EP3038797A1 - Solar powered three-axis mobile agricultural automation - Google Patents

Solar powered three-axis mobile agricultural automation

Info

Publication number
EP3038797A1
EP3038797A1 EP15725437.6A EP15725437A EP3038797A1 EP 3038797 A1 EP3038797 A1 EP 3038797A1 EP 15725437 A EP15725437 A EP 15725437A EP 3038797 A1 EP3038797 A1 EP 3038797A1
Authority
EP
European Patent Office
Prior art keywords
solar powered
axis mobile
agricultural automation
mobile agricultural
automation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15725437.6A
Other languages
German (de)
French (fr)
Inventor
Bahattin AGADAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dokuz Eyluel Ueniversitesi Rektorluegue
Original Assignee
Dokuz Eyluel Ueniversitesi Rektorluegue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to TR2014/07381A priority Critical patent/TR201407381A2/en
Application filed by Dokuz Eyluel Ueniversitesi Rektorluegue filed Critical Dokuz Eyluel Ueniversitesi Rektorluegue
Priority to PCT/TR2015/000168 priority patent/WO2015199629A1/en
Publication of EP3038797A1 publication Critical patent/EP3038797A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • B25J9/026Gantry-type
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B76/00Parts, details or accessories of agricultural machines or implements, not provided for in groups A01B51/00 - A01B75/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G27/00Self-acting watering devices, e.g. for flower-pots
    • A01G27/003Controls for self-acting watering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C21/00Cable cranes, i.e. comprising hoisting devices running on aerial cable-ways
    • B66C21/02Cable cranes, i.e. comprising hoisting devices running on aerial cable-ways with cable-ways supported on framework swingably connected to groundengaging elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Abstract

The present invention is related to a solar powered three-axis mobile agricultural automation of which the main energy source is solar energy; when reinforced, gains continuity with the support of wind, network and generator; and which carries out drop irrigation, sprinkler irrigation, agricultural spraying, subsoil moisture control and thermal leaf moisture analysis, macro visualization, fogging, shaking, harvesting, displaying, illumination, security operations and which also carries out driving and power supply operations by means of the electric tractor which moves on the soil.

Description

SOLAR POWERED THREE-AXIS MOBILE AGRICULTURAL AUTOMATION
Technical Field
The present invention is related to a solar powered three-axis mobile agricultural automation of which the main energy source is solar energy; when reinforced, gains continuity with the support of wind, network and generator; and which carries out drop irrigation, sprinkler irrigation, agricultural spraying, subsoil moisture control and thermal leaf moisture analysis, macro visualization, fogging, shaking, harvesting, displaying, illumination, security operations and which also carries out driving and power supply operations by means of the electric tractor which moves on the soil.
Prior Art
Agriculture is the oldest and still the most important economic activity that provides food, feed, fiber and necessary fuel for people to survive. With the continued increase in world population, it is necessary for agricultural production to also increase to meet the growing demand for food and bioenergv. Limited land, water and labor resources taken into account, the emphasis is on machinery rather than manpower.
Robotics and automation will particularly play an important role in the near future in meeting the needs of agricultural production in order to increase the quality of life for society. In recent years, robots have played a major role in increasing agricultural productivity, in industrial production, and in reducing the cost of products. In particular, GPS and vision-based self-guided tractors and combines have begun to take their place in the automation market in agriculture. More recently, farmers have started to perform processes such as pruning, thinning and harvesting, mowing, agricultural spraying, and removal of grass using automated machines or with autonomous systems.
For example, in the fruit cultivation sector, it was observed that using robotic platforms in the process of collecting fruits from branches was two times more efficient than workers using ladders for the same process. Developments in sensors and control systems allow optimum welding and harmful disease management. Automation systems provide great advantages in terms of cultivation, maintenance and harvesting of agricultural products. Difficult working conditions, decreasing energy resources and the need for clean energy has accelerated the development and use of technology in the field of agriculture. In present studies, various developments such as automation systems being mobile, energy storage, use of electric tractors, movement of carrier ropes and tree shaking systems, etc. have been observed. Other studies in the relevant field that stand out are irrigation systems, soil and crop cultivation machinery. In this context, fixed and mobile irrigation systems, mobile work machinery and robots have been developed. The common feature of the applications is that they are ground contact systems which carry out processes by means of controlled arms. Their disadvantage is that they cause damage to the soil. In addition to the fact that they cannot be used in all types of fields, their maintenance and repair also requires expertise. Expanding agricultural automation is generally developed for programming and operating conventional farming tools. Irrigation can be considered a typical example. Systems selected according to the crop type are sprinklers, drip irrigation and wild flooding. While in sprinkler systems the run time of water pressure is controlled, in drip irrigation the water tank level and period of irrigation is controlled. The realization of applications with pipes laid in the ground has negative effects in terms of material life, protection of pipes, and blocking of machinery in the field. While irrigation systems with mobile capability which have become widespread in recent years, problems related to soil damage, moving hoses, garages and assembly have not been overcome. While solar-powered pumps and irrigation systems have become widespread, use of solar powered tractors has not. In the invention of patent application number US 201 1 106451 of the known state of the art, a multi-sensor system measures diffuse reflectance of soil, soil conductivity, and other soil properties in situ, in three dimensions. The system includes a sensor shank used tbr X-Y axis measurements and a hydraulic probe implement containing a sensor probe for -Z axis measurements. It includes optical sensors and soil electrical conductivity sensors. It further encompasses a sensor that measures insertion force and a soil temperature sensor. These combinations of sensors are used to calibrate the system and to characterize the soil properties within a field or area. In patent document number US4612996 A of the known state of the art, a robotic tractor that travels on rails forming a grid over a crop field and automatically performs tasks in the field is described. The tractor is supported on extendable legs that cany dual tandem perpendicular wheel sets. A rotary implement bed supported by the tractor is adapted to carry implements.
In patent document number WO2013 I 81069 A I of the known state of the art, the invention is an agricultural tractor and consists of an electrical control unit and control system that controls the tractor. The control system is programmed such that the sensor related to the tractor's operating functions receive numerous real time signals.
The control system is also arranged to enable numerous output signals of controlled operating components. The control system enables predefined commands to be carried out by means of input being provided over the internet.
In the invention of patent document number EP2622955 A I again of the known state of the art, the tractor has actuator which is controlled by control device and is actuated under external power, to adjust working parameter of machine. A sensor is connected to control device, to detect vertical position of machine, machine inclination in forward or sideward direction, and distance between machine and object. The control device is used to identify agricultural several topographical zones of field by means of signals of sensor.
The common feature of the above patents is that they are ground contact systems which carry out processes by means of controlled arms. Their disadvantage is that they cause damage to the soil. While they cannot be used in all types of fields, their maintenance and repair also requires expertise.
Expanding agricultural automation is generally developed for programming and operating conventional farming tools. Irrigation can be considered a typical example. Systems selected according to the crop type are sprinklers, drip irrigation and wild flooding. While in sprinkler system the run time of water pressure is controlled, in drip irrigation the water tank level and period of irrigation is controlled. The realization of applications with pipes laid in the ground has negative effects in terms of material life, protection of pipes, and blocking of machinery in the field. While irrigation systems with mobile capability which have become widespread in recent years, problems related to soil damage, moving hoses, garages and assembly have not been overcome. While solar-powered pumps and irrigation systems have become widespread, use of solar powered tractors has not
Taking into account all of the above documents part of the known state of the art, these do not mention a system such as the solar powered three-axis mobile agricultural automation of the present invention to be used in agricultural activities.
Brief Description and Objectives of the Invention
The objective in developing the solar powered three-axis mobile agricultural automation is to provide the production of an efficient product using programmable agricultural activities, remote control and management systems and to provide savings by using low cost energy source.
Another objective in developing the invention is to enable cultivation with deformation in the soil and to provide up to date tracking of crop growth.
Description of Drawings Describing the Invention
The drawings prepared to better describe the solar powered three-axis mobile agricultural automation developed with this invention are specified below.
Figure 1 - View of the elements that constitute the solar powered three-axis mobile agricultural automation system.
Figure 2 - View of the chassis panel position when the chassis is located in the interior Figure 3 - View of the tank position when the chassis is in tunnel
Figure 4 - View of the chassis panel position when the chassis is located in the exterior Figure 5 - View of the pressurized tree shaking device
Figure 6 - Perspective view of the drip irrigation tank Definitions of the Coniponents/Parts/Pieces Forming the Invention
The components/parts/pieces found in the figures to better describe the solar powered three-axis mobile agricultural automation realized by means of this invention are numbered individually as specified below.
1. Solar powered three-axis mobile agricultural automation
2. Carrier pole
3. X axis movement platform
4. Rotating head
5. Stretch ropes
6. Bridge ropes
7. Control elements
8. Parallel rope
9. Subsoil moisture sensor
10. Wind energy system
11. Solar cell panels
12. Electric tractor
13. Mobile conveyor line
14. Water pump
15. Compressed air tank
16. Water tank
17. Power supply
18. Control panel
19. Drip irrigation tank
20. DC overhead engine
21. Mobile platform body
22. Robotic arm
23. Controlled access gate
24. Cooling unit
25. Pressure shaker
26. Shaker piston 27. Direct movement mechanism
Detailed Description of the Invention
The solar powered three-axis mobile agricultural automation ( I) consists of a pair of ropes (8) parallel to each other placed on the stretch ropes (5) located on the top section of four carrier poles (2) positioned on the specified area. The movement of the stretch ropes (5) is possible by means of the DC overhead engine (20) connected to the pulley center on the pole (2). The stretch ropes (5) move the X axis movement platform (3) along the x axis. The mutual platform (21), which is placed on the bridge ropes (6) and which is idle on the bottom and fixed on the top, can move in the (z) direction with the movement of the rope (6). This platform (21) also provides the transfer of data, liquid, and air by means of the idle wheel located on the mobile conveyor line (13). This body (21) moves by means of the drive of the mobile bridge engine (20) to which the pulleys found on two ends of the platform (3) are connected. The body platform (21) provides balance stability to the four ropes (5, 8) with eight contact points. The rotating head (4), which can rotate 360 degrees with the vertical (y) axis motion of the four bedded columns located on the body (21), positions the poles (2) to the points referenced by means of laser measurements. Functional apparatuses are located on the side of the head (4), while a robotic arm (22) is located on its bottom to perform point-in commands.
In the automation system (1); data, energy, water and compressed air conveyor line (13) moves together with the spool connected to the stretch rope (5) in an accordion like manner. The conveyor line ( 13) operates similarly on the overhead bridge as well. The mobile platform body (21 ) passes over the bridge ropes (6) to reach the rotating head (4). The rotating head (4), which can be positioned to any point, performs agricultural activities in the area it is located by means of the robotic arm (22). in the system's energy management, energy is obtained directly or indirectly from the solar cell panels (1 1) positioned on top of the carries poles (2) and the storage units (16), from the wind energy systems (10) and from the network if reinforcement exists.
If an electric tractor (12) is to be used within the framework of the control panel (18), the energy is directly directed to the tractor (12). Deep wells, water transfers and other activities are disabled. For example, if agricultural spraying is to be performed, the stock energy (compressed air) is provided to the pesticide and water tank (16) and transfer pressure is achieved. At other times, energy is used in deep water extraction and storage, air compression, irrigation, battery storage, feeding of other units and in the power battery group of the electric tractor (12).
The control panel (18) activates the related units by converting agricultural activities according to the type of agricultural field (field, garden) and the plant to be planted in accordance with basic data such as time, temperature, moisture, and energy into commands by means of sensor feedback into commands.
In irrigation, the subsoil moisture sensor (9) measures moisture and temperature. According to data, the drop and rain irrigation commands are chosen from the control panel (18). In drop irrigation, the water at the rotating head (4) is poured to the conical drop irrigation tanks (19) found at the determined area by means of the pouring apparatus on the robotic arm (22). in rain irrigation, micronized moistening in the form of multiple drops or pressurized air mixture is performed. The water pump (14) is enabled at the desired angle and time by means of the smart energy method.
In the liquid agricultural spraying process, pesticides and water at a particular location and of a certain type are provided to the water transfer line (13) with dosage control. Then pesticide is applied from the top and from the sides from the micronized head through the robotic arm (22) by providing pressurized air.
With the help of control elements (7) such as the camera and color sensors, the robotic arm (22), enables the collection of fruits and crops predefined in the program. The collection head on the arm (22) is changed in accordance with the crop type. The pressure shaker (25) is locked to the tree in the form of two half-moons and carries out shaking by means of the weight on the edge of the shaker piston (26) working in the opposite direction with the pressurized air coming from the compressed air tank (15). This process enables the collection of crops such as olives, which are found as small pieces on the branches.
The automation system ( 1) is enclosed in the application area. Exit, with the exception of the classic lid, is performed by means of the three step motion controlled access gate (23) under the control of the system (I). The sides of the system ( 1 ) are in the form of open chassis and the front and back panels serve as gates (23). In the first step, the front panel is the gate that closes the exit, the chassis enters the tunnel after it is full and this step is the standby lid position (Figure 2). In the second step, the lid which serves as a closed tank also serves as a cooling unit (24) due to the insulation and of the lid surfaces and the cooling capability of the tunnel (Figure 3). In the third step, the chassis moves outside by moving on the rail in three moves and serves as a back lid (Figure 4. Passage from the exterior to the interior and from the interior to the exterior is provided in a controlled manner. The electric tractor ( 12) is fed from the three axis mobile energy transfer line and carries out tractor activities in all areas on-site and remotely. The panel energy used enables obtaining satisfactory power in a more economical manner. The water and air supplied from the transfer line (13) may be stored and carried in the tractor. By using shorter carries poles (2), the system (1 ) enables easy use in orchards. Moreover, it also manually carries out external activities by means of the energy storage batteries. in uses of the system (1) in appropriate large land and for cultivated crops, the tanks (16, 19) are stationary and can change the work area with the progressive (worm) action at low speed (3m/h) by means of the electromotor movement mechanism (27) placed under the poles (2). The stretch ropes (5) in the system enable ease of movement. This enables more efficient operation with a single module.
Control elements (7) found in the system consisting of gas, audio, visual, lighting actuators may also be used for security functions with the appropriate programming. Movement and heat sensitive detectors provide deterrent effect against wild animals, birds and intrusions by spraying pressurized water via the robotic arm (22) or by applications such as sounding alarms. By means of the solar powered three-axis mobile agricultural automation ( I ) which can be implemented in various areas such as parks, agricultural areas and gardens, a versatile integrated use through a single energy panel is provided; by means of the solar powered tractor application, a low cost and clean energy solution is provided. The system (1) provides ease of control by means of on-site or remote control.
The system (1 ) also provides easier efficient produce production by means of diversity in irrigation, time-independent application and subsoil and sub-leaf sensor (9) which does not damage the soil .
The automatic remote controlled spraying, shaking of trees and harvesting operations of the system (1 ) can be carried out without workers and thus provides saving in manpower.

Claims

1. Solar powered three-axis mobile agricultural automation (1 ), characterized in that in comprises stretch ropes (5), bridge ropes (6) and parallel ropes (8) positioned between at least four carrier poles (2), three axis robotic arm (22) which performs on-site or remote controlled agricultural activities in accordance with data obtained from subsoil moisture sensor (9) and control elements (7) via the movement of the 360 degrees rotating head (4) on the platform (3) which moves as a result of the energy generated by the solar cell panels ( 1 1) and the wind energy system (10); water pump (14); and pressure shaker (25) which allows for the trees to be shaken.
2. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that it comprises a mobile platform (3) on which the three axis mobile rotating head (3) moves.
3. The solar powered three-axis mobile agricultural automation according to claim 1 , characterized in that it comprises a solar powered electric tractor (12).
4. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that it converts the data obtained from the subsoil moisture sensor
(9) and control elements (7) into agricultural activities.
5. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that it performs shaking, fogging, spraying, disinfecting, sprinkling processes by means of the transfer of the liquid and gas obtained from the mobile conveyor line (13) to the robotic arm (22).
6. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that it performs the irrigation processes by means of the water tank (14) and the drop irrigation tank ( 19).
7. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that the energy generated by means of the solar panels (1 1) is stored as alternative energy in the power supply (17), compressed air tank (15) and water tank (16) or is directly used.
8. The solar powered three-axis mobile agricultural automation according to claim 1 , characterized in that it comprises a direct movement mechanism located below the carrier poles (2) which has the feature of changing the workspace by means of allowing gradual movement with electrical engine mechanism according to the terrain conditions.
9. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that it comprises control elements (7) with gas, sound, video, lighting actuators.
10. The solar powered three-axis mobile agricultural automation according to claim 1, characterized in that it comprises a controlled access gate (23) providing for the controlled access from the exterior to the interior and also providing storage functions due to the insulation of the surface and the cooling feature of the tunnel.
EP15725437.6A 2014-06-25 2015-04-22 Solar powered three-axis mobile agricultural automation Withdrawn EP3038797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2014/07381A TR201407381A2 (en) 2014-06-25 2014-06-25 Solar powered three-axis mobile agricultural automation
PCT/TR2015/000168 WO2015199629A1 (en) 2014-06-25 2015-04-22 Solar powered three-axis mobile agricultural automation

Publications (1)

Publication Number Publication Date
EP3038797A1 true EP3038797A1 (en) 2016-07-06

Family

ID=53269706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15725437.6A Withdrawn EP3038797A1 (en) 2014-06-25 2015-04-22 Solar powered three-axis mobile agricultural automation

Country Status (3)

Country Link
EP (1) EP3038797A1 (en)
TR (1) TR201407381A2 (en)
WO (1) WO2015199629A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019204814A1 (en) * 2018-04-20 2019-10-24 Realmfive, Inc. Full livestock system
CN106081918A (en) * 2016-08-18 2016-11-09 无锡石油化工起重机有限公司 Tower crane OPS with energy-saving generating plant
CN106426089B (en) * 2016-09-30 2018-07-20 华南理工大学 Flexible three-freedom parallel institution vibration detection control device and control method
CN106426090B (en) * 2016-09-30 2018-09-14 华南理工大学 The planar three freedom parallel robot control device and method of rodless cylinder driving
CN107347279A (en) * 2017-07-19 2017-11-17 深圳市晓控通信科技有限公司 A kind of arable land sowing machine people with solar power generation function
CA3088184A1 (en) * 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
CN108792956B (en) * 2018-05-29 2021-03-23 深圳春沐源控股有限公司 Method and system for collecting materials in air circulation mode
CN108982811A (en) * 2018-07-20 2018-12-11 合肥耀世同辉科技有限公司 A kind of soil environment monitoring equipment based on new energy
CN109229123A (en) * 2018-09-04 2019-01-18 辽宁双麟农业机械有限公司 A kind of multifunction railway Agriculture Platform Operation Van
US10873211B2 (en) 2018-09-14 2020-12-22 Lancium Llc Systems and methods for dynamic power routing with behind-the-meter energy storage
US20200089307A1 (en) 2018-09-14 2020-03-19 Lancium Llc Methods and Systems for Distributed Power Control
US10367353B1 (en) 2018-10-30 2019-07-30 Lancium Llc Managing queue distribution between critical datacenter and flexible datacenter
US10452127B1 (en) 2019-01-11 2019-10-22 Lancium Llc Redundant flexible datacenter workload scheduling
CN109702722A (en) * 2019-01-21 2019-05-03 深圳市拓野机器人自动化有限公司 A kind of multi-robot integrated system of truss robot
US10618427B1 (en) 2019-10-08 2020-04-14 Lancium Llc Behind-the-meter branch loads for electrical vehicle charging
US10608433B1 (en) 2019-10-28 2020-03-31 Lancium Llc Methods and systems for adjusting power consumption based on a fixed-duration power option agreement

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1017578A (en) * 1910-07-25 1912-02-13 William Perry Mcmillan Irrigating apparatus.
US1502997A (en) * 1922-12-23 1924-07-29 Marrian Harry Herber Blakemore Aerial transporter
US2024374A (en) * 1935-06-14 1935-12-17 Moody E Langebrake Overhead irrigation system
FR2518869A1 (en) * 1981-12-29 1983-07-01 Kerteszeti Egyetem Grape vine and fruit tree cultivating equipment - has cultivating or harvesting tool on connecting unit between travelling units on transverse tracks
US4612996A (en) 1983-08-08 1986-09-23 Kimberly Hills, Ltd. Robotic agricultural system with tractor supported on tracks
US6886471B2 (en) * 2003-02-18 2005-05-03 Cablecam International Inc. Traveling highline system
US6975089B2 (en) * 2003-07-28 2005-12-13 Cablecam International Inc. System and method for facilitating fluid three-dimensional movement of an object via directional force
TW200526112A (en) * 2003-10-10 2005-08-16 Inventqjaya Sdn Bhd Hillside farming module and system
US9285501B2 (en) 2008-11-04 2016-03-15 Veris Technologies, Inc. Multiple sensor system and method for mapping soil in three dimensions
US8181799B2 (en) * 2009-11-30 2012-05-22 GM Global Technology Operations LLC Actuation system configured for moving a payload
DE102012201333A1 (en) 2012-01-31 2013-08-01 Deere & Company Agricultural machine with a system for the automatic setting of an operating parameter and associated method
US9288938B2 (en) 2012-06-01 2016-03-22 Rowbot Systems Llc Robotic platform and method for performing multiple functions in agricultural systems
US9457473B2 (en) * 2012-06-20 2016-10-04 Irobot Corporation Suspended robot systems and methods for using same
CN103625300A (en) * 2013-11-14 2014-03-12 江苏大学 Hybrid power tractor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2015199629A1 *

Also Published As

Publication number Publication date
TR201407381A2 (en) 2016-01-21
WO2015199629A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US10890912B2 (en) Robotic platform and method for performing multiple functions in agricultural systems
JP2018153201A (en) Intelligent grounds management system integrating robotic rover
US9891629B2 (en) Autonomous robotic agricultural machine and system thereof
RU2708795C2 (en) Plant cultivation system in room in conditions imitating natural lighting
Ampatzidis et al. iPathology: robotic applications and management of plants and plant diseases
Baeten et al. Autonomous fruit picking machine: A robotic apple harvester
CN205594695U (en) Agricultural intelligent application system based on thing networking
US8437879B2 (en) System and method for providing prescribed resources to plants
EP3021656B1 (en) System for controling the activity of at least one gardening device in at least one activity zone
US8321365B2 (en) Horticultural knowledge base for managing yards and gardens
ES2410370T3 (en) System and method to manage the use of resources
CN206744046U (en) Tilting greenhouse system
Bechar et al. Agricultural robots for field operations. Part 2: Operations and systems
Billingsley et al. Robotics in agriculture and forestry
Chen et al. AgriTalk: IoT for precision soil farming of turmeric cultivation
EP3316673B1 (en) Robot vehicle and method using a robot for an automatic treatment of vegetable organisms
US9457473B2 (en) Suspended robot systems and methods for using same
Sammons et al. Autonomous pesticide spraying robot for use in a greenhouse
US8381501B2 (en) Agricultural robot system and method
Scarfe et al. Development of an autonomous kiwifruit picking robot
Pritts et al. High tunnel raspberries and blackberries
CN102541030B (en) System for intelligently monitoring and controlling crop pests and diseases
CN103959973B (en) One becomes more meticulous crop fertilization system and nitrogen fertilizing method
AU2005314708B2 (en) Agricultural robot system and method
Sistler Robotics and intelligent machines in agriculture

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20160311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20170313

DAX Request for extension of the european patent (deleted)
18D Application deemed to be withdrawn

Effective date: 20180324