EP3072458A2 - Contrefort d'agrafe chirurgicale avec un adhésif intégré destiné à être fixé de manière amovible sur une agrafeuse chirurgicale - Google Patents

Contrefort d'agrafe chirurgicale avec un adhésif intégré destiné à être fixé de manière amovible sur une agrafeuse chirurgicale Download PDF

Info

Publication number
EP3072458A2
EP3072458A2 EP16162059.6A EP16162059A EP3072458A2 EP 3072458 A2 EP3072458 A2 EP 3072458A2 EP 16162059 A EP16162059 A EP 16162059A EP 3072458 A2 EP3072458 A2 EP 3072458A2
Authority
EP
European Patent Office
Prior art keywords
buttress
end effector
assembly
anvil
staple cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16162059.6A
Other languages
German (de)
English (en)
Other versions
EP3072458B1 (fr
EP3072458A3 (fr
Inventor
Iv Frederick E. Shelton
Jason L. Harris
Rao S. Bezwada
Charles J. Scheib
Prudence A. TURNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon LLC
Original Assignee
Ethicon Endo Surgery LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery LLC filed Critical Ethicon Endo Surgery LLC
Priority to PL16162059T priority Critical patent/PL3072458T3/pl
Priority to EP21192878.3A priority patent/EP3970628A1/fr
Publication of EP3072458A2 publication Critical patent/EP3072458A2/fr
Publication of EP3072458A3 publication Critical patent/EP3072458A3/fr
Application granted granted Critical
Publication of EP3072458B1 publication Critical patent/EP3072458B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07292Reinforcements for staple line, e.g. pledgets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable or resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00893Material properties pharmaceutically effective
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00951Material properties adhesive

Definitions

  • endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through the cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasonic vibration, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician.
  • Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient. Positioning of an end effector may be further facilitated through inclusion of one or more articulation joints or features, enabling the end effector to be selectively articulated or otherwise deflected relative to the longitudinal axis of the shaft.
  • endoscopic surgical instruments include surgical staplers. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the layers of tissue to substantially seal the severed layers of tissue together near the severed ends of the tissue layers.
  • surgical staplers are disclosed in U.S. Pat. No. 4,805,823 , entitled “Pocket Configuration for Internal Organ Staplers,” issued February 21, 1989; U.S. Pat. No. 5,415,334 , entitled “Surgical Stapler and Staple Cartridge,” issued May 16, 1995; U.S. Pat. No. 5,465,895 , entitled “Surgical Stapler Instrument,” issued November 14, 1995; U.S. Pat. No.
  • surgical staplers referred to above are described as being used in endoscopic procedures, it should be understood that such surgical staplers may also be used in open procedures and/or other non-endoscopic procedures.
  • a surgical stapler may be inserted through a thoracotomy, and thereby between a patient's ribs, to reach one or more organs in a thoracic surgical procedure that does not use a trocar as a conduit for the stapler.
  • Such procedures may include the use of the stapler to sever and close a vessel leading to a lung. For instance, the vessels leading to an organ may be severed and closed by a stapler before removal of the organ from the thoracic cavity.
  • surgical staplers may be used in various other settings and procedures.
  • a surgical stapling instrument may be desirable to equip a surgical stapling instrument with a buttress material to reinforce the mechanical fastening of tissue provided by staples.
  • a buttress may prevent the applied staples from pulling through tissue and may otherwise reduce a risk of tissue tearing at or near the site of applied staples.
  • any term is used to describe or quantify the properties of any substance or component, including such terms as "inherent viscosity,” “glass transition temperature,” “crystallinity,” “malleability,” “flowability,” “impermeability,” and “semi impermeability,” then unless the context otherwise requires or specifies, the terms will be understood to apply to the substance or component in the condition in which it is for the time being found in any product or in which it is for the time being being used in any process. Alternatively and in addition, the terms will be understood to apply to the substance or component at standard ambient temperature and pressure (SATP) or under the conditions specified in any protocol for its measurement.
  • SATP ambient temperature and pressure
  • FIG. 1 depicts an exemplary surgical stapling and severing instrument (10) that includes a handle assembly (20), a shaft assembly (30), and an end effector (40).
  • End effector (40) and the distal portion of shaft assembly (30) are sized for insertion, in a nonarticulated state as depicted in FIG. 1 , through a trocar cannula to a surgical site in a patient for performing a surgical procedure.
  • a trocar may be inserted in a patient's abdomen, between two of the patient's ribs, or elsewhere.
  • instrument (10) is used without a trocar.
  • end effector (40) and the distal portion of shaft assembly (30) may be inserted directly through a thoracotomy or other type of incision.
  • terms such as “proximal” and “distal” are used herein with reference to a clinician gripping handle assembly (20) of instrument (10).
  • end effector (40) is distal with respect to the more proximal handle assembly (20).
  • spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings.
  • surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
  • handle assembly (20) of the present example comprises pistol grip (22), a closure trigger (24), and a firing trigger (26). Each trigger (24, 26) is selectively pivotable toward and away from pistol grip (22) as will be described in greater detail below.
  • Handle assembly (20) further includes an anvil release button (25), a firing beam reverse switch (27), and a removable battery pack (28). These components will also be described in greater detail below.
  • handle assembly (20) may have a variety of other components, features, and operabilities, in addition to or in lieu of any of those noted above.
  • Other suitable configurations for handle assembly (20) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • shaft assembly (30) of the present example comprises an outer closure tube (32), an articulation section (34), and a closure ring (36), which is further coupled with end effector (40).
  • Closure tube (32) extends along the length of shaft assembly (30).
  • Closure ring (36) is positioned distal to articulation section (34).
  • Closure tube (32) and closure ring (36) are configured to translate longitudinally relative to handle assembly (20). Longitudinal translation of closure tube (32) is communicated to closure ring (36) via articulation section (34). Exemplary features that may be used to provide longitudinal translation of closure tube (32) and closure ring (36) will be described in greater detail below.
  • Articulation section (34) is operable to laterally deflect closure ring (36) and end effector (40) laterally away from the longitudinal axis (LA) of shaft assembly (30) at a desired angle ( ⁇ ). End effector (40) may thereby reach behind an organ or approach tissue from a desired angle or for other reasons.
  • articulation section (34) enables deflection of end effector (40) along a single plane.
  • articulation section (34) enables deflection of end effector along more than one plane.
  • articulation is controlled through an articulation control knob (35) which is located at the proximal end of shaft assembly (30).
  • Knob (35) is rotatable about an axis that is perpendicular to the longitudinal axis (LA) of shaft assembly (30).
  • Closure ring (36) and end effector (40) pivot about an axis that is perpendicular to the longitudinal axis (LA) of shaft assembly (30) in response to rotation of knob (35).
  • rotation of knob (35) clockwise may cause corresponding clockwise pivoting of closure ring (36) and end effector (40) at articulation section (34).
  • Articulation section (34) is configured to communicate longitudinal translation of closure tube (32) to closure ring (36), regardless of whether articulation section (34) is in a straight configuration or an articulated configuration.
  • articulation section (34) and/or articulation control knob (35) are/is constructed and operable in accordance with at least some of the teachings of U.S. Pub. No. 2014/0243801 , entitled “Surgical Instrument End Effector Articulation Drive with Pinion and Opposing Racks,” published August 28, 2014, the disclosure of which is incorporated by reference herein.
  • Articulation section (34) may also be constructed and operable in accordance with at least some of the teachings of U.S. Pat. App. No. 14/314,125 , entitled “Articulation Drive Features for Surgical Stapler,” filed June 25, 2014, the disclosure of which is incorporated by reference herein; and/or in accordance with the various teachings below.
  • Other suitable forms that articulation section (34) and articulation knob (35) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • shaft assembly (30) of the present example further includes a rotation knob (31).
  • Rotation knob (31) is operable to rotate the entire shaft assembly (30) and end effector (40) relative to handle assembly (20) about the longitudinal axis (LA) of shaft assembly (30).
  • rotation knob (31) is operable to selectively lock the angular position of shaft assembly (30) and end effector (40) relative to handle assembly (20) about the longitudinal axis (LA) of shaft assembly (30).
  • rotation knob (31) may be translatable between a first longitudinal position, in which shaft assembly (30) and end effector (40) are rotatable relative to handle assembly (20) about the longitudinal axis (LA) of shaft assembly (30); and a second longitudinal position, in which shaft assembly (30) and end effector (40) are not rotatable relative to handle assembly (20) about the longitudinal axis (LA) of shaft assembly (30).
  • shaft assembly (30) may have a variety of other components, features, and operabilities, in addition to or in lieu of any of those noted above.
  • at least part of shaft assembly (30) is constructed in accordance with at least some of the teachings of U.S. Pub. No.
  • end effector (40) of the present example includes a lower jaw (50) and a pivotable anvil (60).
  • Anvil (60) includes a pair of integral, outwardly extending pins (66) that are disposed in corresponding curved slots (54) of lower jaw (50). Pins (66) and slots (54) are shown in FIG. 5 .
  • Anvil (60) is pivotable toward and away from lower jaw (50) between an open position (shown in FIGS. 2 and 4 ) and a closed position (shown in FIGS. 1 , 3 , and 7A-7B ).
  • anvil (60) pivots about an axis that is defined by pins (66), which slide along curved slots (54) of lower jaw (50) as anvil (60) moves toward lower jaw (50).
  • the pivot axis translates along the path defined by slots (54) while anvil (60) simultaneously pivots about that axis.
  • the pivot axis may slide along slots (54) first, with anvil (60) then pivoting about the pivot axis after the pivot axis has slid a certain distance along the slots (54).
  • pivotal movement is encompassed within terms such as “pivot,” “pivots,” “pivotal,” “pivotable,” “pivoting,” and the like.
  • some versions may provide pivotal movement of anvil (60) about an axis that remains fixed and does not translate within a slot or channel, etc.
  • lower jaw (50) of the present example defines a channel (52) that is configured to receive a staple cartridge (70).
  • Staple cartridge (70) may be inserted into channel (52), end effector (40) may be actuated, and then staple cartridge (70) may be removed and replaced with another staple cartridge (70).
  • Lower jaw (50) thus releasably retains staple cartridge (70) in alignment with anvil (60) for actuation of end effector (40).
  • lower jaw (50) is constructed in accordance with at least some of the teachings of U.S. Pub. No.
  • staple cartridge (70) of the present example comprises a cartridge body (71) and a tray (76) secured to the underside of cartridge body (71).
  • the upper side of cartridge body (71) presents a deck (73), against which tissue may be compressed when anvil (60) is in a closed position.
  • Cartridge body (71) further defines a longitudinally extending channel (72) and a plurality of staple pockets (74).
  • a staple (77) is positioned in each staple pocket (74).
  • a staple driver (75) is also positioned in each staple pocket (74), underneath a corresponding staple (77), and above tray (76).
  • staple drivers (75) are operable to translate upwardly in staple pockets (74) to thereby drive staples (77) upwardly through staple pockets (74) and into engagement with anvil (60).
  • Staple drivers (75) are driven upwardly by a wedge sled (78), which is captured between cartridge body (71) and tray (76), and which translates longitudinally through cartridge body (71).
  • Wedge sled (78) includes a pair of obliquely angled cam surfaces (79), which are configured to engage staple drivers (75) and thereby drive staple drivers (75) upwardly as wedge sled (78) translates longitudinally through cartridge (70). For instance, when wedge sled (78) is in a proximal position as shown in FIG.
  • staple drivers (75) are in downward positions and staples (77) are located in staple pockets (74).
  • wedge sled (78) As wedge sled (78) is driven to the distal position shown in FIG. 7B by a translating knife member (80), wedge sled (78) drives staple drivers (75) upwardly, thereby driving staples (77) out of staple pockets (74) and into staple forming pockets (64) that are formed in the underside (65) of anvil (60).
  • staple drivers (75) translate along a vertical dimension as wedge sled (78) translates along a horizontal dimension.
  • staple cartridge (70) may be varied in numerous ways.
  • staple cartridge (70) of the present example includes two longitudinally extending rows of staple pockets (74) on one side of channel (72); and another set of two longitudinally extending rows of staple pockets (74) on the other side of channel (72).
  • staple cartridge (70) includes three, one, or some other number of staple pockets (74) on each side of channel (72).
  • staple cartridge (70) is constructed and operable in accordance with at least some of the teachings of U. U.S. Patent App. No. 13/780,106 , entitled "Integrated Tissue Positioning and Jaw Alignment Features for Surgical Stapler," filed February 28, 2013, the disclosure of which is incorporated by reference herein.
  • staple cartridge (70) may be constructed and operable in accordance with at least some of the teachings of U.S. Pub. No. 2014/0239044 , entitled “Installation Features for Surgical Instrument End Effector Cartridge,” published August 28, 2014, the disclosure of which is incorporated by reference herein.
  • Other suitable forms that staple cartridge (70) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • anvil (60) of the present example comprises a longitudinally extending channel (62) and a plurality of staple forming pockets (64).
  • Channel (62) is configured to align with channel (72) of staple cartridge (70) when anvil (60) is in a closed position.
  • Each staple forming pocket (64) is positioned to lie over a corresponding staple pocket (74) of staple cartridge (70) when anvil (60) is in a closed position.
  • Staple forming pockets (64) are configured to deform the legs of staples (77) when staples (77) are driven through tissue and into anvil (60).
  • staple forming pockets (64) are configured to bend the legs of staples (77) to secure the formed staples (77) in the tissue.
  • Anvil (60) may be constructed in accordance with at least some of the teachings of U.S. Pub. No. 2014/0239042 , entitled “Integrated Tissue Positioning and Jaw Alignment Features for Surgical Stapler,” published August 28, 2014; at least some of the teachings of U.S. Pub. No. 2014/0239036 , entitled “Jaw Closure Feature for End Effector of Surgical Instrument,” published August 28, 2014; and/or at least some of the teachings of U.S. Pub. No. 2014/0239037 , entitled “Staple Forming Features for Surgical Stapling Instrument,” published August 28, 2014, the disclosure of which is incorporated by reference herein.
  • Other suitable forms that anvil (60) may take will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • a knife member (80) is configured to translate through end effector (40). As best seen in FIGS. 5 and 7A-7B , knife member (80) is secured to the distal end of a firing beam (82), which extends through a portion of shaft assembly (30). As best seen in FIGS. 4 and 6 , knife member (80) is positioned in channels (62, 72) of anvil (60) and staple cartridge (70). Knife member (80) includes a distally presented cutting edge (84) that is configured to sever tissue that is compressed between anvil (60) and deck (73) of staple cartridge (70) as knife member (80) translates distally through end effector (40). As noted above and as shown in FIGS.
  • knife member (80) also drives wedge sled (78) distally as knife member (80) translates distally through end effector (40), thereby driving staples (77) through tissue and against anvil (60) into formation.
  • wedge sled (78) distally as knife member (80) translates distally through end effector (40), thereby driving staples (77) through tissue and against anvil (60) into formation.
  • end effector (40) includes lockout features that are configured to prevent knife member (80) from advancing distally through end effector (40) when a staple cartridge (70) is not inserted in lower jaw (50).
  • end effector (40) may include lockout features that are configured to prevent knife member (80) from advancing distally through end effector (40) when a staple cartridge (70) that has already been actuated once (e.g., with all staples (77) deployed therefrom) is inserted in lower jaw (50).
  • lockout features may be configured in accordance with at least some of the teachings of U.S. Pub. No.
  • anvil (60) is driven toward lower jaw (50) by advancing closure ring (36) distally relative to end effector (40).
  • Closure ring (36) cooperates with anvil (60) through a camming action to drive anvil (60) toward lower jaw (50) in response to distal translation of closure ring (36) relative to end effector (40).
  • closure ring (36) may cooperate with anvil (60) to open anvil (60) away from lower jaw (50) in response to proximal translation of closure ring (36) relative to end effector (40).
  • closure ring (36) and anvil (60) may interact in accordance with at least some of the teachings of U.S. Pub. No.
  • handle assembly (20) includes a pistol grip (22) and a closure trigger (24).
  • anvil (60) is closed toward lower jaw (50) in response to distal advancement of closure ring (36).
  • closure trigger (24) is pivotable toward pistol grip (22) to drive closure tube (32) and closure ring (36) distally.
  • suitable components that may be used to convert pivotal movement of closure trigger (24) toward pistol grip (22) into distal translation of closure tube (32) and closure ring (36) relative to handle assembly (20) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • closure trigger (24) When closure trigger (24) reaches a fully pivoted state, such that anvil (60) is in a fully closed position relative to lower jaw (50), locking features in handle assembly (20) lock the position of trigger (24) and closure tube (32), thereby locking anvil (60) in a fully closed position relative to lower jaw (50). These locking features are released by actuation of anvil release button (25).
  • Anvil release button (25) is configured and positioned to be actuated by the thumb of the operator hand that grasps pistol grip (22).
  • the operator may grasp pistol grip (22) with one hand, actuate closure trigger (24) with one or more fingers of the same hand, and then actuate anvil release button (25) with the thumb of the same hand, without ever needing to release the grasp of pistol grip (22) with the same hand.
  • closure trigger (24) with one or more fingers of the same hand
  • anvil release button (25) with the thumb of the same hand
  • Other suitable features that may be used to actuate anvil (60) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • instrument (10) provides motorized control of firing beam (82).
  • instrument (10) includes motorized components that are configured to drive firing beam (82) distally in response to pivoting of firing trigger (26) toward pistol grip (22).
  • a motor (not shown) is contained in pistol grip (22) and receives power from battery pack (28). This motor is coupled with a transmission assembly (not shown) that converts rotary motion of a drive shaft of the motor into linear translation of firing beam (82).
  • firing beam (82) may only be advanced distally when anvil (60) is in a fully closed position relative to lower jaw (50). After firing beam (82) is advanced distally to sever tissue and drive staples (77) as described above with reference to FIGS.
  • the drive assembly for firing beam (82) may be automatically reversed to drive firing beam (82) proximally back to the retracted position (e.g., back from the position shown in FIG. 7B to the position shown in FIG. 7A ).
  • the operator may actuate firing beam reverse switch (27), which may reverse the drive assembly for firing beam (82) in order to retract firing beam (82) to a proximal position.
  • Handle assembly (20) of the present example further includes a bailout feature (21), which is operable to provide a mechanical bailout allowing the operator to manually retract firing beam (82) proximally (e.g., in the event of power loss while firing beam (82) is in a distal position, etc.).
  • the features that are operable to provide motorized actuation of firing beam (82) may be configured and operable in accordance with at least some of the teachings of U.S. Pat. No. 8,210,411 , entitled “Motor-Driven Surgical Instrument,” issued July 3, 2012, the disclosure of which is incorporated by reference herein.
  • the features that are operable to provide motorized actuation of firing beam (82) may be configured and operable in accordance with at least some of the teachings of U.S. Pat. No. 8,453,914 , entitled “Motor-Driven Surgical Cutting Instrument with Electric Actuator Directional Control Assembly,” issued June 4, 2013, the disclosure of which is incorporated by reference herein.
  • the features that are operable to provide motorized actuation of firing beam (82) may be configured and operable in accordance with at least some of the teachings of U.S. Patent App. No. 14/226,142 , entitled “Surgical Instrument Comprising a Sensor System,” filed March 26, 2014, the disclosure of which is incorporated by reference herein.
  • firing beam (82) may be manually actuated in accordance with at least some of the teachings of any other reference cited herein.
  • FIG. 8 shows end effector (40) having been actuated through a single stroke through tissue (90).
  • cutting edge (84) obscured in FIG. 8
  • staple drivers (75) have driven two alternating rows of staples (77) through the tissue (90) on each side of the cut line produced by cutting edge (84).
  • Staples (77) are all oriented substantially parallel to the cut line in this example, though it should be understood that staples (77) may be positioned at any suitable orientations.
  • end effector (40) is withdrawn from the trocar after the first stroke is complete, the spent staple cartridge (70) is replaced with a new staple cartridge (70), and end effector (40) is then again inserted through the trocar to reach the stapling site for further cutting and stapling. This process may be repeated until the desired amount of cuts and staples (77) have been provided.
  • Anvil (60) may need to be closed to facilitate insertion and withdrawal through the trocar; and anvil (60) may need to be opened to facilitate replacement of staple cartridge (70).
  • cutting edge (84) may cut tissue substantially contemporaneously with staples (77) being driven through tissue during each actuation stroke.
  • cutting edge (84) just slightly lags behind driving of staples (77), such that a staple (47) is driven through the tissue just before cutting edge (84) passes through the same region of tissue, though it should be understood that this order may be reversed or that cutting edge (84) may be directly synchronized with adjacent staples.
  • FIG. 8 shows end effector (40) being actuated in two layers (92, 94) of tissue (90), it should be understood that end effector (40) may be actuated through a single layer of tissue (90) or more than two layers (92, 94) of tissue.
  • FIG. 8 shows end effector (40) being actuated in two substantially flat, apposed planar layers (92, 94) of tissue, it should be understood that end effector (40) may also be actuated across a tubular structure such as a blood vessel, a section of the gastrointestinal tract, etc.
  • FIG. 8 should therefore not be viewed as demonstrating any limitation on the contemplated uses for end effector (40).
  • instrument (10) may be used will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • instrument (10) may be configured and operable in accordance with any of the various references cited herein. Additional exemplary modifications that may be provided for instrument (10) will be described in greater detail below. Various suitable ways in which the below teachings may be incorporated into instrument (10) will be apparent to those of ordinary skill in the art. Similarly, various suitable ways in which the below teachings may be combined with various teachings of the references cited herein will be apparent to those of ordinary skill in the art. It should therefore be understood that the teachings below may be readily incorporated into the various instruments taught in the various references that are cited herein. It should also be understood that the below teachings are not limited to instrument (10) or devices taught in the references cited herein.
  • end effector (40) may be desirable in some instances to equip end effector (40) with a buttress material to reinforce the mechanical fastening of tissue (90) provided by staples (77).
  • a buttress may prevent the applied staples (77) from pulling through tissue (90) and may otherwise reduce a risk of tissue (90) tearing at or near the site of applied staples (77).
  • a buttress may provide various other kinds of effects such as spacing or gap-filling, administration of therapeutic agents, and/or other effects.
  • a buttress may be provided on deck (73) of staple cartridge (70).
  • a buttress may be provided on the surface of anvil (60) that faces staple cartridge (70). It should also be understood that a first buttress may be provided on deck (73) of staple cartridge (70) while a second buttress is provided on anvil (60) of the same end effector (40). Various examples of forms that a buttress may take will be described in greater detail below. Various ways in which a buttress may be secured to a staple cartridge (70) or an anvil (60) will also be described in greater detail below.
  • FIG. 9 shows an exemplary buttress assembly (100) with a basic composition.
  • Buttress assembly (100) of this example comprises a buttress body (102), an upper adhesive layer (104), and a lower adhesive layer (106).
  • buttress body (102) comprises a strong yet flexible material configured to structurally support a line of staples (77).
  • buttress body (102) may comprise a material including, for example, a hemostatic agent such as fibrin to assist in coagulating blood and reduce bleeding at the severed and/or stapled surgical site along tissue (90).
  • buttress body (102) may comprise other adjuncts or hemostatic agents such as thrombin may be used such that buttress body (102) may assist to coagulate blood and reduce the amount of bleeding at the surgical site.
  • the hemostatic abilities of such adjuncts may also contribute to the use of such adjuncts as adhesives and sealants.
  • the agents may assist to coagulate blood at a surgical site, which allows tissue surrounding such blood to stick together and may prevent leaks along the stapled tissue site, for example.
  • Other adjuncts or reagents that may be incorporated into buttress body (102) may further include but are not limited to medical fluid or matrix components.
  • buttress body (102) may include natural or genetically engineered absorbable polymers or synthetic absorbable polymers, or mixtures thereof.
  • Merely illustrative examples of natural or genetically engineered absorbable polymers are proteins, polysaccharides and combinations thereof.
  • proteins that may be used include prothrombin, thrombin, fibrinogen, fibrin, fibronectin, heparinase, Factor X/Xa, Factor VII/VIIa, Factor IX/IXa, Factor XI/XIa, Factor XII/XIIa, tissue factor, batroxobin, ancrod, ecarin, von Willebrand Factor, collagen, elastin, albumin, gelatin, platelet surface glycoproteins, vasopressin, vasopressin analogs, epinephrine, selectin, procoagulant venom, plasminogen activator inhibitor, platelet activating agents, synthetic peptides having hemostatic activity, and/or combinations thereof.
  • Polysaccharides include, without limitation, cellulose, alkyl cellulose, e.g. methylcellulose, alkylhydroxyalkyl cellulose, hydroxyalkyl cellulose, cellulose sulfate, salts of carboxymethyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, chitin, carboxymethyl chitin, hyaluronic acid, salts of hyaluronic acid, alginate, alginic acid, propylene glycol alginate, glycogen, dextran, dextran sulfate, curdlan, pectin, pullulan, xanthan, chondroitin, chondroitin sulfates, carboxymethyl dextran, carboxymethyl chitosan, chitosan, heparin, heparin sulfate, heparan, heparan sulfate, dermatan sulfate, keratan sulfate, carrageenans,
  • Examples of synthetic absorbable polymers are aliphatic polyester polymers, copolymers, and/or combinations thereof.
  • the aliphatic polyesters are typically synthesized in a ring opening polymerization of monomers including, but not limited to, lactic acid, lactide (including L-, D-, meso and D, L mixtures), glycolic acid, glycolide, ⁇ -caprolactone, p-dioxanone (1,4-dioxan-2-one), and trimethylene carbonate (1,3-dioxan-2-one).
  • lactide including L-, D-, meso and D, L mixtures
  • glycolic acid glycolide
  • ⁇ -caprolactone p-dioxanone
  • trimethylene carbonate 1,3-dioxan-2-one
  • Buttress body (102) may alternatively comprise a fibrous pad, a foam, a mesh, a weave, and/or another structure capable of containing an adhesive and/or other type of medical fluid.
  • buttress body (102) may simply comprise a mesh, a weave, and/or some other structure that is constructed to provide structural support or integrity to a line of staples (77) applied through tissue (90).
  • Such a material and structure may be relatively thin and in some instances may be substantially non-compressible.
  • buttress body (102) may be constructed in accordance with at least some of the teachings of U.S. Patent Pub. No.
  • 2013/0068820 entitled “Fibrin Pad Matrix with Suspended Heat Activated Beads of Adhesive,” published March 21, 2013, the disclosure of which is incorporated by reference herein;
  • U.S. Patent Pub. No. 2013/0082086 entitled “Attachment of Surgical Staple Buttress to Cartridge,” published April 4, 2013, the disclosure of which is incorporated by reference herein;
  • U.S. Patent Pub. No. 2013/0037596 entitled “Device for Applying Adjunct in Endoscopic Procedure,” published February 14, 2013, the disclosure of which is incorporated by reference herein;
  • 2013/0062393 entitled “Resistive Heated Surgical Staple Cartridge with Phase Change Sealant,” published March 14, 2013, the disclosure of which is incorporated by reference herein;
  • U.S. Patent Pub. No. 2013/0075446 entitled “Surgical Staple Assembly with Hemostatic Feature,” published March 28, 2013, the disclosure of which is incorporated by reference herein;
  • U.S. Patent Pub. No. 2013/0062394 entitled “Surgical Staple Cartridge with Self-Dispensing Staple Buttress,” published March 14, 2013, the disclosure of which is incorporated by reference herein;
  • 2013/0075445 entitled “Anvil Cartridge for Surgical Fastening Device,” published March 28, 2013, the disclosure of which is incorporated by reference herein;
  • U.S. Patent Pub. No. 2013/0075447 entitled “Adjunct Therapy for Applying Hemostatic Agent,” published March 28, 2013, the disclosure of which is incorporated by reference herein;
  • U.S. Patent Pub. No. 2013/0256367 entitled “Tissue Thickness Compensator Comprising a Plurality of Medicaments,” published October 3, 2013, the disclosure of which is incorporated by reference herein.
  • buttress body (102) comprises a woven mesh of VICRYL® (polyglactin 910) material by Ethicon US, LLC.
  • VICRYL® woven mesh is prepared from a synthetic absorbable copolymer of glycolide and lactide, derived respectively from glycolic and lactic acids. This tightly woven mesh is prepared from uncoated, undyed fiber identical in composition to that used in VICRYL® synthetic absorbable suture, which has been found to be inert, nonantigenic, nonpyrogenic, and to elicit only a mild tissue reaction during absorption.
  • VICRYL® woven mesh is intended for use as a buttress to provide temporary support during the healing process.
  • any other suitable materials or combinations of materials may be used in addition to or as an alternative to VICRYL® material to form buttress body (102).
  • buttress body (102) is formed as a mesh
  • buttress body (102) may be formed as a woven mesh, a knitted mesh, or a warp knitted mesh. Regardless of whether buttress body (102) is formed as a mesh or not, buttress body (102) is porous in some examples.
  • an adhesive layer (104, 106) may be provided on buttress body (102) in order to adhere buttress body (102) to underside (65) of anvil (60) or deck (73) of staple cartridge (70).
  • the material forming adhesive layer (104, 106) may pass through buttress body (102) to reach the outer surface of buttress body (102) that is opposite to the surface on which adhesive layer (104, 106) is disposed.
  • upper adhesive layer (104) may be used to secure buttress assembly (100) to the underside (304) of a retainer (300) as will be described in greater detail below; while lower adhesive layer (106) is used to secure buttress assembly (100) to deck (73) of staple cartridge (70).
  • lower adhesive layer (106) is configured to provide stronger adherence than upper adhesive layer (104).
  • retainer (300) e.g., flanges, clips, etc.
  • retainer (300) e.g., flanges, clips, etc.
  • retainer (300) e.g., flanges, clips, etc.
  • retainer (300) e.g., flanges, clips, etc.
  • an adhesive material may be applied to the lower surface of a porous version of buttress body (102) to form lower adhesive layer (106), and some of that adhesive material may pass through buttress body (102) to form upper adhesive layer (104).
  • lower adhesive layer (106) ultimately has more adhesive material than upper adhesive layer (104), such that lower adhesive layer (106) provides greater adhesion than upper adhesive layer (104).
  • lower adhesive layer (106) may be used to secure buttress assembly (100) to the upper side (302) of a retainer (300) as will be described in greater detail below; while upper adhesive layer (104) is used to secure buttress assembly to underside (65) of anvil (60) of end effector (40).
  • upper adhesive layer (104) is configured to provide stronger adherence than lower adhesive layer (106).
  • retainer (300) e.g., flanges, clips, etc.
  • retainer (300) e.g., flanges, clips, etc.
  • retainer (300) are configured to selectively retain buttress assembly (100) against upper side (302) of retainer (300), such that lower adhesive layer (106) is omitted; while upper adhesive layer (104) is used to secure buttress assembly (100) to underside (65) of anvil (60).
  • an adhesive material may be applied to the upper surface of a porous version of buttress body (102) to form upper adhesive layer (104), and some of that adhesive material may pass through buttress body (102) to form lower adhesive layer (106).
  • upper adhesive layer (104) ultimately has more adhesive material than lower adhesive layer (106), such that upper adhesive layer (104) provides greater adhesion than lower adhesive layer (106).
  • each adhesive layer (104, 106), as well as various forms that each adhesive layer (104, 106) may take, will be described in greater detail below.
  • buttress assembly (100) may include an impermeable layer or a semi impermeable layer interposed between buttress body (102) and adhesive layer (102), to prevent or restrict migration of adhesive material from adhesive layer (104, 106) into buttress body (100).
  • body (102) may be formed of a porous media (e.g., ETHISORBTM by Codman of Raynham, Massachusetts); while the semi impermeable layer may comprise polydioxanone (PDS).
  • PDS polydioxanone
  • buttress assembly (100) comprises an impermeable layer or a semi impermeable layer to prevent or restrict migration of adhesive material from adhesive layer (104, 106) into buttress body (100)
  • a layer may be integrated into buttress body (102) such that the layer permits the adhesive to migrate at least partially into buttress body (102) but not across the full thickness of buttress body (102).
  • an impermeable layer or a semi impermeable layer may be integrated into buttress assembly (100) to prevent or restrict migration of an adhesive material will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIGS. 10-12D show a combination of an exemplary buttress (200) with an exemplary retainer (300).
  • Buttress (200) of this example may be constructed in accordance with the teachings above relating to buttress assembly (100) and/or in accordance with other teachings herein.
  • Buttress (200) includes an upper side (202) and an underside (204).
  • underside (204) includes an adhesive (e.g., like lower adhesive layer (106)) to secure buttress (200) to deck (73) of staple cartridge (70) as described in greater detail below.
  • Retainer (300) of this example comprises an upper side (302), an underside (304), a distally projecting tongue (306), and a set of resilient latches (308).
  • Upper side (302) and underside (304) are each generally flat in the present example, though it should be understood that upper side (302) and/or underside (304) may include various kinds of features as described elsewhere herein.
  • Tongue (306) is configured to provide a grip for an operator, thereby facilitating grasping and handling of retainer (300) during use.
  • Latches (308) are configured to releasably secure retainer (300) to lower jaw (50) of end effector (40) as will be described in greater detail below.
  • retainer (300) may be formed of molded plastic. Alternatively, retainer (300) may be formed using any other suitable material(s) or technique(s).
  • buttress (200) is secured to underside (304) of retainer (300), such that upper side (202) of buttress (200) apposes underside (304) of retainer (300).
  • an adhesive such as upper adhesive layer (104) provides releasable adhesion of buttress (200) to underside (304) of retainer (300).
  • retainer (300) includes one or more features (e.g., flanges, clips, etc.) that are configured to selectively retain buttress (200) against underside (304) of retainer (300).
  • features e.g., flanges, clips, etc.
  • the assembly formed by buttress (200) and retainer (300) may be placed before end effector (40) with anvil (60) in the open position.
  • a peel-away film (not shown) is positioned over underside (204) of buttress (200) to protect buttress (200) and/or any adhesive material on underside (204) of buttress (200).
  • the film is peeled away to expose underside (204) of buttress (200) before reaching the stage shown in FIG. 12A .
  • Such a film may comprise polytetrafluoroethylene (PTFE) and/or any other suitable material(s).
  • the assembly formed by buttress (200) and retainer (300) may then be placed on staple cartridge (70) such that underside (204) of buttress (200) apposingly contacts deck (73) of staple cartridge (70); and such that latches (308) are releasably secured to lower jaw (50) as shown in FIG. 12B .
  • the operator may then drive anvil (60) toward the closed position as shown in FIG. 12C , eventually compressing buttress (200) against deck (73) of staple cartridge (70). Such compression may promote adhesion between underside (204) of buttress (200) and deck (73) of staple cartridge (70).
  • anvil (60) After anvil (60) has been used to compress buttress (200) against deck (73) of staple cartridge (70), anvil (60) may be moved back to the open position as shown in FIG. 12D . As also shown in FIG. 12D , retainer (300) may then be pulled away from end effector (40), leaving behind buttress (200) adhered to deck (73) of staple cartridge (70). Upper side (202) of buttress (200) is exposed. End effector (40) is thus loaded with buttress (200) and ready for use in severing and stapling tissue (90).
  • FIGS. 13A-13C show an end effector (40) loaded with buttress (200) being used to drive a staple (77) through tissue (90).
  • tissue (90) is placed between anvil (60) and staple cartridge (70), above buttress (200), with anvil (60) in the open position.
  • anvil (60) is driven to the closed position, compressing tissue (90) against buttress (200) and staple cartridge (70).
  • End effector (40) is then actuated as described above, driving staple (77) through buttress (200) and tissue (90).
  • crown (210) of driven staple (77) captures and retains buttress (200) against layer (94) of tissue (90).
  • a series of staples (77) will similarly capture and retain buttress (200) against layer (94) of tissue (90), thereby securing buttress (200) to tissue (90) as shown in FIG. 14 .
  • end effector (40) is pulled away from tissue (90) after deploying staples (77) and buttress (200)
  • buttress (200) disengages deck (73) of staple cartridge (70), such that buttress (200) remains secured to tissue (90) with staples (77).
  • Buttress (200) thus provides structural reinforcement to the lines of staples (77).
  • knife member (80) also cuts through a centerline of buttress (200), separating buttress (200) into two sections (230, 240), such that each section (230, 240) remains secured to a respective severed region of tissue (90).
  • FIGS. 15-17B show a combination of an exemplary buttress (400) with retainer (300).
  • Buttress (400) of this example may be constructed in accordance with the teachings above relating to buttress assembly (100) and/or in accordance with other teachings herein.
  • Buttress (400) includes an upper side (402) and an underside (404).
  • upper side (402) includes an adhesive (e.g., like upper adhesive layer (1064) to secure buttress (200) to underside (65) of anvil (60) as described in greater detail below.
  • buttress (400) is secured to upper side (302) of retainer (300), such that underside (404) of buttress (400) apposes upper side (302) of retainer (300).
  • an adhesive such as lower adhesive layer (106) provides releasable adhesion of buttress (400) to upper side (302) of retainer (300).
  • retainer (300) includes one or more features (e.g., flanges, clips, etc.) that are configured to selectively retain buttress (400) against upper side (302) of retainer (300).
  • features e.g., flanges, clips, etc.
  • the assembly formed by buttress (400) and retainer (300) may be placed before end effector (40) with anvil (60) in the open position.
  • a peel-away film (not shown) is positioned over upper side (402) of buttress (400) to protect buttress (400) and/or any adhesive material on upper side (402) of buttress (400).
  • the film is peeled away to expose upper side (402) of buttress (400) before reaching the stage shown in FIG. 17A .
  • Such a film may comprise polytetrafluoroethylene (PTFE) and/or any other suitable material(s).
  • the assembly formed by buttress (400) and retainer (300) may then be placed on staple cartridge (70) such that latches (308) are releasably secured to lower jaw (50) as described above.
  • the operator may then drive anvil (60) toward the closed position as described above, eventually compressing buttress (400) underside (65) of anvil (60). Such compression may promote adhesion between upper side (402) of buttress (400) and underside (65) of anvil (60).
  • anvil (60) may be moved back to the open position as shown in FIG. 17B .
  • FIG. 17B As also shown in FIG.
  • retainer (300) may then be pulled away from end effector (40), leaving behind buttress (400) adhered to underside (65) of anvil (60). Underside (402) of buttress (400) is exposed. End effector (40) is thus loaded with buttress (400) and ready for use in severing and stapling tissue (90).
  • FIGS. 18A-18C show an end effector (40) loaded with buttress (400) being used to drive a staple (77) through tissue (90).
  • tissue (90) is placed between anvil (60) and staple cartridge (70), below buttress (400), with anvil (60) in the open position.
  • anvil (60) is driven to the closed position, compressing tissue (90) against buttress (400) and staple cartridge (70).
  • End effector (40) is then actuated as described above, driving staple (77) through buttress (400) and tissue (90).
  • bent legs (220) of driven staple (77) capture and retains buttress (400) against layer (92) of tissue (90).
  • a series of staples (77) will similarly capture and retain buttress (400) against layer (92) of tissue (90), thereby securing buttress (400) to tissue (90) as shown in FIG. 19 .
  • anvil (60) is returned to the open position to enable end effector (40) to be pulled away from tissue (90) after deploying staples (77) and buttress (400)
  • buttress (400) disengages underside (65) of anvil (60), such that buttress (400) remains secured to tissue (90) with staples (77).
  • Buttress (400) thus provides structural reinforcement to the lines of staples (77).
  • knife member (80) also cuts through a centerline of buttress (400), separating buttress (400) into two sections (430, 440), such that each section (430, 440) remains secured to a respective severed region of tissue (90).
  • retainer (200) may be provided on underside (304) of retainer (300) while buttress (400) is provided on upper side (302) of retainer (300).
  • retainer (200) may be provided on underside (304) of retainer (300) while buttress (400) is provided on upper side (302) of retainer (300).
  • buttress (200) being provided on deck (73) of staple cartridge (70) and buttress (400) being provided on underside (65) of anvil (60) in the same end effector (400).
  • buttress (200) being secured against layer (94) of tissue (90) by crowns (210) of staples (77) while buttress (400) is secured against layer (92) of tissue (90) by bent legs (220) of the same staples (77).
  • a buttress assembly (100) may include at least one layer (104, 106) of adhesive material (or other form of adhesive material) that adheres buttress body (102) to either underside (65) of anvil (60) or deck (73) of staple cartridge (70).
  • adhesive material or other form of adhesive material
  • Such an adhesive material may provide proper positioning of buttress body (102) before and during actuation of end effector (40); then allow buttress body (102) to separate from end effector (40) after end effector (40) has been actuated, without causing damage to buttress body (102) that is substantial enough to compromise the proper subsequent functioning of buttress body (102). It may be desirable to minimize the impact of such an adhesive material on the functioning of firing beam (82) wedge sled (78), and staple drivers (75).
  • the adhesive material should allow buttress body (102) to detach easily enough from an actuated end effector (40) to avoid tearing tissue (90) after staples (77) have been fired through the tissue and anvil (60) is moved to the open position.
  • the adhesive material may include one or more components that provide a therapeutic effect, hemostatic effect, or other desired effect on tissue (90).
  • the adhesive material may fill in at least part of the paths that are formed through tissue (90) and/or buttress body (102) by legs (220) of staple (77) being driven through tissue (90) and buttress body (102).
  • the adhesive material for a buttress body (102) may be pressure sensitive.
  • the adhesive material may be configured to take the form of surface irregularities of buttress body (102); in addition to or in lieu of taking the form of surface irregularities in underside (65) of anvil (60) and/or deck (73) of staple cartridge (70).
  • Suitable adhesive materials may possess various other characteristics in addition to or in lieu of those above. Suitable adhesive materials may also be provided in various different kinds of compositions. Examples of various suitable compositions and configurations that may be used to form and provide an adhesive material for a buttress body (102), as well as various exemplary characteristics that such adhesive material may possess, are described in greater detail below.
  • an adhesive material for a buttress body (102) comprises an absorbable synthetic based polymer.
  • Various physiomechanical properties of synthetic based polymers may be modified in order to provide different adhesive properties.
  • Such variable characteristics include but are not limited to copolymer composition, glass transition temperature (Tg), molecular weight, inherent viscosity (IV), crystallinity, sequence distribution, copolymer chain composition, melting temperature (Tm), and surface tension.
  • Tg glass transition temperature
  • IV inherent viscosity
  • Tm melting temperature
  • surface tension Several exemplary combinations of these variables will be provided below, though it should be understood that these examples are merely illustrative. It should also be understood that these examples of adhesive materials may be provided in upper adhesive layer (104).
  • these examples of adhesive materials may be provided in lower adhesive layer (106). In addition or in the alternative, these examples of adhesive materials may be otherwise integrated into buttress body (102). It should therefore be understood that the adhesive material need not necessarily constitute a separate layer that is discretely identifiable as being different from a layer defined by buttress body (102).
  • the adhesive material is formed by a copolymer of lactide and caprolactone (PLA/PCL).
  • This composition may be provided at a ratio in the range of 20/80 to 60/40; or more particularly the range of 35/65 to 50/50.
  • This composition may have a glass transition temperature (Tg) that is below 4°C, or more particularly below - 10°C.
  • Tg glass transition temperature
  • This composition may have a molecular weight in the range of 10,000 g/mol to 145,000 g/mol; or more particularly below 200,000 g/mol.
  • the composition may have an inherent viscosity (IV) in the range of 1.0 dL/g to 2.0 dL/g.
  • the adhesive material is formed by a copolymer of lactide and trimethylene carbonate (PLA/TMC).
  • PLA/TMC lactide and trimethylene carbonate
  • This composition may be provided at a ratio in the range of 20/80 to 50/50.
  • the other characteristics may be within the same parameters set forth above with respect to the exemplary PLA/PCL composition.
  • the PLA/TMC composition may have any other suitable characteristics.
  • the adhesive material is formed by a copolymer of trimethylene carbonate and caprolactone (TMC/PCL).
  • TMC/PCL trimethylene carbonate and caprolactone
  • This composition may be provided at a ratio in the range of 20/80 to 80/20; or more particularly in the range of 50/50 to 60/40.
  • This composition may have an inherent viscosity (IV) in the range of 0.3 dL/g to 3.0 dL/g; or more particularly in the range of 0.5 dL/g to 1.0 dL/g.
  • This composition may have a crystallinity below 20%; or more particularly below 5%; or more particularly at 0% (i.e., a completely amorphous polymer).
  • This composition may have a glass transition temperature (Tg) below 0°C; or more particularly below -20°C.
  • the adhesive material is formed by a copolymer of caprolactone and glycolide (PCL/PGA).
  • PCL/PGA copolymer of caprolactone and glycolide
  • This composition may be provided at a ratio in the range of 45/55 to 85/15; or more particularly in the range of 40/60 to 65/35; or more particularly in the range of 50/50 to 65/35.
  • This composition may have an inherent viscosity (IV) in the range of 0.2 dL/g to 3.0 dL/g; or more particularly in the range of 1.0 dL/g to 2.0 dL/g.
  • This composition may have a molecular weight in the range of 100,000 g/mol to 200,000 g/mol.
  • This composition may have a crystallinity below 20%; or more particularly below 5%; or more particularly at 0% (i.e., a completely amorphous polymer).
  • This composition may have a glass transition temperature (Tg) below 0°C; or more particularly below -20°C.
  • Tg glass transition temperature
  • One particular example of this composition has a ratio of 50/50 PCL/PGA; an inherent viscosity (IV) of 0.2; a molecular weight of 83,000 g/mol; and a glass transition temperature (Tg) of -19.4°.
  • compositions has a ratio of 65/35 PCL/PGA; an inherent viscosity (IV) of 1.04 to 1.07; a molecular weight of 110,000 g/mol to 118,000 g/mol; and a glass transition temperature (Tg) in the range of -37.3° to -38.6°.
  • exemplary synthetic based polymer compositions that may be used to form the adhesive material include the following: propanediol and caprolactone (PDO/PCL); a combination of propanediol, caprolactone, and trimethylene carbonate (PDO/PCL/TMC), with very low to no crystallinity and a glass transition temperature (Tg) below 0°C; and a homopolymer poly(TMC), with an inherent viscosity (IV) of approximately 0.5 dL/g.
  • PDO/PCL propanediol and caprolactone
  • Tg glass transition temperature
  • IV inherent viscosity
  • suitable synthetic based polymer compositions will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • the adhesive material may include a blocky copolymer.
  • a blocky copolymer that may be used in the adhesive material comprises blocky poly(TMC), with a low glass transition temperature (Tg).
  • TMC blocky poly(TMC)
  • Tg low glass transition temperature
  • the blocky copolymer may be randomized. In some other instances, such as when the copolymer is amorphous (e.g., 0% crystallinity), the blocky copolymer may be ordered.
  • the adhesive material may include various kinds of copolymer chain compositions.
  • the copolymer chain composition may be branched with relatively short segments. This may further enhance the malleability experience.
  • the copolymer chain may be linear.
  • the copolymer may be cross-linked or star pattern. However, in versions where the copolymer is cross-linked, it may be desirable for the base copolymer segments to be more amorphous the more that those segment are cross-linked.
  • the melting temperature (Tm) is a physiomechanical property of a polymer that may be selected to provide desired adhesive characteristics.
  • the lower melting temperature (Tm) of a monomer component could limit the amount of the co-monomer needed to create a desired adhesive effect.
  • polydioxanone (PDS) has a melting temperature (Tm) around approximately 110°C and a glass transition temperature (Tg) around approximately-10°C.
  • Tm melting temperature
  • Tg glass transition temperature
  • PCL caprolactone
  • PSA pressure sensitive adhesive
  • polydioxanone (PDS) copolymers with polyglycolide (PGA) or lactide (PLA) may provide desired adhesive effects. It may be desirable for such copolymers to have a glass transition temperature (Tg) that is below room temperature; a melting temperature (Tm) that is at or below room temperature; a crystallinity in the range of 10% to 0%; and an inherent viscosity (IV) that is less than 2.0 dL/g, or more particularly less than 1.0 dL/g.
  • Tg glass transition temperature
  • Tm melting temperature
  • IV inherent viscosity
  • the adhesive material may comprise a blended copolymer.
  • the high and low molecular weight of the same pressure sensitive adhesive (PSA) copolymer may allow for the degradation rate to be adjusted without adjusting the polymer chemistry. As the low molecular weight version breaks down, its acid byproducts would then change the pH and effect the breakdown of the high molecular weight parts.
  • Preferred blends of copolymers would include those that will not affect the crystallinity, low melting temperature (Tm), and low glass transition temperature (Tg) of the copolymers.
  • the adhesive material may comprise polyurethane.
  • the polyurethane may be provided as a pressure sensitive adhesive (PSA).
  • PSA pressure sensitive adhesive
  • polyurethane based pressure sensitive adhesives PSAs
  • PSAs polyurethane based pressure sensitive adhesives
  • PSAs may be prepared from isocyanates, polyols, and chain extenders.
  • Pressure sensitive adhesives PSAs
  • PSAs may also be prepared from 100% solids, waterborne, or solvent borne systems.
  • the properties of polyurethane based pressure sensitive adhesives (PSAs) may be controlled by varying the ratio of isocyanates to polyols and chain extenders.
  • the polyurethane may be provided in a flowable form.
  • a flowable polyurethane based adhesive material may have an inherent viscosity (IV) that is less than 1.0 dL/g, or more particularly less than 0.5 dL/g; a glass transition temperature (Tg) that is in the range of -10°C and 10°C; or more particularly closer to - 10°C; and a consistency similar to that of honey or oil, if desired, with the proper inherent viscosity (IV).
  • IV inherent viscosity
  • absorbable synthetic based polymers are provided for merely illustrative purposes. Other suitable examples will be apparent to those of ordinary skill in the art in view of the teachings herein. It should also be understood that the foregoing examples of absorbable synthetic based polymers may be readily incorporated into the various teachings and examples provided below. In other words, the foregoing examples of absorbable synthetic based polymers may be readily incorporated into any example herein that refers to an adhesive material.
  • the adhesive material comprises a hydrogel.
  • the hydrogel may generally comprise a hydrophilic polymer network capable of absorbing and/or retaining fluids.
  • An exemplary hydrogel material is glycol methacrylate.
  • suitable hydrogel materials may comprise homopolymer hydrogels, copolymer hydrogels, multipolymer hydrogels, interpenetrating polymer hydrogels, and combinations thereof.
  • the hydrogel may comprise microgels, nanogels, and combinations thereof.
  • the hydrogel may further comprise a non-crosslinked hydrogel, a crosslinked hydrogel, and combinations thereof.
  • the hydrogel may comprise chemical crosslinks, physical crosslinks, hydrophobic segments and/or water insoluble segments.
  • the hydrogel may be chemically crosslinked by polymerization, small-molecule crosslinking, and/or polymer-polymer crosslinking.
  • the hydrogel may be physically crosslinked by ionic interactions, hydrophobic interactions, hydrogen bonding interactions, sterocomplexation, and/or supramolecular chemistry.
  • the hydrogel may be substantially insoluble due to the crosslinks, hydrophobic segments and/or water insoluble segments, but be expandable and/or swellable due to absorbing and/or retaining fluids.
  • the precursor may crosslink with endogenous materials and/or tissues.
  • hydrogels that may be used include multifunctional acrylates, hydroxyethylmethacrylate (HEMA), and elastomeric acrylates.
  • a hydrogel adhesive material may be constructed in accordance with at least some of the teachings of U.S. Pat. Pub. No. 2012/0241492 , entitled “Tissue Thickness Compensator Comprising at Least One Medicament,” published September 27, 2012, the disclosure of which is incorporated by reference herein.
  • Other suitable ways in which an adhesive material may be provided with hydrogel will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • Naturally based polymers that may be used to form an adhesive material include alginate (e.g., calcium alginate, calcium sodium alginate, etc.); hyaluronic acid, collagen (including gelatin), and polysaccharide.
  • the polysaccharide may include cellulose, chitin, pectin, or arabinoxylans.
  • the cellulose may comprise oxidized regenerated cellulose, carboxy-methylcellulose, carboxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, or oxidized cellulose.
  • the chitin may comprise chitosan (e.g., deacetylated chitin) or chitosan salts.
  • Some versions of naturally based polymers that may be used to form an adhesive material may include a putty or wax-like material. Some such versions may be non-absorbable and may be similar to a conventional bone wax. For instance, the material may comprise beeswax with one or more of the paraffin, petroleum jelly, isopropyl palmitate, sesame oil, carbolic acid; or any other conventional bone wax composition. Some other versions of a putty or wax-like material that may be used to form an adhesive material for buttress body (102) may be absorbable or resorbable.
  • some such versions may comprise HEMASORB® putty by Abyrx, Ink of Irvington, New York, water-soluble alkylene copolymers (e.g., OSTENE by Baxter Healthcare Corporation of Deerfield, Illinois), glycerol, 1-lactide, glycolide, polyethylene glycol (PEG), polyethylene oxide (PEO), or polyolefin elastomer (POE).
  • the adhesive material may comprise polyethylene glycol (PEG) or a polyethylene glycol (PEG) copolymer with a molecular weight of less than 20,000 g/mol. Having the molecular weight in such a range may promote passage of the dissolved form of the adhesive through the kidneys.
  • the adhesive material may be constructed in accordance with at least some of the teachings of U.S. Pat. No. 2,642,375 , entitled “Hemostatic Compositions,” issued June 16, 1953, the disclosure of which is incorporated by reference herein.
  • Some polymer adhesives may include oxidized regenerated cellulose (ORC), which is a hemostatic agent.
  • ORC oxidized regenerated cellulose
  • a putty or wax-like composition may serve as a carrier for oxidized regenerated cellulose (ORC).
  • ORC oxidized regenerated cellulose
  • U.S. Patent Pub. No. 2012/0241493 entitled “Tissue Thickness Compensator Comprising Controlled Release and Expansion," published September 27, 2012, the disclosure of which is incorporated by reference herein, discusses various ways in which oxidized regenerated cellulose (ORC) may be incorporated into various compositions. It should be understood that such teachings of U.S. Patent Pub. No. 2012/0241493 may be readily applied herein in the context of incorporating oxidized regenerated cellulose (ORC) into polymer adhesives, including but not limited to the putty or wax-like compositions referred to above.
  • attachment and reinforcement features may be desirable to integrate attachment and reinforcement features into buttress body (102), in addition to or as an alternative to having one or more adhesive layers (104, 106) on upper or lower surfaces of buttress body (102).
  • Such integral attachment and reinforcement features may enhance the attachment and reinforcement of buttress body (102) relative to tissue (90), relative to deck (73) of staple cartridge (70) and/or relative to underside (65) of anvil (60).
  • the below examples include various exemplary configurations through which one or more attachment and reinforcement features may be combined with a buttress body (102) to enhance the attachment and reinforcement of buttress body (102) relative to tissue (90), relative to deck (73) of staple cartridge (70) and/or relative to underside (65) of anvil (60).
  • the adhesive materials comprise a synthetic based polymer such as those referred to herein.
  • an adhesive material composition that may be used in the below example may include a 65/35 a copolymer of caprolactone and glycolide (PCL/PGA) having a low inherent viscosity (IV) and low crystallinity.
  • PCL/PGA copolymer of caprolactone and glycolide
  • IV inherent viscosity
  • FIGS. 20-21B show an exemplary buttress assembly (2900) that comprises a buttress body (2902) that contains an adhesive adjunct material (2904).
  • Adhesive adjunct material (2904) may have a low viscosity enabling adhesive adjunct material (2904) to flow out of buttress body (2902) when buttress body (2902) is compressed.
  • Various suitable compositions that may be used to provide adhesive adjunct material (2904) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • Buttress body (2902) may have a fibrous structure, porous structure, and/or any other suitable kind of structure that is configured to absorb or otherwise contain adhesive adjunct material (2904).
  • Various suitable materials and structures that may be used to provide buttress body (2902) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • a pressure sensitive, impermeable adhesive film (2910) is secured to one surface of buttress body (2902). Being impermeable, adhesive film (2910) is configured to prevent adhesive adjunct material (2904) from flowing out of that surface of buttress body (2902). Adhesive film (2910) is also configured to removably secure buttress assembly (2900) to underside (65) of anvil (60) or deck (73) of staple cartridge (70).
  • adhesive film (2910) includes a pressure sensitive adhesive that provides enough adhesive strength to temporarily secure buttress assembly (2900) to underside (65) of anvil (60) or deck (73) of staple cartridge (70); yet the pressure sensitive adhesive also permits adhesive film (2910) to be pulled off of underside (65) of anvil (60) or deck (73) of staple cartridge (70) after end effector (40) has been actuated and staples (77) have been driven through buttress assembly (2900).
  • Various suitable materials that may be used to form adhesive film (2910) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • various suitable materials that may be used to provide a pressure sensitive adhesive on or in adhesive film (2910) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIGS. 20-21B show two buttress assemblies (2900), such that one buttress assembly (2900) would have been loaded onto upper side (302) of retainer (300) while the other buttress assembly (2900) would have been loaded onto lower side (304) of retainer (300).
  • FIG. 20 in particular shows stapler drivers (75) driving staples (77) through tissue (90) and through both buttress assemblies (2900) as end effector (40) is being actuated. As shown in FIG.
  • the expelled adhesive adjunct material (2904) may eventually cure and thereby further reinforce the structural integrity of the applied buttress assembly (2900); and/or further reinforce the attachment of staples (77) to buttress assemblies (2900).
  • the expelled adhesive adjunct material (2904) may also provide a hemostatic effect by blocking the flow of blood that might otherwise occur through gaps (2920).
  • the adhesive adjunct material (2904) is provided in a layer that is laid over buttress body (2902) (in addition to or in lieu of being absorbed in or otherwise contained in buttress body (2902)).
  • the adhesive adjunct material (2904) may be provided in a layer that is either used to replace impermeable adhesive film (2910) or in a layer that is interposed between buttress body (2902) and impermeable adhesive film (2910).
  • Other suitable configurations will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIGS. 22-26 show another exemplary buttress assembly (3000) with an exemplary alternative retainer (3100).
  • Two buttress assemblies (3000) are shown, including one buttress assembly (3000) that is positioned to attach to underside (65) of anvil (60) and another buttress assembly (300) that is positioned to attach to a deck (3273) of a staple cartridge (3270).
  • each buttress assembly (3000) of this example comprises a buttress body (3002) with a set of fastening strands (3010) woven therethrough.
  • Buttress body (3002) may be configured and operable in accordance with any of the various buttress bodies referred to herein.
  • fastening strands (3010) may comprise VICRYL® (polyglactin 910) suture material by Ethicon US, LLC.
  • VICRYL® polyglactin 910) suture material by Ethicon US, LLC.
  • any other suitable material(s) may be used.
  • strands (3010) are provided only in a series of small, discrete woven regions (3012). In other words, strands (3010) are not woven throughout the entire buttress body (3002) in this example. The discrete woven regions (3012) of strands (3010) are positioned at locations where staples (77) will be driven through buttress assembly (3000), as will be described in greater detail below. In some other versions, strands (3010) are woven throughout the entire buttress body (3002) or in some other arrangement.
  • buttress assembly (3000) further includes a set of reinforcement members (3020, 3022).
  • Reinforcement members (3020, 3022) may also comprise VICRYL® (polyglactin 910) suture material and/or any other suitable material(s).
  • Each reinforcement member (3020) extends longitudinally along the full length of buttress body (3002).
  • Reinforcement members (3022) extend transversely across the full width of buttress body (3002).
  • Reinforcement members (3022) also span a gap (3004) defined between a pair of buttress bodies (3002), providing a connection of buttress bodies (3002) across gap (3004).
  • reinforcement members (3020, 3022) pass through discrete woven regions (3012) of strands (3010), such that reinforcement members (3020, 3022) are included in the weave at some of the discrete woven region (3012).
  • reinforcement members (3020, 3022) may themselves be at least partially woven through buttress bodies (3002).
  • buttress assembly (3000) further includes an impermeable layer (3030) laid over buttress body (3002).
  • strands (3010) and reinforcement members (3022) are partially woven through impermeable layer (3030); while reinforcement member members (3022) are positioned over impermeable layer (3030).
  • impermeable layer (3030) is substituted with a semi impermeable layer, such as a layer of polydioxanone (PDS) and/or some other material(s).
  • PDS polydioxanone
  • Various suitable materials that may be used to form impermeable layer (3030) (or a semi impermeable substitute therefor) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • buttress assembly (3000) further includes an impermeable peel-away film (3040) laid over impermeable layer (3030).
  • Peel-away film (3040) defines a plurality of pockets (3042) that are configured to retain a flowable adhesive material (3050) (shown in FIG. 26 ) in an array of discretely formed droplets on impermeable layer (3030).
  • Peel-away film (3040) is configured to adhere to impermeable layer (3030) during storage and transport of buttress assembly (3000), but may be peeled away to expose the flowable adhesive material (3050) under pockets (3042) right before buttress assembly (3000) is installed on end effector (40).
  • the discrete droplets of adhesive material (3050) are sized and positioned to correspond with the positioning of staple forming pockets (64) of anvil (60).
  • the discrete droplets of adhesive material (3050) and pockets (3042) are arranged in three longitudinally extending linear arrays. Alternatively, any other suitable arrangement may be used.
  • Various suitable materials that may be used to form peel-away film (3040) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • retainer (3100) has an upper surface (3110) and a lower surface (3120).
  • a first pair of buttress assemblies (3000) are positioned on upper surface (3110) for adhesion of those buttress assemblies (3000) to underside (65) of anvil (60).
  • a second pair of buttress assemblies (3000) are positioned on lower surface (3120) for adhesion of those buttress assemblies (3000) to deck (3273) of staple cartridge (3270).
  • Upper surface (3110) includes an upwardly projecting, longitudinally extending rib (3114). Rib (3114) is sized to complement channel (62) of anvil (60).
  • Lower surface (3120) also includes a downwardly projecting, longitudinally extending rib (3124), which is sized to complement channel (3272) of staple cartridge (3270).
  • ribs (3114, 3124) When anvil (60) is moved to a closed position to compress retainer (3100) and buttress assemblies (3000) between anvil (60) and staple cartridge (3270), ribs (3114, 3124) enter corresponding channels (62, 3472) and prevent flowable adhesive material (3050) from entering channels (62, 3472). Ribs (3114, 3124) may also ensure proper lateral alignment of retainer (3100) and buttress bodies (3000) with anvil (60) and staple cartridge (3270).
  • Upper surface (3110) of the present example further includes a plurality of upwardly extending projections (3112). While projections (3112) are only shown on one side of rib (3114), it should be understood that projections (3112) may also be located on the other side of rib (3114). Projections (3112) are configured and positioned to correspond with staple forming pockets (64) on underside (65) of anvil (60); and pockets (3042) of peel-away film (3040).
  • projections (3112) are configured to provide focused pressure to regions of buttress bodies (3002) at regions corresponding to staple forming pockets (64) the droplets of adhesive material (3050) formed by pockets (3042). While not shown, it should be understood that lower surface (3120) may also include downwardly extending projections, similar to projections (3112), to provide focused pressure to selected regions of buttress bodies (3002).
  • staple cartridge (3270) of the present example is substantially similar to staple cartridge (70) in that staple cartridge (3270) of this example includes channel (3272) and staple pockets (3274).
  • staple cartridge (3270) of this example differs from staple cartridge (70) in that staple cartridge (3270) of this example includes upwardly extending walls (3280) that surround each staple pocket (3274), the outer edges of deck (3273), and the edges of deck (3273) adjacent to channel (3272). Walls (3280) thus define troughs (3290) that are configured to prevent adhesive material (3050) from flowing into staple pockets (3274), over the outer edges of deck (3273), and into channel (3272).
  • staple cartridge (3270) is simply substituted with staple cartridge (70) or some other kind of staple cartridge.
  • FIG. 26 shows tissue (90) after an end effector formed by anvil (60) and staple cartridge (3270) has been actuated through the tissue (90).
  • staples (77) secure buttress assemblies (3000) to the tissue (90).
  • Crown (210) and legs (220) of each staple (77) capture strands (3010) and reinforcement members (3022), providing an attachment that may be more secure than what might otherwise be provided if buttress body (3002) lacked strands (3010) and reinforcement members (3022).
  • knife member (80) severs the portions of reinforcement members (3022) that span across gap (3004).
  • the adhesive material (3050) remains on impermeable layer (3030). In some instances, this adhesive material (3050) may flow into gaps that might otherwise be present adjacent to crowns (210) and/or legs (220). The adhesive material (3050) may thus further reinforce the structural integrity of the applied buttress assembly (3000); and/or further reinforce the attachment of staples (77) to buttress assemblies (3000). The adhesive material (3050) may also provide a hemostatic effect by blocking the flow of blood that might otherwise occur through gaps that might otherwise be present adjacent to crowns (210) and/or legs (220).
  • buttress assemblies (3000) are configured such that an appreciable amount of adhesive material (3000) is no longer present on impermeable layer (3030) after staples (77) are fired.
  • Other suitable arrangements and compositions will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIGS. 27-29 show another exemplary buttress assembly (3300).
  • Buttress assembly (3300) of this example comprises a buttress body (3302) with a pair of heat sensitive strands (3310) woven through buttress body (3302).
  • Buttress body (3302) may be formed in accordance with any buttress body referred to herein.
  • Each heat sensitive strand (3310) is woven through buttress body (3302) such that heat sensitive strand (3310) extends along the full length of buttress body (3302).
  • Heat sensitive strands (3310) are parallel to each other and are spaced apart by a distance complementing the lateral width of channels (62, 72).
  • Heat sensitive strands (3310) are formed of a material that will melt at a relatively low temperature and adhere to a surface that it is in contact with when it melts and cools.
  • the melting temperature (Tm) of heat sensitive strands (3310) is lower than the melting temperature (Tm) of buttress body (3302).
  • heat sensitive strands (3310) may comprise polydioxanone (PDS).
  • buttress body (3302) comprises VICRYL® (polyglactin 910) material by Ethicon US, LLC
  • heat sensitive strands (3310) comprise polydioxanone (PDS)
  • buttress assembly (3300) is formed as a woven fleece material made from a 7:1 blend of VICRYL®:PDS that is heat treated to shrink polydioxanone (PDS) and bond individual fibers in the fleece together.
  • any other suitable blend ratio may be used.
  • buttress assembly (3300) comprises a woven fleece material made from a blend of VICRYL® material and polydioxanone (PDS)
  • the fleece may be attached to a polydioxanone (PDS) film that may be heated to secure buttress assembly (3300) to underside (65) of anvil (60) or deck (73) of staple cartridge (70).
  • buttress assembly (3300) may be constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,686,090 , entitled “Multi-Layered Implant,” issued November 11, 1997, the disclosure of which is incorporated by reference herein.
  • Various other suitable materials that may be used to form heat sensitive strands (3310) will be apparent to those of ordinary skill in the art in view of the teachings herein. While buttress assembly (3300) only includes two heat sensitive strands (3310) in the depicted example, it should be understood that any other suitable number of heat sensitive strands (3310) may be incorporated into buttress assembly (3300) if desired.
  • FIG. 28 shows buttress assembly (3300) applied to underside (65) of anvil (60).
  • heat sensitive strands (3310) are positioned on respective regions of underside (65) that are adjacent to channel (62).
  • heat sensitive strands (3310) may be heated to their melting point; then allowed to cool to thereby adhere buttress assembly (3300) to underside (65).
  • buttress assembly (3300) may be applied to underside (65) using a modified version of retainer (300).
  • a modified version of retainer (300) may include a heating element at or under upper side (302). The heating element may be activated while anvil (60) is clamping down on buttress assembly (3300).
  • Such a modified version of retainer (300) may also include a coating such as polytetrafluoroethylene (PTFE) to prevent heat sensitive strands (3310) from adhering to upper side (302).
  • retainer (300) may include surface features that are configured to prevent heat sensitive strands (3310) from adhering to upper side (302).
  • heat sensitive strands (3310) may be woven through buttress body (3302) in such a way that heat sensitive strands (3310) will not contact upper side (302) of the modified retainer (300).
  • Other suitable structures and techniques that may be used to provide heat to heat sensitive strands (3310) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 29 shows buttress assembly (3300) applied to deck (73) of staple cartridge (70).
  • heat sensitive strands (3310) are positioned on respective regions of deck (73) that are adjacent to channel (72).
  • heat sensitive strands (3310) may be heated to their melting point; then allowed to cool to thereby adhere buttress assembly (3300) to deck (73).
  • buttress assembly (3300) may be applied to deck (73) using a modified version of retainer (300) as described above; or using any other suitable structures or techniques as will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • the adhesive material that removably secures a buttress body (102) to underside (65) of anvil (60) or to deck (73) of staple cartridge (70) may have various properties including malleability and tackiness that provides self-attachment to underside (65) of anvil (60) or to deck (73) of staple cartridge (70). In other words, the adhesive material may deform to the shape presented by the corresponding contact area of underside (65) or deck (73). It should also be understood that the adhesive material may be provided on buttress body (102) in various shapes and configurations. For instance, the adhesive material may be provided in a pattern that includes selective zones of adhesion to minimize the likelihood of collateral damage to areas such as staple pockets (74) whose performance might be adversely affected by influx of adhesive material.
  • the pattern of the adhesive material may also minimize the number and size of the adhesive contact with underside (65) or deck (73), thereby minimizing the force required to pull buttress assembly (100) off of underside (65) or deck (73) after end effector (40) has been actuated.
  • the geometry of the adhesive material may provide uniform thickness or variable thickness.
  • the adhesive material may also provide variable stiffness. Providing a variable thickness and/or variable stiffness may provide a variable pressure distribution.
  • FIG. 30 shows an exemplary alternative buttress assembly (3400) that comprises a pair of buttress bodies (3402) and an adhesive material (3410) that is positioned along the outer perimeter of the upper surface (3404) of each buttress body (3402).
  • Buttress bodies (3402) are separated by a gap (3406) that corresponds to channel (62) of anvil (60) and channel (72) of staple cartridge (70).
  • a set of tethers (3420) extend transversely across gap (3406), connecting buttress bodies (3402). As described above with respect to other tethers, tethers (3420) of this example will be severed by knife member (80) when firing beam (82) is advanced distally during actuation of end effector (40).
  • buttress assembly (3400) is only adhered to underside (65) or deck (73) along the outer perimeter of buttress body (3402), which may minimize the force required to pull buttress assembly (3400) off of underside (65) or deck (73) after end effector (40) has been actuated.
  • Various suitable materials that may be used to form buttress bodies (3402), adhesive material (3410), and tethers (3420) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 31 shows another exemplary alternative buttress assembly (3500) that comprises a buttress body (3502) and an adhesive material (3510) that is positioned in discrete regions along the outer perimeter of the upper surface (3504) of buttress body (3502).
  • Buttress body (3502) defines a longitudinally extending array of gaps (3506) that correspond to channel (62) of anvil (60) and channel (72) of staple cartridge (70).
  • Buttress body (3502) further defines a set of transversely extending bridge regions (3520) that separate gaps (3506).
  • bridge regions (3520) of this example will be severed by knife member (80) when firing beam (82) is advanced distally during actuation of end effector (40).
  • buttress assembly (3400) is only adhered to underside (65) or deck (73) at discrete regions along the outer perimeter of buttress body (3502), which may further minimize the force required to pull buttress assembly (3500) off of underside (65) or deck (73) after end effector (40) has been actuated.
  • This pull-away force may be lower for buttress assembly (3500) than it is for buttress assembly (3400) since less adhesive material (3510) is used in buttress assembly (3500).
  • Various suitable materials that may be used to form buttress body (3502) and adhesive material (3510) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 32 shows yet another exemplary alternative buttress assembly (3600) that comprises a buttress body (3602) with a plurality of integral reinforcement members (3610).
  • Buttress body (3602) may be configured and operable in accordance with any of the various buttress bodies described herein.
  • An adhesive material (not shown) is incorporated into buttress body (3602) in order to provide removable attachment of buttress assembly (3600) to underside (65) of anvil (60) or deck (73) of staple cartridge (70).
  • Various suitable compositions that may be used to provide the adhesive material, and various suitable ways in which such adhesive material may be incorporated into buttress body (3602), will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • Reinforcement members (3610) are configured to provide structural reinforcement to buttress body (3602) and/or to the attachment of staples (77) that are driven through buttress assembly (3600).
  • buttress body (3602) is formed of a porous sponge like material while reinforcement members (3610) are formed of a tight fibrous weave that has greater tensile strength than the material forming buttress body (3602).
  • reinforcement members (3610) are formed of a tight fibrous weave that has greater tensile strength than the material forming buttress body (3602).
  • suitable materials and structures that may be used to form reinforcement members (3610) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • two of the reinforcement members (3610) have a generally "S" shaped configuration while the other two reinforcement members (3610) have a generally "L” shaped configuration.
  • reinforcement members (3610) are configured to enable each reinforcement member (3610) to receive several staples (77) from different rows and columns of staple cartridge (70). By spanning across discrete sets of staples (77) from different rows and columns of staple cartridge (70), reinforcement members (3610) may provide greater reinforcement than what might otherwise be provided if reinforcement members (3610) spanned the entire array of staples (77) or just individual staples (77). Other suitable shapes and arrangements for reinforcement members (3610) will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • reinforcement members (3610) may be integrated into buttress body (3602) in any suitable fashion, including but not limited to providing reinforcement members (3610) between apposed layers of buttress body (3602) or forming buttress body (3602) around reinforcement members (3610).
  • FIG. 33 shows an exemplary alternative retainer (3700) that may be used with any of the various buttress assemblies described herein.
  • Retainer (3700) of this example comprises a base member (3752) having an upper surface (3754), a plurality of latches (3756), and a distally projecting tongue (3758) that is configured to facilitate grasping and manipulation of retainer (3750).
  • Retainer (3700) also includes an upper member (3760) that is secured to base member (3752) by a living hinge (3770).
  • Upper member (3760) has an upper surface (3762) that is configured to engage buttress body (3702).
  • Upper member (3760) includes a plurality of projections (3764) extending upwardly from upper surface (3762), and central rib (3766) extending upwardly and longitudinally along the laterally central region of upper surface (3762), and a pair of outer ribs (3768) extending upwardly and longitudinally along the outer edges of upper surface (3762). While projections (3764) are shown as spanning along only a portion of the length of upper surface (3762), it should be understood that projections (3764) may span along the entire length of upper surface. It should also be understood that projections (3764) may span along three rows on each side of central rib (3766), corresponding to three rows of staple forming pockets (64) on underside (65) of anvil (60).
  • retainer (3700) may be removably secured to end effector (40) in a manner similar to retainer (300) described above, with latches (3756) releasably engaging lower jaw (50).
  • upper member (3760) is spaced away from upper surface (3754) of base member (3752) due to a resilient bias imposed by living hinge (3770).
  • the resilient bias provided by living hinge (3770) may ensure that upper adhesive layer (104) of a buttress assembly (100) that is laid over upper surface (3762) will contact the appropriate region of underside (65) of anvil (60) before anvil (60) reaches a fully closed position.
  • the resilient bias provided by living hinge (3770) may also provide and maintain a minimum consistent pressure during the closure of anvil (60) to enhance the attachment of upper adhesive layer (104) to underside (65) of anvil (60).
  • anvil (60) As anvil (60) is driven further toward the closed position, anvil (60) bears down on upper adhesive layer (104) and upper member (3760), thereby causing upper member (3760) to pivot toward base member (3752).
  • Adhesive layer (104) is compressed between underside (65) of anvil (60) and projections (3764). Projections (3764) provide focused pressure to regions of buttress assembly (100) at regions corresponding to staple forming pockets (64) (and/or into other surface features of underside (65)), thereby further promoting adhesion between adhesive layer (104) and underside (65).
  • Ribs (3766, 3768) may ensure proper lateral alignment of retainer (3700) and buttress assembly (100) with anvil (60) during the closure of anvil (60).
  • Ribs (3766, 3768) may also prevent adhesive material from entering channel (62) or escaping from sides of anvil (60) during closure of anvil (60).
  • latches (3768) of retainer (3700) may secure upper member (3760) into apposition with base member (3752), facilitating removal of retainer (3750) from end effector (40).
  • Buttress assembly (100) may then be left adhered to underside (65) of anvil (60), such that end effector (40) is then ready for use.
  • retainer (3700) is described as being used in combination with buttress assembly (100), it should be understood that retainer (3700) may be used in combination with any other buttress assembly referred to herein.
  • a surgical stapler end effector assembly comprising:
  • Example 1 The surgical stapler end effector assembly of Example 1 and any of the following Examples, wherein the adhesive material comprises a pressure sensitive adhesive.
  • Example 5 The surgical stapler end effector assembly of Example 5, wherein the staple cartridge is operable to drive the staples through the buttress body at regions corresponding to the discrete woven regions.
  • Example 9 The surgical stapler end effector assembly of Example 9, wherein at least one of the reinforcement strands extends across the gap.
  • the buttress assembly further comprises an intermediate layer positioned between the buttress body and the adhesive material, wherein the intermediate layer is impermeable or semi-impermeable.
  • Example 11 The surgical stapler end effector assembly of Example 11, wherein at least one of the reinforcement strands is positioned on or through the intermediate layer.
  • the buttress assembly further comprises a film layer positioned over the adhesive material, wherein the film layer is impermeable.
  • Example 13 The surgical stapler end effector assembly of Example 13, wherein the film layer is positioned over the plurality of reinforcement strands.
  • Example 13 The surgical stapler end effector assembly of Example 13, wherein the film layer defines a plurality of pockets configured to contain the adhesive material in a plurality of discrete regions.
  • the surgical stapler end effector assembly of Example 15 further comprising a retainer assembly configured to releasably hold the buttress assembly, wherein the retainer assembly comprises a plurality of protrusions configured to engage the buttress assembly at locations corresponding to the discrete regions of adhesive material.
  • each staple comprises a crown and a pair of legs, wherein at least one of the reinforcement strands is configured to engage either the crown or at least one of the legs of the staples.
  • a surgical stapler end effector assembly comprising:
  • a surgical stapler end effector assembly comprising:
  • 2012/0132450 entitled “Shiftable Drive Interface for Robotically-Controlled Surgical Tool,” published May 31, 2012, the disclosure of which is incorporated by reference herein;
  • U.S. Pub. No. 2012/0199633 entitled “Surgical Stapling Instruments with Cam-Driven Staple Deployment Arrangements,” published August 9, 2012, the disclosure of which is incorporated by reference herein;
  • U.S. Pub. No. 2012/0199631 entitled “Robotically-Controlled Motorized Surgical End Effector System with Rotary Actuated Closure Systems Having Variable Actuation Speeds,” published August 9, 2012, the disclosure of which is incorporated by reference herein;
  • 2012/0138660 entitled “Robotically-Controlled Cable-Based Surgical End Effectors,” published June 7, 2012, the disclosure of which is incorporated by reference herein; and/or U.S. Pub. No. 2012/0205421 , entitled “Robotically-Controlled Surgical End Effector System with Rotary Actuated Closure Systems,” published August 16, 2012, the disclosure of which is incorporated by reference herein.
  • Versions of the devices described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure.
  • reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • versions described herein may be sterilized before and/or after a procedure.
  • the device is placed in a closed and sealed container, such as a plastic or TYVEK bag.
  • the container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons.
  • the radiation may kill bacteria on the device and in the container.
  • the sterilized device may then be stored in the sterile container for later use.
  • a device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
EP16162059.6A 2015-03-25 2016-03-23 Contrefort d'agrafe chirurgicale avec un adhésif intégré destiné à être fixé de manière amovible sur une agrafeuse chirurgicale Active EP3072458B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL16162059T PL3072458T3 (pl) 2015-03-25 2016-03-23 Przypora zszywki chirurgicznej ze zintegrowanym środkiem adhezyjnym do rozłącznego przyczepiania do staplera chirurgicznego
EP21192878.3A EP3970628A1 (fr) 2015-03-25 2016-03-23 Pièce d'appui d'agrafe chirurgicale avec un filament thermosensible destiné à être fixé de manière amovible sur une agrafeuse chirurgicale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/667,961 US10568621B2 (en) 2015-03-25 2015-03-25 Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21192878.3A Division EP3970628A1 (fr) 2015-03-25 2016-03-23 Pièce d'appui d'agrafe chirurgicale avec un filament thermosensible destiné à être fixé de manière amovible sur une agrafeuse chirurgicale

Publications (3)

Publication Number Publication Date
EP3072458A2 true EP3072458A2 (fr) 2016-09-28
EP3072458A3 EP3072458A3 (fr) 2016-11-02
EP3072458B1 EP3072458B1 (fr) 2021-08-25

Family

ID=55589772

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21192878.3A Pending EP3970628A1 (fr) 2015-03-25 2016-03-23 Pièce d'appui d'agrafe chirurgicale avec un filament thermosensible destiné à être fixé de manière amovible sur une agrafeuse chirurgicale
EP16162059.6A Active EP3072458B1 (fr) 2015-03-25 2016-03-23 Contrefort d'agrafe chirurgicale avec un adhésif intégré destiné à être fixé de manière amovible sur une agrafeuse chirurgicale

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21192878.3A Pending EP3970628A1 (fr) 2015-03-25 2016-03-23 Pièce d'appui d'agrafe chirurgicale avec un filament thermosensible destiné à être fixé de manière amovible sur une agrafeuse chirurgicale

Country Status (8)

Country Link
US (2) US10568621B2 (fr)
EP (2) EP3970628A1 (fr)
JP (1) JP6724036B2 (fr)
CN (1) CN107645931B (fr)
BR (1) BR112017020460B1 (fr)
MX (1) MX2017012119A (fr)
PL (1) PL3072458T3 (fr)
WO (1) WO2016153904A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150135A1 (fr) * 2015-09-30 2017-04-05 Ethicon Endo-Surgery, LLC Accessoires compressibles avec nuds de liaison
WO2017074842A3 (fr) * 2015-10-29 2017-06-22 Ethicon Endo-Surgery, Llc Ensemble de renfort d'agrafeuse chirurgicale à éléments pour entrer en interaction avec des composants d'effecteur terminal mobiles
EP3363382A1 (fr) * 2017-02-17 2018-08-22 Ethicon LLC Procédés et systèmes d'accouplement de matières auxiliaires pouvant être comprimées avec des effecteurs d'extrémité
US11974744B2 (en) 2017-02-17 2024-05-07 Ethicon Llc Stapling adjunct attachment

Families Citing this family (643)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7604151B2 (en) 2007-03-15 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (pt) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc instrumento cirúrgico de corte e fixação dotado de eletrodos de rf
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CA2751664A1 (fr) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Ameliorations d'agrafeuse chirurgicale commandee
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9241714B2 (en) * 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
BR112013027794B1 (pt) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc Conjunto de cartucho de grampos
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024102B1 (pt) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc Conjunto de cartucho de prendedores para um instrumento cirúrgico, e conjunto de atuador de extremidade para um instrumento cirúrgico
JP6105041B2 (ja) 2012-03-28 2017-03-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 低圧環境を画定するカプセルを含む組織厚コンペンセーター
RU2644272C2 (ru) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Узел ограничения, включающий компенсатор толщины ткани
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
RU2636861C2 (ru) 2012-06-28 2017-11-28 Этикон Эндо-Серджери, Инк. Блокировка пустой кассеты с клипсами
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
MX368026B (es) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal.
BR112015021082B1 (pt) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
JP6416260B2 (ja) 2013-08-23 2018-10-31 エシコン エルエルシー 動力付き外科用器具のための発射部材後退装置
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (ja) 2014-02-24 2019-01-30 エシコン エルエルシー 発射部材ロックアウトを備える締結システム
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456176B (zh) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 包括具有不同构型的延伸部的紧固件仓
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
BR112016023807B1 (pt) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc Conjunto de cartucho de prendedores para uso com um instrumento cirúrgico
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (es) 2014-09-26 2017-12-04 Ethicon Llc Refuerzos de grapas quirúrgicas y materiales auxiliares.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
RU2703684C2 (ru) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Хирургический инструмент с упором, который выполнен с возможностью избирательного перемещения относительно кассеты со скобами вокруг дискретной неподвижной оси
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US10660623B2 (en) 2016-01-15 2020-05-26 Covidien Lp Centering mechanism for articulation joint
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
CN108882932B (zh) 2016-02-09 2021-07-23 伊西康有限责任公司 具有非对称关节运动构造的外科器械
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10561419B2 (en) 2016-05-04 2020-02-18 Covidien Lp Powered end effector assembly with pivotable channel
US10398517B2 (en) 2016-08-16 2019-09-03 Ethicon Llc Surgical tool positioning based on sensed parameters
US10537399B2 (en) 2016-08-16 2020-01-21 Ethicon Llc Surgical tool positioning based on sensed parameters
US10492784B2 (en) 2016-11-08 2019-12-03 Covidien Lp Surgical tool assembly with compact firing assembly
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
JP6983893B2 (ja) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
CN110087565A (zh) 2016-12-21 2019-08-02 爱惜康有限责任公司 外科缝合系统
JP7086963B2 (ja) 2016-12-21 2022-06-20 エシコン エルエルシー エンドエフェクタロックアウト及び発射アセンブリロックアウトを備える外科用器具システム
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10709901B2 (en) 2017-01-05 2020-07-14 Covidien Lp Implantable fasteners, applicators, and methods for brachytherapy
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US20180235618A1 (en) 2017-02-22 2018-08-23 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11350915B2 (en) 2017-02-23 2022-06-07 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10849621B2 (en) 2017-02-23 2020-12-01 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US10660641B2 (en) 2017-03-16 2020-05-26 Covidien Lp Adapter with centering mechanism for articulation joint
US10603035B2 (en) 2017-05-02 2020-03-31 Covidien Lp Surgical loading unit including an articulating end effector
US11324502B2 (en) 2017-05-02 2022-05-10 Covidien Lp Surgical loading unit including an articulating end effector
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
US10390826B2 (en) 2017-05-08 2019-08-27 Covidien Lp Surgical stapling device with elongated tool assembly and methods of use
US10420551B2 (en) 2017-05-30 2019-09-24 Covidien Lp Authentication and information system for reusable surgical instruments
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
EP4070740A1 (fr) 2017-06-28 2022-10-12 Cilag GmbH International Instrument chirurgical comprenant des coupleurs rotatifs actionnables de façon sélective
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US10945733B2 (en) * 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US10624636B2 (en) 2017-08-23 2020-04-21 Covidien Lp Surgical stapling device with floating staple cartridge
US10806452B2 (en) 2017-08-24 2020-10-20 Covidien Lp Loading unit for a surgical stapling instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11925373B2 (en) 2017-10-30 2024-03-12 Cilag Gmbh International Surgical suturing instrument comprising a non-circular needle
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10925603B2 (en) 2017-11-14 2021-02-23 Covidien Lp Reload with articulation stabilization system
US10863987B2 (en) 2017-11-16 2020-12-15 Covidien Lp Surgical instrument with imaging device
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) * 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US20190206569A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of cloud based data analytics for use with the hub
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US12127729B2 (en) 2017-12-28 2024-10-29 Cilag Gmbh International Method for smoke evacuation for surgical hub
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US20190201113A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Controls for robot-assisted surgical platforms
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US10945732B2 (en) 2018-01-17 2021-03-16 Covidien Lp Surgical stapler with self-returning assembly
US10959721B2 (en) 2018-02-21 2021-03-30 Ethicon Llc Three dimensional adjuncts
US10813637B2 (en) * 2018-02-21 2020-10-27 Ethicon Llc Three dimensional adjuncts
USD882782S1 (en) 2018-02-21 2020-04-28 Ethicon Llc Three dimensional adjunct
US11369371B2 (en) 2018-03-02 2022-06-28 Covidien Lp Surgical stapling instrument
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11986233B2 (en) 2018-03-08 2024-05-21 Cilag Gmbh International Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11344326B2 (en) 2018-03-08 2022-05-31 Cilag Gmbh International Smart blade technology to control blade instability
US11406382B2 (en) 2018-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a lockout key configured to lift a firing member
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US10849622B2 (en) 2018-06-21 2020-12-01 Covidien Lp Articulated stapling with fire lock
US10736631B2 (en) 2018-08-07 2020-08-11 Covidien Lp End effector with staple cartridge ejector
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10849620B2 (en) 2018-09-14 2020-12-01 Covidien Lp Connector mechanisms for surgical stapling instruments
US11510669B2 (en) 2020-09-29 2022-11-29 Covidien Lp Hand-held surgical instruments
US11090051B2 (en) 2018-10-23 2021-08-17 Covidien Lp Surgical stapling device with floating staple cartridge
US10905424B2 (en) * 2018-12-28 2021-02-02 Ethicon Llc Curved tip surgical stapler buttress assembly applicator with proximal alignment features
US10912563B2 (en) 2019-01-02 2021-02-09 Covidien Lp Stapling device including tool assembly stabilizing member
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11517309B2 (en) 2019-02-19 2022-12-06 Cilag Gmbh International Staple cartridge retainer with retractable authentication key
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11344297B2 (en) 2019-02-28 2022-05-31 Covidien Lp Surgical stapling device with independently movable jaws
US11259808B2 (en) 2019-03-13 2022-03-01 Covidien Lp Tool assemblies with a gap locking member
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11284892B2 (en) 2019-04-01 2022-03-29 Covidien Lp Loading unit and adapter with modified coupling assembly
US11284893B2 (en) 2019-04-02 2022-03-29 Covidien Lp Stapling device with articulating tool assembly
US11241228B2 (en) 2019-04-05 2022-02-08 Covidien Lp Surgical instrument including an adapter assembly and an articulating surgical loading unit
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
USD952144S1 (en) * 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD964564S1 (en) * 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11224424B2 (en) 2019-08-02 2022-01-18 Covidien Lp Linear stapling device with vertically movable knife
US11490890B2 (en) 2019-09-16 2022-11-08 Cilag Gmbh International Compressible non-fibrous adjuncts
US11540832B2 (en) 2019-09-16 2023-01-03 Cilag Gmbh International Compressible non-fibrous adjuncts
US11406385B2 (en) 2019-10-11 2022-08-09 Covidien Lp Stapling device with a gap locking member
US11123068B2 (en) 2019-11-08 2021-09-21 Covidien Lp Surgical staple cartridge
US11974743B2 (en) 2019-12-02 2024-05-07 Covidien Lp Linear stapling device with a gap locking member
US11707274B2 (en) 2019-12-06 2023-07-25 Covidien Lp Articulating mechanism for surgical instrument
US11109862B2 (en) 2019-12-12 2021-09-07 Covidien Lp Surgical stapling device with flexible shaft
US11737747B2 (en) 2019-12-17 2023-08-29 Covidien Lp Hand-held surgical instruments
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11452524B2 (en) 2020-01-31 2022-09-27 Covidien Lp Surgical stapling device with lockout
US11278282B2 (en) 2020-01-31 2022-03-22 Covidien Lp Stapling device with selective cutting
US11890014B2 (en) 2020-02-14 2024-02-06 Covidien Lp Cartridge holder for surgical staples and having ridges in peripheral walls for gripping tissue
US11344301B2 (en) 2020-03-02 2022-05-31 Covidien Lp Surgical stapling device with replaceable reload assembly
US11344302B2 (en) 2020-03-05 2022-05-31 Covidien Lp Articulation mechanism for surgical stapling device
US11707278B2 (en) 2020-03-06 2023-07-25 Covidien Lp Surgical stapler tool assembly to minimize bleeding
US11246593B2 (en) 2020-03-06 2022-02-15 Covidien Lp Staple cartridge
US11317911B2 (en) 2020-03-10 2022-05-03 Covidien Lp Tool assembly with replaceable cartridge assembly
US11357505B2 (en) 2020-03-10 2022-06-14 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11406383B2 (en) 2020-03-17 2022-08-09 Covidien Lp Fire assisted powered EGIA handle
US12108953B2 (en) 2020-03-24 2024-10-08 Covidien Lp Surgical stapling device with replaceable staple cartridge
US11331098B2 (en) 2020-04-01 2022-05-17 Covidien Lp Sled detection device
US11426159B2 (en) 2020-04-01 2022-08-30 Covidien Lp Sled detection device
US11504117B2 (en) 2020-04-02 2022-11-22 Covidien Lp Hand-held surgical instruments
US11937794B2 (en) 2020-05-11 2024-03-26 Covidien Lp Powered handle assembly for surgical devices
US11191537B1 (en) 2020-05-12 2021-12-07 Covidien Lp Stapling device with continuously parallel jaws
US11406387B2 (en) 2020-05-12 2022-08-09 Covidien Lp Surgical stapling device with replaceable staple cartridge
US11534167B2 (en) 2020-05-28 2022-12-27 Covidien Lp Electrotaxis-conducive stapling
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11191538B1 (en) 2020-06-08 2021-12-07 Covidien Lp Surgical stapling device with parallel jaw closure
US11844517B2 (en) 2020-06-25 2023-12-19 Covidien Lp Linear stapling device with continuously parallel jaws
US11324500B2 (en) 2020-06-30 2022-05-10 Covidien Lp Surgical stapling device
US12023027B2 (en) 2020-07-02 2024-07-02 Covidien Lp Surgical stapling device with compressible staple cartridge
US11517305B2 (en) 2020-07-09 2022-12-06 Covidien Lp Contoured staple pusher
US11446028B2 (en) 2020-07-09 2022-09-20 Covidien Lp Tool assembly with pivotable clamping beam
US12089838B2 (en) 2020-07-21 2024-09-17 Covidien Lp Shipping cover for staple cartridge
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11266402B2 (en) 2020-07-30 2022-03-08 Covidien Lp Sensing curved tip for surgical stapling instruments
US11439392B2 (en) 2020-08-03 2022-09-13 Covidien Lp Surgical stapling device and fastener for pathological exam
US11395654B2 (en) 2020-08-07 2022-07-26 Covidien Lp Surgical stapling device with articulation braking assembly
US11602342B2 (en) 2020-08-27 2023-03-14 Covidien Lp Surgical stapling device with laser probe
USD1029255S1 (en) 2020-09-01 2024-05-28 Cilag Gmbh International Stapling cartridge assembly with a compressible adjunct
US11678878B2 (en) 2020-09-16 2023-06-20 Covidien Lp Articulation mechanism for surgical stapling device
US11660092B2 (en) 2020-09-29 2023-05-30 Covidien Lp Adapter for securing loading units to handle assemblies of surgical stapling instruments
US11406384B2 (en) 2020-10-05 2022-08-09 Covidien Lp Stapling device with drive assembly stop member
US11576674B2 (en) 2020-10-06 2023-02-14 Covidien Lp Surgical stapling device with articulation lock assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11890007B2 (en) 2020-11-18 2024-02-06 Covidien Lp Stapling device with flex cable and tensioning mechanism
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737774B2 (en) 2020-12-04 2023-08-29 Covidien Lp Surgical instrument with articulation assembly
US11819200B2 (en) 2020-12-15 2023-11-21 Covidien Lp Surgical instrument with articulation assembly
US11553914B2 (en) 2020-12-22 2023-01-17 Covidien Lp Surgical stapling device with parallel jaw closure
US11744582B2 (en) 2021-01-05 2023-09-05 Covidien Lp Surgical stapling device with firing lockout mechanism
US11759206B2 (en) 2021-01-05 2023-09-19 Covidien Lp Surgical stapling device with firing lockout mechanism
US11517313B2 (en) 2021-01-27 2022-12-06 Covidien Lp Surgical stapling device with laminated drive member
US11759207B2 (en) 2021-01-27 2023-09-19 Covidien Lp Surgical stapling apparatus with adjustable height clamping member
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11717300B2 (en) 2021-03-11 2023-08-08 Covidien Lp Surgical stapling apparatus with integrated visualization
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11974750B2 (en) 2021-03-26 2024-05-07 Covidien Lp Surgical staple cartridge
US11839374B2 (en) 2021-03-30 2023-12-12 Cilag Gmbh International Compressible adjuncts with drug release features
US11627961B2 (en) 2021-03-30 2023-04-18 Cilag Gmbh International Compressible adjuncts with different behavioral zones
US12059153B2 (en) 2021-03-30 2024-08-13 Cilag Gmbh International Implantable adjuncts having adjustable degradation profile
US20220313145A1 (en) 2021-03-30 2022-10-06 Cilag Gmbh International Monitoring healing after tissue adjunct implantation
US11864765B2 (en) 2021-03-30 2024-01-09 Cilag Gmbh International Compressible adjuncts with fluid control features
US11786240B2 (en) 2021-03-30 2023-10-17 Cilag Gmbh International Using smart packaging in adjusting use of tissue adjuncts
US20220313256A1 (en) 2021-03-30 2022-10-06 Cilag Gmbh International Passively powered packaging for tissue adjuncts
US11849950B2 (en) 2021-03-30 2023-12-26 Cilag Gmbh International Compressible adjuncts with drug dosage control features
US11602341B2 (en) 2021-03-30 2023-03-14 Cilag Gmbh International Compressible adjuncts with drug release features
US20220313255A1 (en) 2021-03-30 2022-10-06 Cilag Gmbh International Smart packaging for tissue adjuncts
US11504125B2 (en) 2021-03-30 2022-11-22 Cilag Gmbh International Tissue thickness compensating adjuncts having regions of differential expansion
US11850332B2 (en) 2021-03-30 2023-12-26 Cilag Gmbh International Method for treating tissue
US11896226B2 (en) 2021-03-30 2024-02-13 Cilag Gmbh International Compressible adjuncts with healing-dependent degradation profile
US20220313262A1 (en) 2021-03-30 2022-10-06 Cilag Gmbh International Composite adjuncts that degrade through multiple different mechanisms
US11497495B2 (en) 2021-03-31 2022-11-15 Covidien Lp Continuous stapler strip for use with a surgical stapling device
US11666330B2 (en) 2021-04-05 2023-06-06 Covidien Lp Surgical stapling device with lockout mechanism
US11576670B2 (en) 2021-05-06 2023-02-14 Covidien Lp Surgical stapling device with optimized drive assembly
US11812956B2 (en) 2021-05-18 2023-11-14 Covidien Lp Dual firing radial stapling device
US11696755B2 (en) 2021-05-19 2023-07-11 Covidien Lp Surgical stapling device with reload assembly removal lockout
US11510673B1 (en) 2021-05-25 2022-11-29 Covidien Lp Powered stapling device with manual retraction
US11771423B2 (en) 2021-05-25 2023-10-03 Covidien Lp Powered stapling device with manual retraction
US11701119B2 (en) 2021-05-26 2023-07-18 Covidien Lp Powered stapling device with rack release
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11576675B2 (en) 2021-06-07 2023-02-14 Covidien Lp Staple cartridge with knife
US11617579B2 (en) 2021-06-29 2023-04-04 Covidien Lp Ultra low profile surgical stapling instrument for tissue resections
US11707275B2 (en) 2021-06-29 2023-07-25 Covidien Lp Asymmetrical surgical stapling device
US11602344B2 (en) 2021-06-30 2023-03-14 Covidien Lp Surgical stapling apparatus with firing lockout assembly
US11540831B1 (en) 2021-08-12 2023-01-03 Covidien Lp Staple cartridge with actuation sled detection
US11779334B2 (en) 2021-08-19 2023-10-10 Covidien Lp Surgical stapling device including a manual retraction assembly
US11576671B1 (en) 2021-08-20 2023-02-14 Covidien Lp Small diameter linear surgical stapling apparatus
US11707277B2 (en) 2021-08-20 2023-07-25 Covidien Lp Articulating surgical stapling apparatus with pivotable knife bar guide assembly
US12023028B2 (en) 2021-08-20 2024-07-02 Covidien Lp Articulating surgical stapling apparatus with pivotable knife bar guide assembly
US11801052B2 (en) * 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11832817B2 (en) 2021-09-03 2023-12-05 Lexington Medical, Inc. Staple line surgical buttress
US11864761B2 (en) 2021-09-14 2024-01-09 Covidien Lp Surgical instrument with illumination mechanism
US11653922B2 (en) 2021-09-29 2023-05-23 Covidien Lp Surgical stapling device with firing lockout mechanism
US11660094B2 (en) 2021-09-29 2023-05-30 Covidien Lp Surgical fastening instrument with two-part surgical fasteners
US11849949B2 (en) 2021-09-30 2023-12-26 Covidien Lp Surgical stapling device with firing lockout member
US12035909B2 (en) 2021-10-13 2024-07-16 Covidien Lp Surgical stapling device with firing lockout mechanism
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11998204B2 (en) 2021-10-29 2024-06-04 Cilag Gmbh International Compressible adjunct for surgical stapler
US20230139479A1 (en) 2021-10-29 2023-05-04 Cilag Gmbh International Displaceable adjunct attachment features for surgical stapler
US11950781B2 (en) 2021-10-29 2024-04-09 Cilag Gmbh International Discrete adjunct attachment features for surgical stapler
CN116509484A (zh) * 2022-01-24 2023-08-01 苏州英途康医疗科技有限公司 手术器械
US12082834B2 (en) 2022-03-25 2024-09-10 Cilag Gmbh International Tissue cushion adjunct with staple leg support features for surgical stapler end effector
US20230301674A1 (en) 2022-03-25 2023-09-28 Cilag Gmbh International Tissue cushion adjunct for surgical stapler end effector
US12114882B2 (en) 2022-03-25 2024-10-15 Cilag Gmbh International Surgical stapler features for stapling variable thickness tissue
US20230301656A1 (en) 2022-03-25 2023-09-28 Cilag Gmbh International Tissue cushion adjuncts for surgical stapler end effector
US20230301657A1 (en) 2022-03-25 2023-09-28 Cilag Gmbh International Thermally formed tissue cushion adjunct for surgical stapler end effector

Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642375A (en) 1951-08-21 1953-06-16 Ethicon Suture Lab Inc Hemostatic compositions
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5686090A (en) 1993-01-28 1997-11-11 Ethicon, Inc. Multi-layered implant
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5817084A (en) 1993-05-14 1998-10-06 Sri International Remote center positioning device with flexible drive
US5878193A (en) 1992-08-10 1999-03-02 Computer Motion, Inc. Automated endoscope system for optimal positioning
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US6978921B2 (en) 2003-05-20 2005-12-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an E-beam firing mechanism
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US20080169328A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Buttress material for use with a surgical stapler
US7404508B2 (en) 2005-07-26 2008-07-29 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US7524320B2 (en) 1998-12-08 2009-04-28 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US7691098B2 (en) 2001-06-29 2010-04-06 Intuitive Surgical, Inc. Platform link wrist mechanism
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US7806891B2 (en) 1998-11-20 2010-10-05 Intuitive Surgical Operations, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US20120132450A1 (en) 2007-06-04 2012-05-31 Ethicon Endo-Surgery, Inc Shiftable drive interface for robotically-controlled surgical tool
US20120138660A1 (en) 2005-08-31 2012-06-07 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US20120199631A1 (en) 2008-09-23 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US20120199632A1 (en) 2006-03-23 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with selectively articulatable end effector
US20120199630A1 (en) 2006-01-31 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120203247A1 (en) 2003-05-20 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system
US20120199633A1 (en) 2008-02-14 2012-08-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US20120205421A1 (en) 2008-02-14 2012-08-16 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US20120211546A1 (en) 2007-01-10 2012-08-23 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US20120241492A1 (en) 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising at least one medicament
US20120241493A1 (en) 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising controlled release and expansion
US20130012957A1 (en) 2006-01-31 2013-01-10 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US20130037596A1 (en) 2011-08-10 2013-02-14 Brian W. Bear Device for applying adjunct in endoscopic procedure
US20130062391A1 (en) 2011-09-14 2013-03-14 Chad P. Boudreaux Surgical instrument with fluid fillable buttress
US20130062393A1 (en) 2011-09-13 2013-03-14 Dean B. Bruewer Resistive heated surgical staple cartridge with phase change sealant
US20130062394A1 (en) 2011-09-13 2013-03-14 Bret W. Smith Surgical staple cartridge with self-dispensing staple buttress
US20130068816A1 (en) 2011-09-15 2013-03-21 Venkataramanan Mandakolathur Vasudevan Surgical instrument and buttress material
US20130068820A1 (en) 2011-09-15 2013-03-21 Matthew C. Miller Fibrin pad matrix with suspended heat activated beads of adhesive
US20130075446A1 (en) 2011-09-22 2013-03-28 Yi-Lan Wang Surgical staple assembly with hemostatic feature
US20130075445A1 (en) 2011-09-22 2013-03-28 Stephen J. Balek Anvil cartridge for surgical fastening device
US20130075447A1 (en) 2011-09-22 2013-03-28 II William B. Weisenburgh Adjunct therapy device for applying hemostatic agent
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US20130082086A1 (en) 2011-10-03 2013-04-04 Geoffrey C. Hueil Attachment of surgical staple buttress to cartridge
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US20130206813A1 (en) 2012-02-14 2013-08-15 Ethicon Endo-Surgery, Inc. Linear stapler
US20140239038A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with multi-diameter shaft
US20140239044A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Installation features for surgical instrument end effector cartridge
US20140243801A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US20140239036A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Jaw closure feature for end effector of surgical instrument
US20140239041A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Lockout feature for movable cutting member of surgical instrument
US20140239042A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Integrated tissue positioning and jaw alignment features for surgical stapler
US20140239040A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulation lock having a detenting binary spring
US20140239043A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Distal tip features for end effector of surgical instrument
US20140239037A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Staple forming features for surgical stapling instrument
US20140246473A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Rotary powered surgical instruments with multiple degrees of freedom
US20140263563A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Method and apparatus for sealing end-to-end anastomosis

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5397324A (en) * 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
US6325810B1 (en) * 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
JP4675237B2 (ja) * 2003-07-17 2011-04-20 グンゼ株式会社 自動縫合器用縫合補綴材
ATE527963T1 (de) 2004-07-28 2011-10-15 Ethicon Inc Minimalinvasives medizinisches implantat und einführvorrichtung
WO2006023578A2 (fr) 2004-08-17 2006-03-02 Tyco Healthcare Group, Lp Structures de support d'agrafes
US7708180B2 (en) * 2006-11-09 2010-05-04 Ethicon Endo-Surgery, Inc. Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application
US8062330B2 (en) * 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US20120289979A1 (en) * 2007-10-08 2012-11-15 Sherif Eskaros Apparatus for Supplying Surgical Staple Line Reinforcement
US8657853B2 (en) 2009-06-02 2014-02-25 Ethicon, Inc. Incision closure device and method
US9700317B2 (en) * 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US8308041B2 (en) * 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US10675376B2 (en) * 2012-05-24 2020-06-09 Ethicon Llc Mechanically strong absorbable polymeric blend compositions of precisely controllable absorption rates, processing methods, and products therefrom
US20140131418A1 (en) * 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US9402627B2 (en) * 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
US20140224857A1 (en) * 2013-02-08 2014-08-14 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a compressible portion
US9230414B2 (en) 2013-02-28 2016-01-05 Diebold Self-Service Systems Division Of Diebold, Incorporated Automated banking machine with audio jack
US9352071B2 (en) * 2013-03-14 2016-05-31 Ethicon, Inc. Method of forming an implantable device
US20140291379A1 (en) 2013-03-27 2014-10-02 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a cutting member path
US20150134077A1 (en) * 2013-11-08 2015-05-14 Ethicon Endo-Surgery, Inc. Sealing materials for use in surgical stapling
US9693777B2 (en) * 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US10172611B2 (en) * 2014-06-10 2019-01-08 Ethicon Llc Adjunct materials and methods of using same in surgical methods for tissue sealing
US9370385B2 (en) * 2014-08-21 2016-06-21 Jeffrey Weinzweig Bone fixation methods and devices

Patent Citations (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642375A (en) 1951-08-21 1953-06-16 Ethicon Suture Lab Inc Hemostatic compositions
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US5878193A (en) 1992-08-10 1999-03-02 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5686090A (en) 1993-01-28 1997-11-11 Ethicon, Inc. Multi-layered implant
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5817084A (en) 1993-05-14 1998-10-06 Sri International Remote center positioning device with flexible drive
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5673840A (en) 1994-12-19 1997-10-07 Ethicon Endo-Surgery, Inc. Surgical instrument
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US7806891B2 (en) 1998-11-20 2010-10-05 Intuitive Surgical Operations, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US7524320B2 (en) 1998-12-08 2009-04-28 Intuitive Surgical, Inc. Mechanical actuator interface system for robotic surgical tools
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US7691098B2 (en) 2001-06-29 2010-04-06 Intuitive Surgical, Inc. Platform link wrist mechanism
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
US20120203247A1 (en) 2003-05-20 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US6978921B2 (en) 2003-05-20 2005-12-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an E-beam firing mechanism
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7404508B2 (en) 2005-07-26 2008-07-29 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device
US20120138660A1 (en) 2005-08-31 2012-06-07 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US20120199630A1 (en) 2006-01-31 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20130012957A1 (en) 2006-01-31 2013-01-10 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US20120199632A1 (en) 2006-03-23 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with selectively articulatable end effector
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US20120211546A1 (en) 2007-01-10 2012-08-23 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US20080169328A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Buttress material for use with a surgical stapler
US20120132450A1 (en) 2007-06-04 2012-05-31 Ethicon Endo-Surgery, Inc Shiftable drive interface for robotically-controlled surgical tool
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US20120199633A1 (en) 2008-02-14 2012-08-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US20120205421A1 (en) 2008-02-14 2012-08-16 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US20120199631A1 (en) 2008-09-23 2012-08-09 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US20120241492A1 (en) 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising at least one medicament
US20120241493A1 (en) 2010-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising controlled release and expansion
US20130256367A1 (en) 2011-04-29 2013-10-03 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US20130037596A1 (en) 2011-08-10 2013-02-14 Brian W. Bear Device for applying adjunct in endoscopic procedure
US20130062393A1 (en) 2011-09-13 2013-03-14 Dean B. Bruewer Resistive heated surgical staple cartridge with phase change sealant
US20130062394A1 (en) 2011-09-13 2013-03-14 Bret W. Smith Surgical staple cartridge with self-dispensing staple buttress
US20130062391A1 (en) 2011-09-14 2013-03-14 Chad P. Boudreaux Surgical instrument with fluid fillable buttress
US20130068816A1 (en) 2011-09-15 2013-03-21 Venkataramanan Mandakolathur Vasudevan Surgical instrument and buttress material
US20130068820A1 (en) 2011-09-15 2013-03-21 Matthew C. Miller Fibrin pad matrix with suspended heat activated beads of adhesive
US20130075447A1 (en) 2011-09-22 2013-03-28 II William B. Weisenburgh Adjunct therapy device for applying hemostatic agent
US20130075445A1 (en) 2011-09-22 2013-03-28 Stephen J. Balek Anvil cartridge for surgical fastening device
US20130075446A1 (en) 2011-09-22 2013-03-28 Yi-Lan Wang Surgical staple assembly with hemostatic feature
US20130082086A1 (en) 2011-10-03 2013-04-04 Geoffrey C. Hueil Attachment of surgical staple buttress to cartridge
US20130206813A1 (en) 2012-02-14 2013-08-15 Ethicon Endo-Surgery, Inc. Linear stapler
US20140243801A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US20140239044A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Installation features for surgical instrument end effector cartridge
US20140239038A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with multi-diameter shaft
US20140239036A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Jaw closure feature for end effector of surgical instrument
US20140239041A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Lockout feature for movable cutting member of surgical instrument
US20140239042A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Integrated tissue positioning and jaw alignment features for surgical stapler
US20140239040A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulation lock having a detenting binary spring
US20140239043A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Distal tip features for end effector of surgical instrument
US20140239037A1 (en) 2013-02-28 2014-08-28 Ethicon Endo-Surgery, Inc. Staple forming features for surgical stapling instrument
US20140246473A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Rotary powered surgical instruments with multiple degrees of freedom
US20140263563A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Method and apparatus for sealing end-to-end anastomosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEBSTER ET AL.: "PEGylated Proteins: Evaluation of Their Safety in the Absence of Definitive Metabolism Studies", DRUG METABOLISM AND DISPOSITION, vol. 35, no. 1, 2007, pages 9 - 16

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150135A1 (fr) * 2015-09-30 2017-04-05 Ethicon Endo-Surgery, LLC Accessoires compressibles avec nuds de liaison
WO2017058605A1 (fr) * 2015-09-30 2017-04-06 Ethicon Endo-Surgery, Llc Accessoires compressibles à nœuds de liaison
EP3150139A3 (fr) * 2015-09-30 2017-05-10 Ethicon Endo-Surgery, LLC Additif compressible avec des regions de fixation
WO2017058603A3 (fr) * 2015-09-30 2017-05-11 Ethicon Endo-Surgery, Llc Accessoire compressible à régions de fixation
CN108289675A (zh) * 2015-09-30 2018-07-17 伊西康有限责任公司 具有粘结节点的可压缩附属物
WO2017074842A3 (fr) * 2015-10-29 2017-06-22 Ethicon Endo-Surgery, Llc Ensemble de renfort d'agrafeuse chirurgicale à éléments pour entrer en interaction avec des composants d'effecteur terminal mobiles
US10499918B2 (en) 2015-10-29 2019-12-10 Ethicon Llc Surgical stapler buttress assembly with features to interact with movable end effector components
EP3363382A1 (fr) * 2017-02-17 2018-08-22 Ethicon LLC Procédés et systèmes d'accouplement de matières auxiliaires pouvant être comprimées avec des effecteurs d'extrémité
WO2018152105A1 (fr) * 2017-02-17 2018-08-23 Ethicon Llc Méthodes et systèmes pour apparier des matériaux auxiliaires de constriction avec des effecteurs terminaux
US10555734B2 (en) 2017-02-17 2020-02-11 Ethicon Llc Methods and systems for mating constrictable adjunct materials with end effectors
US11974744B2 (en) 2017-02-17 2024-05-07 Ethicon Llc Stapling adjunct attachment

Also Published As

Publication number Publication date
BR112017020460A2 (pt) 2018-07-03
CN107645931A (zh) 2018-01-30
BR112017020460B1 (pt) 2022-08-30
EP3072458B1 (fr) 2021-08-25
CN107645931B (zh) 2020-11-03
PL3072458T3 (pl) 2021-12-27
JP2018509242A (ja) 2018-04-05
EP3072458A3 (fr) 2016-11-02
US20160278765A1 (en) 2016-09-29
MX2017012119A (es) 2018-07-06
WO2016153904A2 (fr) 2016-09-29
US20200214699A1 (en) 2020-07-09
JP6724036B2 (ja) 2020-07-15
EP3970628A1 (fr) 2022-03-23
US10568621B2 (en) 2020-02-25
WO2016153904A3 (fr) 2016-11-03

Similar Documents

Publication Publication Date Title
US20200214699A1 (en) Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US11759205B2 (en) Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
EP3072459B1 (fr) Polymère bioabsorbable malléable adhésif destiné à fixer de manière libérable un contrefort d'agrafes d'une agrafeuse chirurgicale
EP3072454B1 (fr) Adhésif polymère bioabsorbable à température de transition vitreuse faible destiné à fixer de manière libérable un contrefort d'agrafes d'une agrafeuse chirurgicale
EP3072457B1 (fr) Matrice extracellulaire d'origine biologique avec copolymère absorbable visqueux infusé pour fixer de manière libérable un contrefort d'agrafes à une agrafeuse chirurgicale
EP3072453B1 (fr) Gel collant polymère bioabsorbable dérivé naturellement destiné à fixer de manière libérable un contrefort d'agrafes à une agrafeuse chirurgicale
EP3725236A2 (fr) Procédé d'application d'un contrefort pour une agrafeuse chirurgicale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 17/072 20060101AFI20160926BHEP

17P Request for examination filed

Effective date: 20170502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 17/072 20060101AFI20210223BHEP

Ipc: A61B 17/00 20060101ALN20210223BHEP

INTG Intention to grant announced

Effective date: 20210310

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ETHICON LLC

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ETHICON LLC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1422974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016062613

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1422974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016062613

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220202

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 9

Ref country code: GB

Payment date: 20240201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240212

Year of fee payment: 9

Ref country code: FR

Payment date: 20240213

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825