EP3064889B1 - Obus d'artillerie explosif bicomposants - Google Patents

Obus d'artillerie explosif bicomposants Download PDF

Info

Publication number
EP3064889B1
EP3064889B1 EP16157738.2A EP16157738A EP3064889B1 EP 3064889 B1 EP3064889 B1 EP 3064889B1 EP 16157738 A EP16157738 A EP 16157738A EP 3064889 B1 EP3064889 B1 EP 3064889B1
Authority
EP
European Patent Office
Prior art keywords
container
explosive
containers
artillery shell
shell according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16157738.2A
Other languages
German (de)
English (en)
Other versions
EP3064889A1 (fr
Inventor
Corentin LE RENARD
Camille ESCANDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexter Munitions SA
Original Assignee
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexter Munitions SA filed Critical Nexter Munitions SA
Publication of EP3064889A1 publication Critical patent/EP3064889A1/fr
Application granted granted Critical
Publication of EP3064889B1 publication Critical patent/EP3064889B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/207Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type characterised by the explosive material or the construction of the high explosive warhead, e.g. insensitive ammunition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/24Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means
    • F42C15/26Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means using centrifugal force

Definitions

  • the technical field of the invention is that of explosive artillery shells and in particular that of two-component explosive shells.
  • explosive shells contain an explosive charge comprising a fusible explosive such as trinitrotoluene (TNT) combined with one or more complementary grains explosives such as hexogen (RDX) or oxynitrotriazole (ONTA).
  • TNT fusible explosive
  • RDX hexogen
  • ONTA oxynitrotriazole
  • the explosive in a classic way is initiated on trajectory or impact by a rocket.
  • Each component is itself non-explosive, that is to say that the implementation of a detonator can not cause its detonation.
  • the mixture of the two materials is explosive and can be detonated by the action of a suitable detonator.
  • the patent FR994041 describes two-component explosive bombs or projectiles. However, these projectiles use liquid materials that are mixed on the trajectory. It is necessary to break the envelope containing one of the materials to mix with the other material.
  • the fragile envelope is for example made of glass or ceramic. Such an architecture is complex and expensive.
  • a liquid explosive charge is not suitable for a shot projectile by gun effect, given the vortex effects that may occur on the liquid loading, effects reducing the stability of the projectile in ballistic flight.
  • the invention thus makes it possible to define a shell which does not contain products considered individually as explosives. This results in increased security for the transport and logistics phases.
  • the invention also makes it possible to define an artillery shell whose explosive charge can be sterilized after a certain period of time in the event of non-explosion on a target.
  • the invention relates to a two-component explosive artillery shell comprising an envelope containing at least two non-explosive materials but which after mixing form an explosive composition, shells comprising at least one container integral with the envelope and arranged coaxially with the envelope.
  • container delimiting an internal cavity containing a first material in liquid or gelled form, container whose wall is pierced with a plurality of orifices which are closed by a closure means, the container or containers delimiting with the envelope a annular space which encloses a second material in solid and porous form, the closure means being able to open during the firing to allow diffusion by centrifugal effect of the first material in the second material through the porosity of the latter, characterized in that it comprises at least one stack of axially aligned containers which are connected to one another, each container is and separated from its neighbors by at least one transverse wall, or in that it comprises a single cylindrical container extending axially over the entire height of the second material, this container being compartmentalized and having partition
  • the closure means may be constituted by at least one sheet integral with the wall, the sheet may break during firing to let the first material.
  • the container or containers may be cylindrical or frustoconical.
  • the shell may comprise at least two cylindrical containers of different diameters succeeding one another along the axis of the shell.
  • the containers may be positioned relative to the envelope by at least one radial wedge.
  • the second material may comprise at least one oxidant, such as potassium perchlorate, ammonium perchlorate, ammonium nitrate, or potassium nitrate.
  • oxidant such as potassium perchlorate, ammonium perchlorate, ammonium nitrate, or potassium nitrate.
  • the first material may comprise at least one nitro aliphatic hydrocarbon, such as nitromethane or nitroethane.
  • the shell may include at least one sterilization material of the first material.
  • the sterilization material may comprise at least one of the following materials: ethylene diamine, diethylene triamine.
  • the sterilization material may be placed in at least one housing.
  • an explosive artillery shell 1 according to the invention comprises a casing 2 enclosing at least two non-explosive materials 3, 4 which, after mixing, form an explosive composition.
  • the envelope 2 here consists of two parts: a front portion 2a ogivée, and a cylindrical rear portion 2b. Such an arrangement is intended to facilitate the loading of the shell 1 with the materials 3 and 4.
  • the casing 2 is closed at its rear part by a base 5 which is fixed to the casing 2, for example by riveting.
  • the casing 2 carries at its front part a rocket 6 of a conventional type, for example a percussion rocket, proximity or chronometric.
  • the base 5 carries a device 7 which may be a device for reducing base drag (better known by the English name "base bleed").
  • the device 7 can simply to be a hollow pellet. This device does not form part of the invention.
  • the shell 1 comprises at least one container 8 which is integral with the casing 2 and which is disposed coaxially therewith.
  • the shell 1 here comprises a stack of six containers 8 which are cylindrical and all have axis axis 9 of the shell 1.
  • All the containers 8 are of identical structure and, as we see more particularly on the figure 2b each comprises a tubular wall 8a delimiting an internal cavity 12 which encloses the first material 3, which is in a liquid or gelled form.
  • Each container 8 has a transverse wall or bottom 13 closed and is closed by a cover 14 which is screwed to the tubular wall 8a.
  • the tubular wall 8a is pierced with a plurality of radial orifices 15 which are closed by a closure means.
  • the sealing means is constituted here by a sheet 16 integral with the tubular wall (for example glued to the wall 8a).
  • the sheet will for example be a sheet 0.1 mm thick of a plastic material such as polyethylene.
  • the groove 10 makes it possible to position the stack of containers radially with respect to the envelope 2 of the shell.
  • the base 5 provides axial retention, this axial retention is completed by a ring 17 which is screwed to the mouth of the shell 1 and which also receives the rocket 6.
  • the ring 17 abuts against the cap 14 of the container 8 most forward of the shell.
  • the stack of containers 8 is also positioned radially relative to the envelope 2 of the shell by two radial shims 11.
  • the radial shims 11 will for example be made of plastic, for example polyamide.
  • This embodiment of a stack of containers 8 all identical makes it easier to manufacture and integrate the shell. Moreover, the transverse walls or bottoms 13 and covers 14 form partitions which make it possible to isolate the material contained in each container 8 from that of neighboring containers. Such an arrangement makes it possible to reduce the influence on the first material 3 of the axial acceleration exerted during the firing.
  • the containers 8 delimit with the envelope 2 an annular space 18 which encloses a second material 4 in solid and porous form.
  • the second material 4 may be made in the form of compressed annular blocks.
  • the grain size of the constituent grains of the second material as well as the compressive forces will be chosen so as to ensure the desired porosity.
  • a third block 4c of the second material 4, machined to the internal profile of the ogivée portion 2b of the envelope, will then be positioned in this ogivée part 2b. Then the ogivée portion 2b will be fixed to the cylindrical portion 2a of the casing 2 with the interposition of a second shim 11.
  • the first material 3 is a fuel, or fuel mixture in the liquid or gelled state. It may comprise at least one nitro aliphatic hydrocarbon, such as nitromethane or nitroethane.
  • a gelling agent the substances usually used in formulation, of mineral or organic origin, such as fumed silicas, natural or synthetic gums, polymers or any other substance of circumstance.
  • the first material 3 may comprise a sensitizer associated with the nitro aliphatic hydrocarbon. It will however be necessary that this sensitizer does not have the effect of sterilizing the hydrocarbon.
  • the second material 4 comprises at least one strong oxidant, ie a compound capable of giving oxygen to the reaction medium, such as potassium perchlorate, ammonium perchlorate, ammonium nitrate, or nitrate. of potassium.
  • a strong oxidant ie a compound capable of giving oxygen to the reaction medium, such as potassium perchlorate, ammonium perchlorate, ammonium nitrate, or nitrate. of potassium.
  • the grains of this material may be coated with a binder, for example an inert binder such as wax or an active binder such as DNAN (2,4-dinitroanisole) which is an insensitive explosive.
  • the binder will facilitate the compression molding of the blocks of the second material 4.
  • a sterilization material of the first material may be provided.
  • the sterilization material will comprise for example at least one of the following materials: ethylene diamine, diethylene triamine. These materials are liquid at the usual temperatures of use.
  • the sterilization material will therefore be placed in a specific housing (not shown) which will isolate the first material 3 and which will be broken during firing.
  • This specific housing may for example be interposed between the ring 17 and the stack of containers 8.
  • the sterilization material 24 can be put in place in at least one specific housing 25 which will be fixed to the stack of containers 8 containing the first material 3.
  • This housing 25 will have the same diameter as the containers 8 and it will be equipped with a plug 26 and a bottom 27 similar to the plugs 14 and the transverse walls or bottoms 13 of the containers 8 (and it will eventually also thread and tapping to secure it to the containers).
  • the housing 25 can thus be positioned at any axial position on a stack of containers 8. example place it at the top of the stack, in the vicinity of the ring 17. It can also be positioned as shown on the figure 5 between two containers 8.
  • the housing 25 will carry orifices 28 which will be closed by a closure means which will be formed for example by the sheet 16 surrounding the stack of containers 8.
  • One or more housings 25 containing the sterilization material may be provided.
  • This reduced quantity can be distributed in several boxes 25, the size of which will therefore be much smaller than that of the containers 8 enclosing the first material 3.
  • the dimensions of the containers 8 will be defined according to the relative volumes sought for the first material 3 and the second material 4.
  • a configuration as shown in FIGS. figures 1 and 2a corresponds to a relative volume which is substantially 20% for the first material 3 and 80% for the second material 4.
  • the porosity of the second material 4 is chosen to represent a volume sufficient to accommodate the first material.
  • the air contained in the second material 4 will circulate within the porous blocks and it will eventually occupy the internal volume of the containers 8 after ejection of the first material. To facilitate the circulation of the first material 3, it may be provided to achieve a partial air gap in the shell during assembly.
  • the first and second materials 3 and 4 are isolated from one another.
  • the shell 1 is completely inert and can be transported without any danger.
  • the high speed of rotation imparted by the striped tube of the weapon to the shell by virtue of the belt 19 will radially evacuate, by the effect of centrifugal force, the first material 3, out of the containers 8, through The centrifugal inertia forces will ensure the rupture of the sheet 16 for each container 8. It will suffice to define the thickness of the sheet 16 as a function of the desired strength.
  • the inertial forces will ensure the ejection of the sterilization material out of the housing (s) 25.
  • the level of effort is sufficient to ensure mixing and distribution of all liquid components in the porous matrix.
  • the composition formed by the mixture of these two materials is detonating.
  • the optional sterilization material 24 ensures for a limited time an effect of sensitizing the first material 3.
  • This composition is initiated in a conventional manner by the rocket 6 of the shell.
  • a composition associating 70% by weight of potassium perchlorate and 30% by weight of nitromethane has a detonation speed of 6100 to 6200 m / s. This is of the same order as the TNT (6900 m / s).
  • the sterilization material also has a sensitizing effect for a period of at least one hour. Sterilization only occurs beyond a period of more than 3 hours depending on the amount of sterilization material used.
  • the explosive charge ends up being sterilized.
  • the reaction time between the sterilization material and the first material is compatible with the operational requirements.
  • FIG. 3 there is a first stack of three large diameter containers 8 1 which extends from the base 5 of the shell 1 to a median zone Z of the shell, and there is a second stack of three containers 8 2 of small diameter extending from the central region Z of the shell until the ring 17.
  • a first shim 11 radially maintains the first stack.
  • a second shim 11 radially maintains the second stack.
  • the containers 8 1 and 8 2 have substantially the same structure as the container described above with reference to the figure 2b .
  • the rearmost container 8 1 engages in a groove 10 of the base 5.
  • the smaller diameter container 8 2 which is rearmost engages in a groove 20 which is arranged in the lid 14 of the large diameter container 8 1 to which it is applied.
  • the ring 17 ensures the axial immobilization of the stack of containers.
  • This embodiment makes it possible to provide a different volume and mass ratio for the first and the second material.
  • the configuration according to the figure 3 This makes it possible to have a volume ratio of 30% for the first material and 70% for the second material.
  • the container or containers 8 may have a different shape, for example frustoconical.
  • the figure 4a thus schematically shows a stack of frustoconical containers 8, the diameters of which are progressively increasing from the rear to the front.
  • the larger diameter container being positioned for example against the base 5 of the shell.
  • the figure 4b shows another embodiment of a single container 8 which is intended to extend axially over the entire height of the second material 4.
  • This container is compartmentalized and comprises transverse partitions 21 which divide the internal volume of the container 8 into several chambers 22. In order to allow the introduction of the first material 3 in the container 8, each partition 21 has an axial hole 23 communicating the 22.
  • the container is closed by a plug 14 and has a bottom 13.
  • a sheet 16 wound around the container 8 closes the orifices 15.
  • the partitions 21 make it possible to reduce the pressure gradients between the upstream part and the downstream part of the container 8. This reduces the forces that would be transmitted to the sheet 16 as a result of the axial inertia forces.
  • Embodiments of the invention are shown here in which the orifice closing means is constituted by a sheet which is pierced during firing by the effect of the centrifugal forces exerted on the first material.
  • a shell according to the invention does not include sterilization material.
  • Such a two-component shell will, however, have greater security of transport than conventional explosive shells because the materials it contains are not in themselves and individually considered as explosive materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Packages (AREA)

Description

  • Le domaine technique de l'invention est celui des obus explosif d'artillerie et en particulier celui des obus explosifs bicomposants.
  • D'une façon classique les obus explosifs renferment un chargement explosif comprenant un explosif fusible tel que le trinitrotoluène (TNT) associé à un ou plusieurs explosifs complémentaires en grains tels que l'hexogène (RDX) ou l'oxynitrotriazole (ONTA).
  • L'explosif d'une façon classique est initié sur trajectoire ou à l'impact par une fusée.
  • Lorsque la fusée ne fonctionne pas, les obus restent sur le terrain à l'état non explosé et constituent un danger. Ils peuvent en effet être réutilisés par des ennemis sous la forme d'engins explosifs improvisés.
  • Pour pallier ce risque, il est souhaitable de définir un obus dont le chargement puisse se neutraliser automatiquement à l'issue d'un certain délai en cas de non initiation.
  • On connaît depuis longtemps des explosifs dits à deux composants. Chaque composant est lui-même non explosif, c'est à dire que la mise en oeuvre d'un détonateur ne pourra pas provoquer sa mise en détonation. Le mélange des deux matériaux est par contre explosif et peut être mis en détonation par l'action d'un détonateur approprié.
  • Le brevet US4253889 décrit ainsi des explosifs bi-composants qui sont mis en oeuvre pour les mines et carrières. Les deux composants sont mélangés par un opérateur avant utilisation, ce qui permet de stocker des composants qui sont individuellement sans danger.
  • Il est connu par ailleurs que ces explosifs bi-composants peuvent être rendus inertes par l'action d'additifs particuliers. Le brevet FR2289472 décrit ainsi une composition explosive liquide à base de nitrométhane qui se stérilise au bout de quelques heures lorsqu'elle est mélangée à de la diéthylène triamine.
  • On ne connaît pas cependant de mise en oeuvre concrète de tels explosifs bi-composants dans des obus ou projectiles.
  • Le brevet FR994041 décrit des bombes ou projectiles à explosif bicomposants. Cependant ces projectiles mettent en oeuvre des matériaux liquides qui sont mélangés sur trajectoire. Il est nécessaire de casser l'enveloppe contenant un des matériaux pour le mélanger à l'autre matériau. L'enveloppe fragile est par exemple réalisée en verre ou céramique. Une telle architecture est complexe et coûteuse.
  • Par ailleurs un chargement explosif liquide est peu adapté à un tir de projectile par effet canon, compte tenu des effets vortex qui risquent de se produire sur le chargement liquide, effets diminuant la stabilité du projectile en vol balistique.
  • On connaît par le brevet WO2010/044716 un projectile pouvant renfermer plusieurs charges ayant des effets différents. Ce document précise qu'il est possible d'associer un matériau oxydant liquide placé dans un container axial et un combustible sous forme poreuse. Le conteneur axial renferme aussi un moyen d'initiation sous forme de brins s'étendant longitudinalement sur tout le conteneur. Avec un tel projectile, les efforts d'inertie axiale qui s'exercent lors du tir sur le matériau liquide vont provoquer une rupture prématurée, au niveau de la partie arrière du conteneur, des films plastiques obturant les trous radiaux du conteneur. La réaction entre les composants se produira alors à l'intérieur même du tube de l'arme, avant la mise en rotation du projectile, et d'une façon non homogène, les films se rompant uniquement au niveau de l'arrière du conteneur.
  • C'est le but de l'invention que de proposer un obus d'artillerie bicomposants qui soit de conception simple, peu coûteuse, ayant un fonctionnement fiable et qui assure un tir sans perturbations balistiques.
  • L'invention permet ainsi de définir un obus qui ne renferme pas de produits considérés individuellement comme explosifs. Il en résulte une sécurité accrue pour les phases de transport et de logistique.
  • Selon un mode particulier de réalisation, l'invention permet aussi de définir un obus d'artillerie dont le chargement explosif peut être stérilisé à l'issue d'un certain délai en cas de non explosion sur une cible.
  • Ainsi l'invention a pour objet un obus d'artillerie explosif bicomposants comprenant une enveloppe renfermant au moins deux matériaux non explosifs mais qui après mélange forment une composition explosive, obus comportant au moins un conteneur solidaire de l'enveloppe et disposé coaxialement à celle-ci, conteneur délimitant une cavité interne renfermant un premier matériau sous forme liquide ou gélifiée, conteneur dont la paroi est percée d'une pluralité d'orifices qui sont fermés par un moyen d'obturation, le ou les conteneurs délimitant avec l'enveloppe un espace annulaire qui renferme un deuxième matériau sous forme solide et poreuse, le moyen d'obturation pouvant s'ouvrir lors du tir pour permettre la diffusion par effet centrifuge du premier matériau dans le deuxième matériau au travers de la porosité de ce dernier, obus caractérisé en ce qu'il comprend au moins un empilement de conteneurs alignés axialement et liés les uns aux autres, chaque conteneur étant séparé de ses voisins par au moins une paroi transversale, ou bien en ce qu'il comprend un seul conteneur cylindrique s'étendant axialement sur toute la hauteur du deuxième matériau, ce conteneur étant compartimenté et comportant des cloisons transversales divisant son volume interne en plusieurs chambres.
  • Selon un mode particulier de réalisation, le moyen d'obturation pourra être constitué par au moins une feuille solidaire de la paroi, feuille susceptible de se rompre lors du tir pour laisser passer le premier matériau.
  • Le ou les conteneurs pourront être de forme cylindrique ou tronconique.
  • Selon un autre mode de réalisation, l'obus pourra comporter au moins deux conteneurs cylindriques de diamètres différents se succédant le long de l'axe de l'obus.
  • Avantageusement les conteneurs pourront être positionnés par rapport à l'enveloppe par au moins une cale radiale.
  • Le second matériau pourra comprendre au moins un oxydant, tel que le perchlorate de potassium, le perchlorate d'ammonium, le nitrate d'ammonium, ou le nitrate de potassium.
  • Le premier matériau pourra comprendre au moins un hydrocarbure nitro aliphatique, tel que le nitrométhane ou le nitroéthane.
  • Selon un mode particulier de réalisation, l'obus pourra comporter au moins un matériau de stérilisation du premier matériau.
  • Le matériau de stérilisation pourra comprendre au moins un des matériaux suivants : éthylène diamine, diéthylène triamine.
  • Avantageusement, le matériau de stérilisation pourra être mis en place dans au moins un boîtier.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre de modes particuliers de réalisation, description faite en référence aux dessins annexés et dans lesquels :
    • La figure 1 est une vue en coupe longitudinale d'un obus selon un premier mode de réalisation de l'invention, conteneur axial non coupé ;
    • La figure 2 est une vue analogue à la précédente mais montre le conteneur axial coupé ;
    • La figure 3 est une vue en coupe longitudinale d'un obus selon un second mode de réalisation de l'invention, conteneur axial coupé ;
    • Les figures 4a et 4b sont des vues schématiques de deux autres modes de réalisation d'un conteneur axial, la figure 4a montrant un conteneur en vue externe et la figure 4b un conteneur en coupe longitudinale ;
    • La figure 5 est une vue schématique partielle d'un empilement de conteneurs incorporant un boîtier pour matériau de stérilisation.
  • En se reportant à la figure 1, un obus d'artillerie 1 explosif selon l'invention comprend une enveloppe 2 renfermant au moins deux matériaux 3, 4 non explosifs mais qui après mélange forment une composition explosive.
  • L'enveloppe 2 est ici constituée par deux parties : une partie avant 2a ogivée, et une partie arrière 2b cylindrique. Une telle disposition est destinée à permettre de faciliter le chargement de l'obus 1 avec les matériaux 3 et 4.
  • L'enveloppe 2 est fermée à sa partie arrière par un culot 5 qui est fixé à l'enveloppe 2, par exemple par rivetage.
  • L'enveloppe 2 porte à sa partie avant une fusée 6 d'un type classique, par exemple une fusée percutante, de proximité ou chronométrique.
  • On voit sur les figures que le culot 5 porte un dispositif 7 qui pourra être un dispositif de diminution de traînée de culot (plus connu sous la dénomination anglo-saxonne « base bleed »). Le dispositif 7 pourra simplement être un culot creux. Ce dispositif ne fait pas partie de l'invention.
  • Conformément à l'invention l'obus 1 comporte au moins un conteneur 8 qui est solidaire de l'enveloppe 2 et qui est disposé coaxialement à celle-ci.
  • L'obus 1 comporte ici un empilement de six conteneurs 8 qui sont cylindriques et ont tous pour axe l'axe 9 de l'obus 1.
  • Tous les conteneurs 8 sont de structure identique et, comme on le voit plus particulièrement sur la figure 2b, chacun comporte une paroi tubulaire 8a délimitant une cavité interne 12 qui renferme le premier matériau 3, qui est sous une forme liquide ou gélifiée.
  • Chaque conteneur 8 comporte une paroi transversale ou fond 13 fermé et il est obturé par un couvercle 14 qui est vissé à la paroi tubulaire 8a. La paroi tubulaire 8a est percée d'une pluralité d'orifices 15 radiaux qui sont fermés par un moyen d'obturation.
  • Selon le mode de réalisation qui est représenté, le moyen d'obturation est constitué ici par une feuille 16 solidaire de la paroi tubulaire (par exemple collée à la paroi 8a). La feuille sera par exemple une feuille de 0,1 mm d'épaisseur d'une matière plastique telle que le Polyéthylène.
  • La paroi tubulaire 8a se prolonge à l'arrière du conteneur 8 par une collerette cylindrique 8b qui se loge sur une portée cylindrique 14a du bouchon 14 d'un conteneur voisin. Le conteneur 8 qui est situé le plus en arrière de l'obus a sa collerette cylindrique 8b qui se positionne dans une rainure circulaire 10 du culot 5 de l'obus. Collerette 8b et portée 14a pourront porter des filetages et taraudages.
  • La rainure 10 permet de positionner radialement l'empilement de conteneurs par rapport à l'enveloppe 2 de l'obus. Le culot 5 assure un maintien axial, ce maintien axial est complété par une bague 17 qui est vissée à l'embouchure de l'obus 1 et qui reçoit aussi la fusée 6. La bague 17 vient en appui contre le bouchon 14 du conteneur 8 le plus en avant de l'obus.
  • L'empilement de conteneurs 8 est également positionné radialement par rapport à l'enveloppe 2 de l'obus par deux cales radiales 11. Les cales radiales 11 seront par exemple réalisées en matière plastique, par exemple en polyamide.
  • Elles seront avantageusement percées de trous parallèles à l'axe 9 de l'obus pour faciliter la répartition du matériau liquide 3 comme cela sera expliqué par la suite.
  • Cette réalisation d'un empilement de conteneurs 8 tous identiques permet de faciliter la fabrication et l'intégration de l'obus. Par ailleurs les parois transversales ou fonds 13 et couvercles 14 forment des cloisons qui permettent d'isoler le matériau contenu dans chaque conteneur 8 de celui des conteneurs voisins. Une telle disposition permet de réduire l'influence sur le premier matériau 3 de l'accélération axiale exercée lors du tir.
  • On réduit ainsi le différentiel de pression pouvant apparaître à l'intérieur d'un conteneur 8 entre le fond 13 du conteneur et la partie du conteneur proche de son bouchon 14.
  • Au lieu d'avoir une colonne unique de premier matériau liquide qui serait soumise à l'accélération axiale, on a ici autant de colonnes du premier matériau qu'il y a de conteneurs et le différentiel de pression est le même à l'intérieur de chaque conteneur.
  • Ceci permet aussi d'éviter une rupture prématurée des feuilles 16 obturant les orifices les plus proches du culot 5 par le seul effet de l'inertie axiale. Il en résulte une meilleure fiabilité du fonctionnement. La rupture des feuilles n'intervient pas en effet de façon dissymétrique et avant mise en rotation de l'obus. Une rupture comme suite à la seule inertie axiale conduirait au mélange prématuré du premier matériau 3 avec un deuxième matériau 4 uniquement au niveau de la partie arrière de l'obus et dans le tube de l'arme.
  • Les conteneurs 8 délimitent avec l'enveloppe 2 un espace annulaire 18 qui renferme un deuxième matériau 4 sous forme solide et poreuse.
  • On pourra par exemple réaliser le deuxième matériau 4 sous la forme de blocs annulaires comprimés. La granulométrie des grains constitutifs du deuxième matériau ainsi que les efforts de compression seront choisis de façon à assurer la porosité souhaitée.
  • Comme on le voit sur les figures 1 et 2a, on pourra par exemple mettre en place dans la partie cylindrique 2a de l'enveloppe 2 deux blocs annulaires 4a et 4b séparés par une cale 11. L'empilement de conteneurs 8 sera ensuite positionné dans le canal axial des blocs annulaires 4a,4b.
  • Un troisième bloc 4c du deuxième matériau 4, usiné au profil interne de la partie ogivée 2b de l'enveloppe, sera ensuite positionné dans cette partie ogivée 2b. Puis la partie ogivée 2b sera fixée à la partie cylindrique 2a de l'enveloppe 2 avec interposition d'une deuxième cale 11.
  • Le premier matériau 3 est un combustible, ou mélange combustible à l'état liquide ou gélifié. Il pourra comprendre au moins un hydrocarbure nitro aliphatique, tel que le nitrométhane ou le nitroéthane.
  • On pourra choisir comme gélifiant les substances habituellement mises en oeuvre en formulation, d'origine minérale ou organique, telles que les silices fumées, gommes naturelles ou synthétiques, polymères ou toute autre substance de circonstance.
  • Le premier matériau 3 pourra comprendre un sensibilisant associé à l'hydrocarbure nitro aliphatique. Il faudra cependant que ce sensibilisant n'ait pas pour effet de stériliser l'hydrocarbure.
  • Le second matériau 4 comprend au moins un oxydant fort c'est à dire un composé capable de céder de l'oxygène au milieu réactionnel, tel que le perchlorate de potassium, le perchlorate d'ammonium, le nitrate d'ammonium, ou le nitrate de potassium. Les grains de ce matériau pourront être enrobés d'un liant, par exemple un liant inerte comme la cire ou un liant actif comme le DNAN (2,4-dinitroanisole) qui est un explosif peu sensible.
  • Le liant facilitera la mise en oeuvre par compression des blocs du second matériau 4.
  • Selon un mode particulier de réalisation, afin de permettre la stérilisation du matériau explosif en cas d'impact au sol sans détonation, on pourra prévoir un matériau de stérilisation du premier matériau.
  • Le matériau de stérilisation comprendra par exemple au moins un des matériaux suivants : éthylène diamine, diéthylène triamine. Ces matériaux sont liquides aux températures habituelles d'utilisation. Le matériau de stérilisation sera donc mis en place dans un boîtier spécifique (non représenté) qui permettra de l'isoler du premier matériau 3 et qui sera brisé lors du tir.
  • Ce boîtier spécifique pourra par exemple être interposé entre la bague 17 et l'empilement de conteneurs 8.
  • Avantageusement, et tel que représenté à la figure 5, le matériau de stérilisation 24 pourra être mis en place dans au moins un boîtier spécifique 25 qui sera fixé à l'empilement de conteneurs 8 renfermant le premier matériau 3. Ce boîtier 25 aura le même diamètre que les conteneurs 8 et il sera doté d'un bouchon 26 et d'un fond 27 analogue aux bouchons 14 et aux parois transversales ou fonds 13 des conteneurs 8 (et il portera éventuellement aussi filetage et taraudage pour le fixer aux conteneurs).
  • Le boîtier 25 peut ainsi se positionner à toute position axiale sur un empilement de conteneurs 8. On pourra par exemple le placer en tête de l'empilement, au voisinage de la bague 17. On pourra aussi le positionner comme représenté sur la figure 5 entre deux conteneurs 8.
  • Le boîtier 25 portera des orifices 28 qui seront fermés par un moyen d'obturation qui sera par exemple formé par la feuille 16 entourant l'empilement de conteneurs 8.
  • On pourra prévoir un ou plusieurs boîtiers 25 renfermant le matériau de stérilisation.
  • Il est nécessaire de prévoir une quantité de matériau de stérilisation qui est égale à environ 5% de la masse totale formée par le premier matériau et le matériau de stérilisation.
  • Cette quantité réduite pourra être répartie dans plusieurs boîtiers 25 dont la taille sera donc bien plus réduite que celle des conteneurs 8 renfermant le premier matériau 3.
  • Elle pourra alternativement être groupée dans un seul boîtier 25 de taille plus importante (mais inférieure à celle d'un conteneur 8.
  • Par ailleurs, les dimensions des conteneurs 8 seront définies en fonction des volumes relatifs recherchés pour le premier matériau 3 et le second matériau 4. Une configuration telle que représentée aux figures 1 et 2a correspond à un volume relatif qui est de sensiblement 20% pour le premier matériau 3 et de 80% pour le second matériau 4. La porosité du second matériau 4 est choisie de façon à représenter un volume suffisant pour accueillir le premier matériau. L'air contenu dans le second matériau 4 circulera au sein des blocs poreux et il finira par occuper le volume interne des conteneurs 8 après éjection du premier matériau. Pour faciliter la circulation du premier matériau 3, il pourra être prévu de réaliser un vide d'air partiel dans l'obus lors du montage.
  • Le fonctionnement de cet obus est le suivant.
  • Lors des phases de stockage de l'obus 1, les premier et second matériaux 3 et 4 sont isolés l'un de l'autre. L'obus 1 est donc complètement inerte et peut être transporté sans aucun danger.
  • Lors du tir, la vitesse de rotation importante communiquée par le tube rayé de l'arme à l'obus grâce à la ceinture 19 va évacuer radialement par l'effet de la force centrifuge le premier matériau 3, hors des conteneurs 8, au travers des orifices 15. Les efforts d'inertie centrifuge assureront la rupture de la feuille 16 pour chaque conteneur 8. Il suffira de définir l'épaisseur de la feuille 16 en fonction de la résistance mécanique souhaitée.
  • Par ailleurs, et si un tel matériau est prévu, les efforts d'inertie assureront l'éjection du matériau de stérilisation hors du ou des boîtiers 25.
  • Le niveau des efforts est suffisant pour assurer le mélange et la répartition de tous les composants liquides dans la matrice poreuse.
  • Une fois les feuilles 16 rompues, la diffusion du premier matériau 3 dans le deuxième matériau 4 se réalise au travers de la porosité de ce dernier. Les forces d'inertie centrifuge accélèrent cette diffusion. L'air évacué hors de la porosité se concentrera à l'intérieur des conteneurs 8 vidés.
  • Une fois les deux matériaux 3 et 4 mélangés, la composition formée par le mélange de ces deux matériaux est détonante. Le matériau de stérilisation éventuel 24 assure pendant une durée limitée un effet de sensibilisation du premier matériau 3.
  • Cette composition est initiée de façon classique par la fusée 6 de l'obus.
  • A titre d'exemple une composition associant 70% en masse de perchlorate de potassium et 30% en masse de nitrométhane a une vitesse de détonation de 6100 à 6200 m/s. Ce qui est du même ordre que le TNT (6900 m/s).
  • On notera que le matériau de stérilisation a également un effet sensibilisant pendant une durée d'au moins une heure. La stérilisation n'intervient qu'au-delà d'une durée supérieure à 3 heures en fonction de la quantité de matériau de stérilisation mis en oeuvre.
  • Lorsque la fusée 6 ne fonctionne pas et que l'obus se retrouve au sol, le chargement explosif finit par se trouver stérilisé. La durée de réaction entre le matériau de stérilisation et le premier matériau est compatible avec les besoins opérationnels.
  • Elle assurera la neutralisation du chargement explosif en cas de non détonation sur une cible. Les obus non explosés seront donc inertes et ne pourront pas être utilisés comme engins explosifs improvisés.
  • Diverses variantes sont possibles sans sortir du cadre de l'invention.
  • Il est possible, comme représenté à la figure 3, de disposer dans l'obus 1 au moins deux conteneurs 8 cylindriques de diamètres différents se succédant le long de l'axe de l'obus.
  • Selon le mode de réalisation représenté à la figure 3, il y a un premier empilement de trois conteneurs 81 de grands diamètres qui s'étend du culot 5 de l'obus 1 jusqu'à une zone médiane Z de l'obus, et il y a un deuxième empilement de trois conteneurs 82 de petits diamètres qui s'étend de la zone médiane Z de l'obus jusqu'à la bague 17.
  • Une première cale 11 maintient radialement le premier empilement. Une seconde cale 11 maintient radialement le deuxième empilement.
  • Les conteneurs 81 et 82 ont sensiblement la même structure que le conteneur décrit précédemment en référence à la figure 2b. Le conteneur 81 le plus en arrière s'engage dans une rainure 10 du culot 5. Le conteneur 82 de petit diamètre qui est le plus en arrière s'engage dans une rainure 20 qui est aménagée dans le couvercle 14 du conteneur de grand diamètre 81 sur lequel il est appliqué. Comme précédemment la bague 17 assure l'immobilisation axiale de l'empilement des conteneurs.
  • Ce mode de réalisation permet de prévoir un rapport volumique et massique différent pour le premier et le deuxième matériau. La configuration selon la figure 3 permet ainsi d'avoir un rapport de volume de 30% pour le premier matériau et de 70% pour le second matériau.
  • Il est également possible avec ce mode de réalisation de prévoir un ou plusieurs boitiers renfermant un matériau de stérilisation (non représentés sur la figure).
  • Le ou les conteneurs 8 pourront avoir une forme différente, par exemple tronconique. La figure 4a montre ainsi de façon schématique un empilement de conteneurs tronconiques 8, dont les diamètres sont progressivement croissants de l'arrière vers l'avant. Le conteneur de plus grand diamètre étant positionné par exemple contre le culot 5 de l'obus.
  • La figure 4b montre un autre mode de réalisation d'un conteneur unique 8 qui est destiné à s'étendre axialement sur toute la hauteur du deuxième matériau 4.
  • Ce conteneur est compartimenté et comporte des cloisons transversales 21 qui divisent le volume interne du conteneur 8 en plusieurs chambres 22. Afin de permettre la mise en place du premier matériau 3 dans le conteneur 8, chaque cloison 21 comporte un trou axial 23 faisant communiquer les chambres 22. Le conteneur est fermé par un bouchon 14 et il a un fond 13. Une feuille 16 enroulée autour du conteneur 8 obture les orifices 15.
  • Les cloisons 21 permettent de diminuer les gradients de pression entre la partie amont et la partie aval du conteneur 8. On réduit ainsi les efforts qui seraient transmis à la feuille 16 comme suite aux efforts d'inertie axiale.
  • Comme dans le mode de réalisation précédent, on évite ainsi une rupture des feuilles de façon dissymétrique et avant mise en rotation de l'obus. On évite un mélange prématuré du premier matériau avec le deuxième matériau uniquement au niveau de la partie arrière de l'obus et dans le tube de l'arme.
  • On a représenté ici des modes de réalisation de l'invention dans lesquels le moyen d'obturation des orifices est constitué par une feuille qui se perce lors du tir par l'effet des efforts centrifuge qui s'exercent sur le premier matériau.
  • Il est possible de définir un ou plusieurs conteneurs dans lesquels les orifices sont fermés par un moyen d'obturation de structure différente.
  • On pourra par exemple prévoir des bouchons fragmentables par les efforts centrifuges.
  • On pourra aussi réaliser un conteneur dont les orifices ne sont pas débouchants mais sont fermés par une partie amincie de la paroi tubulaire du conteneur. Ces parties amincies forment des zones de fragilisation de la paroi tubulaire du conteneur qui se rompront par l'effet des efforts centrifuges exercés lors du tir par le premier matériau.
  • Il est ainsi possible de prévoir de simples prédécoupes ou fragilisations de la paroi des conteneurs au niveau des orifices.
  • Ces modifications structurelles sont bien sûr possibles également pour définir le moyen d'obturation des orifices du ou des boîtiers 25 renfermant le matériau de stérilisation 24.
  • On a décrit un obus dans lequel il était prévu un moyen de stérilisation.
  • Il est bien entendu possible de définir un obus selon l'invention ne comportant pas de matériau de stérilisation.
  • Un tel obus bi composants aura cependant une sécurité de transport supérieure à celle des obus explosifs conventionnels car les matériaux qu'il renferme ne sont pas en eux même et de façon individuelle considérés comme des matériaux explosifs.

Claims (11)

  1. Obus d'artillerie (1) explosif bicomposants comprenant une enveloppe (2) renfermant au moins deux matériaux (3,4) non explosifs mais qui après mélange forment une composition explosive, obus comportant au moins un conteneur (8) solidaire de l'enveloppe (2) et disposé coaxialement à celle-ci, conteneur délimitant une cavité interne (12) renfermant un premier matériau (3) sous forme liquide ou gélifiée, conteneur (8) dont la paroi (8a) est percée d'une pluralité d'orifices (15) qui sont fermés par un moyen d'obturation (16), le ou les conteneurs (8) délimitant avec l'enveloppe (2) un espace annulaire (18) qui renferme un deuxième matériau (4) sous forme solide et poreuse, le moyen d'obturation (16) pouvant s'ouvrir lors du tir pour permettre la diffusion par effet centrifuge du premier matériau (3) dans le deuxième matériau (4) au travers de la porosité de ce dernier, obus caractérisé en ce qu'il comprend au moins un empilement de conteneurs (8) alignés axialement et liés les uns aux autres, chaque conteneur étant séparé de ses voisins par au moins une paroi transversale (13), ou bien en ce qu'il comprend un seul conteneur cylindrique (8) s'étendant axialement sur toute la hauteur du deuxième matériau (4), ce conteneur étant compartimenté et comportant des cloisons transversales divisant son volume interne en plusieurs chambres.
  2. Obus d'artillerie explosif selon la revendication 1, caractérisé en ce que le moyen d'obturation (16) est constitué par au moins une feuille solidaire de la paroi (8a), feuille susceptible de se rompre lors du tir pour laisser passer le premier matériau.
  3. Obus d'artillerie explosif selon une des revendications 1 ou 2, caractérisé en ce que le ou les conteneurs (8) sont de forme cylindrique.
  4. Obus d'artillerie explosif selon une des revendications 1 ou 2, caractérisé en ce que le ou les conteneurs (8) sont de forme tronconique.
  5. Obus d'artillerie explosif selon la revendication 3, caractérisé en ce qu'il comprend au moins deux conteneurs cylindriques (81,82) de diamètres différents se succédant le long de l'axe (9) de l'obus.
  6. Obus d'artillerie explosif selon une des revendications 1 à 5, caractérisé en ce que les conteneurs sont positionnés par rapport à l'enveloppe par au moins une cale radiale (11).
  7. Obus d'artillerie explosif selon une des revendications 1 à 6, caractérisé en ce que le second matériau (4) comprend au moins un oxydant, tel que le perchlorate de potassium, le perchlorate d'ammonium, le nitrate d'ammonium, ou le nitrate de potassium.
  8. Obus d'artillerie explosif selon la revendication 7, caractérisé en ce que le premier matériau (3) comprend au moins un hydrocarbure nitro aliphatique, tel que le nitrométhane ou le nitroéthane.
  9. Obus d'artillerie explosif selon la revendication 8, caractérisé en ce qu'il comprend au moins un matériau de stérilisation (24) du premier matériau (3).
  10. Obus d'artillerie explosif selon la revendication 9, caractérisé en ce que le matériau de stérilisation (24) comprend au moins un des matériaux suivants : éthylène diamine, diéthylène triamine.
  11. Obus d'artillerie explosif selon une des revendications 9 ou 10, caractérisé en ce que le matériau de stérilisation (24) est mis en place dans au moins un boîtier (25).
EP16157738.2A 2015-03-02 2016-02-26 Obus d'artillerie explosif bicomposants Active EP3064889B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1500434A FR3033401B1 (fr) 2015-03-02 2015-03-02 Obus d'artillerie explosif bicomposants

Publications (2)

Publication Number Publication Date
EP3064889A1 EP3064889A1 (fr) 2016-09-07
EP3064889B1 true EP3064889B1 (fr) 2017-11-29

Family

ID=53673987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16157738.2A Active EP3064889B1 (fr) 2015-03-02 2016-02-26 Obus d'artillerie explosif bicomposants

Country Status (5)

Country Link
EP (1) EP3064889B1 (fr)
ES (1) ES2657804T3 (fr)
FR (1) FR3033401B1 (fr)
NO (1) NO3064889T3 (fr)
PT (1) PT3064889T (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472743A (zh) * 2020-04-14 2020-07-31 西安闪光能源科技有限公司 一种用于产生可控冲击波的复合型含能棒及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR994041A (fr) 1944-12-11 1951-11-09 Controles Ind Soc Et Perfectionnements apportés aux engins à explosif constitué par un mélange d'au moins deux corps mis en contact seulement au moment de l'usage
US3718513A (en) * 1971-01-25 1973-02-27 Us Army Mine sterilization by means of a deliquescent additive
US3980510A (en) 1974-10-29 1976-09-14 Imperial Chemical Industries Limited Nitroparaffin explosive composition containing hydrazine and diethylenetriamine
US4253889A (en) 1978-11-29 1981-03-03 Maes Michel E Two-component explosive composition
US5226986A (en) * 1991-11-12 1993-07-13 Hansen Gary L Formulation of multi-component explosives
SE532521C2 (sv) * 2008-06-11 2010-02-16 Bae Systems Bofors Ab Verkansanordning för graderad sprängverkan och förfarande därför
SE0802193L (sv) * 2008-10-14 2009-10-13 Bae Systems Bofors Ab Verkansanordning för olika verkanseffekter och förfarande därför

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3064889A1 (fr) 2016-09-07
FR3033401B1 (fr) 2017-08-25
FR3033401A1 (fr) 2016-09-09
ES2657804T3 (es) 2018-03-06
PT3064889T (pt) 2018-01-09
NO3064889T3 (fr) 2018-04-28

Similar Documents

Publication Publication Date Title
EP2923171B1 (fr) Projectile gyrostabilise projetant une charge utile
CA2071148C (fr) Element peu vulnerable de munition explosive comportant un chargement explosif bi-composition et procede d'obtention d'un effet d'eclats
EP3102906B1 (fr) Charge creuse et application pour la séparation de deux étages d'un engin aéronautique ou sa neutralisation
US11015907B2 (en) Method and arrangement for modifying a separable projectile
EP0467774B1 (fr) Projectile à effet destructif explosant par impact
FR2534369A1 (fr) Projectile explosif perforant encartouche
FR2599134A1 (fr) Tete militaire pour engin
EP3064889B1 (fr) Obus d'artillerie explosif bicomposants
EP2791616B1 (fr) Munition, chargement pour une telle munition et procédé de fabrication d'une telle munition
FR2878320A1 (fr) Munition ou composant de munition comprenant un materiau energetique structural
EP0477090B1 (fr) Système d'amorçage pour explosifs peu sensibles
EP3663703B1 (fr) Tête militaire perforante
EP1521053B1 (fr) Munition anti bunker
FR2668146A1 (fr) Element peu vulnerable de munition explosive comportant un chargement explosif multi-composition et procede d'obtention d'un effet de souffle et/ou de bulles.
FR2820817A1 (fr) Projectile
EP0323788B1 (fr) Projectile comprenent des sous-munitions
EP0395520A1 (fr) Projectile porteur muni d'un dispositif d'éjection pour des sous-munitions
CA2066139A1 (fr) Element peu vulnerable de munition explosive comportant un generateur bi-explosifs d'ondes et procede de mise en detonation d'un explosif composite peu sensible
FR2998270A1 (fr) Objet pour une mission dans l'espace
EP0663376B1 (fr) Composition incendiaire et projectile incendiaire dispersant une telle composition
FR2930985A1 (fr) "munition ou projectile a effet cinetique controle"
FR2674620A1 (fr) Dispositif explosif, notamment pour bombes.
EP2244050B1 (fr) Dispositif d'amorçage d'un chargement explosif
FR2992409A1 (fr) Munition non letale a portee accrue
FR2940683A1 (fr) Tete militaire projetant des barreaux.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170307

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 950781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016000916

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3064889

Country of ref document: PT

Date of ref document: 20180109

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20171228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2657804

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180306

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 950781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016000916

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180830

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240123

Year of fee payment: 9

Ref country code: DE

Payment date: 20240123

Year of fee payment: 9

Ref country code: GB

Payment date: 20240123

Year of fee payment: 9

Ref country code: CH

Payment date: 20240301

Year of fee payment: 9

Ref country code: PT

Payment date: 20240124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240123

Year of fee payment: 9

Ref country code: NO

Payment date: 20240125

Year of fee payment: 9

Ref country code: IT

Payment date: 20240123

Year of fee payment: 9

Ref country code: FR

Payment date: 20240123

Year of fee payment: 9

Ref country code: BE

Payment date: 20240123

Year of fee payment: 9