication 11, dans laquelle le gel est appliqué sur la surface du substrat solide à raison de 100 g à 2000 g de gel par m2 de surface, de préférence de 500 g à 1500 g de gel par m2 de surface, de préférence encore de 600 g à 1000 g de gel par m2 de surface.
13. Utilisation selon l'une quelconque des revendications 11 et 12, dans laquelle le gel est appliqué sur la surface du substrat solide par pulvérisation, au pinceau, ou avec une taloche.
14. Utilisation selon l'une quelconque des revendications 11 à 13, dans laquelle lors de l'étape b), le séchage est réalisé à une température de 1°C à 50°C, de préférence de 15°C à 25°C, et sous une humidité relative de 20% à 80%, de préférence de 20% à 70%.
15. Utilisation selon l'une quelconque des revendications 11 à 14, dans laquelle le gel est maintenu sur la surface pendant une durée de 2 à 72 heures, de préférence de 2 à 48 heures, de préférence encore de 3 à 24 heures.
16. Utilisation selon l'une quelconque des revendications 11 à 15, dans laquelle le résidu sec et solide se présente sous la forme de particules, par exemple de paillettes, d'une taille de 1 à 10 mm, de préférence de 2 à 5 mm.
17. Utilisation selon l'une quelconque des revendications 11 à 16, dans laquelle le résidu sec et solide non pulvérulent est éliminé de la surface du substrat solide par brossage et/ou aspiration.
18. Utilisation selon l'une quelconque des revendications 11 à 17, dans laquelle le cycle décrit est répété de 1 à 10 fois en utilisant le même gel lors de tous les cycles ou en utilisant des gels différents lors d'un ou de plusieurs cycle(s).
19. Utilisation selon l'une quelconque des revendications 11 à 18, dans laquelle, lors de l'étape b), le gel, avant séchage total, est remouillé avec une solution de base minérale et d'agent oxydant, de préférence avec la solution de base minérale et d'agent oxydant appliquée lors de l'étape a) dans le solvant de ce gel.
EP14815271.3A 2013-12-05 2014-12-03 Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide Active EP3077491B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362177A FR3014336B1 (fr) 2013-12-05 2013-12-05 Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide.
PCT/EP2014/076417 WO2015082548A1 (fr) 2013-12-05 2014-12-03 Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide

Publications (2)

Publication Number Publication Date
EP3077491A1 true EP3077491A1 (fr) 2016-10-12
EP3077491B1 EP3077491B1 (fr) 2019-01-09

Family

ID=50289892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14815271.3A Active EP3077491B1 (fr) 2013-12-05 2014-12-03 Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide

Country Status (5)

Country Link
US (1) US9834744B2 (fr)
EP (1) EP3077491B1 (fr)
ES (1) ES2718376T3 (fr)
FR (1) FR3014336B1 (fr)
WO (1) WO2015082548A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463181B (en) 2007-05-14 2013-03-27 Univ New York State Res Found Induction of a physiological dispersion response in bacterial cells in a biofilm
FR3025115B1 (fr) 2014-09-03 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'extraction selectif de platinoides, a partir d'un support les contenant, avec un milieu d'extraction comprenant un fluide supercritique et un ligand organique.
UA115950C2 (uk) * 2016-11-28 2018-01-10 Сергій Володимирович Бевз Склад для знищення мікроорганізмів у сесильному стані і спосіб його застосування
CN107335654A (zh) * 2017-05-18 2017-11-10 天赐瑰宝(北京)古建工程技术研究院有限公司 一种石质文物棕褐色结壳的清洗试剂及清洗方法
US11541105B2 (en) 2018-06-01 2023-01-03 The Research Foundation For The State University Of New York Compositions and methods for disrupting biofilm formation and maintenance
FR3089753B1 (fr) * 2018-12-13 2022-05-13 Franc Cecile Des gels bi-composants pour l’application contrôlée d’un traitement oxydant sur les surfaces
WO2022256690A1 (fr) * 2021-06-04 2022-12-08 W.M. Barr & Company, Inc. Composition de nettoyage et procédé d'élimination de taches de bardeaux de toiture

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695394A (en) * 1984-04-20 1987-09-22 The Clorox Company Thickened aqueous cleanser
US5089161A (en) * 1987-09-29 1992-02-18 Colgate-Palmolive Co. Thixotropic aqueous liquid automatic dishwashing detergent composition
US5731276A (en) * 1996-07-30 1998-03-24 The Clorox Company Thickened aqueous cleaning composition and methods of preparation thereof and cleaning therewith
FR2827530B1 (fr) 2001-07-17 2004-05-21 Commissariat Energie Atomique Procede de traitement d'une surface par un gel de traitement, et gel de traitement
US6905276B2 (en) * 2003-04-09 2005-06-14 The Clorox Company Method and device for delivery and confinement of surface cleaning composition
US20060000495A1 (en) * 2004-07-01 2006-01-05 Geoffrey Brown Novel methods and compositions for remediating submerged deposits
FR2891470B1 (fr) 2005-10-05 2007-11-23 Commissariat Energie Atomique Gel aspirable pour la decontamination de surfaces et utilisation
FR2956517B1 (fr) 2010-02-17 2012-03-09 Commissariat Energie Atomique Procede de traitement avant calcination d'une solution aqueuse nitrique comprenant au moins un radionucleide et eventuellement du ruthenium
FR2962046B1 (fr) * 2010-07-02 2012-08-17 Commissariat Energie Atomique Gel de decontamination biologique et procede de decontamination de surfaces utilisant ce gel.
US10085447B2 (en) 2011-03-11 2018-10-02 Ecolab Usa Inc. Acidic biofilm remediation
FR2984170B1 (fr) * 2011-12-19 2014-01-17 Commissariat Energie Atomique Gel de decontamination et procede de decontamination de surfaces par trempage utilisant ce gel.
FR2998891B1 (fr) 2012-11-30 2015-04-10 Commissariat Energie Atomique Procede pour preparer un verre a porosite bimodale, eventuellement fonctionnalise et ledit verre
FR3002463B1 (fr) 2013-02-25 2016-08-19 Commissariat Energie Atomique Materiau hybride organique-inorganique, utile pour extraire l'uranium(vi) de milieux aqueux contenant de l'acide phosphorique, ses procedes de preparation et ses utilisations
FR3003763B1 (fr) * 2013-03-29 2015-05-15 Commissariat Energie Atomique Gel alcalin oxydant de decontamination biologique et procede de decontamination biologique de surfaces utilisant ce gel.
FR3003869B1 (fr) 2013-03-29 2015-05-01 Commissariat Energie Atomique Gel de decontamination pigmente et procede de decontamination de surfaces utilisant ce gel.

Also Published As

Publication number Publication date
US9834744B2 (en) 2017-12-05
WO2015082548A1 (fr) 2015-06-11
EP3077491B1 (fr) 2019-01-09
US20160298060A1 (en) 2016-10-13
FR3014336B1 (fr) 2016-01-22
FR3014336A1 (fr) 2015-06-12
ES2718376T3 (es) 2019-07-01

Similar Documents

Publication Publication Date Title
EP3077491B1 (fr) Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide
EP2588148B1 (fr) Gel de décontamination biologique et procédé de décontamination de surfaces utilisant ce gel
EP3206780B1 (fr) Gel pour eliminer les graffitis et procede pour eliminer les graffitis utilisant ce gel
Balliana et al. Assessing the value of green conservation for cultural heritage: Positive and critical aspects of already available methodologies
EP2978459B1 (fr) Gel alcalin oxydant de décontamination biologique et procédé de décontamination biologique de surfaces utilisant ce gel.
EP2978458A1 (fr) Gel de decontamination pigmente et procede de decontamination de surfaces utilisant ce gel
WO2018024990A1 (fr) Gel aspirable et procede pour eliminer une contamination contenue dans une couche organique en surface d'un substrat solide
EP2793959A1 (fr) Gel de décontamination et procédé de décontamination de surfaces par trempage utilisant ce gel
EP3484610A1 (fr) Gel de décontamination adsorbant et photocatalytique et procédé de décontamination de surfaces utilisant ce gel.
CA3105593A1 (fr) Procede de decontamination d'un milieu gazeux contamine par des especes contaminantes en suspension
EP3310399A1 (fr) Mousse aqueuse désinfectante, son procédé de préparation et ses utilisations
LU500004B1 (fr) Produit de traitement et de protection de surfaces minerales
FR2934177A1 (fr) Composition photocatalytique transparente pour elements de construction interieurs et exterieurs des batiments
EP1819221B8 (fr) Utilisation du glycerol comme agent anti-mousses et/ou anti-lichens
FR3089753A1 (fr) Des gels bi-composants pour l’application contrôlée d’un traitement oxydant sur les surfaces
JP2023111423A (ja) 浸透性組成物
JP2020127906A (ja) 基材及びその製造方法
CZ2013804A3 (cs) Čistící směs pro odstraňování polymerních hydrofobizačních povlaků
CZ20022629A3 (cs) Způsob odstraňování graffiti a prostředek k provedení tohoto způsobu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170801

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180605

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20181108

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUDWIG, AMELIE

Inventor name: GOETTMANN, FREDERIC

Inventor name: CASTELLANI, ROMAIN

Inventor name: FRANCES, FABIEN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1087286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014039703

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2718376

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1087286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014039703

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

26N No opposition filed

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 10

Ref country code: NL

Payment date: 20231218

Year of fee payment: 10

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: FI

Payment date: 20231218

Year of fee payment: 10

Ref country code: DE

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 10