EP3049504A1 - Composite luminescent comprenant un polymere et un luminophore et utilisation de ce composite dans une cellule photovoltaique - Google Patents

Composite luminescent comprenant un polymere et un luminophore et utilisation de ce composite dans une cellule photovoltaique

Info

Publication number
EP3049504A1
EP3049504A1 EP14772370.4A EP14772370A EP3049504A1 EP 3049504 A1 EP3049504 A1 EP 3049504A1 EP 14772370 A EP14772370 A EP 14772370A EP 3049504 A1 EP3049504 A1 EP 3049504A1
Authority
EP
European Patent Office
Prior art keywords
particles
composite according
aluminate
composite
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP14772370.4A
Other languages
German (de)
English (en)
Inventor
Valérie BUISSETTE
Thierry Le Mercier
Franck Aurissergues
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP3049504A1 publication Critical patent/EP3049504A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7726Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a luminescent composite film comprising a polymer and at least one inorganic phosphor and the use of this composite film in a photovoltaic cell.
  • the object of the invention is to provide a luminescent composite film for truly improving the conversion efficiency of the cells.
  • the composite according to the invention thus makes it possible to increase the absolute efficiency of conversion of the light energy into electrical energy (r) of a photovoltaic cell.
  • the composite also serves to protect the cell against UV radiation.
  • Another characteristic of the composite in the form of a film is that the film must have sufficient mechanical strength to be rolled up and / or delivered to customers.
  • the luminescent composite characterized in that it comprises:
  • EVA ethylene vinyl acetate
  • polyethylene terephthalate polyethylene terephthalate
  • the trétrafluoroéthylène ethylene the ethylene trifluorochloroethylene
  • perfluorinated ethylene propylene polyvinyl butyral and polyurethane
  • At least one inorganic phosphor based on at least one element which is chosen from rare earths, zinc and manganese and which has the following characteristics:
  • an absorption less than or equal to 10% for a wavelength greater than 440 nm
  • a maximum emission in a range of wavelengths between 440 nm and 900 nm.
  • Fig. 1 represents the measured volume particle size distribution for the aionate powder of Example 4.
  • US 2013/0075892 describes light emitting layers based on quantum dots-type particles or quantum dots or nanocrystals dispersed in a polymer that can be EVA, PET, PE, PP, PC, PS, PVDF, etc.
  • Quantum boxes are particles whose size is critical for light to be emitted. The particle size ranges from 2 to 10 nm in general (in [0006] from US 2013/0075692: 2-50 nm).
  • the phosphor particles of the invention have a size that is greater than 20 nm, or even greater than 30 nm, or greater than 50 nm.
  • the composite film according to the invention does not include particles of the quantum dot or quantum dots type.
  • WO 2009/115435 discloses submicron particles of barium aluminate and magnesium which can be used in luminescent devices or as markers in semitransparent inks.
  • the particles can be incorporated into a polymer matrix such as PC, PM A or silicone. This application does not therefore describe the same polymers as those of the present application.
  • the mass fraction of particles may be between 20 and 99%, that is to say a proportion greater than that contemplated in the present invention.
  • the thickness of the layer comprising the particles dispersed in the polymer is between 30 nm and 10 ⁇ m. There is also no mention of the photovoltaic application.
  • FR 2792460 discloses a photovoltaic generator comprising a photovoltaic cell and a transparent matrix which may be PMMA.
  • WO 2012/032880 describes a composition useful for the manufacture of a photovoltaic module made of a transparent resin and a phosphor of formula (Bai. X. A M 'x) (y Mgi. B M') (A " z ⁇ ⁇ ⁇ ) ⁇ 0 Oi 7:... b Eu a Mn
  • the resulting resin preferably polyaddition
  • This is preferably an acrylic resin particles may have a size varying from 0 00Q1 (0 1 nm) at 100 ⁇ ⁇ >>>> ⁇ ⁇ >-> 1 ⁇ m
  • the reduced sizes of the particles are obtained using coarse grinding techniques (mill ball mill, jet mill. ) But these techniques do not allow to obtain aluminates having a d50 as in claim 1,
  • FR 2993409 discloses a transparent matrix containing a plurality of optically active components absorbing light energy in a first absorption wavelength and re-emitting energy in a second wavelength greater than the first wavelength.
  • the transparent matrix may be PMMA, PVC, silicone, EVA, PVDF.
  • Rare earth means the elements of the group consisting of tetrium and the elements of the Periodic Table with an atomic number included between 57 and 71.
  • the external quantum efficiency (QE) under an excitation wavelength ⁇ exc is evaluated by the ratio, expressed in percentage, between the integration of the photon emission of the phosphor of the composite of the invention, in the range emission 400 nm - 900 nm, and the number of emitted photons pa a reference phosphor, in the same range of emission wavelength, when excited at the wavelength k mc, measurement can be carried out after acquisition of the emission spectrum of the dried suspension on a Jobin-Yvon type spectrofluorometer.
  • 200 ml of boehmite sol ie 0.3 mol of Al
  • the salt solution 150 ml
  • the luminophore thus obtained constitutes the reference phosphor.
  • the particle size characteristics and in particular the particle sizes given in the present application are measured using a laser diffractometer which is a Malvern Mastersizer 2000 device or a Malvern Zeta sizer Nano ZS device. The Mastersizer is used for a d50> 200 nm and Zetasizer Nano ZS for a d50 ⁇ 200 nm. Distributions are in volume.
  • the average size is the average size (d50) by volume, measured on a suspension diluted in the water of the phosphor, without ultrasound and without dispersion additive.
  • An example of an illustrative granulometric curve is given in FIG. 1 for the aluminate of example 4.
  • the term "dispersion index" refers to the ratio;
  • d 84 is the particle diameter for which 84% of the particles have a diameter of less than 84 ;
  • - di 6 is the particle diameter for which 16% of the particles have a diameter less than d ";
  • d 50 is the average diameter of the particles.
  • Absorption means the percentage of light absorbed in the wavelength range between 400 nm and 780 nm, measured by diffuse reflection on a Visible UV spectrometer of Perkin Elmer Lambda 900 type.
  • this (also denoted P1) can be chosen from ethylene vinyl acetate (EVA), polyethylene terephthalate (PET), a fluorinated polymer, polyvinyl butyrai and polyurethane.
  • EVA designates a copolymer of ethylene and vinyl acetate.
  • the EVA may consist solely of these two monomers or be composed of these two monomers and at least one other comonomer chosen from vinyl esters such as, for example, vinyl propionate or vinyl benzoate, the (meth) ) C1-C6 alkyl acrylates such as, for example, methyl acrylate or butyl acrylate, or (meth) acrylic acids or their salts, such as, for example, methacrylic acid.
  • the EVA may be formed from 55 to 95% weight of ethylene, 5 to 40% by weight of vinyl acetate, 0 to 5% by weight of another comonomer.
  • the proportion of vinyl acetate may be between 30 and 35%.
  • the polymer is capable of being extruded into a film form.
  • the choice of the polymer is important also because it must make it possible to prepare a film that is able to be rolled up and delivered to the user customers.
  • the polymer is also important to obtain a good compromise of mechanical and optical properties necessary for the use of the composite in the intended application.
  • This polymer may be especially PET or EVA.
  • the polymer of the composite may be crosslinkable or not.
  • the phosphor that is dispersed in the composite must have a number of characteristics as to its absorption and emission properties. It must therefore have a higher external quantum efficiency than or equal to 40% for at least a length of excitation wavelength between 350 nm and 440 nm. This external quantum efficiency may be more particularly greater than 50% for at least one excitation wavelength between 350 nm and 440 nm.
  • the phosphor absorbs well in the UV and little or not in the visible (440-700 nm). Thus, it has an absorption less than or equal to 10% for a wavelength greater than 440 nm, preferably less than 5% and more particularly less than 3%.
  • the phosphors of the composite of the invention also have a specific particle size distribution. In fact, they consist of particles of which at least 50% have a diameter less than 1pm, this average size d50 may be at most 0.7 ⁇ , especially at most 0.5 pm and more particularly of at plus 0.3 ⁇ m. This average size d50 is at least 30 nm, more particularly at least 50 nm.
  • the phosphor may have a d50 of between 80 and 400 nm, preferably between 80 and 300 nm.
  • these particles may have a narrow particle size dispersion; more precisely their dispersion index may be at most 1, preferably at most 0.7 and even more preferably at most 0.5.
  • the luminophore of the composite of the invention is chosen from luminophores which contain at least one element chosen from rare earths, zinc and manganese. According to one embodiment, they contain at least one element chosen from rare earths, in particular the rare earths M 1 described below. aluminate doped with a rare earth and or manganese
  • the phosphor may be chosen from rare earth doped aluminates and / or manganese. These aluminates can be of the formulas AMgAl 10 Oi 7 : Eu + or AMgAI 10 Oi 7 : Eu 2+ , n 2+ , where A represents the elements Ba, Sr, Ca alone or in combination. Examples of these aluminates are given below.
  • aluminates that may be mentioned are those of formula a (Mi.DEdO) .b (gi MneO) .c (Al 2 O 3) in which:
  • M denotes Ba, Sr and Ca or combinations thereof; and a, b, c, d, and e verify relationships:
  • the phosphors may also be chosen from europium doped phosphates. These phosphates can be of formula ABF in which A represents the elements U, Na, K alone or in combination and B the elements Ba, Sr, Ca alone or in combination. Examples of this type of products are given below,
  • UBaP0 4 Eu 2+
  • the europium doped halophosphates may also be suitable in the context of the invention. These products may correspond to the formula A5 (PO 4 ) 3: Eu 2+ in which A represents the elements Ba, Sr, Ca alone or in combination, X being OH, F and Cl. Examples of these are given below.
  • halophosphate rare earth oxysulfides
  • the rare earth oxysulfides doped with europium can also be used as luminophores. These products have a formulation of Lna0 2 S: Eu 3+ type with Ln representing the elements La, Gd, Y, Lu, alone. An example of such an oxysulfide is given below.
  • La 2 O 2 S Eu 3+ vanadates rare earth doped europium
  • Vanadates of rare earth doped europium are also phosphors. They generally have a formula of the type LnV0 4 : Eu 3+ , Bi 3 with Ln representing the elements La, Gd, Y, Lu, alone or in combination. An example is given below.
  • Phosphors of formula LnPVO 4 may also be mentioned.
  • Ln designating a rare earth.
  • the compounds of zinc doped with manganese, zinc, silver and / or copper may also be suitable as phosphors. Examples of these compounds are given below.
  • Rare earth borates doped with cerium can also be used as phosphors. These borates are generally in a formula of the type LnB0 3 : Ce 3+ or LnB0 3 iCe 3+ , Tfa 3+ in which Ln represents the elements La, Gd, Y, Lu alone or in combination.
  • the phosphors mentioned above can advantageously be prepared by a process of the type described below.
  • This method comprises a first step in which a medium is formed comprising a colloidal suspension and / or salts of the constituent elements (other than oxygen) of the phosphor that is to be prepared.
  • a precipitation is then carried out by adding a basic compound to the medium previously formed.
  • the precipitate is then separated from the liquid medium, it is dried and then calcined in air at a temperature generally between 200 ° C and 900 ° C, preferably between 60CTC and 900 ° C.
  • a second calcination is then carried out under air or under a reducing atmosphere, which makes it possible to obtain a luminophore.
  • the phosphor is then wet milled to obtain the particle size necessary for the implementation of the present invention.
  • the phosphor used as a component of the composite of the invention in the preparation thereof is derived from the separation of the solid product from the liquid phase from a specific suspension. More specifically, it is a liquid phase suspension of particles of a rare earth borate, these particles being substantially monocrystalline and having an average size of between 100 and 400 nm.
  • the particles of the suspension may more particularly have a mean size of between 100 and 300 nm and a dispersion index of at most 0.7.
  • the constitutive rare earth borate belongs to the group including fyttrium, gadolinium. lanthanum lutetium and scandium L- wate may comprise '.- OI 1 "dopant, at least one element selected from muth antimoii and rare earths other than that of the constitutive borate, the rare earth dopant being more particularly cerium, terbium, europium, thalium, erbium and praseodymium,
  • the slurry is obtained by a process in which a rare earth borocarbonate or hydrogenoxy carbonate is calcined at a temperature sufficient to form a borate and to obtain a product having a specific surface area of at least 3 m 2 / g; the product resulting from the calcination is then wet-milled.
  • a rare earth borocarbonate or hydroxyborocarbonate is used which was obtained by reaction of a rare earth carbonate or hydroxycarbonate with boric acid, the starting reaction medium being in the form of an aqueous solution.
  • the phosphor used as a component of the composite of the invention in the preparation thereof is derived from the separation of the solid product from the liquid phase from a specific suspension. More specifically, it is a liquid phase suspension of a barium aluminate and magnesium consisting of substantially single-crystal particles of average size between 80 nm and 400 nm.
  • a characteristic of the constitutive particles of alumina according to this embodiment of the invention is their monocrystallinity. Indeed, essentially, that is to say for at least about 90% ss st and preferably for all of them, these particles consist of a single crystal.
  • This monocrystalline aspect of the particles can be demonstrated by the transmission electron microscopy (TEM) analysis technique.
  • TEM transmission electron microscopy
  • the monocrystalline appearance Particle size can also be demonstrated by comparing the average particle size measured by the laser diffraction technique mentioned above with the value of the crystal size or coherent domain measurement obtained from the diffraction analysis of the particles.
  • X-ray (XRD) X-ray
  • the Scherrer model as described in the book Theory and Technique of Radiocrystallography, A.Guinier, Dunod, Paris, 1956, is used for this measurement. It is specified here that the value measured in XRD corresponds to the size of the domain. coherent calculated from the diffraction line corresponding to the crystallographic plane of the main diffraction peak (eg crystallographic plane [102]). Both values: average laser diffraction size and DRX in fact have the same order of magnitude, that is to say they are in a ratio (measurement value of 50 measurement value XRD) less than 2, more particularly of at most 1, 5. Example 1 illustrates this.
  • the particles of the aluminate of the invention are in a well separated and individualized form. There are no or few particle agglomerates. This good individualization of the particles can be demonstrated by comparing the so measured by the laser diffraction technique and that measured from an image obtained by transmission electron microscopy ( TEM). It is possible to use a transmission electron microscope giving access to magnifications up to 800 000. The principle of the method consists in examining under microscope different regions (approximately 0) and in measuring the dimensions of 250 particles deposited on a support (for example after deposition on the support of a suspension of the particles and allowing the solvent to evaporate), considering these particles as spherical particles.
  • a particle is considered identifiable when at least half of its perimeter can be defined.
  • the MET value corresponds to the diameter of the circle correctly reproducing the circumference of the particle.
  • the identification of exploitable particles can be done using ImageJ software, Adobe Photoshop or Analysis. After measuring the particle sizes by the above method, we deduce a granulometric distribution cumi ⁇ s particles that are grouped into several size classes ranging from 0 at 500 nm, the width of each class being 10 nm. The number of particles in each class is the basic datum to represent the particle size distribution, The MET value is the median diameter such that 50% of the particles (in number) counted on MET plates have a diameter smaller than this value .
  • the barium aluminate of this embodiment can have the formula (I) below:
  • M 1 denotes a rare earth which may be more particularly gadolinium, terbium, iyftriutn, ytterbium, europium, neodymium and dysprosium;
  • M 2 denotes zinc, manganese or cobalt
  • M 1 can be even more particularly the europium.
  • M 2 may be more particularly manganese.
  • e 0.
  • d 0.1.
  • the aluminate may be that of Example 1.
  • the aluminate can be obtained by a multistage process.
  • Step 1 forming a liquid mixture comprising water of aluminum compounds and other components used in the composition of the aluminate.
  • the mixture is a solution, a suspension or a gel.
  • the starting compounds may be inorganic salts or hydroxides or carbonates.
  • salts mention may preferably be made of nitrates, such as for barium, aluminum, europium and magnesium.
  • aluminum sulfate or chloride or Itates it is also possible to use a soil or a colloidal dispersion of aluminum whose particle size can be between 1 and 300 nm.
  • Aluminum may be present in the form of boehmite.
  • step i dry the mixture obtained in the 1 st step.
  • the drying can preferably be done by atomization which has the advantage of controlling the size of the particles resulting from drying.
  • Spray drying involves spraying the mixture of the 1st step by means of a spray nozzle.
  • the person skilled in the art knows how to adapt the parameters of the spray drying (temperature of the mixture before spraying, flow of the mixture, characteristics of the spray nozzle, pressure in the spray chamber in which the mixture is sprayed, etc.). to obtain dry particles.
  • the atomization can be carried out using an apple-watering-type nozzle or other. It is also possible to use so-called turbine atomizers.
  • the gases thus perform a dual function: on the one hand, the spraying, that is to say the transformation into fine droplets, of the initial mixture, and on the other hand, the drying of the droplets obtained.
  • the extremely low residence time (for example less than 1/10 of a second or so) of the particles in the reactor has the advantage, among other things, of limiting any risk of overheating as a result of too long contact with the reactor. the hot agz.
  • This reactor consists of a combustion chamber and a contact chamber composed of a double cone or a truncated cone with the part superior diverges.
  • the combustion chamber opens into the contact chamber through a reduced passage.
  • the upper part of the combustion chamber is provided with an opening allowing the introduction of the fuel phase.
  • the combustion chamber comprises a coaxial inner cylinder, thus defining inside it a central zone and an annular peripheral zone, with perforations situated for the most part towards the upper part of the apparatus.
  • the chamber comprises at least six perforations distributed over at least one circle, but preferably on several circles spaced axially.
  • the total area of the perforations located in the lower part of the chamber may be very small, of the order of 1/10 to 1/100 of the total surface area of the perforations of said coaxial inner cylinder.
  • the perforations are usually circular and have a very small thickness.
  • the ratio of the diameter thereof to the thickness of the wall is at least 5, the minimum thickness of the wall being limited only by the mechanical requirements.
  • an angled pipe opens into the reduced passage, the end of which opens in the axis of the central zone.
  • the gas phase animated by a helical movement (hereinafter called helicoidal phase) is composed of a gas, generally air, introduced into an orifice made in the annular zone, preferably this orifice is situated in the lower part of said zone.
  • the gaseous phase is preferably introduced at low pressure into the aforementioned orifice, that is to say at a pressure of less than 1 bar and more particularly at a pressure comprised between between 0.2 and 0.5 bar above the pressure in the contact chamber.
  • the speed of this helicoidal phase is generally between 10 and 100 m / s and preferably between 30 and 60 m / s.
  • a fuel phase which may in particular be methane, is injected axially through the above-mentioned opening in the central zone at a speed of approximately 100 to 150 m / s.
  • the mixture to be treated in the form of liquid is then introduced through the aforementioned pipe.
  • the liquid is then fractionated into a multitude of drops, each of which is transported by a volume of gas and subjected to a movement creating a centrifugal effect.
  • the flow rate of the liquid is between 0.03 and 10 m / s.
  • the ratio of the intrinsic momentum of the helical phase to that of the liquid mixture must be high. In particular, it is at least 100 and preferably between 1000 and 10000.
  • the amounts of movement at the reduced passage are calculated as a function of the inlet flow rates of the gas and of the mixture to be treated, as well as the section of the passage. An increase in flow leads to a growth in the size of the drops. Under these conditions, the proper movement of the gases is imposed in its direction and its intensity to the drops of the mixture to be treated, separated from each other in the convergence zone of the two currents. The speed of the liquid mixture is further reduced to the minimum necessary to obtain a continuous flow.
  • the atomization is generally carried out with a solid exit temperature of between 100 ° C. and 300 ° C.
  • the calcination is at a temperature which is sufficiently high to obtain a crystalline phase. This temperature is at least 1100 ° C., more particularly at least 1200 ° C. It can be at most 1500 S C. It can be between 1200 and 1400X.
  • the calcination is carried out under air and / or under a reducing atmosphere, for example under hydrogen mixed in nitrogen or argon. The duration of this calcination is for example between 30 minutes and 10 hours. It is possible to perform calcination in air followed by calcination in a reducing atmosphere.
  • a preliminary calcination at the calcination described above that is to say between ia 2nd and 3rd stage.
  • This preliminary calcination is carried out at a temperature slightly lower than that given above, for example below 1000X, in particular between 900 and 1000 ° C.
  • step i consists in carrying out a wet grinding of the product resulting from the 3 rd step.
  • the wet grinding can be carried out in water or in a water / solvent mixture which is miscible with water.
  • the solvent may be an alcohol (eg methanol, ethanol) or a glycol (eg ethylene glycol) or a ketone (eg acetone).
  • a dispersant whose function is to contribute to the stability of the suspension can be used for grinding. Wet grinding is known to those skilled in the art.
  • aluminate is recovered in powder form by a liquid / solid separation, such as filtration, optionally followed by drying.
  • the suspension is started as obtained after wet grinding and the solid product is separated from the liquid phase using any known separation technique, for example by filtration.
  • the process for preparing the aluminate does not include a step of calcining a precursor of the phosphor with a flux such as MgF 2 as for the reference product described above. Indeed, in the presence of such a step, it is difficult to grind the aluminate so as to obtain the particles of the phosphor according to claim 1.
  • this is obtained by mixing the polymer and the phosphor for example by extrusion of such a mixture. It is possible to directly extrude the mixture of the polymer and the phosphor powder or to use a masterbatch.
  • the compound may also include additives customary in the field of solar cell films.
  • the composite may comprise one or more additives selected from antistatic additives, antioxidants, réticulanis ,,,,
  • the crosslinker can be for example one of those disclosed in US 2013/0328149, These additives are introduced during the extrusion.
  • the polymer of the composite film which has been described above (P1) is extruded and a masterbatch comprising the phosphor predispersed in a polymer (P2).
  • the polymer of the masterbatch P2 may be of the same type as the polymer (P1) of the composite film or different.
  • the two polymers P1 and P2 are preferably compatible with each other so as to form a homogeneous mixture.
  • P1 is an EVA
  • P2 it is possible to use a masterbatch based on a polymer P2 which is the same grade of EVA or another EVA or else a polymer compatible with P1, for example a polyethylene.
  • the masterbatch is itself prepared by extrusion in an extruder or using a kneader.
  • the phosphor particles are dispersed in spherical or substantially spherical polymer particles, which themselves are dispersed in the polymer of the composite. These particles are prepared by emulsion or suspension polymerization.
  • the polymeric particles are PMMA-based example as in Example 1 of US 2013/00328149
  • the proposed dispersion in US 2013/0328149 requires to adjust the nature of the polymeric particles to the polymer composite. It also requires an additional step of preparing the polymeric particles. In the context of the present invention, this technique thus described in US 2013/00328149 is preferably not used, so that the composite does not comprise such polymeric particles.
  • the invention also relates to a process for preparing a composite according to the invention in which one extrudes a polymer P1 and the phosphor or the polymer P1 and a masterbatch comprising the phosphor predispersed in a polymer P2.
  • the amount of phosphor in the polymer can vary between 0, 1% and 5%, especially between 0 0 and 2% and more particularly 0.5% to 1% by mas .--->the; together iuminophore-polymè ', ⁇ >.
  • the amount of phosphor is related to the phosphor-polymer assembly of the polymer composite film P1 of the masterbatch P2.
  • This composite may be in the form of a film whose average thickness may be between 25 ⁇ m and 800 ⁇ m and more particularly from 100 ⁇ m to 500 ⁇ m.
  • the thickness of the film is adjusted by adjusting the thickness of the lips.
  • the average thickness is measured at 25X on the film using a micrometer from 20 measurements taken at random over the entire surface of the film.
  • This film can be obtained by extrusion.
  • An extruder such as that described in the examples can be used.
  • composition according to the invention is also characterized by the fact that in the form of a film, the latter can have a total transmission (TT) of at least 85%, measured for a film thickness of 250 ⁇ m.
  • the film may also have a determined haze of at most 10%, measured for a film thickness of 250 ⁇ m.
  • the total transmission and the haze are determined with a Perkin Elmer Lambda 900 UV-Vis device under the conditions recalled later at a wavelength of 550 nm.
  • the photovoltaic cell comprises a luminescent composite as described above.
  • the invention may relate more specifically to conventional solar cells, crystalline silicon. It can also be applied to second-generation solar cells, called “thin films", which are, for example, cells based on amorphous silicon, cadmium telluride (CdTe) or indium, copper and gallium (CIGS) seienide. and their counterparts. Finally, it can be applied to third generation cells such as organic photovoltaic systems (OPV) and dye solar cells (DSSC).
  • OOV organic photovoltaic systems
  • DSSC dye solar cells
  • the composite generally in the form of a film, may be placed on the front face of the active elements of the cell, for example directly as an encapsulant of these elements or in place of the cell glass or in a layer deposited on top of the cell.
  • An active element of the cell is an element that converts light energy into electricity.
  • the composite film makes it possible to increase the absolute conversion efficiency of the light energy into electrical energy (r) of the active elements of the cell, once affixed to the photovoltaic cell. It makes it possible to convert the UV into visible radiation absorbed by the active elements, which increases the number of usable solar photons.
  • the film of the invention is such that the absolute efficiency of a cell to which is applied the composite film of the invention is greater than the absolute cell efficiency when applied is a composite film of the same thickness and consisting of the same polymer and of the same additives but not loaded with luminophore: efficiency r of the cell in the presence of a composite film affixed> efficiency of the cell in the presence of a composite film of the same thickness and consisting of the same polymer and the same additives but not charged with phosphor (r ref ).
  • the improvement (r - r ref) / r ref x 100 may be at least 5%, or even at least 7%.
  • the invention is therefore also related to the use of a composite film for increasing the conversion efficiency of light energy into electrical energy of a photovoltaic cell.
  • the invention also relates to a process for converting light energy into electrical energy using a photovoltaic cell of increasing using the composite according to the invention the number of solar photons usable by the elements assets for the conversion of light energy into electricity.
  • a phosphor is used as described in Example 1 of the application WO 2009/1 1 435 and of formula Bao.gEuo.iMgAlioO, 7 .
  • the product used here is the powder obtained after drying, in an oven and at 60 ° C., the suspension which was obtained at the end of the wet milling step described in this example 1. In the preparation of this luminophore, no flow like gF. has not been used.
  • the average product size measured by laser diffraction is 140 ⁇ dispersion o: 0.6.
  • the size of the coherent domain calculated from the diffraction line corresponding to the plane [102] is 101 nm.
  • the value of the d50 (laser) and that of the size of the coherent domain (DRX) have the same order of magnitude, which confirms the monocrystalline nature of the particles.
  • the phosphor has an absorption of at most 8% in the wavelength range between 500 nm and 750 nm. Its external quantum yield is 51% under an excitation wavelength ⁇ ex of 380 nm. Its maximum emission is 450 nm.
  • a composite film is prepared from a mixture of 696.5 g of Eastar 6763 PET copolyester resin and 3.5 g of phosphor previously described, which corresponds to a proportion by weight of 0.5%.
  • the formulation is premixed in a rotary mixer and then extruded in a Leistritz LSM 30/34 co-rotating twin-screw extruder with a diameter of 34 mm and a length / diameter ratio of 35.
  • the extrusion temperature is 250X.
  • the films are directly implemented at the extruder outlet.
  • a flat die is fitted on the convergent. This makes it possible to put the extruded material in the form of a ply 300 mm wide and 250 ⁇ m thick.
  • the filmmaker is composed of:
  • the films obtained are characterized in total (TT) and diffuse (TD) transmissions using a Perkin Elmer Lambda 900 UV-Vis spectrometer equipped with an integrating sphere.
  • PET - phosphor has a total transmission of 88.6% in the same wavelength range.
  • the transmission values given above show that the presence of the phosphor does not lead to a significant change in transparency.
  • the films mentioned above were then tested in OPV devices (organic photovoltaic).
  • the solar cell used for this test is of direct structure with anode on the front face.
  • a polymer film PEDOT-PSS Poly (3,4-ethylenedioxythiophene-polystyrene sulfonate) was deposited by spin-coating .
  • the film is composed of photoactive PCDTBT (poly [N-9'-heptadécanyI-2,7-carbazol ⁇ a] t-5 I 5 ⁇ 4 i 7-di-2-thienyl-2, I 1,, 3 ' benzothiadiazole), mixed with PC70BM (methyl [6,6] -phenyl-Cro-butanoate) in a solvent mixture chloroform: orthodichlorobenzene No heat treatment was carried out
  • cathode contacts are evaporated thermally under high vacuum through a mask which defines on each substrate 6 pixels of 0.045 cm 2 of active surface. Each pixel corresponds to a small OPV cell. Electrical tests
  • the J / V tests are carried out outside the glove box in a chamber in an inert atmosphere comprising a quartz window.
  • the PET - phosphor films are applied to this quartz window.
  • the PET-phosphor film measurements are made by comparison with the measurements made by applying the comparative PET film (uncharged phosphor).
  • the electrical tests are carried out under an illumination equivalent to 1 sun, through a standardized filter AM 1.5.
  • the intensity of the solar simulator is calibrated thanks to a silicon photovoltaic cell.
  • a voltage is applied to the cell (between -1 to 5V 1 5V) and the current produced is measured using a Keithley jrant generator which applies an electric field across a system and the Surer resulting electric current.
  • the comparative PET film is applied to the photovoltaic device and the absolute yield of the cell is recorded. Three measurements are made per sample, then the average value is used. The same measurements are then made with PET-phosphor film.
  • barium aluminate according to the invention has a compromise of properties.
  • the polymer used is the same as for example 1 and the film prepared has the same thickness of 250 .mu.m.
  • the absolute yield of the cell with the reference film (2.54%), that is to say with the composite film of the same thickness and consisting of the same polymer and the same additives but not loaded with phosphor.
  • Example 1 illustrates the invention and shows that the property compromise allows an improvement of 7.9% for a proportion of 0.5% even though, surprisingly, the QE yield is lower for the aluminate of this type. example for the aluminates of Example 2 or Example 4.
  • Examples 5 and 6 were made with EVA.
  • the composite film was obtained by extruding the EVA and the type of phosphor aluminate 0.5% The film thickness is 250 pm.
  • eicgn i uses the barium aluminate of Example 1 (0.5%)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Luminescent Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Le composite de l'invention comprend (a) un polymère choisi parmi l'éthylène vinyl acétate, le polyéthylène téréphtalate, l'éthylène trétrafluoroéthylène, l'éthylène trifluorochloroéthylène, l'éthylène propylène perfluoré, le polyvinyl butyral, le polyuréthane et les silicones; (b) un luminophore inorganique à base d'au moins un élément choisi parmi les terres rares, le zinc et le manganèse, qui présente un rendement quantique externe supérieur ou égal à 40% pour au moins une longueur d'onde d'excitation comprise entre 350 nm et 440 nm; une absorption inférieure ou égale à 10% pour une longueur d'onde supérieure à 440 nm; une taille moyenne de particule inférieure à 1 μm; et ce luminophore présente un maximum d'émission dans un domaine de longueurs d'onde comprises entre 440 nm et 900 nm.

Description

COMPOSITE LUMINESCENT COMPRENANT UN POLYMERE ET UN LUMINOPHORE ET UTILISATION DE CE COMPOSITE DANS UNE CELLULE PHOTOVOLTAÏQUE La présente demande revendique la priorité de la demande française antérieure FR 13 02230' déposée à ΙΊΝΡΙ le 25 septembre 2013 dont le contenu est entièrement incorporé par renvoi à la présente demande. En cas d'incohérence entre ia présente demande et la demande française antérieure affectant la clarté d'un terme, il est fait référence exclusivement à la présente demande,
La présente invention concerne un film composite luminescent comprenant un polymère et au moins un luminophore inorganique et l'utilisation de ce film composite dans une cellule photovoltaïque.
Le problème technique
Actuellement tes technologies photovoltaïques sont principalement fondées sur les technologies du silicium. Bien que la croissance du marché du photovoltaïque soit très élevée, un des principaux freins à l'essor de l'énergie photovoltaïque cependant est le rendement limité de conversion des cellules (de 15% à 17% pour les modules commerciaux en silicium cristallin), Ceci s'explique notamment par le fait que seule une partie du spectre solaire peut- être absorbée par le silicium et convertie en électricité. En effet, plus de 50% du spectre solaire se situe dans une gamme trop ou pas suffisamment énergétique pour être suffisamment absorbé.
On a proposé d'incorporer dans les cellules des luminophores qui peuvent absorber des photons dans la gamme de longueurs d'onde de 320 nm à 450 nm, qui est une gamme trop énergétique pour être absorbée efficacement par une cellule photovoltaïque, et qui peuvent émettre dans la gamme de 450 nm à 900 nm, de telle sorte que ces nouveaux photons visibles ou proches infrarouge soient absorbés par le semiconducteur, augmentant ainsi le nombre de photons disponibles pour la conversion en électricité . Toutefois l'incorporation de ces luminophores dans les éléments constitutifs des cellules, par exempl ymères disposés sur des couches de verre protégeant les éléments en silicium, peut diminuer la transmission de la lumière vers ces éléments en silicium et compromettre en fait l'amélioration de rendement recherchée.
L'objet de l'invention est de fournir un film composite luminescent permettant d'améliorer véritablement le rendement de conversion des cellules.
Le composite selon l'invention permet ainsi d'augmenter le rendement absolu de conversion de l'énergie lumineuse en énergie électrique (r) d'une cellule photovoltaïque. Le composite a également pour fonction de protéger la cellule contre les rayonnements UV.
Une autre caractéristique du composite sous forme de film est que le film doit pouvoir présenter une tenue mécanique suffisante pour pouvoir être enroulé et/ou être livré aux clients.
L'invention
Dans ce but, le composite luminescent, caractérisé en ce qu'il comprend :
- un polymère choisi parmi l'éthylène vinyl acétate (EVA), le polyéthylène téréphtalate, l'éthylène trétrafluoroéthylène, l'éthylène trifluorochloroéthylène, l'éthylène propylène perfluoré, le polyvinyl butyral et le polyuréthane;
- au moins un luminophore inorganique à base d'au moins un élément qui est choisi parmi les terres rares, le zinc et le manganèse et qui présente les caractéristiques suivantes :
« un rendement quantique externe supérieur ou égal à 40% pour au moins une longueur d'onde d'excitation comprise entre 350 nm et
440 nm;
une absorption inférieure ou égale à 10% pour une longueur d'onde supérieure à 440 nm;
une taille moyenne de particule d50 inférieure à 1 pm;
■ une taille moyenne de particule d50 d'au moins 30 nm ;
un maximum d'émission dans un domaine de longueurs d'onde comprises entre 440 nm et 900 nm.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer. Eiflyiâ
Fîg, 1 représente la distribution granulométrique en volume mesurée pour la poudre de l'aiuminate de l'exemple 4, L'art antérieur
US 2013/0075892 décrit des couches émétrices de lumière à base de particules de type « quantum dots » ou boîtes quantiques ou nanocristaux dispersées dans un polymère qui peut être EVA, PET, PE, PP, PC, PS, PVDF,... Les boîtes quantiques sont des particules dont la taille est critique pour qu'il y ait émission de lumière, La taille des particules varie de 2 à 10 nm en général (dans [0006] de US 2013/0075692 : 2-50 nm). Les particules de luminophore de l'invention ont une taille qui est supérieure à 20 nm, voire supérieure à 30 nm, ou supérieure à 50 nm. Le film composite selon l'invention ne comprend pas de particules de type boîtes quantiques ou « quantum dots ».
WO 2009/115435 décrit des particules submicroniques d'aluminate de baryum et de magnésium qui peuvent être utilisées dans des dispositifs luminescents ou comme marqueurs dans des encres semi-transparentes. Les particules peuvent être incorporées dans une matrice polymère comme du PC, du PM A ou un silicone. Cette demande ne décrit donc pas les mêmes polymères que ceux de la présente demande. La fraction massique en particules peut être comprise entre 20 et 99%, c'est-à-dire une proportion supérieure à celle envisagée dans la présente invention. L'épaisseur de la couche comprenant les particules dispersées dans le polymère est comprise entre 30 nm et 10 pm. Il n'est de plus pas fait mention de l'application photovoltaïque.
FR 2792460 décrit un générateur photovoltaïque comportant une cellule photovoltaïque et une matrice transparente qui peut être du PMMA.
WO 2012/032880 décrit une composition utile pour la fabrication d'un module photovoltaïque à base d'une résine transparente et une substance fluorescente de formule (Bai.x.a M'x) (Mgi y.b M" ) (A „z ΜΙΜζ)Ι 0 Oi7:Eua. Mnb La résine résulte de préférence d'une polyaddition. Il s'agit de préférence d'une résine acrylique. Les particules peuvent avoir une taille variant de 0 00Q1 (0 1 nm) à 100 μ · > IÎ u »férence de >· ' . ' ·τ> -> 1 pm. Les tailles réduites des particules sont obtenues à l'aide de techniques de broyage grossières (moulin à billes, broyeur à jet. ) mais ces techniques ne permettent pas d'obtenir des aluminates présentant un d50 tel que dans la revendication 1 ,
FR 2993409 décrit une matrice transparente contenant une pluralité de constituants optiquement actifs absorbant l'énergie lumineuse dans une première longueur d'onde d'absorption et réémettant l'énergie dans une seconde longueur d'onde supérieure à la première longueur d'onde. La matrice transparente peut être du PMMA, du PVC, du silicone, de l'EVA, du PVDF.
Définitions
On entend par terre rare les éléments du groupe constitué par i' ttrium et les éléments de la classification périodique de numéro atomique compris inclusivemenî entre 57 et 71.
Le rendement quantique externe (QE) sous une longueur d'onde d'excitation Aexc est évalué par le rapport, exprimé en pourcentage, entre l'intégration de l'émission de photons du luminophore du composite de l'invention, dans la gamme d'émission 400 nm - 900 nm, et le nombre de photons émis pa un luminophore de référence, dans la même gamme de longueurs d'onde d'émission, lorsqu'ils sont excités à la longueur d'onde kmc, La mesure peut être réalisée après acquisition du spectre d'émission de la suspension séchée sur un spectrofluorimètre de type Jobin-Yvon Le luminophore de référence (QE=100%) est un luminophore du type aluminate de baryum et de magnésium. Il s'agit du produit dont le précurseur est obtenu selon le procédé décrit dans l'exemple 1 de WO 2004/106263. Les matières premières utilisées sont un sol de boehmite (surface spécifique de 265 m2/g) à 0,157mol Al pour 100g de gel, un nitrate de baryum à 99,5%, un nitrate de magnésium à 99% et une solution de nitrate d'europium à 2,102 mol/l en Eu (d = 1 ,5621 g/ml). On fabrique 200 ml de sol de boehmite (soit 0,3 mole d'AI) Par ailleurs, la solution de sel (150 ml) contient 7,0585 g de Ba(NO3)2, 7.9260 g de Mg(NO3)2 et 2,2294 g de la solution de Eu(NO3)3 Le volume final est complété à 405 mL (soit 2% en Al) avec de l'eau (dissolution complète des sels). Le pH final après mélange du sol et de la solution de sels est de 3.5. Le mélange obtenu est atomisé dans un atomiseur de type APV® avec une température de 145X en sortie. La poudre séchée est calcinée à 9Q0 pendant 2 heures sous air. La poudre ainsi obtenue est blanche Le précurseur répond a la composition chimique Bao.sEuo.iMgAIioOu. Ce produit précurseur est ensuite mélangé avec du MgF2 â titre de fondant dans une proportion massique de 1 % en MgF2 (1 part de MgF2 pour 93 parts de précurseur). Ce mélange est ensuite calciné sous atmosphère Ar-H2 (5%vol) à 1550°C pendant 4h. Le produit calciné est lavé à 60°C dans l'acide nitrique dilué pendant 2h sous agitation puis il est filtré et séché â l'étuve à 100°C pendant 12h. Le luminophore ainsi obtenu constitue le luminophore de référence. Les caractéristiques granulométriques et notamment les tailles des particules qui sont données dans la présente demande sont mesurées à l'aide d'un diffractomètre laser qui est un appareil Malvern Mastersizer 2000 ou bien un appareil Malvern Zeta sizer Nano ZS. On utilise le Mastersizer pour un d50 > 200 nm et le Zetasizer Nano ZS pour un d50 < 200 nm. Les distributions sont en volume. La taille moyenne est la taille moyenne (d50) en volume, mesurée sur une suspension diluée dans l'eau du luminophore, sans ultrasons et sans additif de dispersion. Un exemple de courbe granulométrique illustrative est donné à la Figure 1 pour l'aluminate de l'exemple 4. On entend par indice de dispersion le rapport ;
σ/m = (dS4-d16)/2d50
dans lequel :
- d84 est le diamètre des particules pour lequel 84% des particules ont un diamètre inférieur à d84;
- di6 est le diamètre des particules pour lequel 16% des particules ont un diamètre inférieur à d«;
- d50 est le diamètre moyen des particules.
Par absorption, on entend le pourcentage de lumière absorbée dans la gamme de longueurs d'onde comprise entre 400 nm et 780 nm, mesurée par réflexion diffuse sur un spectromètre UV Visible de type Perkin Elmer Lambda 900.
Description détaillée de l'invention
S'agissant du polymère du composite luminescent, celui-ci (noté aussi P1 ) peut être choisi parmi l'éthylène vinyl acétate (EVA), le polyéthylène téréphtalate (PET), un polymère fluoré, le polyvinyl butyrai et le polyuréthane. On désigne par EVA un copolymère de l'éthylène et de l'acétate de vinyle. L'EVA peut n'être constitué que de ces deux monomères ou bien être constitué de ces deux monomères et d'au moins un autre comonomère choisi parmi les esters vinyliques comme par exemple le propionate de vinyle ou le benzoate de vinyle, les (méth)acrylates d'alkyle en C1-C6 tels que par exemple l'acrylate de méthyle ou l'acrylate de butyle, ou les acides (méth)acryliques ou leurs sels tels que par exemple l'acide méthacrylique. L'EVA peut être constitué de 55 à 95% poids d'éthylène, de 5 à 40% poids d'acétate de vinyle, de 0 à 5% poids d'un autre comonomère. La proportion d'acétate de vinyle peut être comprise entre 30 et 35%.
Le polymère est apte à être extrudé sous forme de film. Le choix du polymère est important aussi car il doit permettre de préparer un film qui soit apte à être enroulé et être livré aux clients utilisateurs. Le polymère est aussi important pour permettre d'obtenir un bon compromis de propriétés mécaniques et optiques nécessaires à l'utilisation du composite dans l'application visée.
Ce polymère peut être tout particulièrement le PET ou l'EVA. Le polymère du composite peut être réticulable ou non.
S'agissant du luminophore qui est dispersé dans le composite, celui-ci doit présenter un certain nombre de caractéristiques quant à ses propriétés d'absorption et d'émission. Il doit ainsi présenter un rendement quantique externe supérieur ou égal à 40% pour au moins une longueur d'onde d'excitation comprise entre 350 nm et 440 nm. Ce rendement quantique externe peut être plus particulièrement supérieur à 50% pour au moins une longueur d'onde d'excitation comprise entre 350 nm et 440 nm.
Le luminophore absorbe bien dans l'UV et peu ou pas dans le visible (440-700 nm). Ainsi, il présente une absorption inférieure ou égale à 10% pour une longueur d'onde supérieure à 440 nm, de préférence inférieure à 5% et plus particulièrement inférieur à 3%.
Il doit pouvoir aussi présenter un maximum d'émission dans un domaine de longueurs d'onde compris entre 440 nm et 900 nm. de préférence entre 500 nm et 900 nm. Les luminophores du composite de l'invention ont par ailleurs une distribution granulométrique spécifique. En effet, ils sont constitués de particules dont au moins 50% ont un diamètre inférieur à 1pm, Cette taille moyenne d50 peut être d'au plus 0,7 μιτι, notamment d'au plus 0,5 pm et plus particulièrement d'au plus 0,3 pm. Cette taille moyenne d50 est d'au moins 30 nm, plus particulièrement d'au moins 50 nm.
Le luminophore peut présenter un d50 compris entre 80 et 400 nm, de préférence entre 80 et 300 nm.
Par ailleurs, ces particules peuvent présenter une dispersion granulométrique resserrée; plus précisément leur indice de dispersion peut être d'au plus 1 , de préférence d'au plus 0,7 et encore plus préférentiellement d'au plus 0,5. Le luminophore du composite de l'invention est choisi parmi les luminophores qui contiennent au moins un élément choisi parmi les terres rares, le zinc et le manganèse. Selon un mode de réalisation, ils contiennent au moins un élément choisi parmi les terres rares, notamment les terres rares M1 décrites plus loin. aluminate dopé par une terre rare et ou le manganèse
Le luminophore peut être choisi parmi les aluminates dopés par une terre rare et/ou le manganèse. Ces aluminates peuvent être ceu de formules AMgAl10Oi7:Eu + ou AMgAI10Oi7:Eu2+, n2+, formules dans lesquelles A représente les éléments Ba, Sr, Ca seuls ou en combinaison. On donne ci- dessous des exemples de ces aluminates.
BaMgAI10O17:Eu2+
Ba gAI10O17:Eu2+, Mn2+
Comme autres exemples d'aluminates on peut mentionner ceux de formule a(Mi. dEUdO).b( gi MneO).c(Al203) dans laquelle :
M désigne les éléments Ba, Sr et Ca ou leurs combinaisons; et a, b, c, d et e vérifient les relations :
0,25 < a < 2; 0 < b .< 2; 3≤ c < 9; 0≤ û≤ 0,4 et 0 < e < 0.6.
(halo)phosphates .. aSÉm
Les luminophores peuvent aussi être choisis parmi les phosphates dopés par l'europium. Ces phosphates peuvent être ceu de formule ABF dans laquelle A représente tes éléments U, Na, K seuls ou en combinaison et B les éléments Ba, Sr, Ca seuls ou en combinaison. Des exemples de ce type de produits sont donnés ci-dessous,
LiCaP04:Eu2+
UBaP04:Eu2+ Les halophosphates dopés par l'europium peuvent aussi convenir dans le cadre de l'invention. Ces produits peuvent répondre à la formule A5(PO4)3 :Eu2+ dans laquelle A représente les éléments Ba, Sr, Ca seuls ou en combinaison, X étant OH, F et Cl. On donne ci-dessous des exemples de ces halophosphates. oxysulfures de terres rares
Les oxysulfures de terres rares dopés par l'europium peuvent aussi être utilisés comme luminophores. Ces produits ont une formulation de type Lna02S:Eu3+ avec Ln représentant les éléments La, Gd, Y, Lu, seuls. On donne ci-dessous un exemple d'un tel oxysulfure.
La2O2S:Eu3+ vanadates de terres rares dopés par l'europium
Les vanadates de terres rares dopés par l'europium constituent aussi des luminophores. Ils présentent généralement une formule de type LnV04: Eu3+,Bi3 avec Ln représentant les éléments La, Gd, Y, Lu, seuls ou en combinaison. Un exemple est donné ci-dessous.
YV04iEu3+ fBi3+ autres luminophores
On peut mentionner aussi les luminophores de formule LnPVO4. Ln désignant une terre rare.
Les composés au zinc dopés par le manganèse, le zinc, l'argent et/ou le cuivre peuvent aussi convenir comme luminophores. On donne ci-dessous des exemples de ces composés.
ZnS n2
ZnS :Ag,Cu
ZnO.Zn Borates de terres rares
Les borates de terres rares dopés par le cérium peuvent aussi être utilisés comme luminophores. Ces borates se présentent généralement sous une formule de type LnB03:Ce3+ ou LnB03iCe3+,Tfa3+ dans laquelle Ln représente les éléments La, Gd, Y, Lu seuls ou en combinaison.
Les luminophores mentionnés précédemment peuvent être avantageusement préparés par un procédé du type décrit ci-après. Ce procédé comprend une première étape dans laquelle on forme un milieu comprennent une suspension colloïdale et/ou des sels des éléments constitutifs (autres que l'oxygène) du luminophore que l'on cherche à préparer. On effectue ensuite une précipitation par addition d'un composé basique au milieu formé précédemment. Le précipité est ensuite séparé du milieu liquide, il est séché puis calciné sous air à une température comprise généralement entre 200°C et 900°C, de préférence entre 60CTC et 900°C. On effectue ensuite une seconde calcination sous air ou sous atmosphère réductrice ce qui permet d'obtenir un luminophore. On fait subir ensuite un broyage humide à ce luminophore pour obtenir la granulométrie nécessaire pour la mise en œuvre de la présente invention.
Selon un mode de réalisation particulier, le luminophore utilisé comme élément du composite de l'invention dans la préparation de celui-ci est issu de la séparation du produit solide de la phase liquide à partir d'une suspension spécifique. Plus précisément, il s'agit d'une suspension en phase liquide de particules d'un borate de terre rare, ces particules étant substantiellement monocristallines et présentant une taille moyenne comprise entre 100 et 400 nm.
Pour la description de ce luminophore on pourra se référer à la demande de brevet WO 2007/042653. On rappelle ci-dessous quelques-unes des caractéristiques de ce luminophore. Les particules de la suspension peuvent présenter plus particulièrement une taille moyenne comprise entre 100 et 300 nm ainsi qu'un indice de dispersion d'au plus 0,7. La terre rare constitutive du borate appartient au groupe comprenant fyttrium, le gadolinium. le lanthane le lutécium et le scandium L- wate peut comprend' .- OI 1 « de dopant, au moins un élément choisi parmi l'antimoii muth et les terres rares autres que celle constitutive du borate, la terre rare dopante pouvant être plus particulièrement le cérium, le terbium, l'europium, le thalium, l'erbium et te praséodyme,
La suspension est obtenue par un procédé dans lequel on calcine un borocarbonate ou un hyd roxybo rocarbon ate de terre rare à une température suffisante pour former un borate et pour obtenir un produit présentant une surface spécifique d'au moins 3 m2/g; on effectue ensuite un broyage humide du produit issu de la calcination. Pour ce procédé, on utilise un borocarbonate ou un hydroxyborocarbonate de terre rare qui a été obtenu par réaction d'un carbonate ou d'un hydroxycarbonate de terre rare avec de l'acide borique, le milieu réactionnel de départ se présentant sous forme d'une solution aqueuse. On peut utiliser aussi un borocarbonate ou un hydroxyborocarbonate de terre rare qui a été obtenu par un procédé dans lequel on mélange de l'acide borique et un sel de terre rare; on fait réagir le mélange ainsi obtenu avec un carbonate ou un bicarbonate; enfin on récupère le précipité ainsi obtenu. Pour obtenir une poudre de luminophore on effectue une séparation du produit solide de la phase liquide à partir de la suspension telle qu'obtenue à l'issue du broyage humide.
Selon un autre mode de réalisation, le luminophore utilisé comme élément du composite de l'invention dans la préparation de celui-ci est issu de la séparation du produit solide de la phase liquide à partir d'une suspension spécifique. Plus précisément, il s'agit d'une suspension en phase liquide d'un aluminate de baryum et de magnésium constitué de particules substantiellement monocristallines de taille moyenne comprise entre 80 nm et 400 nm.
Pour la description de ce luminophore on pourra se référer à la demande de brevet WO 2009/115435. On rappelle ci-dessous quelques-unes des caractéristiques de ce produit.
Une caractéristique des particules constitutives de l'alumînate selon ce mode de réalisation de l'invention est leur monocristallinitê. En effet, pour l'essentiel, c'est-à-dire pour environ au moins 90% d'er ss et, de préférence pour la totalité d'entre elles, ces particules sont constituées d'un seul cristal. Cet aspect monocristallin des particules peut être mis en évidence par la technique d'analyse par microscopie électronique par transmission (MET), Pour Ses suspensions dont les particules sont dans une gamme de taille d50 d'au plus 200 nm environ, l'aspect monocristallin des particules peut être mis aussi en évidence en comparant la taille moyenne des particules mesurée par la technique de diffraction laser mentionnée plus haut avec la valeur de la mesure de la taille du cristal ou du domaine cohérent obtenue à partir de l'analyse par diffraction des rayons X (DRX). On utilise pour cette mesure le modèle de Scherrer, tel que décrit dans l'ouvrage Théorie et technique de la radiocristallographie, A.Guinier, Dunod, Paris, 1956. Il est précisé ici que la valeur mesurée en DRX correspond à la taille du domaine cohérent calculé à partir de la raie de diffraction correspondant au plan cristallographique du pic principal de diffraction (par ex. plan cristallographique [102]). Les deux valeurs : taille moyenne diffraction laser et DRX présentent en effet le même ordre de grandeur, c'est-à-dire qu'elles sont dans un rapport (valeur mesure d50 valeur mesure DRX) inférieur à 2, plus particulièrement d'au plus 1 ,5. L'exemple 1 illustre cela. Comme conséquence de leur caractère monocristallin, les particules de l'aluminate de l'invention se présentent sous forme bien séparée et individualisée. Il n'y a pas ou peu d'agglomérats de particules Cette bonne individualisation des particules peut être mise en évidence en comparant le so mesuré par la technique de diffraction laser et celui mesuré à partir d'une image obtenue par microscopie électronique à transmission (MET). On peut utiliser un microscope électronique à transmission donnant accès des à des agrandissements allant jusqu'à 800 000. Le principe de la méthode consiste à examiner sous microscope différentes régions (environ 0) et à mesurer les dimensions de 250 particules déposées sur un support (par exemple après dépôt sur le support d'une suspension des particules et avoir laissé s'évaporer le solvant), en considérant ces particules comme des particules sphériques. Une particule est jugée comme identifiable lorsqu'au moins la moitié de son périmètre peut être défini. La valeur MET correspond au diamètre du cercle reproduisant correctement la circonférence de la particule. L'identification des particules exploitables peut se faire à l'aide du logiciel ImageJ, adobe Photoshop ou Analysis. Après avoir mesuré les tailles des particules par la méthode ci-dessus, on en déduit une répartition granulométnque cumi · ?s particules que l'on regroupe en plusieurs classes granulométriques allant de 0 à 500 nm, la largeur de chaque classe étant de 10 nm. Le nombre de particules dans chaque classe est la donnée de base pour représenter la répartition granulomêtrique en nombre, La valeur MET est le diamètre médian tel que 50% des particules (en nombre) comptées sur les clichés MET ont un diamètre plus petit que cette valeur. Là aussi, les valeurs obtenues par ces deux techniques présentent un rapport (valeur mesure «½ valeur mesure MET) dans le même ordre de grandeur et donc dans les proportions données dans le paragraphe précédent. L'aluminate de baryum de ce mode de réalisation peut répondre à la formule (I) ci-dessous :
dans laquelle :
M1 désigne une terre rare qui peut être plus particulièrement te gadolinium, le terbium, iyftriutn, l'ytterbium, l'europium, le néodyme et le dysprosium;
M2 désigne le zinc, le manganèse ou le cobalt;
a, b, c, d et e vérifient les relations :
0,25≤a≤2; 0 < b≤2; 3≤c < 9; 0≤d≤0,4 et 0≤e < 0,6.
M1 peut être encore plus particulièrement l'europium.
M2 peut être plus particulièrement le manganèse.
Plus particulièrement, l aiuminate de l'invention peut répondre à la formule (I) ci-dessus dans laquelle a = b = 1 et c = 5. Selon un autre mode de réalisation particulier, l'aluminate de l'invention peut répondre à la formule (I) ci-dessus dans laquelle a = b = 1 et c = 7. Selon un autre mode de réalisation, e=0. Selon un autre mode de réalisation, d=0,1. Selon un autre mode de réalisation, 0,09 < d < 0,11. L'aluminate peut être celui de l'exemple 1.
L'aluminate peut être obtenu par un procédé en plusieurs étapes.
1 ère étape : on forme un mélange liquide comportant dans l'eau des composés de l'aluminium et des autres éléments entrant dans la composition de l'aluminate. Le mélange est une solution, une suspension ou encore un gel. Les composés de départ peuvent être des sels inorganiques ou encore les hydroxydes ou les carbonates. Comme sels, on peut mentionner les nitrates de préférence, comme pour le baryum, l'aluminium, l'europium et le magnésium. On peut aussi utiliser le sulfate d'aluminium ou bien des chlorures ou d' Itates. Pour l'aluminium, on peut utiliser aussi un sol ou une dispersion colloïdale d'aluminium dont la taille des particules peut être comprise entre 1 et 300 nm. L'aluminium peut être présent sous forme de boehmite.
2™ étape i on sèche le mélange obtenu à la 1ère étape. Le séchage peut se faire de préférence par atomisation qui présente l'avantage de bien contrôler la taille des particules issus du séchage. Le séchage par atomisation consiste à pulvériser le mélange de la 1ère étape à l'aide d'une buse de pulvérisation. L'homme du métier sait comment adapter les paramètres du séchage par atomisation (température du mélange avant pulvérisation, débit du mélange, caractéristiques de la buse de pulvérisation, pression dans la chambre de pulvérisation dans laquelle le mélange est pulvérisé,...) de façon à obtenir des particules sèches. L'atomisation peut être réalisée à l'aide d'une buse de type pomme-arrosoir ou autre. On peut aussi utiliser des atomiseurs dits à turbine. On pourra se référer à l'ouvrage de M asters intitulé « spray-drying » 2ème éd, 1976, George Godwin éditions). On pourra utiliser un atomiseur de type APV. On peut aussi mettre en oeuvre l'opération d'atomisation-séchage au moyen d'un réacteur « flash » par exemple du type décrit dans les demandes de brevet français n° 2 257 326, 2 419 754 ou 2431 321. Ce type d'atomiseur peut être utilisé pour préparer des particules dont le d50 est faible. Dans ce cas, les gaz chauds sont animés d'un mouvement hélicoïdal et s'écoulent dans un puits-tourbillon. Le mélange à sécher est injecté suivant une trajectoire confondue avec l'axe de symétrie des trajectoires hélicoïdales desdrts gaz. ce qui permet de transférer parfaitement la quantité de mouvement des gaz au mélange à traiter. Les gaz assurent ainsi une double fonction : d'une part, la pulvérisation, c'est-à-dire la transformation en fines gouttelettes, du mélange initial, et d'autre part, le séchage des gouttelettes obtenues. Par ailleurs, le temps de séjour extrêmement faible (par exemple inférieur à 1/10 de seconde environ) des particules dans le réacteur présente pour avantage, entre autres, de limiter d'éventuels risques de surchauffe par suite d'un contact trop long avec les agz chauds.
On pourra se référer à la figure 1 de la demande de brevet français n° 2 431 321 Ce réacteur est constitué d'une chambre de combustion et d'une chambre de contact composée d'un bicône ou d'un cône tronqué dont la partie supérieure diverge. La chambre de combustion débouche dans la chambre de contact par un passage réduit. La partie supérieure de la chambre de combustion est munie d'une ouverture permettant l'introduction de la phase combustible. D'autre part la chambre de combustion comprend un cylindre interne coaxial, définissant ainsi à l'intérieur de celle-ci une zone centrale et une zone périphérique annulaire, présentant des perforations se situant pour la plupart vers la partie supérieure de l'appareil. La chambre comprend au minimum six perforations distribuées sur au moins un cercle, mais de préférence sur plusieurs cercles espacés axialement. La surface totale des perforations localisées dans la partie inférieure de la chambre peut être très faible, de l'ordre de 1/10 à 1/100 de la surface totale des perforations dudit cylindre interne coaxial.
Les perforations sont habituellement circulaires et présentent une épaisseur très faible. De préférence, le rapport du diamètre de celles-ci à l'épaisseur de la paroi est d'au moins 5, l'épaisseur minimale de la paroi étant seulement limitée par les impératifs mécaniques.
Enfin, un tuyau coudé débouche dans le passage réduit, dont l'extrémité s'ouvre dans l'axe de la zone centrale. La phase gazeuse animée d'un mouvement hélicoïdal (par la suite appelée phase hélicoïdale) est composée d'un gaz, généralement de l'air, introduit dans un orifice pratiqué dans la zone annulaire, de préférence cet orifice est situé dans la partie inférieure de ladite zone. Afin d'obtenir une phase hélicoïdale au niveau du passage réduit, la phase gazeuse est de préférence introduite à basse pression dans l'orifice précité, c'est-à-dire à une pression inférieure à 1 bar et plus particulièrement à une pression comprise entre 0,2 et 0,5 bar au-dessus de la pression existant dans la chambre de contact. La vitesse de cette phase hélicoïdale est généralement comprise entre 10 et 100 m/s et de préférence entre 30 et 60 m/s.
Par ailleurs, une phase combustible qui peut être notamment du méthane, est injectée axialement par l'ouverture précitée dans la zone centrale à une vitesse d'environ 100 à 150 m/s.
' a hase combustible est enflammée par tout moyen connu, dans la région où le combustible et la phase hélicoïdale sont en contact Par (a suite» le passage imposé des gaz dans le passage réduit se fait suivant un ensemble de trajectoires confondues avec des familles de génératrices d'un hyperboloïde. Ces génératrices reposent sur une famille de cercles, d'anneaux de petite taille localisés près et au-dessous du passage réduit, avant de diverger dans toutes tes directions.
On introduit ensuite te mélange à traiter sous forme de liquide par le tuyau précité. Le liquide est alors fractionné en une multitude de gouttes, chacune d'elle étant transportée par un volume de gaz et soumise à un mouvement créant un effet centrifuge. Habituellement, le débit du liquide est compris entre 0,03 et 10 m/s.
Le rapport entre la quantité de mouvement propre de la phase hélicoïdale et celle du mélange liquide doit être élevé. En particulier il est d'au moins 100 et de préférence compris entre 1000 et 10000. Les quantités de mouvement au niveau du passage réduit sont calculées en fonction des débits d'entrée du gaz et du mélange à traiter, ainsi que de la section dudit passage. Une augmentation des débits entraîne un grossissement de la taille des gouttes. Dans ces conditions, le mouvement propre des gaz est imposé dans sa direction et son intensité aux gouttes du mélange à traiter, séparées les unes des autres dans la zone de convergence des deux courants. La vitesse du mélange liquide est de plus réduite au minimum nécessaire pour obtenir un flot continu.
L'atomisation se fait généralement avec une température de sortie du solide comprise entre 100°C et 300°C.
3èm@ étape . consiS e à calciner le produit issu de la 2eme étape. La calcination se fart à une température qui est suffisamment élevée pour obtenir une phase cristalline. Cette température est d'au moins 1100°C, plus particulièrement d'au moins 1200°C. Elle peut être d au plus 1500SC. Elle peut être comprise entre 1200 et 1400X. La calcination se fait sous air et/ou sous atmosphère réductrice par exemple sous hydrogène en mélange dans l'azote ou l'argon. La durée de cette calcination est par exemple comprise entre 30 min et 10 heures. Il est possible de réaliser une calcination sous air suivie d'une calcination sous atmosphère réductrice. Dans certains cas» il peut être utile de réaliser une calcination préliminaire à la calcination décrite plus haut, c'est-à-dire entre ia 2ème et la 3ème étape. Cette calcination préliminaire est réaiisêe à une température un peu plus faible que celle donnée plus haut, par exempte en-dessous de 1000X, notamment entre 900 et 1000°C.
4ema étape i consiste à réaliser un broyage humide du produit issue de la 3ème étape. On peut réaliser le broyage humide dans l'eau ou dans un mélange eau/solvant miscible à l'eau. Le solvant peut être un alcool (par ex. méthanol, éthanol) ou un glycol (par ex. éthylène-glycol) ou une céîone (par ex. acétone).
On peut utiliser pour le broyage un dispersant dont la fonction est de contribuer à ia stabilité de la suspension. Le broyage humide est connu de l'homme du métier.
5ème étape : à partir de Sa suspension obtenue à ia 4ème étape, on récupère l'aluminate sous forme de poudre par une séparation liquide/solide, comme par exemple une filtration suivie éventuellement d'un séchage. Pour obtenir le luminophore sous forme d'une poudre, on part de la suspension telle qu'obtenue à l'issue du broyage humide et on sépare le produit solide de la phase liquide en utilisant toute technique de séparation connue par exemple par filtration. On pourra se reporter à l'exemple 1 pour plus de détails sur le procédé utilisé. En particulier, le procédé de préparation de l'aluminate ne comprend pas d'étape de calcination d'un précurseur du luminophore avec un flux tel que MgF2 comme pour le produit de référence décrit plus haut. En effet, en présence d'une telle étape, il est rendu difficile de broyer l'aluminate de façon à obtenir les particules du luminophore selon la revendication 1.
S'agissant dy composite, celui-ci est obtenu par mélange du polymère et du luminophore par exemple par extrusion d'un tel mélange. Il est possible d'extruder directement le mélange du polymère et de la poudre de luminophore ou bien d'utiliser un mélange maître.
Outre le !uminophni <- ^ - -omposite peut aussi comprendre des additifs usuels dans le domaine des films pour cellules solaires. Le composite peut comprendre un ou plusieurs additifs choisi(s) parmi les additifs antistatiques, antioxydants, réticulanis,,, , Le réticulant peut être par exemple l'un de ceux décrits dans US 2013/0328149, Ces additifs sont introduits lors de l'extrusion.
Dans le cas d'un mélange maître, on extrude te polymère du film composite qui a été décrit plus haut (P1) et un mélange maître comprenant le luminophore prédispersé dans un polymère (P2). Le polymère du mélange maître P2 peut être du même type que le polymère (P1) du film composite ou différent. Les deux polymères P1 et P2 sont de préférence compatibles entre eux de façon à former un mélange homogène. Ainsi, par exemple, dans le cas où P1 serait un EVA, on peut utiliser un mélange maître à base d'un polymère P2 qui est le même grade d EVA ou un autre EVA ou bien un polymère compatible avec P1 , comme par exemple un polyéthylène. Le mélange maître est préparé lui-même par extrusion dans une extrudeuse ou à l'aide d'une malaxeuse.
Dans US 2013/0328149, il est enseigné que les particules de luminophore sont dispersées dans des particules polymériques sphériques ou sensiblement sphériques, qui sont elles mêmes dispersées dans te polymère du composite. Ces particules sont préparées par polymérisation en émulsion ou en suspension. Les particules polymériques sont par exemple à base de PMMA comme dans l'exemple 1 de US 2013/00328149 La dispersion envisagée dans US 2013/0328149 nécessite d'adapter la nature des particules polymériques au polymère du composite. Elle nécessite de plus une étape supplémentaire de préparation des particules polymériques. Dans le cadre de la présente invention, on n'utilise de préférence pas cette technique ainsi décrite dans US 2013/00328149, de sorte que le composite ne comprend pas de telles particules polymériques.
L'invention concerne aussi un procédé de préparation d'un composite selon l'invention dans lequel on extrude un polymère P1 et le luminophore ou bien le polymère P1 et un mélange maître comprenant le luminophore prédispersé dans un polymère P2.
D'une manière générale, la quantité de luminophore dans le polymère peut varier entre 0, 1% et 5%, notamment entre 0 0 et 2% et plus particulièrement 0,5% et 1% en mas.--- >le ; ensemble iuminophore-polymè '■, Γ > . Lorsqu'on utilise un mélange maître, la quantité de luminophore est rapportée à l'ensemble luminophore-polymère du film composite P1 polymère du mélange maître P2.
Ce composite peut se présenter sous la forme d'un film dont l'épaisseur moyenne peut être comprise entre 25 pm et 800 μηι et plus particulièrement de 100 pm à 500 pm. On règle l'épaisseur du film en ajustant l'épaisseur des lèvres. L'épaisseur moyenne est mesurée à 25X sur le film à l'aide d'un micromètre à partir de 20 mesures prises au hasard sur toute la surface du film.
Ce film peut être obtenu par extrusion. On peut utiliser une extrudeuse telle que celle décrite dans les exemples.
La composition selon l'invention se caractérise aussi par le fait que mise sous forme d'un film, ce dernier peut présenter une transmission totale (TT) d'au moins 85%, mesurée pour une épaisseur de film de 250 pm. Le film peut aussi présenter aussi un haze déterminé d'au plus 10%, mesurée pour une épaisseur de film de 250 pm. La transmission totale et le haze sont déterminés avec un appareil UV-Vis Lambda 900 Perkin Elmer dans les conditions rappelées plus loin à une longueur d'onde de 550 nm.
S'agissant de la cellule photovoltaïque. celle-ci comprend un composite luminescent tel que décrit ci-dessus. L'invention peut concerner plus précisément les cellules solaires classiques, en silicium cristallin. Elle peut aussi s'appliquer aux cellules solaires de seconde génération, dites « films minces », que sont par exemple les cellules à base de silicium amorphe, de tellure de cadmium (CdTe) ou séiéniure d'indium, cuivre et gallium (CIGS) et leurs homologues. Enfin, elle peut s'appliquer aux cellules de troisième génération telles que les systèmes photovoltaïques organiques (OPV), et les cellules solaires à colorant (DSSC).
Le composite, généralement sous forme d'un film, peut être disposé en face avant des éléments actifs de la cellule pa exemple directement comme encapsulant de ces éléments ou à la place du verre de la cellule ou en couche déposée sur · - i¾»re. Un élément actif de la cellule est un élément qui convertit l'énergie lumineuse en électricité. Le film composite permet d'augmenter le rendement absolu de conversion l'énergie lumineuse en énergie électrique (r) des éléments actifs de la cellule, une fois apposé sur la cellule photovoltaïque. Il permet de convertir les UV en rayonnement visible absorbé par les éléments actifs, ce qui augmente le nombre de photons solaires utilisables. Plus précisément, le film selon l'invention est tel que le rendement absolu d'une cellule sur laquelle est appliqué le film composite selon l'invention est supérieur au rendement absolu de la cellule lorsqu'est appliqué un film composite de même épaisseur et constitué du même polymère et des mêmes additifs mais non chargé en luminophore : rendement r de la cellule en présence d'un film composite apposé > rendement de la cellule en présence d'un film composite de même épaisseur et constitué du même polymère et des mêmes additifs mais non chargé en luminophore (rréf). L'amélioration (r - rrèf) / rréf x 100 peut être d'au moins 5%, voire d'au moins 7%.
L'invention est donc aussi relative à l'utilisation d'un film composite pour augmenter le rendement de conversion de l'énergie lumineuse en énergie électrique d'une cellule photovoltaïque. L'invention est aussi relative à un procédé de conversion de l'énergie lumineuse en énergie électrique à l'aide d'une cellule photovoltaïque consistant à augmenter à l'aide du composite selon l'invention le nombre de photons solaires utilisables par les éléments actifs pour la conversion de l'énergie lumineuse en électricité.
Exemples
Exemple 1
i «j¾ Mop hore
On utilise dans cet exemple un luminophore tel que décrit dans l'exemple 1 de la demande WO 2009/1 1 435 et de formule Bao.gEuo.iMgAlioO,7. Le produit utilisé ici est la poudre obtenue après séchage, à l'étuve et à 6QX, de la suspension qui a été obtenue à l'issue de l'étape de broyage humide décrite dans cet exemple 1. Dans la préparation de ce luminophore, aucun flux comme gF . n'a été utilisé.
La taille moyenne du produit mesuré par diffraction laser est de 140 μη dispersion o : de 0,6. La taille du domaine cohérent calculé à partir de la raie de diffraction correspondant au plan [102] est de 101 nm. D'où une valeur mesure d507 valeur mesure DRX égale à 140/101 = 1 ,386. On constate que la valeur du d50 (laser) et celle de la taille du domaine cohérent (DRX) présentent le même ordre de grandeur, ce qui confirme le caractère monocristallin des particules.
Le luminophore présente une absorption d'au plus 8% dans la gamme de longueurs d'onde comprises entre 500 nm et 750 nm. Son rendement quantique externe est de 51 % sous une longueur d'onde d'excitation Âexc de 380 nm. Son maximum d'émission se situe à 450 nm.
Préparation d'un composite luminescent
Un film de composite est préparé à partir d'un mélange de 696,5g de résine de PET Copolyester Eastar 6763, et 3,5g de luminophore précédemment décrit, ce qui correspond à un proportion en poids de 0,5%.
La formulation est préalablement mélangée dans un mélangeur rotatif, puis elle est extrudée dans une extrudeuse bi-vis co-rotative de type Leistritz LSM 30/34, de diamètre 34 mm et de rapport longueur/diamètre de 35. La température d'extrusion est de 250X.
Les films sont directement mis en œuvre en sortie d'extrudeuse. Une filière plate est adaptée sur le convergeant. Cele-ci permet de mettre la matière extrudée sous la forme d'une nappe de 300 mm de largeur et de 250 pm d'épaisseur.
La filmeuse est composée de :
- deux rouleaux régulés à une température de 70°C.
- six rouleaux « support » qui guident le film vers un rouleau enrouleur sur lequel est stocké le produit fini.
Caractérisations optiques dans le visible
Les films obtenus sont caractérisés en transmissions totale (TT) et diffuse (TD) à l'aide d'un spectromètre UV-Vis Lambda 900 Perkin Elmer muni d'une sphère d'intégration. Les transmissions totale et diffuse sont mesurées sur une plage allant de 450 à 8'""' -· · < t normalisée entre 0 et; 100%, > " > s est déterminé par la formule ; haze {%) = TD TT x 100, Le film comparatif de PET sans luminophore possède une transmission totale de 90% sur toute la plage de longueurs d'onde, tandis que le film composite
PET - luminophore possède une transmission totale de 88,6% dans la même gamme de longueurs d'onde. Les valeurs de transmission données ci-dessus montrent que la présence du luminophore n'entraîne pas de modification significative de la transparence.
Cellule solaire organique à base de polymères conjugués
Les films mentionnés plus haut ont été testés ensuite dans des dispositifs OPV (organic photovoltaïque). La cellule solaire utilisée pour ce test est de structure directe avec anode en face avant. Sur un verre recouvert d'une couche conductrice transparente d'ITO (oxyde d'indium et d'étain), un film de polymère PEDOT-PSS (Poly(3,4-ethylènedioxythiophène - polystyrène sulfonate) a été déposé par spin-coating. Le film photoactif est composé de PCDTBT (poly[N- 9'-heptadécanyI-2,7-carbazole^a]t-5I5^4i7-dï-2-thÎenyI-2, I1,,3'- benzothiadiazole), mélangé à du PC70BM ([6,6]-phényl-Cro-butanoate de méthyle) dans un mélange de solvant chloroforme : orthodichlorobenzène Aucun traitement thermique n'a été réalisée
Enfin les contacts cathode sont évaporés thermiquement sous vide poussé à travers un masque qui définit sur chaque substrat 6 pixels de 0,045 cm2 de surface active. Chaque pixel correspond à une petite cellule OPV. Tests électriques
Les tests J/V sont réalisés en dehors de la boite à gant dans une chambre en atmosphère inerte comportant une fenêtre en quartz. Les films PET - luminophore sont appliqués sur cette fenêtre en quartz. Les mesures du film PET-Luminophore sont réalisées par comparaison avec les mesures faites en appliquant le film PET comparatif (non chargé en luminophore).
Les tests électriques sont réalisés sous une illumination équivalente à 1 soleil, à travers un filtre normalisé AM 1.5. L'intensité du simulateur solaire est calibrée grâce à une cellule photovoltaïque silicium. Un voltage est appliqué à la cellule (entre -1 ,5V to 1 5V) et le courant produit est mesuré à l'aide d'un générateur jrant Keithley qui permet d'appliquer un champ électrique aux bornes d'un système et surer le courant électrique résultant. Tout d'abord le film PET comparatif est appliqué au dispositif photovoltaïque et le rendement absolu de la cellule est enregistré. Trois mesures sont faites par échantillon, puis la valeur moyenne est retenue. Les mêmes mesures sont faites ensuite avec le film PET-Luminophore.
Le rendement absolu de la cellule avec film PET comparatif est r = 2,54%.
Le rendement absolu de la cellule avec film PET-luminophore est r = 2,74%, ce qui représente une augmentation relative de 7,9% du rendement de la cellule.
Exemples comparatifs
On a réalisé plusieurs essais permettant de montrer que l'aluminate de baryum selon l'invention présente un compromis de propriétés. Le polymère utilisé est le même que pour l'exemple 1 et le film préparé a la même épaisseur de 250 pm. exemple 2 : utilisation de l'aluminate de baryum (0,5%) présentant les caractéristiques suivantes : QE = 100% (sous kmc 380 nm) ; d50 = 6,5 pm. Cet aluminate a été obtenu en utilisant un flux de MgF2 à l'inverse de l'aluminate de l'exemple 1. Cet aluminate correspond au produit dit de référence dans la mesure de QE tel qu'il a été décrit en page exemple 3 : on utilise 1% de l'aluminate de référence de l'exemple 2 au lieu de 0,5% exemple 4 1 utilisation d'un l'aluminate de baryum (0,5%) identique à l'aluminate de référence à ia seule différence qu'il n'a pas été traité par calcination en présence de MgF2 : QE = 75% (sous Xexc 380 nm) ; d50 = 3,3 pm. Tableau 1
d50 : nm (diffractomètre laser)
QE : rendement quantique externe en % (sous longueur d'onde d'excitation βχο 380 nm)
TT : taux de transmission (%) - sensiblement constant sur toute la gamme de longueurs d'onde de la mesure
haze (%)
r : rendement absolu de la cellule déterminé dans les mêmes conditions que dans l'exemple 1 amélioration = (rendement absolu de la cellule - rréf) / r, x 100
fréf : rendement absolu de la cellule avec te film de référence (2,54%), c'est-à-dire avec le film composite de même épaisseur et constitué du même polymère et des mêmes additifs mais non chargé en luminophore.
On constate qu'il existe un compromis entre la taille des particules et le rendement QE, Afin de ne pas perdre de l'efficacité dans le domaine visible, il est nécessaire que le haze du film soit bas. Or, on s'aperçoit que si on diminue la taille moyenne des particules, le rendement QE a tendance à baisser.
L'exemple 1 illustre l'invention et montre que le compromis de propriétés permet une amélioration de 7,9% pour une proportion de 0,5% alors même que de façon surprenante, le rendement QE est plus faible pour l'aluminate de cet exemple que pour les aluminates de l'exemple 2 ou de l'exemple 4.
Dans le cas de l'exemple 3, on constate qu'augmenter la proportion à 1% ne permet pas d'augmenter l'amélioration significativement.
Exemples 5-6
Les exemples 5 et 6 ont été réalisés avec de l'EVA. On a utilisé le grade Elvax 150 de Dupont (32% acétate de vinyle, M FI = 43 g/10 min 190°C 2,16 kg).
Le film composite a été obtenu par extrusion de l'EVA et du luminophore de type aluminate à 0,5%, L'épaisseur du film est de 250 pm. eicgn i utilise l'aluminate de baryum de l'exemple 1 (0,5%) exemple 6 : utilisation d'un l'aluminate de baryum (0,5%) de même composition que l'aluminate de référence mais n'ayant pas fini par la traitement avec MgFa : QE = 75% (sous λβχε 380 nm) ; dSÛ = 3,3 nm. Tableau il
On constate là aussi que la transmission totale n'est pas affectée beaucoup par la présence des particules. Exemple 7
On a cherché à diminuer le d50 de l'aluminate de l'exemple 2 à l'aide de plusieurs techniques de broyage usuelles notamment le broyage à boulets ou le broyage humide mais sans pouvoir atteindre le d50 < 1 pm.

Claims

REVENDICATIONS
1- Composite luminescent, caractérisé en ce qu'il comprend :
- un polymère choisi parmi l'éthylène vinyl acétate (EVA), le polyéthylène téréphtalate, l'éthylène trétrafluoroéthylène, l'éthylène trifluorochloroéthylène, l'éthylène propylène perfluoré, le polyvinyl butyral et le polyuréthane;
- au moins un luminophore inorganique à base d'au moins un élément qui est choisi parmi les terres rares, le zinc et le manganèse et qui présente les caractéristiques suivantes :
■ un rendement quantique externe supérieur ou égal à 40% pour au moins une longueur d'onde d'excitation comprise entre 350 nm et 440 nm;
une absorption inférieure ou égale à 10% pour une longueur d'onde supérieure à 440 nm;
■ une taille moyenne de particules d50 inférieure à 1 pm;
une taille moyenne de particules d50 d'au moins 30 nm ;
• un maximum d'émission dans un domaine de longueurs d'onde comprises entre 440 nm et 900 nm. 2. Composite selon la revendication 1 caractérisé en ce que le luminophore présente une taille moyenne de particule d'au plus 0,4 pm. plus particulièrement d'au plus 0.3 pm.
3. Composite selon la revendication 1 ou 2 caractérisé en ce que les particules du luminophore ont un d50 compris entre 80 et 400 nm, de préférence entre
80 et 300 nm.
4. Composite selon la revendication 1 à 3, caractérisé en ce que le luminophore est choisi parmi les aluminates dopés par une terre rare et/ou le manganèse, les borophosphates dopés par l'europium; les halophosphates dopés par l'europium, les borates de terres rares dopés par le cérium, les oxysulfures de terres rares dopés par l'europium. les vanadates de terres rares dopés par l'europium. les composés au zinc dopés par le manganèse. 5. Composite selon l'une des revendications 1 à 4 caractérisé en ce qu'il ne comprend pas de particu > ,pe points quantiques
8. Composite selon l'une des revendications précédentes, caractérisé en ce que le luminophore est issu de ia séparation du produit solide de la phase liquide à partir d'une suspension d'un aluminate de baryum et de magnésium constitué de particules substantiellement monocristallines de taille moyenne comprise entre 80 nm et 400 nm.
7. Composite selon la revendication 8, caractérisé en ce que l'aSuminate de baryum et de magnésium est constitué de particules de taille moyenne comprise entre 100 nm et 200 nm.
8. Composite selon l'une des revendications précédentes, caractérisé en ce que le luminophore est un aluminate répondant à la formule (I) ;
a(Bai.dM1 dO).b(Mgi.eiv12 eO).c(AI203)
dans laquelle :
M1 désigne une terre rare qui peut être plus particulièrement le gadolinium, le terbium, i'yttrium, l'ytterbium, l'europium, le néodyme et le dysprosium;
M2 désigne le zinc, le manganèse ou le cobalt;
a, b, c, d et e vérifient les relations :
0,25 < a < 2; 0 < b < 2; 3 < c < 9; 0 < d < 0,4 et 0 < e < 0,6.
9- Composite selon la revendication 8, caractérisé en ce que l'aluminate répond à la formule (!) précitée dans laquelle a = b = 1 et c = 5; ou a = b = 1 et c = 7 ou encore a = 1 ; b = 2 et c = 8. 10. Composite selon la revendication 6 à 9 caractérisé en ce que les particules d'aluminate se présentent sous forme bien séparée et individualisée.
11. Composite selon la revendication 6 à 10 caractérisé en ce que les particules de l'aluminate présentent un rapport d50 / taille moyenne déterminée par DRX inférieur à 2.
12 Composite selon la revendication 6 à 11 caractérisé en ce que les particules de l'aluminate présentent un rapport dSQ / diamètre médian mesuré par MET inférieur à 2
Γ. 'V-mposite selon l'une des revendications - .< jcténsé en ce que le luminophore est issu de la séparation du produit solide de la phase liquid rtir d'une suspension de particules d'un borate de terre rare, ces particules étant substantieliement monocristallines et présentant une taille moyenne comprise entre 100 et 400 nm.
14. Composite selon la revendication 8 à 12 caractérisé en ce que le luminophore est un aluminate obtenu par un procédé comprenant les étapes suivantes :
• on forme un mélange liquide comportant dans les proportions voulues, dans l'eau les composés de l'aluminium et des autres éléments entrant dans ia composition de l'aluminate sous forme de sels inorganiques, hydroxydes ou carbonates, le mélange se présentant sous forme d'une solution, d'une suspension ou d'un gel ;
• le mélange de l'étape précédente est séché par atomisation ;
• le produit séché à l'étape précédente est calciné à une température suffisamment élevée pour obtenir une phase cristalline ;
• le produit calciné obtenu à l'étape précédente est soumis à un broyage humide de façon à conduire à l'aluminate en suspension ;
• l'aluminate est récupéré sous forme d'une poudre à partir de la suspension obtenue à l'étape précédente par une séparation liquide/solide.
15. Composite selon la revendication 11 caractérisé en ce que le procédé n'utilise pas une calcination en présence d'un flux.
16. Composite selon l'une des revendications précédentes se présentant sous forme d'un film d'épaisseur comprise entre 25 et 800 pm 17. Cellule photovoltaïque comprenant un composite luminescent selon l'une des revendications précédentes.
18. Utilisation d'un film composite selon la revendication 16 pour augmenter le rendement de conversion de l'énergie lumineuse en énergie électrique d'une cellule photovoltaïque.
19. Procédé de conversion de l'énergie lumineuse en énergie électrique à l'aide d'une cellule photovoltaïque consistant à augmenter à l'aide du composite selon la revendication 1 à 16 le nombre de photons solaires utilisables par les éléments actifs pour la conversion de l'énergie lumineuse en électricité
EP14772370.4A 2013-09-25 2014-09-25 Composite luminescent comprenant un polymere et un luminophore et utilisation de ce composite dans une cellule photovoltaique Pending EP3049504A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1302230 2013-09-25
PCT/EP2014/070477 WO2015044261A1 (fr) 2013-09-25 2014-09-25 Composite luminescent comprenant un polymere et un luminophore et utilisation de ce composite dans une cellule photovoltaique

Publications (1)

Publication Number Publication Date
EP3049504A1 true EP3049504A1 (fr) 2016-08-03

Family

ID=50097730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14772370.4A Pending EP3049504A1 (fr) 2013-09-25 2014-09-25 Composite luminescent comprenant un polymere et un luminophore et utilisation de ce composite dans une cellule photovoltaique

Country Status (7)

Country Link
US (1) US20160222289A1 (fr)
EP (1) EP3049504A1 (fr)
JP (1) JP6888955B2 (fr)
KR (1) KR102387247B1 (fr)
CN (1) CN105579552A (fr)
TW (1) TWI665284B (fr)
WO (1) WO2015044261A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061610A (ja) * 2015-09-25 2017-03-30 日立化成株式会社 波長変換材料、波長変換シート及びこれを用いた太陽電池モジュール
ES2887973T3 (es) * 2016-01-26 2021-12-29 Merck Patent Gmbh Composición, lámina de conversión de color y dispositivo diodo emisor de luz
CZ307197B6 (cs) * 2016-09-21 2018-03-14 Vysoká Škola Báňská - Technická Univerzita Ostrava Svítidlo se zdrojem budicího záření a luminiscenční vrstvou
CN107987010B (zh) * 2017-11-16 2020-01-21 合肥科天水性科技有限责任公司 一种含溴室温磷光水性聚氨酯及其制备方法
KR20190072320A (ko) * 2017-12-15 2019-06-25 삼성전자주식회사 광 가이드 부재를 포함하는 태양 전지 모듈 및 그 제조 방법
WO2021110999A1 (fr) 2019-12-06 2021-06-10 Solvay Sa Utilisation d'aluminates dans un film à effet de serre pour la croissance de plantes
WO2021111001A1 (fr) 2019-12-06 2021-06-10 Solvay Sa Aluminates et émetteurs rouges dans un film pour serre pour la croissance de plantes
CN114829541A (zh) * 2019-12-19 2022-07-29 罗地亚经营管理公司 用于处理植物的方法
WO2021122691A1 (fr) 2019-12-19 2021-06-24 Rhodia Operations Utilisation d'un luminophore inorganique pour augmenter le rendement de culture de maïs et de soja

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070295383A1 (en) * 2006-03-31 2007-12-27 Intematix Corporation Wavelength-converting phosphors for enhancing the efficiency of a photovoltaic device
US8348456B2 (en) * 2006-08-11 2013-01-08 Mitsubishi Chemical Corporation Illuminating device
FR2928912B1 (fr) * 2008-03-18 2014-09-05 Rhodia Operations Aluminate de baryum et de magnesium submicronique, procede de preparation et utilisation comme luminophore.
TWI456027B (zh) * 2010-03-03 2014-10-11 Hitachi Ltd 具有波長變換材料之封閉材薄片及使用此之太陽能電池
JP5676986B2 (ja) * 2010-09-10 2015-02-25 日立化成株式会社 波長変換型太陽電池モジュール
JP5476290B2 (ja) * 2010-12-28 2014-04-23 株式会社日立製作所 太陽電池モジュール
JP2012230968A (ja) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd 封止材シート及び太陽電池モジュール
GB201116517D0 (en) * 2011-09-23 2011-11-09 Nanoco Technologies Ltd Semiconductor nanoparticle based light emitting materials
CN102891203A (zh) * 2012-10-06 2013-01-23 保定天威薄膜光伏有限公司 荧光转换白色封装材料及使用该封装材料的太阳能电池
JP2013128153A (ja) * 2013-03-27 2013-06-27 Hitachi Ltd 封止材シートおよび太陽電池モジュール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015044261A1 *

Also Published As

Publication number Publication date
WO2015044261A1 (fr) 2015-04-02
JP6888955B2 (ja) 2021-06-18
US20160222289A1 (en) 2016-08-04
CN105579552A (zh) 2016-05-11
KR102387247B1 (ko) 2022-04-18
JP2016540056A (ja) 2016-12-22
KR20160060667A (ko) 2016-05-30
TW201527483A (zh) 2015-07-16
TWI665284B (zh) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2015044261A1 (fr) Composite luminescent comprenant un polymere et un luminophore et utilisation de ce composite dans une cellule photovoltaique
US20220098476A1 (en) Modified phosphors and compositions thereof
JP5370148B2 (ja) 波長変換フィルム、農業用フィルムおよび構造物
US20120060897A1 (en) Fluorescence collector and use thereof
WO2004044090A1 (fr) Materiau transformant la lumiere comprenant comme additif un silicate de baryum et de magnesium
JP2017525801A5 (fr)
CA2915128C (fr) Formulations d&#39;encres a base de nanoparticules
CA2723028C (fr) Phosphate de lanthane et d&#39;au moins une terre rare choisie parmi le cerium et le terbium sous forme d&#39;une suspension, procede de preparation et utilisation comme luminophore
EP2265690B1 (fr) Aluminate de baryum et de magnesium submicronique, procede de preparation et utilisation comme luminophore
FR2892113A1 (fr) Borate de terre rare submicronique, son procede de preparation et son utilisation comme luminophore
Guguła et al. Transparent CuInS2 PMMA Nanocomposites Luminescent in the Visible and NIR Region
JP2011116903A (ja) 複合粒子、樹脂組成物、波長変換層および光起電装置
EP3094702A1 (fr) Procédé de fabrication d&#39;un matériau composite contenant des molécules luminescentes destiné à rendre pérennes les caractéristiques éléctromagnétiques de ce matériau
Solodovnyk Design and In-Depth Optical Studies of Advanced Material Concepts for Luminescent Down-Shifting Coatings for Photovoltaics
DE102010028186A1 (de) Fluoreszenzkonversionssolarzelle Lacke
Zakhidov et al. Spectral characteristics of a carotenoid–porphyrin–fullerene supramolecule, a promising material for organic photovoltaic devices
MOCHAHARI Synthesis, Optical and Morphological Characterization of Nanostructured CdZnS Films
Pelayo et al. Silicon solar cell efficiency improvement employing the photoluminescent, downshifting effects of carbon quantum dots
FR3047993A1 (fr) Formulations d&#39;encres a base de nanoparticules (semi-)conductrices
FR2973393A1 (fr) Nanocomposite luminescent organique-inorganique a base de nanoparticules de zno et son procede de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHODIA OPERATIONS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHODIA OPERATIONS

RIC1 Information provided on ipc code assigned before grant

Ipc: H10K 30/87 20230101ALI20230611BHEP

Ipc: H01L 31/055 20140101ALI20230611BHEP

Ipc: C09K 11/63 20060101ALI20230611BHEP

Ipc: H01L 31/048 20140101ALI20230611BHEP

Ipc: C09K 11/64 20060101AFI20230611BHEP