EP3069178A1 - Reflektor für solarthermische systeme und verfahren zur herstellung eines solchen reflektors - Google Patents

Reflektor für solarthermische systeme und verfahren zur herstellung eines solchen reflektors

Info

Publication number
EP3069178A1
EP3069178A1 EP14805785.4A EP14805785A EP3069178A1 EP 3069178 A1 EP3069178 A1 EP 3069178A1 EP 14805785 A EP14805785 A EP 14805785A EP 3069178 A1 EP3069178 A1 EP 3069178A1
Authority
EP
European Patent Office
Prior art keywords
layer
reflector
metallic
cover plate
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14805785.4A
Other languages
English (en)
French (fr)
Inventor
Bernd Schuhmacher
Karl-Heinz Kopplin
Winfried Höhn
Lothar Patberg
Mark Hirt
Stephan Drewes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp Rasselstein GmbH
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp Rasselstein GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp Rasselstein GmbH filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3069178A1 publication Critical patent/EP3069178A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/08Mirrors; Reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a reflector for solar thermal systems, with a
  • metallic support plate and a deposited on the support plate reflective coating which is composed of at least one metallic reflection layer and at least one applied to the reflection layer protective layer.
  • the invention relates to a method for producing a reflector for solar thermal systems.
  • Reflectors of the type in question are used for example in solar thermal power plants, such as parabolic trough, Fresnel, Dish Stirling and tower power plants or the like, in which with the help of absorbers, a portion of the solar
  • the reflectors are used in solar thermal systems as components of so-called “collectors” to focus on them incident sunlight and a
  • Absorbers e.g. an absorber pipe or the like, to concentrate that one
  • Reflectors have optimal reflectivity in the radiation range of sunlight.
  • the reflectors should be as robust as possible against the mechanical stresses occurring in use and inexpensive to produce.
  • Another particular challenge is the dimensional stability of these
  • Reflector body made of aluminum or an aluminum alloy with a
  • the reflective surface can also be produced by coating a reflector body with aluminum.
  • a transparent protective layer applied to the reflector surface is intended to protect the reflective surface from environmental influences.
  • the object of the invention to provide a reflector for solar thermal systems, which has a high reflectivity, is robust against mechanical stress and can be produced inexpensively. Furthermore, the reflector should be as light as possible and at the same time dimensionally stable. In addition, a procedure for the
  • Mean roughness Ra of less than 0.03 ⁇ , preferably less than 0.02 ⁇ .
  • a rigid construction is achieved with low weight.
  • the at least one arranged between the upper and lower metallic cover plate, non-metallic intermediate layer may for example consist of plastic.
  • other foams, adhesives or fillers in the region of the intermediate layer are conceivable, which are suitable for the construction of such a sandwich or composite structure. Due to the low weight of the
  • Reflectors the requirements for the reflector supporting support structures and any drives for tracking the reflector in power plant operation, especially in comparison to reflectors with glass slides, can be reduced.
  • the sandwich structure also has the advantage that the individual components of the carrier sheet can be provided independently of each other.
  • the material costs can be reduced by the fact that the lower cover plate, which only has a supporting effect within the sandwich structure, can have a lower surface quality or alloy quality than the upper cover plate, whose surface finish has a direct or significantly greater influence on the reflectance of the Reflectors has.
  • the upper and lower cover plate may be made of different materials, have different thicknesses from each other and / or divergent from each other
  • Coating systems include. Furthermore, depending on the expected operating conditions, the condition and also the wall thickness of the intermediate layer can be adjusted in order to set an optimal rigidity and / or weather resistance of the reflector.
  • the sandwich construction thus makes it possible in a particularly simple way to achieve a compromise between lightweight design, dimensional stability and cost efficiency.
  • Mean roughness Ra of less than 0.03 ⁇ , preferably less than 0.02 ⁇ has.
  • the low roughness of the smoothed surface favors the application of the
  • Reflection layer achieving a particularly low arithmetic Mean roughness Ra in the region of the reflection layer.
  • Ra arithmetic Mean roughness
  • Reflective surface layers may be formed, for example, from copper, gold, chromium, nickel or their alloys.
  • the reflective layer is made of aluminum, silver, tin, zinc or an alloy containing at least one of these metals.
  • the reflective coating can be constructed of several layers of the above-mentioned materials or their alloys. Thus, for example, first a tin or
  • Zinc layer are applied to the upper cover plate, which in turn carries an additional reflective layer of aluminum or silver.
  • the surface of the cover plate is smoothed according to a further embodiment of the invention by rolling, preferably by cold rolling.
  • the cover sheets can be rolled, for example, in a quartz or, in particular when rolling stainless steel sheet, in a Sendzimir stand. In this case, in particular in the last pass, a work roll is used whose coming into contact with the rolling stock
  • Peripheral surface has an arithmetic mean roughness Ra, which is smaller than that required for the respective surface arithmetic mean roughness Ra.
  • the surface smoothed by rollers has a topography on the basis of which the
  • the roughness characterized by the arithmetic mean roughness Ra shows a pronounced preferential direction, which is aligned parallel to the rolling direction.
  • the smoothed surface can on the one hand on an uncoated cover plate of the sandwich sheet or on a corresponding cover plate for the preparation of
  • Sandwich panel are produced so that the metallic reflection layer is applied directly to the smoothed surface of the uncoated cover sheet.
  • a cover plate can be provided for the sandwich sheet, which already has a surface coating before rolling. So can one For example, already galvanized sheet are cold rolled. Consequently, then the galvanized surface is smoothed in accordance with the invention.
  • the reflection layer and / or the smoothed surface are smoothed by a thermal surface treatment according to a variant of the invention.
  • a thermal surface treatment for example, by purposefully melting the coating of a sheet, such as e.g. a tin pad, the required arithmetic mean roughness Ra are set.
  • a method suitable for this purpose is known, for example, from German Patent Application DE 10 2011 000 984 A1, the content of which is hereby incorporated by reference into the present description.
  • lasers, short-pulse or ultra-short pulse lasers are used as the energy or heat source.
  • any other heat source the required
  • Energy input in the area of the surface to be smoothed can afford.
  • the upper cover plate is made of steel, in particular carbon steel or stainless steel, or of light metal, in particular of aluminum and / or magnesium or their alloys.
  • Cover plate serves as a substrate for the reflection coating after smoothing the surface.
  • a protective layer preferably a protective layer, is additionally provided
  • the protective layer or transparent
  • Protective layer is made in a variant of the invention of silicon oxide and / or titanium oxide.
  • the protective layer can also be composed of one or more layers of other inorganic or organic compounds, as known, for example, from European Patent Application EP 1 154 289 A1, the disclosure of which is hereby incorporated by reference into the present specification is included.
  • an antireflection layer in particular of T1O2, can be provided, which in itself forms a protective layer or transparent protective layer, or serves to increase the transmission of an underlying transparent protective layer.
  • the coatings can be applied in a manner known per se in the PVD, CVD or sol-gel process. Furthermore, it is possible to apply the respective layers by magnetron sputtering, in particular high-power pulse magnetron sputtering (HIPIMS). A combination of the coating methods mentioned is conceivable in the construction of the reflective coating.
  • the layer thicknesses of the reflection layer and / or the protective layer produced by these methods are, according to one aspect of the invention, in each case in a range from 50 nm to 5 ⁇ m, preferably in a range from 80 nm to 200 nm.
  • the reflective coating by one or more films and / or paints, or a combination of one or more films and / or paints and / or coatings.
  • the use of films over the coating has the advantage that the required reflection properties are already largely predetermined by the quality of the film and can be adjusted in a simple manner a consistent quality of the reflective surface.
  • the reflector has a wall thickness in a range of 0.5 mm to 5 mm. Due to the sandwich construction is a high rigidity, given at comparatively low weight of the reflector.
  • the cover sheet has a thickness in a range of 0.1-4 mm. It can thus be used very thin sheets, which are supported by the at least one non-metallic intermediate layer. The respective sheet thickness can vary depending on the dimensions of the reflector and the
  • the reflective coating and the individual layers can be made as smooth as possible. According to another aspect of the invention, the reflective coating and the individual layers, such as the metallic reflection layer and the transparent protective layer, can be made as smooth as possible. According to another aspect of the invention, the reflective coating and the individual layers, such as the metallic reflection layer and the transparent protective layer, can be made as smooth as possible. According to another aspect of the invention, the reflective coating and the individual layers, such as the metallic reflection layer and the transparent protective layer, can be made as smooth as possible. According to another aspect of the invention, the
  • Reflective layer and / or the protective layer is an optically active
  • Rauheitsfein Geneva and / or at least one interference layer in order to further increase the efficiency of the use of solar radiation.
  • optically active roughness fine structures can be introduced into the reflective coating by means of short-pulse or ultra-short-pulse laser technology.
  • the protective layer or transparent protective layer initially protects the metallic reflection layer against abrasive wear, environmental influences and / or (even) from corrosion. Overall, therefore, the upper cover plate on the one hand by the
  • the upper cover plate already has a corrosion protection layer, depending on the applied reflective coating.
  • an additional anticorrosion layer may also be applied to the upper cover sheet.
  • the layer system starting from the upper cover plate, thus has at least three layers
  • Corrosion protection layer a metallic reflection layer applied to the corrosion protection layer and a transparent protective layer applied to the metallic reflection layer.
  • the smoothed surface is doing after the
  • the coatings described above may also or at least partially be provided on the lower cover plate.
  • the upper and lower cover plate can be made identical.
  • the method according to the invention for producing a reflector for solar thermal systems comprises at least the following method steps:
  • Sandwich panel is formed, having an upper and a lower metal cover plate and at least one interposed, non-metallic intermediate layer, wherein the upper cover plate has a smoothed surface and wherein the smoothed surface has an arithmetic mean roughness Ra of less than 0.03 ⁇ ; and
  • the carrier sheet which is composed of at least one metallic reflection layer and at least one protective layer applied to the reflection layer.
  • Surface produced by rolling For example, by cold rolling a sheet in several rolling passes can be particularly smooth surfaces, especially with very low arithmetic mean roughness Ra produce.
  • Corrosion protection layer the substrate for the reflective coating to be applied in the following step.
  • the smooth surface can alternatively or additionally to the rolls also be produced by a thermal treatment of the layer or surface to be smoothed.
  • a tin layer is applied and the tin layer is melted to produce a smooth surface by means of a laser or heat source.
  • a laser or heat source preferably at least as much of the layer to be smoothed is melted, that elevations and depressions of the
  • the to be smoothed Tin layer Apart from a thermal surface treatment by means of a laser, the to be smoothed Tin layer also by heating the cover plate, for example by means of an induction coil, melted and smoothed.
  • Reflective layer applied by a PVD, CVD, electrostatic or electrochemical method.
  • the protective layer is also applied according to a further advantageous embodiment of the invention by a PVD, CVD, or electrostatic method, preferably by magnetron sputtering.
  • optically effective roughness fine structures are introduced into the reflection layer and / or the protective layer by means of laser processing in order to increase the efficiency in the
  • FIG. 1 shows a collector for a parabolic trough power plant with a reflector according to the invention in a perspective view.
  • FIG. 2 shows the layer structure of a reflector according to the invention from FIG. 1.
  • Fig. 1 shows a collector 1 for a parabolic trough power plant in a simplified form.
  • the collector 1 the incident on the concave upper side of a reflector 2 according to the invention solar radiation (not shown) is reflected and concentrated on an absorber tube 3, which carries a heat transfer medium.
  • the reflector 2 is supported by a support structure 4. It is of course also possible to use a reflector 2 according to the invention in other solar thermal systems, such as Fresnel, Dish Stirling or tower power plants. In this case, the reflector may be designed opposite to the concave shape shown here in a flat or planar form.
  • 2 shows the layer structure of a reflector 2 according to the invention for solar thermal systems.
  • the reflector 2 consists of a metallic carrier sheet 5 and a reflective coating 6 applied to the carrier sheet 5.
  • the carrier sheet 5 has an upper cover sheet 5.1, a non-metallic intermediate layer 5.2 and a lower cover sheet 5.3.
  • the reflective coating 6 is made of a
  • Anticorrosive layer 6.1 a metallic reflective layer 6.2 and 6.3 applied to the reflective layer 6.2 protective layer, preferably constructed transparent protective layer.
  • the metallic reflection layer may simultaneously also constitute a corrosion protection layer, so that including the protective layer 6.3, only two layers are applied to the upper cover sheet 5.1 and yet corrosion protection is provided.
  • the protective layer 6.3 can also represent a corrosion protection layer.
  • the cover plates 5.1, 5.3 can basically be made of any metals or their alloys.
  • the upper and lower cover plates 5.1, 5.3 are sheet steel.
  • the cover plates 5.1, 5.3 form a sandwich structure.
  • the individual layers 5.1, 5.2, 5.3 are glued together in a known manner.
  • the smoothed surface 7 carries a metallic reflection layer 6.2, the
  • a protective layer preferably transparent protective layer 6.3, which is e.g. made of SiOx. In this way, the metallic
  • Reflective layer 6.2 protected against mechanical wear and also against the weather.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft einen Reflektor für solarthermische Systeme, mit einem metallischen Trägerblech (5) und einer auf dem Trägerblech aufgebrachten reflektierenden Beschichtung (6), die aus mindestens einer metallischen Reflektionsschicht (6.2) und mindestens einer auf der Reflektionsschicht aufgebrachten Schutzschicht (6.3) aufgebaut ist. Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines Reflektors für solarthermische Systeme. Der erfindungsgemäße Reflektor für solarthermische Systeme weist ein hohes Reflektionsvermögen auf, ist robust gegenüber mechanischen Belastungen und zudem kostengünstig herstellbar. Weiterhin ist der erfindungsgemäße Reflektor dadurch möglichst leicht und gleichzeitig formstabil, dass das Trägerblech (5) aus einem Sandwichblech gebildet ist, das ein oberes und ein unteres metallisches Deckblech (5.1, 5.3) und mindestens eine dazwischen angeordnete, nicht-metallische Zwischenschicht (5.2) aufweist, wobei das obere Deckblech (5.1) eine geglättete Oberfläche (7) aufweist, auf welcher die Reflektionsschicht (6.2) aufgebracht ist, und wobei die geglättete Oberfläche (7) vor dem Aufbringen der Reflektionsschicht (6.2) einen arithmetischen Mittenrauwert Ra von weniger als 0,03 μm aufweist.

Description

REFLEKTOR FÜR SOLARTHERMISCHE SYSTEME UND VERFAHREN ZUR
HERSTELLUNG EINES SOLCHEN REFLEKTORS
Die Erfindung betrifft einen Reflektor für solarthermische Systeme, mit einem
metallischen Trägerblech und einer auf dem Trägerblech aufgebrachten reflektierenden Beschichtung, die aus mindestens einer metallischen Reflektionsschicht und mindestens einer auf der Reflektionsschicht aufgebrachten Schutzschicht aufgebaut ist. Des
Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines Reflektors für solarthermische Systeme.
Reflektoren der hier in Rede stehenden Art werden beispielsweise in solarthermischen Kraftwerken, wie Parabolrinnen-, Fresnel-, Dish-Stirling- und Turmkraftwerken oder dergleichen, eingesetzt, in denen mit Hilfe von Absorbern ein Teil der solaren
Strahlungsenergie in Wärme umgewandelt wird. Diese Systeme haben gemein, dass die solare Strahlung konzentriert wird, um die Effizienz bei der Nutzung der Sonnenenergie zu steigern.
Die Reflektoren dienen in solarthermischen Systemen als Komponenten sogenannter „Kollektoren" dazu, das auf sie einfallende Sonnenlicht zu bündeln und auf einen
Absorber, z.B. ein Absorberrohr oder desgleichen, zu konzentrieren, das ein
Wärmeträgermedium führt. Dabei besteht einerseits die Forderung, dass die
Reflektoren ein optimales Reflektionsvermögen im Strahlungsbereich des Sonnenlichtes aufweisen. Andererseits sollen die Reflektoren möglichst robust gegen die im Gebrauch auftretenden mechanischen Belastungen und kostengünstig herstellbar sein. Eine besondere Herausforderung besteht zudem darin, die Formstabilität dieser
üblicherweise großflächigen Bauteile zu gewährleisten, um die Fokussierung des Sonnenlichts in der geforderten Genauigkeit über der gesamten Lebensdauer des Reflektors sicher zu erreichen.
Um die Reflektionsfläche eines solchen Reflektors zu gestalten, ist es bekannt, einen Glasträger nach Art eines konventionellen Spiegels einseitig mit Silber oder Aluminium
BESTÄTIGUNGSKOPIE zu beschichten. Nachteilig sind dabei sowohl das hohe Gewicht als auch die geringe elastische Verformbarkeit und mechanische Belastbarkeit der Glasträger.
Aus der europäischen Patentanmeldung EP 1 154 289 AI ist es bekannt, einen
Reflektorkörper aus Aluminium oder einer Aluminiumlegierung mit einer
reflektierenden Aluminiumoberfläche bereitzustellen. Alternativ kann die reflektierende Oberfläche dabei auch durch Beschichten eines Reflektorkörpers mit Aluminium erzeugt werden. Eine auf der Reflektoroberfläche aufgebrachte transparente Schutzschicht soll die reflektierende Oberfläche vor Umgebungseinflüssen schützen.
Vor dem Hintergrund des voranstehend erläuterten Standes der Technik lag der
Erfindung die Aufgabe zu Grunde, einen Reflektor für solarthermische Systeme anzugeben, der ein hohes Reflektionsvermögen hat, robust gegenüber mechanischen Belastungen ist und sich kostengünstig herstellen lässt. Weiterhin sollte der Reflektor möglichst leicht und gleichzeitig formstabil sein. Zudem sollte ein Verfahren zur
Herstellung eines solchen Reflektors für solarthermische Systeme angegeben werden.
Bezüglich des Reflektors ist diese Aufgabe erfindungsgemäß dadurch gelöst worden, dass der Reflektor die in Anspruch 1 angegebenen Merkmale aufweist. Bezüglich des Verfahrens ist die Aufgabe dadurch gelöst worden, dass die in Anspruch 12
angegebenen Verfahrensschritte durchgeführt werden.
Der erfindungsgemäße Reflektor ist dadurch gekennzeichnet, dass das Trägerblech aus einem Sandwichblech gebildet ist, das ein oberes und ein unteres metallisches
Deckblech und mindestens eine dazwischen angeordnete, nicht-metallische
Zwischenschicht aufweist, wobei das obere Deckblech eine geglättete Oberfläche aufweist, auf welcher die Reflektionsschicht aufgebracht ist, und wobei die geglättete Oberfläche vor dem Aufbringen der Reflektionsschicht einen arithmetischen
Mittenrauwert Ra von weniger als 0,03 μηι, vorzugsweise weniger als 0,02 μπι aufweist. Wenn hier vom„arithmetischen Mittenrauwert Ra" die Rede ist, ist damit der gemäß DIN EN ISO 4287 bestimmte Wert gemeint. Mit Hilfe der Sandwichstruktur des Trägerblechs wird eine steife Konstruktion bei gleichzeitig geringem Gewicht erreicht. Die mindestens eine zwischen dem oberen und unteren metallischen Deckblech angeordnete, nicht-metallische Zwischenschicht kann beispielsweise aus Kunststoff bestehen. Ebenso sind auch andere Schaum-, Kleb- oder Füllstoffe im Bereich der Zwischenschicht denkbar, die zum Aufbau einer derartigen Sandwich- bzw. Verbundstruktur geeignet sind. Durch das geringe Gewicht des
Reflektors können die Anforderungen an die den Reflektor tragenden Stützstrukturen und etwaige Antriebe zum Nachführen des Reflektors im Kraftwerksbetrieb, insbesondere im Vergleich zu Reflektoren mit Glasträgern, reduziert werden.
Die Sandwichstruktur hat zudem den Vorteil, dass die einzelnen Komponenten des Trägerblechs unabhängig voneinander bereitgestellt werden können. Auf diese Weise können beispielsweise die Materialkosten dadurch gesenkt werden, dass das untere Deckblech, dem innerhalb der Sandwichstruktur lediglich eine Stützwirkung zukommt, eine geringere Oberflächengüte oder Legierungsqualität aufweisen kann, als das obere Deckblech, dessen Oberflächenbeschaffenheit einen direkten oder erheblich größeren Einfluss auf das Reflektionsvermögen des Reflektors hat. So können das obere und untere Deckblech aus unterschiedlichen Materialien hergestellt sein, voneinander verschiedene Blechdicken aufweisen und/oder voneinander abweichende
Beschichtungssysteme umfassen. Weiterhin kann abhängig von den zu erwartenden Betriebsbedingungen die Beschaffenheit und auch die Wandstärke der Zwischenlage angepasst werden, um eine optimale Steifigkeit und/oder Witterungsbeständigkeit des Reflektors einzustellen. Die Sandwichbauweise ermöglicht es somit in besonders einfacher Weise einen Kompromiss zwischen Leichtbauweise, Formstabilität und Kosteneffizienz zu erreichen.
Neben der Sandwichstruktur ist für den erfindungsgemäßen Reflektor zudem
kennzeichnend, dass das obere Deckblech eine geglättete Oberfläche aufweist, die vor dem Aufbringen der metallischen Reflektionsschicht einen arithmetischen
Mittenrauwert Ra von weniger als 0,03 μπι, vorzugsweise weniger als 0,02 μπι hat. Die geringe Rauhigkeit der geglätteten Oberfläche begünstigt beim Applizieren der
Reflektionsschicht das Erzielen eines besonders niedrigen arithmetischen Mittenrauwerts Ra im Bereich der Reflektionsschicht. So können bereits sehr dünne Schichtdicken im Nanometerbereich ausreichen, um die für die geforderten
Reflektionseigenschaften auszubildende Oberflächengüte der metallischen
Reflektionsschicht einzustellen.
Reflektierende Oberflächenschichten können beispielsweise aus Kupfer, Gold, Chrom, Nickel oder deren Legierungen gebildet sein. In einer Ausgestaltung der Erfindung ist die Reflektionsschicht aus Aluminium, Silber, Zinn, Zink oder einer mindestens eines dieser Metalle enthaltenden Legierungen hergestellt. Auch kann die reflektierende Beschichtung aus mehreren Lagen der voranstehend genannten Werkstoffe oder deren Legierungen aufgebaut sein. So kann beispielsweise zunächst eine Zinn- oder
Zinkschicht auf das obere Deckblech aufgebracht werden, die wiederum eine zusätzliche Reflektionsschicht aus Aluminium oder Silber trägt.
Die Oberfläche des Deckblechs ist gemäß einer weiteren Ausgestaltung der Erfindung durch Walzen, vorzugsweise durch Kaltwalzen, geglättet. Die Deckbleche können beispielsweise in einem Quarto- oder, insbesondere beim Walzen von Edelstahlblech, in einem Sendzimir-Gerüst gewalzt werden. Dabei wird insbesondere im letzten Walzstich eine Arbeitswalze eingesetzt, deren mit dem Walzgut in Kontakt kommende
Umfangsfläche einen arithmetischen Mittenrauwert Ra aufweist, der kleiner ist, als der für die jeweilige Oberfläche geforderte arithmetische Mittenrauwert Ra. Die durch Walzen geglättete Oberfläche weist eine Topographie auf, anhand derer sich die
Walzrichtung eindeutig identifizieren lässt. So zeigt die durch den arithmetischen Mittenrauwert Ra charakterisierte Rauheit eine ausgeprägte Vorzugsrichtung, die parallel zur Walzrichtung ausgerichtet ist.
Die geglättete Oberfläche kann einerseits an einem unbeschichteten Deckblech des Sandwichblechs bzw. an einem entsprechenden Deckblech zur Herstellung des
Sandwichblechs erzeugt werden, so dass die metallische Reflektionsschicht direkt auf die geglättete Oberfläche des unbeschichteten Deckblechs aufgebracht wird.
Andererseits kann auch für das Sandwichblech ein Deckblech bereit gestellt werden, das bereits vor dem Walzen eine Oberflächenbeschichtung aufweist. So kann ein beispielsweise bereits verzinktes Blech kaltgewalzt werden. Folglich ist dann die verzinkte Oberfläche in erfindungsgemäßer Weise geglättet. Selbstverständlich ist es auch möglich, beliebige Kombinationen der zuvor genannten Schichtsysteme vor dem Walzen auf dem oberen Deckblech vorzusehen, um die geglättete Oberfläche mit einem arithmetischen Mittenrauwert Ra von weniger als 0,03 μπι, vorzugsweise weniger als 0,02 mm, vor dem Aufbringen der Reflektionsschicht zu erzeugen.
Die Reflektionsschicht und/oder die geglättete Oberfläche sind gemäß einer Variante der Erfindung durch eine thermische Oberflächenbehandlung geglättet. So kann beispielsweise durch ein gezieltes Aufschmelzen der Beschichtung eines Blechs, wie z.B. einer Zinnauflage, der geforderte arithmetischen Mittenrauwert Ra eingestellt werden. Ein hierfür geeignetes Verfahren ist beispielsweise aus der deutschen Patentanmeldung DE 10 2011 000 984 AI bekannt, deren Inhalt hiermit durch Bezugnahme in die vorliegende Beschreibung einbezogen wird. Als Energie- bzw. Wärmequelle kommen dabei insbesondere Laser, Kurzpuls- oder Ultra-Kurzpulslaser zum Einsatz. Es ist jedoch auch denkbar, jede andere Wärmequelle einzusetzen, die den erforderlichen
Energieeintrag im Bereich der zu glättenden Oberfläche leisten kann.
Gemäß einem weiteren Aspekt der Erfindung ist das obere Deckblech aus Stahl, insbesondere Kohlenstoffstahl oder Edelstahl, oder aus Leichtmetall, insbesondere aus Aluminium und/oder Magnesium oder deren Legierungen hergestellt. Das obere
Deckblech dient nach dem Glätten der Oberfläche als Substrat für die Reflektions- beschichtung.
Um die Reflektionsbeschichtung vor Umgebungseinflüssen zu schützen, ist gemäß einer Ausgestaltung der Erfindung zusätzlich eine Schutzschicht, vorzugsweise eine
transparente Schutzschicht, vorgesehen. Die Schutzschicht bzw. transparente
Schutzschicht ist in einer Variante der Erfindung aus Silizium-Oxid und/oder Titan-Oxid hergestellt. Die Schutzschicht kann jedoch auch aus einer oder mehreren Lagen anderer anorganischer oder organischer Verbindungen aufgebaut sein, wie es z.B. aus der europäischen Patentanmeldung EP 1 154 289 AI bekannt ist, deren diesbezüglicher Offenbarungsgehalt hiermit durch Bezugnahme in die vorliegende Beschreibung einbezogen wird. Zusätzlich oder alternativ kann eine Antireflexionsschicht, insbesondere aus T1O2, vorgesehen sein, die für sich genommen eine Schutzschicht bzw. transparente Schutzschicht ausbildet, oder dazu dient, die Transmission einer darunter liegenden transparenten Schutzschicht zu erhöhen.
Die Beschichtungen können in an sich bekannter Weise im PVD-, CVD-, oder Sol-Gel- Verfahren aufgebracht werden. Weiterhin ist es möglich, die jeweiligen Schichten durch Magnetron-Sputtern, insbesondere Hochleistungsimpulsmagnetronsputtern (HIPIMS), aufzutragen. Auch eine Kombination der genannten Beschichtungsverfahren ist beim Aufbau der reflektierenden Beschichtung denkbar. Die mit diesen Verfahren erzeugten Schichtdicken der Reflektionsschicht und/oder der Schutzschicht liegen gemäß einem Aspekt der Erfindung jeweils in einem Bereich von 50 nm bis 5 μηι, bevorzugt in einem Bereich von 80 nm bis 200 nm.
Neben dem Beschichten des Trägerblechs ist es gemäß einem weiteren Aspekt der Erfindung möglich, die reflektierende Beschichtung durch eine oder mehrere Folien und/oder Lacke, oder eine Kombinationen einer oder mehrerer Folien und/oder Lacke und/oder Beschichtungen vorzusehen. Die Verwendung von Folien hat gegenüber dem Beschichten den Vorteil, dass die geforderten Reflektionseigenschaften weitestgehend bereits durch die Qualität der Folie vorgegeben sind und so in einfacher Weise eine gleichbleibende Qualität der reflektierenden Oberfläche eingestellt werden kann.
Nach einer weiteren Ausgestaltung der Erfindung weist der Reflektor eine Wandstärke in einem Bereich von 0,5 mm bis 5 mm auf. Durch die Sandwichbauweise ist dabei eine hohe Steifigkeit, bei vergleichsweise geringem Gewicht des Reflektors gegeben. Gemäß einem weiteren Aspekt der Erfindung weist das Deckblech eine Dicke in einem Bereich von 0,1 - 4 mm auf. Es können damit sehr dünne Bleche eingesetzt werden, die von der mindestens einen nicht-metallischen Zwischenschicht getragen werden. Die jeweilige Blechdicke kann in Abhängigkeit von den Dimensionen des Reflektors und den
Betriebsbedingungen gewählt werden. Die reflektierende Beschichtung und die einzelnen Lagen, wie die metallische Reflektionsschicht und die transparente Schutzschicht, können möglichst glatt ausgebildet sein. Gemäß einem weiteren Aspekt der Erfindung weisen die
Reflektionsschicht und/oder die Schutzschicht eine optisch wirksame
Rauheitsfeinstruktur und/oder mindestens eine Interferenzschicht auf, um die Effizienz bei der Ausnutzung der solaren Strahlung weiter zu steigern. Insbesondere können optisch aktive Rauheitsfeinstrukturen mittels Kurzpuls- oder Ultra-Kurzpuls- Lasertechnik in die reflektierende Beschichtung eingebracht werden.
Die Schutzschicht bzw. transparente Schutzschicht schützt zunächst die metallische Reflektionsschicht vor abrasivem Verschleiß, Umgebungseinflüssen und/oder (auch) vor Korrosion. Insgesamt wird daher das obere Deckblech einerseits durch die
(transparente) Schutzschicht und andererseits durch die metallische Reflektions- beschichtung vor abrasivem Verschleiß, Umgebungseinflüssen und/oder vor Korrosion geschützt. Das obere Deckblech weist folglich, abhängig von der aufgebrachten reflektierenden Beschichtung, bereits eine Korrosionsschutzschicht auf. Gemäß einem Aspekt der Erfindung kann zudem eine zusätzliche Korrosionsschutzschicht auf dem oberen Deckblech aufgetragen sein. In diesem Fall weist das Schichtsystem, ausgehend von dem oberen Deckblech, somit wenigstens drei Schichten, eine
Korrosionsschutzschicht, eine auf die Korrosionsschutzschicht aufgetragene metallische Reflektionsschicht und eine auf die metallische Reflektionsschicht aufgetragene transparente Schutzschicht auf. Die geglättete Oberfläche wird dabei nach dem
Auftragen der Korrosionsschicht erzeugt, wobei allerdings auch die Korrosionsschicht bereits auf eine geglättete Oberfläche aufgetragen werden kann.
Die zuvor dargestellten Beschichtungen können auch oder zumindest teilweise an dem unteren Deckblech vorgesehen sein. Insbesondere können das obere und untere Deckblech identisch ausgeführt sein. So ist gemäß einem weiteren Aspekt der Erfindung die der nicht-metallischen Zwischenschicht abgewandte Außenseite des oberen
Deckblechs und/oder des unteren Deckblechs mit einer Korrosionsschutzschicht versehen. Das erfindungsgemäße Verfahren zum Herstellen eines Reflektors für solarthermische Systeme, umfasst zumindest folgende Verfahrensschritte:
a. Bereitstellen eines metallischen Trägerblechs, das aus einem
Sandwichblech gebildet ist, das ein oberes und ein unteres metallisches Deckblech und mindestens eine dazwischen angeordnete, nicht-metallische Zwischenschicht aufweist, wobei das obere Deckblech eine geglättete Oberfläche aufweist und wobei die geglättete Oberfläche einen arithmetischen Mittenrauwert Ra von weniger als 0,03 μπι aufweist; und
b. Aufbringen einer reflektierenden Beschichtung auf die geglättete
Oberfläche des Trägerblechs, die aus mindestens einer metallischen Reflektionsschicht und mindestens einer auf der Reflektionsschicht aufgebrachten Schutzschicht aufgebaut ist.
Gemäß einer Variante des erfindungsgemäßen Verfahrens wird die geglättete
Oberfläche durch Walzen erzeugt. Beispielsweise durch Kaltwalzen eines Blechs in mehreren Walzstichen lassen sich besonders glatte Oberflächen, insbesondere mit sehr niedrigen arithmetischen Mittenrauwerten Ra, erzeugen.
Bereits vor dem Wälzen kann auf das Deckblech eine Korrosionsschutzschicht aufgebracht werden. So bildet in diesem Fall die geglättete Oberfläche der
Korrosionsschutzschicht das Substrat für die im folgenden Schritt aufzutragende Reflektionsbeschichtung.
Die glatte Oberfläche lässt sich alternativ oder ergänzend zum Walzen auch durch eine thermische Behandlung der zu glättenden Schicht bzw. Oberfläche erzeugen. So wird gemäß einem weitern Aspekt der Erfindung eine Zinnschicht aufgebracht und die Zinnschicht zur Erzeugung einer glatten Oberfläche mittels eines Lasers oder einer Wärmequelle aufgeschmolzen. Dabei wird vorzugsweise zumindest so viel von der zu glättenden Schicht aufgeschmolzen, dass Erhebungen und Vertiefungen der
Oberflächenstruktur der Schicht weitgehend ausgeglichen werden. Außer durch eine thermische Oberflächenbehandlung mittels eines Lasers kann die zu glättende Zinnschicht auch durch ein Aufheizen des Deckblechs, z.B. mittels einer Induktionsspule, aufgeschmolzen und geglättet werden.
Gemäß einer weiteren Variante des erfindungsgemäßen Verfahrens wird die
Reflektionsschicht durch ein PVD-, CVD-, elektrostatisches oder elektrochemisches Verfahren aufgebracht. Die Schutzschicht wird gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ebenfalls durch ein PVD-, CVD-, oder elektrostatisches Verfahren, vorzugsweise durch Magnetron-Sputtern aufgebracht.
In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden in die Reflektionsschicht und/oder die Schutzschicht mittels Laserbearbeitung optisch wirksame Rauheitsfeinstrukturen eingebracht, um die Effizienz bei der
Ausnutzung der solaren Strahlung weiter zu steigern.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 einen Kollektor für ein Parabolrinnenkraftwerk mit einem erfindungsgemäßen Reflektor in einer perspektivischen Ansicht;
Fig. 2 den Schichtaufbau eines erfindungsgemäßen Reflektors aus Fig. 1.
Fig. 1 zeigt einen Kollektor 1 für ein Parabolrinnenkraftwerk in vereinfachter Form. In dem Kollektor 1 wird die auf die konkav geformte Oberseite eines erfindungsgemäßen Reflektors 2 auftreffende solare Strahlung (nicht dargestellt) reflektiert und auf ein Absorberrohr 3 konzentriert, das ein Wärmeträgermedium führt. Der Reflektor 2 wird dabei von einer Stützstruktur 4 getragen. Es ist selbstverständlich auch denkbar, einen erfindungsgemäßen Reflektor 2 in anderen solarthermischen Anlagen einzusetzen, wie z.B. Fresnel-, Dish-Stirling- oder Turmkraftwerken. Dabei kann der Reflektor entgegen der hier dargestellten konkaven Form in flacher bzw. ebener Form gestaltet sein. Fig. 2 zeigt den Schichtaufbau eines erfindungemäßen Reflektors 2 für solarthermische Systeme. Der Reflektor 2 besteht aus einem metallischen Trägerblech 5 und einer auf dem Trägerblech 5 aufgebrachten reflektierenden Beschichtung 6. Das Trägerblech 5 weist ein oberes Deckblech 5.1, eine nicht-metallische Zwischenschicht 5.2 und ein unteres Deckblech 5.3 auf. Die reflektierende Beschichtung 6 ist aus einer
Korrosionsschutzschicht 6.1, einer metallischen Reflektionsschicht 6.2 und einer auf der Reflektionsschicht 6.2 aufgebrachten Schutzschicht 6.3, vorzugsweise transparenten Schutzschicht aufgebaut. In einer Variante des erfindungsgemäßen Reflektors kann die metallische Reflektionsschicht gleichzeitig auch eine Korrosionsschutzschicht darstellen, so dass inklusive der Schutzschicht 6.3 lediglich zwei Schichten auf das obere Deckblech 5.1 aufgetragen werden und dennoch ein Korrosionsschutz gegeben ist. Weiterhin kann auch die Schutzschicht 6.3 eine Korrosionsschutzschicht darstellen. In Ausgestaltungen der Erfindung ist es zudem möglich, eine reflektierende Beschichtung vorzusehen, die aus einer Vielzahl von Schichten gebildet ist. So können insbesondere mehrere Lagen von transparenten Schutzschichten vorgesehen sein, die auf der metallischen Reflektionsschicht aufgetragen sind.
Durch Kaltwalzen ist an dem oberen Deckblech 5.1 eine geglättete Oberfläche 7 mit einem arithmetischen Mittenrauwert Ra von weniger als 0,03 μπι, beispielsweise ein arithmetischer Mittenrauwert Ra im Bereich von 0,02 bis 0,05 μπι erzeugt worden, wobei das obere Deckblech 5.1 bereits vor dem Walzen mit der Korrosionsschutzschicht 6.1 beschichtet war. Das obere Deckblech 5.1 ist dabei in mehreren Walzstichen auf die geforderte Dicke gewalzt und zudem geglättet worden. Dabei kam insbesondere im letzten Walzstich eine Walze zum Einsatz, deren das obere Deckblech 5.1
kontaktierende Walzenoberfläche einen arithmetischen Mittenrauwert Ra kleiner 0,02 μπι, vorzugsweise kleiner 0,01 μιτι, besonders bevorzugt kleiner 0,4 μπι aufwies. Je nach Beschaffenheit der Walzen, insbesondere der Walzen im letzten Walzstich, ist es in einer Ausgestaltung der Erfindung selbstverständlich auch möglich, geringere oder höhere Werte für den arithmetischen Mittenrauwert Ra auf der geglätteten Oberfläche einzustellen. Ebenso kann die geforderte Oberflächengüte bereits in einem einzigen Walzstich erzeugt werden. Die Deckbleche 5.1, 5.3 können grundsätzlich aus beliebigen Metallen oder deren Legierungen hergestellte sein. In dem hier dargestellten Beispiel handelt es sich bei dem oberen und unteren Deckblech 5.1, 5.3 um Stahlblech. Zusammen mit der nichtmetallischen Zwischenschicht 5.2, beispielsweise aus Kunststoff, bilden die Deckbleche 5.1, 5.3 eine Sandwichstruktur. Die einzelnen Lagen 5.1, 5.2, 5.3 sind in bekannter Weise miteinander verklebt.
Die geglättete Oberfläche 7 trägt eine metallische Reflektionsschicht 6.2, die
beispielsweise aus Aluminium oder Zinn gebildet ist. Auf der metallischen Reflektionsschicht 6.2 ist eine Schutzschicht, vorzugsweise transparente Schutzschicht 6.3 aufgetragen, die z.B. aus SiOx besteht. Auf diese Weise wird die metallische
Reflektionsschicht 6.2 vor mechanischen Verschleiß und auch vor der Witterung geschützt.
Bezugszeichen
1 Kollektor
2 Reflektor
3 Absorberrohr
4 Stützstruktur
5 Trägerblech
5.1 oberes Deckblech
5.2 nicht-metallische Zwischenschicht .3 unteres Deckblech Beschichtung
.1 Korrosionsschutzschicht
.2 metallische Reflektionsschicht .3 Schutzschicht
geglättete Oberfläche

Claims

Patentansprüche
Reflektor für solarthermische Systeme, mit einem metallischen Trägerblech (5) und einer auf dem Trägerblech (5) aufgebrachten reflektierenden Beschichtung (6), die aus mindestens einer metallischen Reflektionsschicht (6.2) und mindestens einer auf der Reflektionsschicht (6.2) aufgebrachten Schutzschicht (6.3) aufgebaut ist, dadurch gekennzeichnet, dass
das Trägerblech (5) aus einem Sandwichblech gebildet ist, das ein oberes und ein unteres metallisches Deckblech (5.1, 5.3) und mindestens eine dazwischen angeordnete, nicht-metallische Zwischenschicht (5.2) aufweist, wobei das obere Deckblech (5.1) eine geglättete Oberfläche (7) mit einem arithmetischen Mittenrauwert Ra von weniger als 0,03 μιη aufweist, auf welcher die
Reflektionsschicht (6.2) aufgebracht ist.
Reflektor nach Anspruch 1,
dadurch gekennzeichnet, dass
die Reflektionsschicht (6.2) aus Aluminium, Silber, Zinn, Zink oder einer mindestens eines dieser Metalle enthaltenden Legierung hergestellt ist.
Reflektor nach einem der Ansprüche 1 bis 2,
dadurch gekennzeichnet, dass
die geglättete Oberfläche (7) des oberen Deckblechs (5.1) durch zumindest eine Zinnschicht gebildet ist.
Reflektor nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
das obere Deckblech (5.1) aus Stahl oder aus Leichtmetall hergestellt ist. Reflektor nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die Schutzschicht (6.3) aus Silizium-Oxid und/oder Titan-Oxid hergestellt ist.
Reflektor nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Schichtdicke der Reflektionsschicht (6.2) und/oder die Schichtdicke der Schutzschicht (6.3) im Bereich von 50 nm bis 5 μπι liegt.
Reflektor nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
das obere und/oder das untere Deckblech (5.1, 5.3) eine Dicke im Bereich von 0,1 mm bis 4 mm aufweisen.
Reflektor nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
die Reflektionsschicht (6.2) und/oder die Schutzschicht (6.3) eine optisch wirksame Rauheitsfeinstruktur und/oder mindestens eine Interferenzschicht aufweist.
Reflektor nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass
das zumindest die der nicht-metallischen Zwischenschicht (5.2) abgewandte Außenseite des oberen Deckblechs (5.1) und/oder des unteren Deckblechs (5.3) mit einer Korrosionsschutzschicht (6.1) versehen ist.
Verfahren zum Herstellen eines Reflektors für solarthermische Systeme, umfassend die folgenden Verfahrensschritte:
a. Bereitstellen eines metallischen Trägerblechs (5), das aus einem
Sandwichblech gebildet ist, das ein oberes und ein unteres metallisches Deckblech (5.1, 5.3) und mindestens eine dazwischen angeordnete, nichtmetallische Zwischenschicht (5.2) aufweist, wobei das obere Deckblech (5.1) eine geglättete Oberfläche (7) aufweist und wobei die geglättete Oberfläche (7) einen arithmetischen Mittenrauwert Ra von weniger als 0,03 μπ\ aufweist; und
b. Aufbringen einer reflektierenden Beschichtung (6) auf die geglättete
Oberfläche (7) des Trägerblechs (5), die aus mindestens einer metallischen Reflektionsschicht (6.2) und mindestens einer auf der Reflektionsschicht (6.2) aufgebrachten Schutzschicht (6.3) aufgebaut ist; d a d u r c h g e k e n n z e i c h n e t, d a s s die geglättete Oberfläche (7) durch Walzen erzeugt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass vor dem Walzen eine Korrosionsschutzschicht (6.1) auf das Deckblech (5.1) aufgebracht wird.
12. Verfahren nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, dass auf das obere Deckblech eine Zinnschicht aufgebracht und die Zinnschicht zur Erzeugung einer glatten Oberfläche mittels eines Lasers oder einer
Wärmequelle aufgeschmolzen wird.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die Reflektionsschicht (6.2) durch ein PVD-, CVD-, elektrostatisches oder elektrochemisches Verfahren aufgebracht wird.
14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Schutzschicht (6.3) durch ein PVD-, CVD-, oder elektrostatisches Verfahren, vorzugsweise durch Magnetron-Sputtern aufgebracht wird.
15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass in die Reflektionsschicht (6.2) und/oder die Schutzschicht (6.3) mittels
Laserbearbeitung optisch wirksame Rauheitsfeinstrukturen eingebracht werden.
EP14805785.4A 2013-11-11 2014-11-07 Reflektor für solarthermische systeme und verfahren zur herstellung eines solchen reflektors Withdrawn EP3069178A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013112378.3A DE102013112378B4 (de) 2013-11-11 2013-11-11 Reflektor für solarthermische Systeme und Verfahren zur Herstellung eines solchen Reflektors
PCT/EP2014/002980 WO2015067368A1 (de) 2013-11-11 2014-11-07 Reflektor für solarthermische systeme und verfahren zur herstellung eines solchen reflektors

Publications (1)

Publication Number Publication Date
EP3069178A1 true EP3069178A1 (de) 2016-09-21

Family

ID=52002890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14805785.4A Withdrawn EP3069178A1 (de) 2013-11-11 2014-11-07 Reflektor für solarthermische systeme und verfahren zur herstellung eines solchen reflektors

Country Status (7)

Country Link
US (1) US10365463B2 (de)
EP (1) EP3069178A1 (de)
CN (1) CN105723254A (de)
AU (1) AU2014345935B2 (de)
DE (1) DE102013112378B4 (de)
MX (1) MX370883B (de)
WO (1) WO2015067368A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009192B2 (en) * 2016-11-03 2024-06-11 Starfire Industries Llc System for coupling RF power into LINACs and bellows coating by magnetron sputtering with kick pulse
US11008650B2 (en) * 2016-11-03 2021-05-18 Starfire Industries Llc Compact system for coupling RF power directly into RF linacs
EP3339918A1 (de) * 2016-12-21 2018-06-27 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Spiegel und verfahren zur herstellung davon
CN110100192B (zh) * 2016-12-22 2021-02-09 富士胶片株式会社 光学膜及光学膜的制造方法
CN106925894A (zh) * 2017-03-15 2017-07-07 江苏理工学院 一种激光微造型制备轴承耐腐蚀表面的方法
US20200119686A1 (en) * 2018-10-10 2020-04-16 William Leonard Driscoll Method and Apparatus for Reflecting Solar Energy to Bifacial Photovoltaic Modules

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222933A1 (en) * 2010-10-27 2013-08-29 Konica Minolta , Inc. Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3040300A1 (de) * 1979-10-30 1981-05-14 Mitsubishi Keikinzoku Kokyo K.K., Tokyo Spiegel und verfahren zur herstellung derselben
CH683188A5 (de) * 1991-01-11 1994-01-31 Alusuisse Lonza Services Ag Aluminiumoberflächen.
EP1154289A1 (de) 2000-05-09 2001-11-14 Alcan Technology & Management AG Reflektor
FR2818665B1 (fr) * 2000-12-27 2003-09-12 Usinor Fabrication d'une bande metallique pour emballage comportant un revetement constitue d'une couche metallique et d'un film de polymere, et bande obtenue
US6709119B2 (en) * 2001-04-27 2004-03-23 Alusuisse Technology & Management Ltd. Resistant surface reflector
US6997981B1 (en) * 2002-05-20 2006-02-14 Jds Uniphase Corporation Thermal control interface coatings and pigments
US20080087277A1 (en) * 2004-09-06 2008-04-17 Holger Schweyher Collector for a Solar Thermal Power Station
JP4293370B2 (ja) 2005-02-02 2009-07-08 株式会社リケン バルブリフター
US8169681B2 (en) * 2006-03-03 2012-05-01 Gentex Corporation Thin-film coatings, electro-optic elements and assemblies incorporating these elements
JP4971061B2 (ja) * 2007-07-23 2012-07-11 東洋鋼鈑株式会社 光反射板及びその製造方法及び光反射装置
DE102007058182A1 (de) * 2007-12-04 2009-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur Solarenergienutzung mit Vorrichtung zur Wärmeabgabe an die Umgebung, Verfahren zum Betreiben des Systems sowie Verwendung
DE102009030810B4 (de) * 2009-06-26 2017-09-21 Alanod Gmbh & Co. Kg Beschichtung für einen optischen Reflektor
JP2011186100A (ja) * 2010-03-08 2011-09-22 Kouno:Kk 魔鏡およびその製造方法
JPWO2011162154A1 (ja) * 2010-06-25 2013-08-22 コニカミノルタ株式会社 太陽熱発電用反射板及び太陽熱発電用反射装置
DE102011000984A1 (de) * 2011-03-01 2012-09-06 Rasselstein Gmbh Verfahren zum Veredeln einer metallischen Beschichtung auf einem Stahlband
US20120300291A1 (en) * 2011-05-24 2012-11-29 James Abbott Metal reflectors
JP5920662B2 (ja) * 2012-06-05 2016-05-18 三菱マテリアル株式会社 レーザ加工装置およびレーザ加工方法
CN105378946A (zh) * 2013-07-09 2016-03-02 3M创新有限公司 用于太阳能组件的带有含曲面微结构的反射微结构化膜

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130222933A1 (en) * 2010-10-27 2013-08-29 Konica Minolta , Inc. Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015067368A1 *

Also Published As

Publication number Publication date
MX2016004908A (es) 2016-09-28
MX370883B (es) 2020-01-09
US20160266361A1 (en) 2016-09-15
CN105723254A (zh) 2016-06-29
DE102013112378A1 (de) 2015-05-13
WO2015067368A1 (de) 2015-05-14
AU2014345935B2 (en) 2018-11-15
AU2014345935A1 (en) 2016-04-21
US10365463B2 (en) 2019-07-30
DE102013112378B4 (de) 2021-04-22

Similar Documents

Publication Publication Date Title
DE102013112378B4 (de) Reflektor für solarthermische Systeme und Verfahren zur Herstellung eines solchen Reflektors
EP3134756B1 (de) Temperatur- und korrosionsstabiler oberflächenreflektor
EP2054676B1 (de) Verfahren zur herstellung eines absorberblechs für sonnenkollektoren
DE3216845C2 (de)
DE102006056536B9 (de) Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
DE2726530C2 (de) Konzentrierender Sonnenkollektor
DE102009022059A1 (de) Strahlungsselektive Absorberbeschichtung und Absorberrohr mit strahlungsselektiver Absorberbeschichtung
DE112011103911B4 (de) Mehrschichtiges absorbierendes Material und dessen Verwendung für ein Solarpanel
DE102008010199A1 (de) Strahlungsselektive Absorberbeschichtung, Absorberrohr und Verfahren zu dessen Herstellung
EP2488901A1 (de) Konzentrator für die solare energiegewinnung und dessen herstellung aus polymeren werkstoffen
DE102013112532A1 (de) Strahlungsabsorber zum Absorbieren elektromagnetischer Strahlung, Solarabsorber-Anordnung, und Verfahren zum Herstellen eines Strahlungsabsorbers
WO2009106525A2 (de) Absorberbauteil für thermosolare anwendungen
EP0098404B1 (de) Befestigungselement an Spiegeln für Solar-Reflektoren
DE102019124110A1 (de) Kühlvorrichtung und Verfahren zu deren Herstellung
DE102011012044B4 (de) Verfahren zur Herstellung eines Reflexionsschichtsystems
DE202015103786U1 (de) Deckenelement, insbesondere Heiz- und Kühldeckenelement, auf Basis von Aluminium oder Stahl
WO2011151030A2 (de) Sonnenlichtreflektor für ein solarkraftwerk
EP2576219B1 (de) Verfahren zum herstellen eines flächigen materialschichtverbundes
WO2021083755A1 (de) Scheibenverbund mit einer wärmestrahlung reflektierenden beschichtung
WO2018210589A1 (de) System zur solaren energiegewinnung und verwendung eines reflektierenden basismaterials in einem derartigen system
DE102009034421A1 (de) Reflektorelement mit anisotroper Biegesteifigkeit
WO2014170324A1 (de) Vorrichtung und verfahren zur reduzierung des strahlungsaustausches von photovoltaischen modulen
DE102018118964A1 (de) Verfahren zur Herstellung von zumindest einer teilflächigen keramischen Bedruckung auf einem mit einer vorspannbaren Funktionsbeschichtung versehenen Floatglasssubstrat
EP2653896A1 (de) Verfahren zur Herstellung eines thermisch belastbaren Reflektors
EP3118533A1 (de) Deckenelement, insbesondere heiz- und kühldeckenelement, auf basis von aluminium oder stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200807