EP3049231A1 - Method for using cutting remainders of fiber structures - Google Patents

Method for using cutting remainders of fiber structures

Info

Publication number
EP3049231A1
EP3049231A1 EP14766691.1A EP14766691A EP3049231A1 EP 3049231 A1 EP3049231 A1 EP 3049231A1 EP 14766691 A EP14766691 A EP 14766691A EP 3049231 A1 EP3049231 A1 EP 3049231A1
Authority
EP
European Patent Office
Prior art keywords
flakes
fibers
polymer melt
fiber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14766691.1A
Other languages
German (de)
French (fr)
Inventor
Matthias Scheibitz
Heiko Heß
Jens Cremer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP14766691.1A priority Critical patent/EP3049231A1/en
Publication of EP3049231A1 publication Critical patent/EP3049231A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/105Coating or impregnating independently of the moulding or shaping step of reinforcement of definite length with a matrix in solid form, e.g. powder, fibre or sheet form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/905Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0067Melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2701/00Use of unspecified macromolecular compounds for preformed parts, e.g. for inserts
    • B29K2701/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0081Tear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the invention relates to a method for using cut remnants of fiber structures.
  • Fiber structures are, for example, knitted fabrics, woven fabrics or scrims made of fibers, as used for the production of continuous fiber-reinforced composite materials.
  • fiber structures are usually placed in a mold and these are then poured out with a polymeric material, for example a thermoset or a thermoplastic.
  • a polymeric material for example a thermoset or a thermoplastic.
  • the fiber structures can be used, for example, in the form of a woven fabric, a knitted fabric or a fabric. In this case, it is possible to position a plurality of structures one above the other, which may be rotated relative to one another.
  • a method for using cut remnants of fibrous structures which comprises the following steps: a) cutting the cut remnants into flakes, b) admixing the flakes to a polymer melt, c) kneading the polymer melt with the flakes, so that the flakes in disintegrate individual fibers, d) forming the polymer melt with the mixed fibers to form a semifinished product.
  • the flakes By cutting the cut remnants to flakes, it is possible to mix the individual flakes in a simple manner in a polymer melt. Due to the comminution of the cut remnants into the flakes, the original connection of the fibers with one another is no longer sufficient to keep the flakes stable in shape, so that they disintegrate during mixing and kneading into individual fibers. In this way, the flakes can be used to make a fiber reinforced polymer that corresponds to a short fiber reinforced material.
  • the fiber structures from which the cut remnants originate are fabrics, scrims, knits, knits, braids, nonwovens or mats, which are usually made of continuous fibers. Any tissue that can be produced from continuous fibers can be used as the tissue. Also, any knit can be used.
  • the term "lies" is understood to mean that individual fibers are arranged parallel to one another. In this case, it is also possible that the fiber structure is made up of a plurality of layers, wherein the individual layers can be arranged parallel to one another or also rotated at an arbitrary angle relative to one another.
  • the individual parallel fibers are connected to one another, for example, by means of fibers or polymer threads.
  • the connection takes place for example in the form of a seam of the synthetic fibers or continuous fibers.
  • a synthetic fiber for example a polymer fiber, is used to produce the seam.
  • a seam comprises, for example, a lower thread running perpendicular to the fiber web and an upper thread which is stung through the fibers at predefined intervals and wraps around the lower thread.
  • the fiber structures used may contain fibers which have been pretreated with a size or untreated fibers. Furthermore, it is also possible that the fiber structures are already impregnated with a polymer, in particular a thermoplastic polymer. loading However, it is preferable if the fibers are untreated or pretreated with a maximum size.
  • the flakes be treated with a sizing agent after cutting the blank remainders into flakes and before blending into the polymer melt.
  • a sizing agent Any arbitrary size known to the person skilled in the art can be used here.
  • the treatment with a size has the advantage that the polymer adheres better to the fibers and thus improves overall the properties of the fiber-reinforced polymer produced by the process according to the invention.
  • Fiber flakes have the advantage over single fibers that they can more easily be mixed via a conventional conveyor into a machine for kneading the polymer melt with the flakes, for example an extruder or an injection molding machine.
  • the fibrous structures from which the cut remnants cut into the flakes can contain fibers of any known material.
  • Common materials used for fibers are, for example, glass fibers, carbon fibers, arabite fibers, mineral fibers or synthetic fibers.
  • the method according to the invention is particularly suitable for cut remnants of fiber structures which are made of carbon fibers for which the known recycling methods are not usefully applicable.
  • polymers containing carbon fibers for reinforcement or cutting residues of fiber structures made of carbon fibers are subjected to thermal utilization. However, this means a great waste of high quality material, as this is burned during thermal utilization and can not be used for its original purpose.
  • the method according to the invention opens up a possibility, in particular for carbon fibers, of making use of blank remnants for the production of reinforced polymers.
  • the cutting of the cut remnants into flakes can take place, for example, with knives, for example punching knives or roller knives, a stamped grid or a laser. Also, the use of a CNC cutter for cutting the cut remnants into flakes is possible. In particular, it is preferred to use stamped grid or laser.
  • the cutting into flakes is generally carried out by the same means with which the fiber structures are also brought into the mold for the production of continuous fiber-reinforced molded parts. Here, only the shape of the punched grid or the knife is to be adjusted so that are cut with these flakes.
  • the cutting of the cut remnants can take place simultaneously with the assembly of the fiber structure for the fiber-reinforced component to be produced. Alternatively, it is of course also possible to cut the cut remnants into the flakes in a separate second step. partners. If the cutting takes place simultaneously with the assembly, tools are used which allow a corresponding cut. For this purpose then appropriately designed punching or punching grid must be used. In this case, however, the blank is preferably cut with a CNC cutter.
  • any suitable cutting tool can be used, in particular, the above-mentioned cutting tools are suitable.
  • the above-mentioned cutting tools are suitable.
  • the number of layers that can be cut at the same time depends on the tool used. For reasons of efficiency, it is preferable to cut as many layers as possible at the same time, as long as this does not increase the cutting time, for example because of the necessary lower feed rates, as in the case of laser cutting.
  • the flakes to which the cut remnants of the fiber structures are cut preferably have an edge length of 10 to 50 mm, in particular in the range of 10 to 20 mm.
  • the edge length is also dependent on the machine used, in which the flakes are added to the polymer melt.
  • the individual flakes disintegrate into individual fibers, which are then mixed into the polymer melt.
  • the fibers partially break, so that the properties of the fiber-reinforced polymer thus produced correspond to the properties of a short-fiber-reinforced polymer.
  • the breakage of the fibers is due, in particular, to the brittleness of the carbon fibers and to the processing in a screw-type reciprocating machine in which the material is sheared due to the rotation of the screws.
  • screw-type piston machines for example injection molding machines or extruders, in particular extruders
  • the addition of the flakes takes place at a customary for the addition of fibers position.
  • the position for adding the fibers is usually located behind the feed zone in a region in which the polymer added to the screw machine is completely melted. If a polymer melt is already supplied to the screw-type piston machine, the point of addition for the flakes can be located immediately after the addition point of the polymer melt. Since a pellet machine usually polymer granules, ie a plastic is added in solid form, it is necessary to first melt the polymer before the flakes are added. The addition of the flakes in the polymer melt allows a more homogeneous mixing of the melt with the Flakes and thus a more uniform distribution of the resulting individual fibers in the polymer melt.
  • twin-screw extruders are single-screw extruders and multi-screw extruders. Particularly preferred is the use of twin-screw extruders, since they have a better mixing action than single-screw extruders. Furthermore, a twin-screw extruder makes it easier to meter in fillers and it is possible to operate the twin-screw extruder with a variable degree of filling, which also results in a good degassing performance and the product properties can be better adjusted. In addition, a twin-screw extruder, in contrast to the single-screw extruder, has very good self-cleaning properties.
  • the addition of the flakes into the screw-type piston machine takes place via an addition point, which preferably comprises a delivery spindle.
  • an addition point which preferably comprises a delivery spindle.
  • the feed screw it is possible to meter the flakes evenly into the polymer melt.
  • the feed screw makes it possible to adjust the amount of flakes added to the polymer melt.
  • a feed spindle to provide forced conveyance of the flakes so that a proportion of flakes and thus of fibers in the polymer melt of up to 50% by weight is possible.
  • the proportion of flakes and thus fibers after metering in the polymer melt in the range of 1 to 50 wt .-%, in particular in the range of 1 to 40 wt .-%.
  • the length of the fibers in the semifinished product results, on the one hand, from the shearing of the fibers in the screw-type piston machine and, on the other hand, from the dimensioning of the granulate, which is cut from the polymer melt.
  • the maximum fiber length corresponds to the maximum length expansion of a single granule. If longer fibers are desired, it is necessary to cut a flake with a larger edge length and on the other to produce a larger granules.
  • the granules are preferably cylindrical and the largest extent is usually the height of the cylinder. Alternatively, however, it is also possible to choose a larger diameter and a lower height. However, since the fibers are aligned substantially parallel in the axial direction to the axis of the holes in the perforated plate due to the promotion of the polymer melt, usually the axial extent of the granule gives the maximum fiber length.
  • the polymer to which the flakes are admixed may be a thermoplastic, thermoset or elastomeric polymer.
  • the polymer melt contains a thermoplastic plastic polymer, most preferably the polymer melt is a melt of a thermoplastic polymer.
  • the thermoplastic polymer is preferably selected from polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyoxymethylene (POM), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethersulfone (PES) or a mixture of at least two of these polymers.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • POM polyoxymethylene
  • PA polyamide
  • PP polypropylene
  • PE polyethylene
  • PES polyethersulfone
  • the semi-finished product produced by the process according to the invention is particularly preferably a granulate. In addition to granules, however, the semifinished product can also be in the form of plates or strands.
  • the semifinished product is a granulate containing fibers
  • this is produced, as is customary with granules, by pressing the polymer melt through a perforated plate and cutting it off with a knife into granules.
  • the polymer pressed through the perforated plate is cut directly on the plate. The cutting can take place in air, wherein the cut granules preferably falls into a cooling liquid and solidifies.
  • a cooling liquid is for example water.
  • plastic granulate can be formed into a finished part by extrusion or injection molding.
  • any injection molding machine or extrusion machine can be used, which can be used for the production of finished parts and is particularly suitable for the processing of fiber-reinforced plastics.
  • Molded parts which can be produced from the granules produced by the process according to the invention are all particularly geometrically demanding molded parts which can also be produced with commercially available fiber-reinforced thermoplastics, for example cylinder head covers, intake pipes for turbochargers, switch housings.
  • a commercially available twin-screw extruder with a dosing unit for carbon fiber flakes was converted.
  • a storage container with a spindle attached to the bottom was mounted centrally above the side feeder of the twin-screw extruder.
  • a 20 wt .-% carbon fiber reinforced polyamide 66 Gelegereste a continuous carbon fiber mat were first cut by means of a CNC cutter into flakes of size 20x20 mm. The flakes thus cut were then placed in the reservoir above the side feeder of the twin screw extruder and metered into the melt of the polyamide 66 gravimetrically via the side feeder. The material thus produced was granulated directly after the extruder.
  • specimens were produced by means of an injection molding machine in a further processing step.
  • the characteristic values measured on the test specimens and the characteristic values which were measured on specimens of a commercially available polyamide reinforced with 20% by weight short carbon fibers are shown in Table 1.
  • the characteristic values of the test specimens from the polyamide produced according to the invention are listed as an "example”, and the characteristic values of the test specimens from the commercially available polyamide are listed as a “comparison”.
  • Table 1 Characteristics of a fiber-reinforced polyamide 66 produced by the process according to the invention and of a commercially available fiber-reinforced polyamide 66

Abstract

The invention relates to a method for using cutting remainders of fiber structures, comprising the following steps: (a) cutting the cutting remainders to flakes, (b) admixing the flakes to a polymer melt, (c) kneading the polymer melt containing the flakes such that the flakes disintegrate into individual fibers, and (d) shaping the polymer melt containing the admixed fibers to a semi-finished product.

Description

Verfahren zur Verwendung von Zuschnittsresten von Faserstrukturen Beschreibung  Method for using cut remnants of fiber structures Description
Die Erfindung betrifft ein Verfahren zur Verwendung von Zuschnittsresten von Faserstrukturen. The invention relates to a method for using cut remnants of fiber structures.
Faserstrukturen sind zum Beispiel Gestricke, Gewebe oder Gelege aus Fasern, wie sie zur Herstellung von endlosfaserverstärkten Verbundwerkstoffen eingesetzt werden. Fiber structures are, for example, knitted fabrics, woven fabrics or scrims made of fibers, as used for the production of continuous fiber-reinforced composite materials.
Zur Herstellung von endlosfaserverstärkten Verbundwerkstoffen werden üblicherweise Faserstrukturen in eine Form eingelegt und diese anschließend mit einem polymeren Werkstoff, beispielsweise einem Duroplasten oder einem Thermoplasten ausgegossen. Die Faserstrukturen können dabei zum Beispiel in Form eines Gewebes, eines Gestricks oder eines Geleges eingesetzt werden. Hierbei ist es möglich, mehrere Strukturen übereinander zu positionieren, wobei diese gegeneinander verdreht sein können. For the production of continuous-fiber-reinforced composite materials, fiber structures are usually placed in a mold and these are then poured out with a polymeric material, for example a thermoset or a thermoplastic. The fiber structures can be used, for example, in the form of a woven fabric, a knitted fabric or a fabric. In this case, it is possible to position a plurality of structures one above the other, which may be rotated relative to one another.
Insbesondere wenn die Faserstrukturen in Form von Geweben, Gestricken oder als parallele Fasern, die mit Hilfsfäden miteinander verbunden sind, vorliegen, weisen diese eine Form auf, die nicht mit der Form des herzustellenden Bauteils übereinstimmt. Aus diesem Grund ist es notwendig, zunächst die benötigten Faserstrukturen für die Herstellung des Bauteils zuzuschneiden. Hierbei fallen Zuschnittsreste an, die für die Herstellung weiterer endlosfaserverstärkter Bauteile nicht mehr genutzt werden können. Die Zuschnittsreste werden daher üblicherweise einer Entsorgung zugeführt. Insbesondere Zuschnittsreste aus Kohlenstofffasern werden derzeit verbrannt, was jedoch aufgrund der hohen Preise der Kohlenstofffasern unerwünscht ist. In particular, when the fiber structures in the form of woven, knitted or parallel fibers, which are connected to each other with auxiliary threads, present, they have a shape that does not match the shape of the component to be produced. For this reason, it is necessary first to cut the required fiber structures for the production of the component. In this case, cutting residues accumulate, which can no longer be used for the production of further endless fiber-reinforced components. The cut remnants are therefore usually supplied for disposal. In particular, cut remnants of carbon fibers are currently burned, but this is undesirable because of the high price of the carbon fibers.
Neben der thermischen Verwertung ist aus DE-A 10 2009 023 529 bekannt, Faserverbundabfälle aus ungetränkten Carbonfasern zunächst in Teilstücke definierter Faserlänge zu schneiden, diese bis zu einer Faservereinzelung aufzuschließen und das so erhaltene Carbonfasergewirr zu einem Faservlies oder zu einem in einen Endlosfaden versponnen Faserflor umzustrukturieren. Hierbei zeigt sich insbesondere problematisch, dass eine weitgehend zerstörungsfreie Wiederverwertung durch Zerlegung in Einzelfasern durch repetierende Schlageinwirkung, zum Beispiel in einer Hammermühle, wie sie für Aramid- oder Kevlarfasern durchgeführt wird, für Kohlenstofffasern nicht angewendet werden kann. Dies liegt insbesondere an der Bruchempfindlichkeit der Kohlenstofffasern, die durch ein solches Verfahren zu nicht dosierfähigen oder sehr kurzen Fasern zerkleinert werden, so dass eine ausreichende Verstärkung von Polymerteilen mit diesen Fasern nicht mehr realisiert werden kann. Nachteilig des in DE-A 10 2009 023 529 beschriebenen Verfahrens ist insbesondere der große Aufwand, der getrieben werden muss, um ein dosierfähiges Material zu erhalten. Ein unmittelbarer Einsatz der geschnittenen Teilstücke ist nach den bekannten Verfahren nicht möglich. Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren bereitzustellen, welches eine Nutzung der Zuschnittsreste von Faserstrukturen ermöglicht, die die Nachteile aus dem Stand der Technik nicht aufweisen. Diese Aufgabe wird gelöst durch ein Verfahren zur Verwendung von Zuschnittsresten von Faserstrukturen, das folgende Schritte umfasst: a) Schneiden der Zuschnittsreste in Flakes, b) Zumischen der Flakes zu einer Polymerschmelze, c) Kneten der Polymerschmelze mit den Flakes, so dass die Flakes in einzelne Fasern zerfallen, d) Formen der Polymerschmelze mit den zugemischten Fasern zu einem Halbzeug. In addition to thermal utilization, it is known from DE-A 10 2009 023 529 to first cut fiber composite wastes from unconsumed carbon fibers into sections of defined fiber length, to break them up to a fiber singulation and to restructure the resulting carbon fiber tangle into a fiber fleece or fiber fleece spun into an endless thread , This is particularly problematic that a largely non-destructive recycling by disassembly into single fibers by repetitive impact impact, for example in a hammer mill, as is performed for aramid or Kevlar fibers, for carbon fibers can not be applied. This is due in particular to the fragility of the carbon fibers, which are comminuted by such a process to form non-dosing or very short fibers, so that a sufficient reinforcement of polymer parts with these fibers can no longer be realized. A disadvantage of the process described in DE-A 10 2009 023 529 is, in particular, the great expense that has to be incurred in order to obtain a meterable material. An immediate use of cut pieces is not possible by the known methods. The object of the present invention was therefore to provide a method which makes it possible to use the cut remnants of fiber structures which do not have the disadvantages of the prior art. This object is achieved by a method for using cut remnants of fibrous structures, which comprises the following steps: a) cutting the cut remnants into flakes, b) admixing the flakes to a polymer melt, c) kneading the polymer melt with the flakes, so that the flakes in disintegrate individual fibers, d) forming the polymer melt with the mixed fibers to form a semifinished product.
Durch das Zuschneiden der Zuschnittsreste zu Flakes ist es möglich, die einzelnen Flakes auf einfache Weise in eine Polymerschmelze einzumischen. Aufgrund der Zerkleinerung der Zuschnittsreste in die Flakes reicht die ursprüngliche Verbindung der Fasern untereinander nicht mehr aus, um die Flakes stabil in Form zu halten, so dass diese beim Einmischen und Kneten in einzelne Fasern zerfallen. Auf diese Weise können die Flakes genutzt werden, um ein faserverstärktes Polymer herzustellen, das einem kurzfaserverstärkten Material entspricht. By cutting the cut remnants to flakes, it is possible to mix the individual flakes in a simple manner in a polymer melt. Due to the comminution of the cut remnants into the flakes, the original connection of the fibers with one another is no longer sufficient to keep the flakes stable in shape, so that they disintegrate during mixing and kneading into individual fibers. In this way, the flakes can be used to make a fiber reinforced polymer that corresponds to a short fiber reinforced material.
In einer bevorzugten Ausführungsform sind die Faserstrukturen, von denen die Zuschnittsreste stammen, Gewebe, Gelege, Gestricke, Gewirke, Geflechte, Vliese oder Matten, die üblicherweise aus Endlosfasern gefertigt werden. Als Gewebe können dabei beliebige Gewebe, die sich aus Endlosfasern herstellen lassen, genutzt werden. Auch können beliebige Gestricke eingesetzt werden. Unter Gelegen wird im Rahmen der vorliegenden Erfindung verstanden, dass einzelne Fasern jeweils parallel zueinander angeordnet sind. Hierbei ist es auch möglich, dass die Faserstruktur aus mehreren Lagen aufgebaut ist, wobei die einzelnen Lagen parallel zueinander oder auch in einem beliebigen Winkel zueinander verdreht angeordnet sein können. In a preferred embodiment, the fiber structures from which the cut remnants originate are fabrics, scrims, knits, knits, braids, nonwovens or mats, which are usually made of continuous fibers. Any tissue that can be produced from continuous fibers can be used as the tissue. Also, any knit can be used. For the purposes of the present invention, the term "lies" is understood to mean that individual fibers are arranged parallel to one another. In this case, it is also possible that the fiber structure is made up of a plurality of layers, wherein the individual layers can be arranged parallel to one another or also rotated at an arbitrary angle relative to one another.
Wenn die Fasern in Form eines Geleges vorliegen, so sind die einzelnen parallelen Fasern beispielsweise mit Hilfe von Fasern oder Polymerfäden miteinander verbunden. Die Verbindung erfolgt dabei zum Beispiel in Form einer Naht aus den synthetischen Fasern oder Endlosfasern. Bevorzugt wird zur Herstellung der Naht eine synthetische Faser, beispielsweise eine Polymerfaser, eingesetzt. Eine Naht umfasst dabei beispielsweise einen senkrecht zum Fasergelege verlaufenden Unterfaden und einen Oberfaden, der in vordefinierten Abständen durch die Fasern gestochen wird und den Unterfaden umschlingt. When the fibers are in the form of a slip, the individual parallel fibers are connected to one another, for example, by means of fibers or polymer threads. The connection takes place for example in the form of a seam of the synthetic fibers or continuous fibers. Preferably, a synthetic fiber, for example a polymer fiber, is used to produce the seam. In this case, a seam comprises, for example, a lower thread running perpendicular to the fiber web and an upper thread which is stung through the fibers at predefined intervals and wraps around the lower thread.
Die eingesetzten Faserstrukturen können Fasern enthalten, die mit einer Schlichte vorbehandelt sind oder unbehandelte Fasern. Des Weiteren ist es auch möglich, dass die Faserstrukturen bereits mit einem Polymer, insbesondere einem thermoplastischen Polymer, getränkt sind. Be- vorzugt ist es jedoch, wenn die Fasern unbehandelt bzw. maximal mit einer Schlichte vorbehandelt sind. The fiber structures used may contain fibers which have been pretreated with a size or untreated fibers. Furthermore, it is also possible that the fiber structures are already impregnated with a polymer, in particular a thermoplastic polymer. loading However, it is preferable if the fibers are untreated or pretreated with a maximum size.
Insbesondere wenn die Fasern der Zuschnittsreste unbehandelt sind, ist es bevorzugt, wenn die Flakes nach dem Schneiden der Zuschnittsreste zu Flakes und vor dem Zumischen zur Polymerschmelze mit einer Schlichte behandelt werden. Hierbei kann jede beliebige, dem Fachmann bekannte Schlichte eingesetzt werden. Die Behandlung mit einer Schlichte hat den Vorteil, dass das Polymer besser an den Fasern haftet und so insgesamt die Eigenschaften des faserverstärkten Polymers, das durch das erfindungsgemäße Verfahren hergestellt wird, ver- bessert werden. Insbesondere wenn Einzelfasern eingesetzt werden, bzw. wenn die Flakes aus Fasergelegen geschnitten werden, ist es vorteilhaft, die Fasern vorzubehandeln. Hierbei ist es insbesondere bevorzugt, die Fasern mit einem Binder zu tränken, um diese in eine dosierfähige Form zu bringen. Als dosierfähige Form werden zum Beispiel Flakes verstanden. Faserflakes haben den Vorteil gegenüber Einzelfasern, dass sich diese leichter über eine herkömmliche Fördervorrichtung in eine Maschine zum Kneten der Polymerschmelze mit den Flakes, beispielsweise einen Extruder oder eine Spritzgießmaschine, einmischen lassen. In particular, when the fibers of the blank remnants are untreated, it is preferred that the flakes be treated with a sizing agent after cutting the blank remainders into flakes and before blending into the polymer melt. Any arbitrary size known to the person skilled in the art can be used here. The treatment with a size has the advantage that the polymer adheres better to the fibers and thus improves overall the properties of the fiber-reinforced polymer produced by the process according to the invention. In particular, if individual fibers are used, or if the flakes are cut from Fasergelegen, it is advantageous to pretreat the fibers. In this case, it is particularly preferred to impregnate the fibers with a binder in order to bring them into a meterable form. As dosable form, for example, flakes are understood. Fiber flakes have the advantage over single fibers that they can more easily be mixed via a conventional conveyor into a machine for kneading the polymer melt with the flakes, for example an extruder or an injection molding machine.
Die Faserstrukturen, aus denen die Zuschnittsreste stammen, die zu den Flakes geschnitten werden, können Fasern aus jedem beliebigen bekannten Material enthalten. Übliche Materialien, die für Fasern eingesetzt werden, sind zum Beispiel Glasfasern, Kohlenstofffasern, Ara- midfasern, Mineralfasern oder Kunststofffasern. Insbesondere geeignet ist das erfindungsgemäße Verfahren für Zuschnittsreste aus Faserstrukturen, die aus Kohlenstofffasern gefertigt sind für die die bekannten Recyclingverfahren nicht sinnvoll anwendbar sind. Derzeit werden Polymere, die Kohlenstofffasern zur Verstärkung enthalten bzw. Zuschnittsreste von Faserstrukturen aus Kohlenstofffasern einer thermischen Verwertung zugeführt. Dies bedeutet jedoch eine große Verschwendung von hochwertigem Material, da dieses bei der thermischen Verwertung verbrannt wird und nicht zum ursprünglichen Zweck eingesetzt werden kann. Durch das erfindungsgemäße Verfahren wird insbesondere für Kohlenstofffasern eine Möglich- keit eröffnet, Zuschnittsreste für die Herstellung von verstärkten Polymeren zu nutzen. The fibrous structures from which the cut remnants cut into the flakes can contain fibers of any known material. Common materials used for fibers are, for example, glass fibers, carbon fibers, arabite fibers, mineral fibers or synthetic fibers. The method according to the invention is particularly suitable for cut remnants of fiber structures which are made of carbon fibers for which the known recycling methods are not usefully applicable. At present, polymers containing carbon fibers for reinforcement or cutting residues of fiber structures made of carbon fibers are subjected to thermal utilization. However, this means a great waste of high quality material, as this is burned during thermal utilization and can not be used for its original purpose. The method according to the invention opens up a possibility, in particular for carbon fibers, of making use of blank remnants for the production of reinforced polymers.
Das Zuschneiden der Zuschnittsreste zu Flakes kann zum Beispiel mit Messern, beispielsweise Stanzmesser oder Walzenmesser, einem Stanzgitter oder einem Laser erfolgen. Auch ist der Einsatz eines CNC-Cutters für das Schneiden der Zuschnittsreste zu Flakes möglich. Insbe- sondere bevorzugt ist es, Stanzgitter oder Laser einzusetzen. Das Schneiden in Flakes erfolgt dabei im Allgemeinen mit den gleichen Mitteln, mit denen die Faserstrukturen auch in die Form zur Herstellung von endlosfaserverstärkten Formteilen gebracht werden. Hierbei ist lediglich die Form der beispielsweise Stanzgitter oder der Messer so anzupassen, dass mit diesen Flakes geschnitten werden. The cutting of the cut remnants into flakes can take place, for example, with knives, for example punching knives or roller knives, a stamped grid or a laser. Also, the use of a CNC cutter for cutting the cut remnants into flakes is possible. In particular, it is preferred to use stamped grid or laser. The cutting into flakes is generally carried out by the same means with which the fiber structures are also brought into the mold for the production of continuous fiber-reinforced molded parts. Here, only the shape of the punched grid or the knife is to be adjusted so that are cut with these flakes.
Das Zuschneiden der Zuschnittsreste kann gleichzeitig mit dem Konfektionieren der Faserstruktur für das herzustellende faserverstärkte Bauteil erfolgen. Alternativ ist es selbstverständlich auch möglich, die Zuschnittsreste in einem separaten zweiten Schritt zu den Flakes zu zerklei- nern. Wenn das Zuschneiden gleichzeitig mit dem Konfektionieren erfolgt, werden Werkzeuge eingesetzt, die einen entsprechenden Zuschnitt erlauben. Hierzu müssen dann entsprechend gestaltete Stanzmesser oder Stanzgitter eingesetzt werden. Bevorzugt in diesem Fall ist allerdings der Zuschnitt mit einem CNC-Cutter. The cutting of the cut remnants can take place simultaneously with the assembly of the fiber structure for the fiber-reinforced component to be produced. Alternatively, it is of course also possible to cut the cut remnants into the flakes in a separate second step. partners. If the cutting takes place simultaneously with the assembly, tools are used which allow a corresponding cut. For this purpose then appropriately designed punching or punching grid must be used. In this case, however, the blank is preferably cut with a CNC cutter.
Wenn die Zuschnittsreste in einem separaten Schritt zu Flakes zerkleinert werden, kann jedes beliebige geeignete Zuschnittswerkzeug eingesetzt werden, wobei sich insbesondere die vorstehend genannten Zuschnittswerkzeuge eignen. Bei einem Zuschnitt der Zuschnittsreste zu Flakes in einem separaten Schritt ist es möglich, die Zuschnittsreste in Einzellagen zu schnei- den oder alternativ mehrere Lagen an Zuschnittsresten übereinander zu schichten und zu Flakes zu schneiden. Die Anzahl der Schichten, die maximal gleichzeitig geschnitten werden können, ist abhängig vom eingesetzten Werkzeug. Aus Effizienzgründen ist es bevorzugt, so viele Lagen wie möglich gleichzeitig zu schneiden, solange hierdurch insgesamt die Zuschnittszeit, zum Beispiel wegen notwendiger kleinerer Vorschubgeschwindigkeiten wie beim Laser- schneiden, nicht erhöht wird. If the cut remnants are comminuted in a separate step to flakes, any suitable cutting tool can be used, in particular, the above-mentioned cutting tools are suitable. When cutting the blank remainders into flakes in a separate step, it is possible to cut the blank remainders in individual layers or, alternatively, to layer several layers on blank remainders one above the other and to cut them into flakes. The number of layers that can be cut at the same time depends on the tool used. For reasons of efficiency, it is preferable to cut as many layers as possible at the same time, as long as this does not increase the cutting time, for example because of the necessary lower feed rates, as in the case of laser cutting.
Die Flakes, zu denen die Zuschnittsreste der Faserstrukturen geschnitten werden, haben vorzugsweise eine Kantenlänge von 10 bis 50 mm, insbesondere im Bereich von 10 bis 20 mm. Die Kantenlänge ist dabei auch abhängig von der eingesetzten Maschine, in der die Flakes der Polymerschmelze zugemischt werden. The flakes to which the cut remnants of the fiber structures are cut preferably have an edge length of 10 to 50 mm, in particular in the range of 10 to 20 mm. The edge length is also dependent on the machine used, in which the flakes are added to the polymer melt.
Durch das Einmischen der Flakes in die Polymerschmelze zerfallen die einzelnen Flakes in Einzelfasern, die dann in die Polymerschmelze eingemischt werden. In Abhängigkeit von der Größe der eingesetzten Flakes und der Scherwirkung in der Vorrichtung zum Einmischen der Flakes brechen die Fasern teilweise, so dass die Eigenschaften des so hergestellten faserverstärkten Polymers den Eigenschaften eines kurzfaserverstärkten Polymers entsprechen. By mixing the flakes into the polymer melt, the individual flakes disintegrate into individual fibers, which are then mixed into the polymer melt. Depending on the size of the flakes used and the shearing action in the device for mixing in the flakes, the fibers partially break, so that the properties of the fiber-reinforced polymer thus produced correspond to the properties of a short-fiber-reinforced polymer.
Das Brechen der Fasern ist insbesondere der Sprödigkeit der Kohlenstofffasern und der Verarbeitung in einer Schneckenkolbenmaschine, in der aufgrund der Rotation der Schnecken das Material geschert wird, geschuldet. The breakage of the fibers is due, in particular, to the brittleness of the carbon fibers and to the processing in a screw-type reciprocating machine in which the material is sheared due to the rotation of the screws.
Zum Zumischen und Kneten der Flakes in die Polymerschmelze eignen sich insbesondere Schneckenkolbenmaschinen, beispielsweise Spritzgießmaschinen oder Extruder, insbesondere Extruder. Die Zugabe der Flakes erfolgt dabei an einer für die Zugabe von Fasern üblichen Po- sition. Die Position zur Zugabe der Fasern befindet sich dabei üblicherweise hinter der Einzugszone in einem Bereich, in dem das in die Schneckenkolbenmaschine zugegebene Polymer vollständig aufgeschmolzen ist. Wenn der Schneckenkolbenmaschine bereits eine Polymerschmelze zugeführt wird, so kann sich die Zugabestelle für die Flakes unmittelbar im Anschluss an die Zugabestelle der Polymerschmelze befinden. Da einer Schneckenkolbenmaschine üblicher- weise Polymergranulate, d.h. ein Kunststoff in fester Form zugegeben wird, ist es notwendig, das Polymer zunächst aufzuschmelzen, bevor die Flakes zugegeben werden. Die Zugabe der Flakes in die Polymerschmelze erlaubt eine homogenere Durchmischung der Schmelze mit den Flakes und damit eine gleichmäßigere Verteilung der so entstandenen einzelnen Fasern in der Polymerschmelze. For mixing and kneading the flakes into the polymer melt, in particular, screw-type piston machines, for example injection molding machines or extruders, in particular extruders, are suitable. The addition of the flakes takes place at a customary for the addition of fibers position. The position for adding the fibers is usually located behind the feed zone in a region in which the polymer added to the screw machine is completely melted. If a polymer melt is already supplied to the screw-type piston machine, the point of addition for the flakes can be located immediately after the addition point of the polymer melt. Since a pellet machine usually polymer granules, ie a plastic is added in solid form, it is necessary to first melt the polymer before the flakes are added. The addition of the flakes in the polymer melt allows a more homogeneous mixing of the melt with the Flakes and thus a more uniform distribution of the resulting individual fibers in the polymer melt.
Wenn die eingesetzte Schneckenkolbenmaschine ein Extruder ist, können sowohl Ein- schneckenextruder als auch Mehrschneckenextruder, beispielsweise Doppelschneckenextruder, verwendet werden. Besonders bevorzugt ist der Einsatz von Doppelschneckenextrudern, da diese gegenüber Einschneckenextrudern insbesondere eine bessere Mischwirkung aufweisen. Des Weiteren ermöglicht ein Doppelschneckenextruder ein erleichtertes Zudosieren von Füllstoffen und es ist möglich, den Doppelschneckenextruder mit einem variablen Füllgrad zu betreiben, woraus auch eine gute Entgasungsleistung resultiert und die Produkteigenschaften besser eingestellt werden können. Zudem weist ein Doppelschneckenextruder im Unterschied zum Einschneckenextruder sehr gute selbstreinigende Eigenschaften auf. If the employed screw-type piston machine is an extruder, both single-screw extruders and multi-screw extruders, for example twin-screw extruders, can be used. Particularly preferred is the use of twin-screw extruders, since they have a better mixing action than single-screw extruders. Furthermore, a twin-screw extruder makes it easier to meter in fillers and it is possible to operate the twin-screw extruder with a variable degree of filling, which also results in a good degassing performance and the product properties can be better adjusted. In addition, a twin-screw extruder, in contrast to the single-screw extruder, has very good self-cleaning properties.
Die Zugabe der Flakes in die Schneckenkolbenmaschine, beispielsweise dem Extruder, erfolgt über eine Zugabestelle, die vorzugsweise eine Förderspindel umfasst. Mit der Förderspindel ist es möglich, die Flakes gleichmäßig in die Polymerschmelze einzudosieren. Bei einer Zugabe der Flakes ohne eine Förderspindel, beispielsweise über eine Zugabeöffnung, besteht die Gefahr, dass die Flakes nicht von der Polymerschmelze aufgenommen werden oder dass nur gelegentlich Flakes mit in die Polymerschmelze gelangen, so dass der Anteil an Fasern im Polymer zu gering wäre. The addition of the flakes into the screw-type piston machine, for example the extruder, takes place via an addition point, which preferably comprises a delivery spindle. With the feed screw it is possible to meter the flakes evenly into the polymer melt. When adding the flakes without a feed screw, for example via an addition opening, there is a risk that the flakes are not absorbed by the polymer melt or that only occasionally flakes get into the polymer melt, so that the proportion of fibers in the polymer would be too low.
Die Förderspindel erlaubt es, die Menge an Flakes, die der Polymerschmelze zugegeben wird, einzustellen. Insbesondere ist es möglich, mit einer Förderspindel eine Zwangsförderung der Flakes zu ermöglichen, so dass ein Anteil an Flakes und damit an Fasern in der Polymer- schmelze von bis zu 50 Gew.-% möglich ist. Bevorzugt liegt der Anteil an Flakes und damit an Fasern nach dem Zudosieren in der Polymerschmelze im Bereich von 1 bis 50 Gew.-%, insbesondere im Bereich von 1 bis 40 Gew.-%. The feed screw makes it possible to adjust the amount of flakes added to the polymer melt. In particular, it is possible to use a feed spindle to provide forced conveyance of the flakes so that a proportion of flakes and thus of fibers in the polymer melt of up to 50% by weight is possible. Preferably, the proportion of flakes and thus fibers after metering in the polymer melt in the range of 1 to 50 wt .-%, in particular in the range of 1 to 40 wt .-%.
Die Länge der Fasern im Halbzeug resultiert zum Einen aus der Scherung der Fasern in der Schneckenkolbenmaschine und zum Anderen aus der Dimensionierung des Granulats, das aus der Polymerschmelze geschnitten wird. Die maximale Faserlänge entspricht dabei der maximalen Längenausdehnung eines einzelnen Granulatkorns. Wenn längere Fasern gewünscht sind, ist es notwendig, zum einen Flakes mit einer größeren Kantenlänge zu schneiden und zum anderen ein größeres Granulat herzustellen. Das Granulat ist dabei vorzugsweise zylindrisch und die größte Ausdehnung ist üblicherweise die Höhe des Zylinders. Alternativ ist es allerdings auch möglich einen größeren Durchmesser und eine geringere Höhe zu wählen. Da die Fasern aber aufgrund der Förderung der Polymerschmelze im Wesentlichen parallel in axialer Richtung zur Achse der Löcher in der Lochplatte ausgerichtet werden, ergibt üblicherweise die axiale Ausdehnung des Granulatkorns die maximale Faserlänge. The length of the fibers in the semifinished product results, on the one hand, from the shearing of the fibers in the screw-type piston machine and, on the other hand, from the dimensioning of the granulate, which is cut from the polymer melt. The maximum fiber length corresponds to the maximum length expansion of a single granule. If longer fibers are desired, it is necessary to cut a flake with a larger edge length and on the other to produce a larger granules. The granules are preferably cylindrical and the largest extent is usually the height of the cylinder. Alternatively, however, it is also possible to choose a larger diameter and a lower height. However, since the fibers are aligned substantially parallel in the axial direction to the axis of the holes in the perforated plate due to the promotion of the polymer melt, usually the axial extent of the granule gives the maximum fiber length.
Das Polymer, dem die Flakes zugemischt werden, kann ein thermoplastisches, duroplastisches oder elastomeres Polymer sein. Besonders bevorzugt enthält die Polymerschmelze ein thermo- plastisches Polymer, ganz besonders bevorzugt ist die Polymerschmelze eine Schmelze eines thermoplastischen Polymeren. The polymer to which the flakes are admixed may be a thermoplastic, thermoset or elastomeric polymer. Particularly preferably, the polymer melt contains a thermoplastic plastic polymer, most preferably the polymer melt is a melt of a thermoplastic polymer.
Das thermoplastische Polymer ist vorzugsweise ausgewählt aus Polybutylenterephthalat (PBT), Polyethylenterephthalat (PET), Polyoxymethylen (POM), Polyamid (PA), Polypropylen (PP), Polyethylen (PE), Polyethersulfon (PES) oder eine Mischung aus mindestens zwei dieser Polymere. Neben den vorstehend genannten thermoplastischen Polymeren kann auch jedes beliebige andere thermoplastische Polymer eingesetzt werden. Das durch das erfindungsgemäße Verfahren hergestellte Halbzeug ist besonders bevorzugt ein Granulat. Neben einem Granulat kann das Halbzeug jedoch auch in Form von Platten oder Strängen ausgebildet sein. Wenn das Halbzeug ein Fasern enthaltendes Granulat ist, so wird dieses, wie bei Granulaten üblich, hergestellt, indem die Polymerschmelze durch eine Lochplatte gepresst und mit einem Messer zum Granulat abgeschlagen wird. Hierbei ist es einerseits möglich, zunächst einen Polymerstrang zu erzeugen, der abgekühlt wird und anschließend zum Granulat geschnitten. Alternativ und üblich ist es, dass das durch die Lochplatte gepresste Polymer unmittelbar an der Platte geschnitten wird. Das Schneiden kann dabei an Luft erfolgen, wobei das geschnittene Granulat vorzugsweise in eine Kühlflüssigkeit fällt und erstarrt. Als Kühlflüssigkeit eignet sich zum Beispiel Wasser. Alternativ ist es auch möglich, eine Unterwas- sergranulierung durchzuführen, wobei die Polymerschmelze durch die Lochplatte in eine Kühlflüssigkeit gepresst und unmittelbar an der Platte zum Granulat geschnitten wird. In beiden Fällen wird das Granulat mit der Kühlflüssigkeit ausgetragen, anschließend aus der Kühlflüssigkeit entfernt und getrocknet. Das so erzeugte Granulat kann dann auf jede beliebige Weise, auf die Kunststoffgranulate zu einem Fertigteil verarbeitet werden können, weiterverarbeitet werden. So lässt sich das Kunststoffgranulat zum Beispiel durch Extrusion oder Spritzguss zu einem Fertigteil formen. Hierbei kann jede beliebige Spritzgussmaschine oder Extrusionsmaschine eingesetzt werden, die zur Herstellung von Fertigteilen verwendet werden kann und sich insbesondere für die Verarbeitung von faserverstärkten Kunststoffen eignet. The thermoplastic polymer is preferably selected from polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyoxymethylene (POM), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethersulfone (PES) or a mixture of at least two of these polymers. In addition to the abovementioned thermoplastic polymers, it is also possible to use any other thermoplastic polymer. The semi-finished product produced by the process according to the invention is particularly preferably a granulate. In addition to granules, however, the semifinished product can also be in the form of plates or strands. If the semifinished product is a granulate containing fibers, this is produced, as is customary with granules, by pressing the polymer melt through a perforated plate and cutting it off with a knife into granules. On the one hand, it is possible to first produce a polymer strand which is cooled and then cut into granules. Alternatively and usually, the polymer pressed through the perforated plate is cut directly on the plate. The cutting can take place in air, wherein the cut granules preferably falls into a cooling liquid and solidifies. As a cooling liquid is for example water. Alternatively, it is also possible to carry out an underwater granulation, wherein the polymer melt is pressed through the perforated plate into a cooling liquid and cut directly to the granules on the plate. In both cases, the granules are discharged with the cooling liquid, then removed from the cooling liquid and dried. The granules thus produced can then be further processed in any way in which plastic granules can be processed into a finished part. For example, the plastic granulate can be formed into a finished part by extrusion or injection molding. In this case, any injection molding machine or extrusion machine can be used, which can be used for the production of finished parts and is particularly suitable for the processing of fiber-reinforced plastics.
Formteile, die aus dem nach dem erfindungsgemäßen Verfahren hergestellten Granulat hergestellt werden können, sind alle insbesondere geometrisch anspruchsvollen Formteile, die auch mit käuflich erwerblichen faserverstärkten Thermoplasten herstellbar sind, zum Beispiel Zylin- derkopfhauben, Ansaugrohre für Turbolader, Schaltergehäuse. Molded parts which can be produced from the granules produced by the process according to the invention are all particularly geometrically demanding molded parts which can also be produced with commercially available fiber-reinforced thermoplastics, for example cylinder head covers, intake pipes for turbochargers, switch housings.
Beispiel example
Für die Herstellung eines faserverstärkten Polyamids wurde ein handelsüblicher Doppelschne- ckenextruder mit einer Dosiereinheit für Kohlenfaserflakes umgerüstet. Dazu wurde ein Vorratsbehälter mit einer am Boden angebrachten Spindel mittig über dem Seiteneinzug des Doppelschneckenextruders montiert. Für die Herstellung eines mit 20 Gew.-% Kohlefasern verstärkten Polyamids 66 wurden zunächst Gelegereste einer Endloskohlefasermatte mittels eines CNC-Cutters in Flakes der Größe 20x20 mm geschnitten. Die so geschnitten Flakes wurden dann in den Vorratsbehälter über dem Seiteneinzug des Doppelschneckenextruders gegeben und der Schmelze des Polyamid 66 gravimetrisch über die Seitenzuführung zudosiert. Das so hergestellte Material wurde direkt im Anschluss an den Extruder granuliert. For the production of a fiber-reinforced polyamide, a commercially available twin-screw extruder with a dosing unit for carbon fiber flakes was converted. For this purpose, a storage container with a spindle attached to the bottom was mounted centrally above the side feeder of the twin-screw extruder. For the production of a 20 wt .-% carbon fiber reinforced polyamide 66 Gelegereste a continuous carbon fiber mat were first cut by means of a CNC cutter into flakes of size 20x20 mm. The flakes thus cut were then placed in the reservoir above the side feeder of the twin screw extruder and metered into the melt of the polyamide 66 gravimetrically via the side feeder. The material thus produced was granulated directly after the extruder.
Aus dem so erhaltenen Material wurden in einem weiteren Verarbeitungsschritt Prüfkörper mittels einer Spritzgussmaschine hergestellt. Die an den Prüfkörpern gemessenen Kennwerte so- wie die Kennwerte, die an Prüfkörpern eines kommerziell erhältlichen mit 20 Gew.-% Kohlenstoffkurzfasern verstärkten Polyamids (Ultramid® A3WC4 der BASF SE) gemessen wurden, sind in Tabelle 1 dargestellt. Hierbei sind als„Beispiel" die Kennwerte der Prüfkörper aus dem erfindungsgemäß hergestellten Polyamid und als„Vergleich" die Kennwerte der Prüfkörper aus dem kommerziell erhältlichen Polyamid aufgeführt. From the material thus obtained, specimens were produced by means of an injection molding machine in a further processing step. The characteristic values measured on the test specimens and the characteristic values which were measured on specimens of a commercially available polyamide reinforced with 20% by weight short carbon fibers (Ultramid® A3WC4 from BASF SE) are shown in Table 1. Here, the characteristic values of the test specimens from the polyamide produced according to the invention are listed as an "example", and the characteristic values of the test specimens from the commercially available polyamide are listed as a "comparison".
Aus dem Vergleich der Kennwerte lässt sich erkennen, dass die Eigenschaften im Wesentlichen denen eines üblichen mit Kohlenstoffkurzfasern verstärkten Polymers entsprechen. From the comparison of the characteristics it can be seen that the properties essentially correspond to those of a conventional polymer reinforced with short carbon fibers.
Tabelle 1 : Kennwerte eines nach dem erfindungsgemäßen Verfahren hergestellten faserver- stärkten Polyamid 66 und eines kommerziell erhältlichen faserverstärkten Polyamid 66 Table 1: Characteristics of a fiber-reinforced polyamide 66 produced by the process according to the invention and of a commercially available fiber-reinforced polyamide 66
Eigenschaften Prüfmethode Beispiel VergleichProperties Test Method Example Comparison
Dichte [kg/m3] EN ISO 1 183-2:2004-10 1230 1220 Density [kg / m 3 ] EN ISO 1 183-2: 2004-10 1230 1220
E-Modul [MPa] DIN EN ISO 527-1 /-2:2012-06 14600 16800 Modulus of elasticity [MPa] DIN EN ISO 527-1 / -2: 2012-06 14600 16800
Bruchspannung [MPa] DIN EN ISO 527-1 /-2:2012-06 200 235 Breaking stress [MPa] DIN EN ISO 527-1 / -2: 2012-06 200 235
Bruchdehnung [%] DIN EN ISO 527-1 /-2:2012-06 2,8 2,4  Elongation at break [%] DIN EN ISO 527-1 / -2: 2012-06 2.8 2.4
Schlagzähigkeit bei 23°C [kJ/m2] DIN EN ISO 179-1 :2010-1 1 54 57 Impact strength at 23 ° C [kJ / m 2 ] DIN EN ISO 179-1: 2010-1 1 54 57
Kerbschlagzähigkeit bei 23°C [kJ/m2] DIN EN ISO 179-1 :2010-1 1 4,7 6 Notched impact strength at 23 ° C [kJ / m 2 ] DIN EN ISO 179-1: 2010-1 1 4,7 6

Claims

Patentansprüche Patent claims
Verfahren zur Verwendung von Zuschnittsresten von Faserstrukturen, folgende Schritte umfassend: Method for using cutting residues from fiber structures, comprising the following steps:
(a) Schneiden der Zuschnittsreste in Flakes, (a) cutting the blanks into flakes,
(b) Zumischen der Flakes zu einer Polymerschmelze, (b) mixing the flakes into a polymer melt,
(c) Kneten der Polymerschmelze mit den Flakes, so dass die Flakes in einzelne Fasern zerfallen, (c) kneading the polymer melt with the flakes so that the flakes break down into individual fibers,
(d) Formen der Polymerschmelze mit den zugemischten Fasern zu einem Halbzeug. (d) Forming the polymer melt with the added fibers into a semi-finished product.
Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Faserstrukturen Gewebe, Gelege oder Gestricke aus Endlosfasern sind. Method according to claim 1, characterized in that the fiber structures are fabrics, scrims or knitted fabrics made of continuous fibers.
Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Faserstrukturen aus Kohlenstofffasern gefertigt sind. Method according to claim 1 or 2, characterized in that the fiber structures are made of carbon fibers.
Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Flakes vor dem Zumischen zu der Polymerschmelze mit einer Schlichte behandelt werden. Method according to one of claims 1 to 3, characterized in that the flakes are treated with a size before being mixed into the polymer melt.
Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zuschnittsreste mit einem Messer, einem Stanzgitter oder einem Laser zu Flakes geschnitten werden. Method according to one of claims 1 to 4, characterized in that the blank residues are cut into flakes with a knife, a lead frame or a laser.
Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Zumischen der Flakes und Kneten der Polymerschmelze mit den Flakes in einer Schnecken- kolbenmaschine durchgeführt wird. Method according to one of claims 1 to 5, characterized in that the admixing of the flakes and kneading of the polymer melt with the flakes is carried out in a screw-piston machine.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass die Schneckenkolbenma- schine ein Extruder ist. 7. The method according to claim 6, characterized in that the screw piston machine is an extruder.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass der Extruder zum Zumischen der Flakes zu der Polymerschmelze eine Zugabestelle mit einer Förderspindel um- fasst. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Polymerschmelze ein thermoplastisches Polymer enthält. 8. The method according to claim 7, characterized in that the extruder for mixing the flakes into the polymer melt comprises an addition point with a conveyor spindle. Method according to one of claims 1 to 7, characterized in that the polymer melt contains a thermoplastic polymer.
0. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass das thermoplastische Polymer ausgewählt ist aus Polybutylenterephthalat, Polyethylenterephthalat, Polyoxymethy- len, Polyamid, Polypropylen, Polyethylen, Polyethersulfon oder Mischungen aus mindestens zwei dieser Polymere. 0. The method according to claim 9, characterized in that the thermoplastic polymer is selected from polybutylene terephthalate, polyethylene terephthalate, polyoxymethylene, polyamide, polypropylene, polyethylene, polyethersulfone or mixtures of at least two of these polymers.
1 . Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Halbzeug ein Fasern enthaltendes Granulat ist. 1 . Method according to one of claims 1 to 10, characterized in that the semi-finished product is granules containing fibers.
EP14766691.1A 2013-09-24 2014-09-12 Method for using cutting remainders of fiber structures Withdrawn EP3049231A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14766691.1A EP3049231A1 (en) 2013-09-24 2014-09-12 Method for using cutting remainders of fiber structures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13185706 2013-09-24
PCT/EP2014/069516 WO2015043985A1 (en) 2013-09-24 2014-09-12 Method for using cutting remainders of fiber structures
EP14766691.1A EP3049231A1 (en) 2013-09-24 2014-09-12 Method for using cutting remainders of fiber structures

Publications (1)

Publication Number Publication Date
EP3049231A1 true EP3049231A1 (en) 2016-08-03

Family

ID=49223680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14766691.1A Withdrawn EP3049231A1 (en) 2013-09-24 2014-09-12 Method for using cutting remainders of fiber structures

Country Status (7)

Country Link
US (1) US20160236376A1 (en)
EP (1) EP3049231A1 (en)
JP (1) JP2016531960A (en)
KR (1) KR20160062078A (en)
CN (1) CN105579214A (en)
BR (1) BR112016006381A2 (en)
WO (1) WO2015043985A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202547A1 (en) * 2018-02-20 2019-10-02 Thyssenkrupp Ag Apparatus and method for mixing recycled material into a polyester melt

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106680A (en) * 1990-05-08 1992-04-21 Hoechst Celanese Corporation Adhesion between carbon fibers and thermoplastic matrix materials in carbon fiber composites by using multifunctional amine and azo compounds as bridging agents
DE19934377C2 (en) * 1999-07-22 2002-12-05 Thueringisches Inst Textil Process for the production of polyester-reinforced polypropylene compounds according to a specified recipe
DE10121034B4 (en) * 2001-04-25 2005-08-25 Bayer, René Device for the continuous dosing of chips and fiber material
DE10201869B4 (en) * 2002-01-15 2005-08-11 Bayer, René Feeding device for chips and short cut fibers
JP2007138039A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Recycled composite material
DE102009023529A1 (en) 2009-05-30 2010-12-02 Bayerische Motoren Werke Aktiengesellschaft Method for recycling fiber composite waste from undrenched carbon fibers, comprises macerating the waste in separate, equally large fractions of defined fiber length and subsequently under retaining of the fiber length
CN102850816B (en) * 2011-06-27 2015-10-14 上海杰事杰新材料(集团)股份有限公司 A kind of thermoplas tic resin composite, preparation method and application thereof
GB201215855D0 (en) * 2012-09-05 2012-10-24 Univ Ulster Carbon fibre composites

Also Published As

Publication number Publication date
KR20160062078A (en) 2016-06-01
CN105579214A (en) 2016-05-11
JP2016531960A (en) 2016-10-13
WO2015043985A1 (en) 2015-04-02
US20160236376A1 (en) 2016-08-18
BR112016006381A2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
DE69911762T2 (en) METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF COMPOSITES FROM PLASTIC AND CELLULOSE FIBERS
EP2995436B1 (en) Device and method for manufacturing a filled polymer composite material
EP2536545B1 (en) Method for producing pellets from fiber composite materials
DE3417369C2 (en)
EP0685520A1 (en) Fiber-reinforced plastic material and method for its preparation
DE19930920A1 (en) Long fiber reinforced thermoplastic material and method of making the same
DE102007061620A1 (en) Process for the production of agglomerate-free natural and synthetic fiber reinforced plastic and thermoplastic semi-finished products via direct processing of continuous fibers
DE102018132317A1 (en) Long fiber reinforced thermoplastic filament
EP3065936A1 (en) Method for producing a semi-finished product to be made into a cfrp component, from carbon-fibre scrap
EP1318902B1 (en) Method for producing a granulated intermediate product that is to be subjected to a subsequent processing in order to form plastic shaped bodies
DE102011115966B4 (en) A method of making a CFRP molding material and method of making a particulate carbon fiber recyclate
EP2571926B1 (en) Process for the production of fiber-reinforced, thermoplastic composites
EP0782909B1 (en) Method of manufacturing articles from fiber reinforced thermoplastics
DE19956164A1 (en) Pellets used in e.g. automobile component manufacture to make pressure injection moldings, are formed by passing untreated natural fibers, polyolefins and additives through pre-granulator and conventional granulator
DE4330861A1 (en) Flat semi-finished product made of GMT recyclate
WO2015043985A1 (en) Method for using cutting remainders of fiber structures
EP1406966A1 (en) Filling material based on wood fibres for producing synthetic moulded bodies
DE10149765B4 (en) combing
WO2002000408A2 (en) Method for the production of thermoplastic plastics with natural fibre components
DE102010042282A1 (en) Method for manufacturing fiber board using natural fiber i.e. elephant grass, in building or furniture industry, involves mixing natural fibers with bonding agent, which comprises polymer on basis of polyacrylonitrile in form of fibers
WO2008019741A1 (en) Granulated rod-shaped long fibre material
DE102020208150A1 (en) Polymer composite material for injection molding applications with excellent recyclability
EP4308759A1 (en) Method for producing a shaped body from plastic waste and natural fibres
DE10112766A1 (en) Preparation of fiber reinforced plastic pellets for feeding injection-molding machines includes extrusion of mixture of chopped flax fiber and polymer
WO2014096355A1 (en) Process for producing reinforcing fibres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161206