EP3034485B1 - Reaction of carbon dioxide with hydrogen using a permselective membrane - Google Patents
Reaction of carbon dioxide with hydrogen using a permselective membrane Download PDFInfo
- Publication number
- EP3034485B1 EP3034485B1 EP15200377.8A EP15200377A EP3034485B1 EP 3034485 B1 EP3034485 B1 EP 3034485B1 EP 15200377 A EP15200377 A EP 15200377A EP 3034485 B1 EP3034485 B1 EP 3034485B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction
- hydrogen
- membrane
- bar
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 83
- 239000012528 membrane Substances 0.000 title claims description 75
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 34
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 29
- 239000001257 hydrogen Substances 0.000 title claims description 25
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 18
- 239000001569 carbon dioxide Substances 0.000 title claims description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000003054 catalyst Substances 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 230000009471 action Effects 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000010865 sewage Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- 239000000047 product Substances 0.000 description 16
- 238000000926 separation method Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 238000005373 pervaporation Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- -1 biogas Chemical compound 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/12—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/152—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
Definitions
- the present invention relates to a method for carrying out chemical equilibrium reactions using a permselective membrane. More particularly, the invention relates to a process for reacting carbon dioxide and hydrogen using a carbon membrane.
- nickel, ruthenium, rhodium and cobalt are known, which are usually applied to an oxidic support such as SiO 2 , TiO 2 , MgO, Al 2 O 3 , La 2 O 3 , as for example in Ohya et al. 1997: Methanation of carbon dioxide by using membrane reactor integrated with water vapor permselective membrane and its analysis, Journal of Membrane Science 131 (1-2 ).
- the most successful solution is currently the combination of 0.5% Ru on TiO 2.
- high CO 2 conversions and CH 4 yields can be achieved at temperatures of ⁇ 300 ... 350 ° C (John Ralston (http : //www.pennenergy.com/index/power/display/0723256773/articles/pennenergy/ugc/renewable/the-sabatier-reaction.html).
- the Sabatier reaction is a very demanding reaction as it is highly exothermic and, upon addition of the starting materials, depending on the degree of dilution with inert gases Temperatures above 600 ° C leads. This temperature level not only destroys some catalysts, for example, active centers are lost by, for. B. sintering Ni particles in the nm range together, but also shifts the reaction equilibrium in the direction of the reactants. By contrast, too low temperatures result in kinetic limitations of the reaction and the amount of desired products.
- the Sabatier reaction is an exothermic equilibrium reaction, it is bag-end-blocked with increasing reaction or process temperature.
- the removal of a reaction product directly from the reaction in the process causes an increase in the driving force for product formation.
- a suitable water-separating membrane does just that by separating the reaction product water directly in the process.
- a yield increase compared to the process without membrane is achieved.
- by the separation of the water of reaction a Subsequent drying of the methane to achieve the feed quality superfluous and this process step can be saved.
- methanol can be made from a syngas of carbon monoxide and hydrogen.
- the yield can also be improved if it is possible to separate the water on the side of the products ( JP 2007055970 A ).
- hydrophilic membranes For the separation of water from gas mixtures at a higher temperature usually hydrophilic membranes are used. These are in particular SiO 2 membranes and zeolite A membranes ( Wang et al., 2011: "Effects of water vapor on gas permeation and separation properties of MFI zeolite membranes at high temperatures, AIChE Journal 58 (1 ); Sano et al., 1994: “Separation of ethanol / water mixture by silicalite membrane on pervaporation, Journal of Membrane Science 95 (3 ); Hamzah et al., 2013: Pervaporation through NaA zeolite membranes - A review, The Third Basic Science International Conference 2013 ).
- Preferred application is the dewatering and drying of solvent vapors.
- SiO 2 membranes are subject to thermal degradation above 100 ° C. under reducing conditions, as present in the Sabatier reaction (US Pat.
- the invention has for its object to propose a way to conduct process of equilibrium reactions in which on the side of the reaction products, water is separated and an improved yield of reaction products is achieved.
- the object is achieved by a method for carrying out chemical equilibrium reactions in which carbon dioxide and hydrogen are reacted, using a permselective membrane, wherein the equilibrium reaction is either a Sabatier reaction or a methanol production reaction, and by action the permselective membrane amounts of at least one product obtained in the reaction are separated and removed from the reaction.
- Characteristic of a method according to the invention is that a permselective membrane is used which consists of a material which has a porous structure with average pore sizes of less than 0.45 nm (4.5 ⁇ ) and whose material is hydrophobic at least on its free surfaces is. A material is considered to be hydrophobic if wetting angles of 85 ° and above are measured on an attached water droplet.
- the chemical equilibrium reaction is carried out in the presence of a water-containing gas mixture.
- a hydrous gas mixture is obtained, for example, by the products of the Sabatier reaction methane and water. Due to the high temperatures at which this equilibrium reaction takes place, the water is present as water vapor.
- a mixture of methane and steam is understood as a gas mixture, in particular as a water-containing gas mixture.
- the core of the invention is the use of an organic membrane composed essentially of carbon and / or of hydrocarbons.
- the permselective membrane (henceforth also: membrane) is a carbon membrane.
- the membrane can be applied, for example, on ceramic elements of different lengths and diameters, which act as a carrier.
- the membranes may be present on an inner side and / or on an outer side of the carriers.
- the carriers may have on the inside and / or on the outside intermediate layers of decreasing pore size, over which the membrane may be arranged.
- Carriers have, for example, a length of 10 to 2000 mm, for example 105 mm and 250 mm.
- the carriers can be coated on their inside and / or on their outside partially or completely with the membrane.
- membranes can be made on any shaped carriers, for example, 10 to 2000 mm, for example, 500 mm in length.
- one-sided closed ceramic carriers can be produced and the membrane can also be applied to these on the outside.
- partially coated carrier is to ensure, for example, by a constructive measure that a separation of the water takes place only over the areas of the carrier, which are covered by the membrane.
- the structure of the material is graphite-like and formed by layers of the material, the structure is formed by at least one sequence of the layers, wherein the layers are arranged in planes, there is a mean interlayer spacing of less than 0.45 nm (4.5 ⁇ ) between adjacent layers, and the sequence of layers is disordered turbostratically.
- a membrane is used in which at least one metal-containing catalyst is applied to one surface of the permselective membrane.
- applied means that the catalyst is connected to the membrane or is in direct contact with the membrane.
- the catalyst is bound in the form of particles on a surface of the membrane and / or this is as bulk material or on.
- the catalyst may also be present as a coating on the membrane or on parts of the membrane.
- Catalysts may be metal-containing catalysts from a group comprising the metals ruthenium, nickel, cobalt, rhodium, platinum and palladium or their alloys.
- the term metal-containing catalysts also includes metallic catalysts.
- gases such as biogas, sewage gas, biomethane, molecular hydrogen-containing carbon dioxide streams, molecular hydrogen-releasing electrolyses, hydrogen streams, or combinations of these sources can be used to advantage.
- the sources of molecular hydrogen are treated in terms of process technology before they are used in the process according to the invention.
- they can be reduced and desulfurized to contain ⁇ 1 ppm of oxygen (02) and sulfur (S), ensuring feed-in quality.
- the chemical equilibrium reaction is preferably either a Sabatier reaction or a methanol production reaction.
- the process of the invention in particular the Sabatier reaction, is preferably carried out at a pressure selected from a range of 1 to 100 bar inclusive, e.g. B. 5, 75, 100 bar, and at a temperature selected from a range of 150 to 600 ° C inclusive, z. B. 400, 500 ° C performed.
- the Sabatier reaction is carried out at a pressure selected from a range of 10 to 20 bar and at a temperature selected from a range of 250 to 450 ° C.
- the Sabatier reaction can be carried out efficiently at a pressure of 20 bar and at a temperature of 300 ° C.
- the chemical equilibrium reaction is a methanol production reaction, it is preferably conducted at a pressure selected from a range of 80 to 250 bar inclusive and at a temperature selected from a range of 150 to 400 ° C inclusive.
- Methanol (CH 3 OH) is one of the most frequently produced organic chemicals and serves as the starting material for many other chemical products (eg formaldehyde, formic acid, etc.).
- the technical production is carried out mainly by a catalytically assisted reaction of CO and H 2 .
- the processes for methanol production are based on the prevailing reaction pressures in high pressure processes (250-350 bar, ⁇ 370 ° C), medium pressure (100-250 bar, ⁇ 220-300 ° C) and low pressure processes (50-100 bar, 200-300 ° C). Due to economic disadvantages, the high pressure process is no longer used today. It is widely used in the prior art copper-zinc catalysts on alumina.
- the membranes can be used in flexible geometry.
- the membranes allow selective separation of water under process conditions. Equipped with an active catalyst for the chemical equilibrium reaction to be carried out, the yield can be significantly increased and the achievement of the feed quality can be facilitated.
- a catalyst used can be arranged as bulk material on the membrane or it is a catalytically active Membrane used.
- Preferred use of the membrane is the conversion of carbon dioxide and hydrogen to methane (Sabatier reaction) or methanol.
- the use according to the invention of the membranes described is used, for example, for the removal of water from the Sabatier reaction.
- a direct contact between water-separating membrane and catalyst makes sense.
- the separation-active membrane can serve as a catalyst carrier.
- the catalyst or catalyst precursor is applied to the release-active layer and optionally activated in a suitable form, for example by heat. The activation of the catalyst takes place, for example, under the reaction conditions of the Sabatier reaction.
- the use according to the invention of the membranes described also makes it possible to efficiently carry out a chemical equilibrium reaction in which methanol and water are recovered on the product side from carbon dioxide and hydrogen on the educt side.
- the selective separation of water shifts the equilibrium towards the products and promotes the formation of methanol.
- the catalyst used is an aluminum-supported nickel oxide, for example the commercially available product METH 134.
- the catalyst was applied as a bed and activated accordingly in a stream of hydrogen / nitrogen (1: 9).
- the educt volume flow is approximately 250 Nl / h (standard liters per hour).
- the H 2 / CO 2 ratio is 4.1: 1 (19.6 vol% CO 2 , 80.4 vol% H 2 ) at a process pressure of 20 bar (20 bar overpressure) and reaction temperatures of 275-450 ° C , Revenues of between 85 and 89% are achieved with> 99% CH 4 selectivity.
- the CH 4 yield is also between 85 and 89%.
- the catalyst used is an aluminum-supported nickel oxide, for example the commercially available product METH 134 (manufacturer Clariant).
- the catalyst was applied as a bed and activated in a hydrogen / nitrogen stream (1: 9) accordingly.
- the educt volume flow is approximately 250 Nl / h in total.
- the H 2 / CO 2 ratio is 4.1: 1 (19.6 vol% CO 2 , 80.4 vol% H 2 ) at a process pressure of 20 bar and reaction temperatures of 240-450 ° C.
- the space velocity at the membrane is ⁇ 21.5 s -1 or corresponds to a linear velocity of ⁇ 0.04 m / s. Revenues> 90% are achieved with a CH 4 selectivity of> 99%.
- the CH 4 yield is also> 90%.
- catalyst precursor a coating of the membrane with nickel oxide is used. This precursor is reduced in a stream of hydrogen / nitrogen (1: 9) to the active metallic nickel and activated accordingly.
- the educt volume flow is about 1000 Nl / h in total.
- the H 2 / CO 2 ratio is 4.1: 1 (19.6 vol% CO 2 , 80.4 vol% H 2 ) at a process pressure of 20 bar and reaction temperatures of 240-450 ° C.
- the space velocity at the membrane is ⁇ 58 s -1 or corresponds to a linear velocity of ⁇ 0.02 m / s. Revenues> 95% are achieved with a CH 4 selectivity of> 99%.
- the CH 4 yield is also> 95%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Durchführung von chemischen Gleichgewichtsreaktionen unter Verwendung einer permselektiven Membran. Die Erfindung betrifft insbesondere ein Verfahren zur Umsetzung von Kohlendioxid und Wasserstoff unter Verwendung einer Kohlenstoffmembran.The present invention relates to a method for carrying out chemical equilibrium reactions using a permselective membrane. More particularly, the invention relates to a process for reacting carbon dioxide and hydrogen using a carbon membrane.
Die Umsetzung von Wasserstoff mit Kohlendioxid wird im Wesentlichen aus zwei Gründen verfolgt. Einerseits wird zunehmend Wasserstoff durch Elektrolyse hergestellt, um Netzschwankungen aus dem zunehmenden Anteil fluktuierenden Stroms aus regenerativen Quellen zu puffern ("power to gas"). Die Speicherung und die Verteilung von Wasserstoff können zu geringen Anteilen direkt im Erdgasnetz erfolgen. Durch die Umsetzung mit Kohlendioxid zu Methan wären die Speicherung und Verteilung in viel größerem Maßstab möglich. Der zweite Grund betrifft die chemische Bindung und Nutzung von Kohlendioxid und hat damit erhebliche umweit- und klimatechnische Vorteile.The reaction of hydrogen with carbon dioxide is pursued for essentially two reasons. On the one hand, hydrogen is increasingly being produced by electrolysis in order to buffer power fluctuations from the increasing proportion of fluctuating electricity from regenerative sources ("power to gas"). The storage and distribution of hydrogen can be done in small proportions directly in the natural gas network. By converting carbon dioxide to methane, storage and distribution would be possible on a much larger scale. The second reason concerns the chemical binding and use of carbon dioxide and thus has considerable environmental and environmental advantages.
In der dem Fachmann bekannten Sabatier-Reaktion, die eine chemische Gleichgewichtsreaktion ist, werden Kohlendioxid (CO2) und Wasserstoff (H2) (Edukte) zu Methan (CH4) und Wasser (H2O) (Produkte) umgesetzt. Die Sabatier-Reaktion wird meist bei Drücken von ∼1...3 bara (absoluter Druck; bar absolut), vereinzelt auch bei höheren Drücken von bis zu 15 bara, und in einem Temperaturbereich von rund 200 bis 450 °C durchgeführt. Als geeignete Katalysatoren für diese Reaktion sind beispielsweise Nickel, Ruthenium, Rhodium und Cobalt bekannt, die meist auf einem oxidischen Träger wie SiO2, TiO2, MgO, Al2O3, La2O3 aufgebracht sind, wie dies beispielsweise in
Die Sabatier-Reaktion ist eine sehr anspruchsvolle Reaktion, da sie stark exotherm ist und nach Zugabe der Edukte, je nach Verdünnungsgrad mit inerten Gasen, zu Temperaturen über 600 °C führt. Dieses Temperaturniveau zerstört nicht nur manche Katalysatoren, beispielsweise gehen aktive Zentren verloren, indem z. B. Ni-Partikel im nm-Bereich zusammensintern, sondern verschiebt auch das Reaktionsgleichgewicht in Richtung der Edukte. Zu niedrige Temperaturen haben dagegen kinetische Limitierungen der Reaktion und der Menge der gewünschten Produkte zur Folge.The Sabatier reaction is a very demanding reaction as it is highly exothermic and, upon addition of the starting materials, depending on the degree of dilution with inert gases Temperatures above 600 ° C leads. This temperature level not only destroys some catalysts, for example, active centers are lost by, for. B. sintering Ni particles in the nm range together, but also shifts the reaction equilibrium in the direction of the reactants. By contrast, too low temperatures result in kinetic limitations of the reaction and the amount of desired products.
Verschiedene Publikationen behandeln bereits den Einsatz von Membranen. So führt der Einsatz einer Membran aus 20-fach beschichtetem hydrophilem porösem Glas auf einem keramischen Träger im besten Fall zu einer Erhöhung des CO2-Umsatzes um 18 % (bei 300°C, 0,2 MPa und Raumgeschwindigkeit = 0,0308 s-1) (Ohya et al.). Die Umsatzerhöhung ist dabei bemerkenswert, allerdings bewegt sich die Raumgeschwindigkeit weit unterhalb industriell notwendiger Bereiche von mindestens 3 s-1. Darüber hinaus werden Membranen vorgelagert zur eigentlichen Sabatier-Reaktion zum Aufkonzentrieren des Kohlendioxids eingesetzt (
Da es sich bei der Sabatier-Reaktion um eine exotherme Gleichgewichtsreaktion handelt, ist sie mit zunehmender Reaktions- bzw. Prozesstemperatur ausbeutelimitiert. Der Entzug eines Reaktionsproduktes direkt aus der Reaktion im Prozess bewirkt eine Erhöhung der Triebkraft zur Produktbildung. Eine geeignete wasserabtrennende Membran bewirkt genau dies, indem das Reaktionsprodukt Wasser direkt im Prozess abgetrennt wird. So wird eine Ausbeutesteigerung verglichen zum Prozess ohne Membran erreicht. Weiterhin wird durch die Abtrennung des Reaktionswassers eine nachgeordnete Trocknung des Methans zur Erreichung der Einspeisequalität überflüssig und dieser Prozessschritt kann eingespart werden.Since the Sabatier reaction is an exothermic equilibrium reaction, it is bag-end-blocked with increasing reaction or process temperature. The removal of a reaction product directly from the reaction in the process causes an increase in the driving force for product formation. A suitable water-separating membrane does just that by separating the reaction product water directly in the process. Thus, a yield increase compared to the process without membrane is achieved. Furthermore, by the separation of the water of reaction a Subsequent drying of the methane to achieve the feed quality superfluous and this process step can be saved.
Methanol kann beispielsweise aus einem Synthesegas aus Kohlenmonoxid und Wasserstoff hergestellt werden. Insbesondere bei der Herstellung von Methanol aus Kohlendioxid und Wasserstoff als Edukte und Methanol und Wasser als Produkte einer chemischen Gleichgewichtsreaktion kann die Ausbeute ebenfalls verbessert werden, wenn es gelingt, das Wasser auf der Seite der Produkte abzutrennen (
Zur Abtrennung von Wasser aus Gasgemischen bei höherer Temperatur werden üblicherweise hydrophile Membranen eingesetzt. Dies sind insbesondere SiO2-Membranen und Zeolith-A-Membranen (
Bevorzugte Anwendung ist die Entwässerung und Trocknung von Lösemitteldämpfen. Der Einsatz dieser Membranen in der Sabatier-Reaktion zur Abtrennung von Wasser aus einem Gemisch mit Wasserstoff, Kohlendioxid und Methan zeigt jedoch eine unzureichende Selektivität und des Weiteren eine zu geringe Stabilität der Materialien unter den notwendigen Bedingungen der Sabatier-Reaktion. SiO2-Membranen unterliegen bei reduzierenden Bedingungen, wie sie in der Sabatier-Reaktion vorliegen, oberhalb von 100 °C thermischer Degradation (
Der Erfindung liegt die Aufgabe zugrunde, eine Möglichkeit zur Verfahrensführung von Gleichgewichtsreaktionen vorzuschlagen, bei denen auf der Seite der Reaktionsprodukte Wasser abgetrennt wird und eine verbesserte Ausbeute an Reaktionsprodukten erzielt wird.The invention has for its object to propose a way to conduct process of equilibrium reactions in which on the side of the reaction products, water is separated and an improved yield of reaction products is achieved.
Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.The object is solved by the subject matter of claim 1. Advantageous embodiments are specified in the dependent claims.
Die Aufgabe wird durch ein Verfahren zur Durchführung von chemischen Gleichgewichtsreaktionen, bei denen Kohlendioxid und Wasserstoff umgesetzt werden, unter Verwendung einer permselektiven Membran gelöst, wobei es sich bei der Gleichgewichtsreaktion entweder um eine Sabatier-Reaktion oder eine Methanol-Herstellungsreaktion handelt, und wobei durch Wirkung der permselektiven Membran Mengenanteile wenigstens eines bei der Reaktion erhaltenen Produkts abgetrennt und der Reaktion entzogen werden. Kennzeichnend für ein erfindungsgemäßes Verfahren ist, dass eine permselektive Membran verwendet wird, die aus einem Material besteht, das eine poröse Struktur mit mittleren Porengrößen von weniger als 0,45 nm (4,5 Ä) aufweist und deren Material wenigstens auf seinen freien Oberflächen hydrophob ist. Als hydrophob wird ein Material angesehen, wenn an einem aufgesetzten Wassertropfen Benetzungswinkel von 85° und darüber gemessen werden. Die chemische Gleichgewichtsreaktion wird unter Anwesenheit eines wasserhaltigen Gasgemisches durchgeführt. Ein wasserhaltiges Gasgemisch ist beispielsweise durch die Produkte der Sabatier-Reaktion Methan und Wasser erhalten. Durch die hohen Temperaturen, bei denen diese Gleichgewichtsreaktion erfolgt, liegt das Wasser als Wasserdampf vor. Eine Mischung von Methan und Wasserdampf wird im Sinne dieser Beschreibung als Gasgemisch, insbesondere als wasserhaltiges Gasgemisch verstanden.The object is achieved by a method for carrying out chemical equilibrium reactions in which carbon dioxide and hydrogen are reacted, using a permselective membrane, wherein the equilibrium reaction is either a Sabatier reaction or a methanol production reaction, and by action the permselective membrane amounts of at least one product obtained in the reaction are separated and removed from the reaction. Characteristic of a method according to the invention is that a permselective membrane is used which consists of a material which has a porous structure with average pore sizes of less than 0.45 nm (4.5 Å) and whose material is hydrophobic at least on its free surfaces is. A material is considered to be hydrophobic if wetting angles of 85 ° and above are measured on an attached water droplet. The chemical equilibrium reaction is carried out in the presence of a water-containing gas mixture. A hydrous gas mixture is obtained, for example, by the products of the Sabatier reaction methane and water. Due to the high temperatures at which this equilibrium reaction takes place, the water is present as water vapor. For the purposes of this description, a mixture of methane and steam is understood as a gas mixture, in particular as a water-containing gas mixture.
Kern der Erfindung ist die Verwendung einer im Wesentlichen aus Kohlenstoff und / oder aus Kohlenwasserstoffen aufgebauten organischen Membran. Vorzugsweise ist die permselektive Membran (fortan auch kurz: Membran) eine Kohlenstoffmembran.The core of the invention is the use of an organic membrane composed essentially of carbon and / or of hydrocarbons. Preferably, the permselective membrane (henceforth also: membrane) is a carbon membrane.
Dabei hat sich überraschend gezeigt, dass durch eine solche Kohlenstoffmembran unter den Bedingungen der Gleichgewichtsreaktion (fortan auch kurz: Reaktion) selektiv Wasser aus dem genannten Gemisch der Produkte abgetrennt wird.It has surprisingly been found that selectively separated from said mixture of products by such a carbon membrane under the conditions of the equilibrium reaction (henceforth also short: reaction).
Die Membran kann dabei beispielsweise auf keramischen Elementen verschiedener Länge und Durchmesser aufgebracht sein, die als Träger fungieren. Die Membranen können auf einer Innenseite und / oder auf einer Außenseite der Träger vorhanden sein. Die Träger können auf der Innenseite und / oder auf der Außenseite Zwischenschichten mit abnehmender Porengröße aufweisen, über denen die Membran angeordnet sein kann. Träger weisen beispielsweise eine Länge von 10 bis 2000 mm, beispielsweise 105 mm und 250 mm, auf. Die Träger können auf ihrer Innenseite und / oder auf ihrer Außenseite teilweise oder vollständig mit der Membran beschichtet sein. Weiterhin können Membranen auf beliebig geformten Trägern von beispielsweise 10 bis 2000 mm, beispielsweise von 500 mm, Länge hergestellt sein. Als zusätzlicher Schritt zur Außenbeschichtung können einseitig verschlossene Keramikträger hergestellt werden und die Membran kann auch auf diesen außenseitig appliziert werden.The membrane can be applied, for example, on ceramic elements of different lengths and diameters, which act as a carrier. The membranes may be present on an inner side and / or on an outer side of the carriers. The carriers may have on the inside and / or on the outside intermediate layers of decreasing pore size, over which the membrane may be arranged. Carriers have, for example, a length of 10 to 2000 mm, for example 105 mm and 250 mm. The carriers can be coated on their inside and / or on their outside partially or completely with the membrane. Furthermore, membranes can be made on any shaped carriers, for example, 10 to 2000 mm, for example, 500 mm in length. As an additional step to the outer coating, one-sided closed ceramic carriers can be produced and the membrane can also be applied to these on the outside.
Bei einer Verwendung teilweise beschichteter Träger ist beispielsweise durch eine konstruktive Maßnahme dafür Sorge zu tragen, dass ein Abtrennen des Wassers nur über die Bereiche des Trägers erfolgt, die von der Membran bedeckt sind.When using partially coated carrier is to ensure, for example, by a constructive measure that a separation of the water takes place only over the areas of the carrier, which are covered by the membrane.
Es ist daher eine bevorzugte Ausführung des erfindungsgemäßen Verfahrens, wenn die permselektive Membran eine Kohlenstoffmembran ist, die Struktur des Materials graphitähnlich und durch Schichten des Materials gebildet ist, die Struktur durch wenigstens eine Folge der Schichten gebildet ist, wobei die Schichten in Ebenen angeordnet vorliegen, zwischen benachbarten Schichten ein mittlerer Abstand der Schichten von weniger als 0,45 nm (4,5 Ä) vorliegt und die Folge der Schichten turbostratisch fehlgeordnet ist.It is therefore a preferred embodiment of the method according to the invention, when the permselective membrane is a carbon membrane, the structure of the material is graphite-like and formed by layers of the material, the structure is formed by at least one sequence of the layers, wherein the layers are arranged in planes, there is a mean interlayer spacing of less than 0.45 nm (4.5 Å) between adjacent layers, and the sequence of layers is disordered turbostratically.
In einer sehr günstigen Ausführung des erfindungsgemäßen Verfahrens ist eine Membran verwendet, bei der wenigstens ein metallhaltiger Katalysator auf einer Oberfläche der permselektiven Membran aufgebracht ist. Dabei bedeutet der Begriff "aufgebracht", dass der Katalysator mit der Membran verbunden ist oder mit dieser in direktem Kontakt steht. Vorzugsweise ist der Katalysator in Form von Partikeln auf einer Oberfläche der Membran gebunden und / oder liegt dieser als Schüttgut an oder auf. Der Katalysator kann auch als eine Beschichtung auf der Membran oder auf Teilen der Membran vorhanden sein.In a very favorable embodiment of the method according to the invention, a membrane is used in which at least one metal-containing catalyst is applied to one surface of the permselective membrane. The term "applied" means that the catalyst is connected to the membrane or is in direct contact with the membrane. Preferably, the catalyst is bound in the form of particles on a surface of the membrane and / or this is as bulk material or on. The catalyst may also be present as a coating on the membrane or on parts of the membrane.
Katalysatoren können dabei metallhaltige Katalysatoren aus einer Gruppe, beinhaltend die Metalle Ruthenium, Nickel, Cobalt, Rhodium, Platin und Palladium oder deren Legierungen, sein. Durch den Begriff der metallhaltigen Katalysatoren sind auch metallische Katalysatoren umfasst.Catalysts may be metal-containing catalysts from a group comprising the metals ruthenium, nickel, cobalt, rhodium, platinum and palladium or their alloys. The term metal-containing catalysts also includes metallic catalysts.
Sehr günstig für die Reaktionsführung und eine hohe Produktausbeute ist es, wenn die chemische Gleichgewichtsreaktion bei einem Wasserstoff-Überschuss bezogen auf den stöchiometrischen Einsatz molekularen Wasserstoffs (H2) durchgeführt wird. So kann der Wasserstoff-Überschuss bezogen auf den stöchiometrischen Einsatz molekularen Wasserstoffs 2,5 % betragen. Durch einen Überschuss an Wasserstoff wird eine unerwünschte Koksbildung weitgehend vermieden.It is very favorable for the reaction procedure and a high product yield if the chemical equilibrium reaction is carried out with an excess of hydrogen based on the stoichiometric use of molecular hydrogen (H 2 ). Thus, the hydrogen excess based on the stoichiometric use of molecular hydrogen can be 2.5%. Excessive hydrogen largely avoids undesirable coke formation.
Als Quelle des molekularen Wasserstoffs können vorteilhaft Gase, wie Biogas, Klärgas, Biomethan, molekularen Wasserstoff enthaltende Kohlendioxidströme, molekularen Wasserstoff freisetzende Elektrolysen, Wasserstoffströme oder Kombinationen dieser Quellen, verwendet werden.As a source of molecular hydrogen, gases such as biogas, sewage gas, biomethane, molecular hydrogen-containing carbon dioxide streams, molecular hydrogen-releasing electrolyses, hydrogen streams, or combinations of these sources can be used to advantage.
Es ist dabei für eine effiziente Verfahrensdurchführung vorteilhaft, wenn die Quellen molekularen Wasserstoffs vor deren Verwendung in dem erfindungsgemäßen Verfahren verfahrenstechnisch behandelt werden. Sie können beispielsweise reduziert und entschwefelt werden, so dass diese ≤ 1 ppm Sauerstoff (02) und Schwefel (S) enthalten und eine Einspeisequalität sichergestellt wird.It is advantageous for efficient process implementation if the sources of molecular hydrogen are treated in terms of process technology before they are used in the process according to the invention. For example, they can be reduced and desulfurized to contain ≤ 1 ppm of oxygen (02) and sulfur (S), ensuring feed-in quality.
Die chemische Gleichgewichtsreaktion ist vorzugsweise entweder eine Sabatier-Reaktion oder eine Methanol-Herstellungsreaktion.The chemical equilibrium reaction is preferably either a Sabatier reaction or a methanol production reaction.
Das erfindungsgemäße Verfahren, insbesondere die Sabatier-Reaktion, wird vorzugsweise bei einem Druck, ausgewählt aus einem Bereich von 1 bis einschließlich 100 bar, z. B. 5, 75, 100 bar, und bei einer Temperatur, ausgewählt aus einem Bereich von 150 bis einschließlich 600 °C, z. B. 400, 500 °C, durchgeführt.The process of the invention, in particular the Sabatier reaction, is preferably carried out at a pressure selected from a range of 1 to 100 bar inclusive, e.g. B. 5, 75, 100 bar, and at a temperature selected from a range of 150 to 600 ° C inclusive, z. B. 400, 500 ° C performed.
Es hat sich als günstig erwiesen, dass die Sabatier-Reaktion bei einem Druck, ausgewählt aus einem Bereich von 10 bis 20 bar, und bei einer Temperatur, ausgewählt aus einem Bereich von 250 bis 450 °C, durchgeführt wird. Insbesondere kann die Sabatier-Reaktion effizient bei einem Druck von 20 bar und bei einer Temperatur von 300 °C durchgeführt werden.It has been found to be favorable that the Sabatier reaction is carried out at a pressure selected from a range of 10 to 20 bar and at a temperature selected from a range of 250 to 450 ° C. In particular, the Sabatier reaction can be carried out efficiently at a pressure of 20 bar and at a temperature of 300 ° C.
Ist die chemische Gleichgewichtsreaktion eine Methanol-Herstellungsreaktion, wird diese vorzugsweise bei einem Druck ausgewählt aus einem Bereich von 80 bis einschließlich 250 bar und bei einer Temperatur ausgewählt aus einem Bereich von 150 bis einschließlich 400° C durchgeführt.When the chemical equilibrium reaction is a methanol production reaction, it is preferably conducted at a pressure selected from a range of 80 to 250 bar inclusive and at a temperature selected from a range of 150 to 400 ° C inclusive.
Methanol (CH3OH) ist als einfachster Vertreter der Stoffgruppe der Alkohole eine der meisthergestellten organischen Chemikalien und dient als Ausgangsstoff vieler weiterer chemischer Produkte (z. B. Formaldehyd, Ameisensäure usw.). Die technische Herstellung erfolgt hauptsächlich durch eine katalytisch unterstützte Reaktion von CO und H2. Die Verfahren zur Methanol-Herstellung werden nach den vorherrschenden Reaktionsdrücken in Hochdruckverfahren (250-350 bar, ∼370 °C), Mitteldruckverfahren (100-250 bar, ∼220-300 °C) und Niederdruckverfahren (50-100 bar, 200-300 °C) unterteilt. Aufgrund ökonomischer Nachteile wird das Hochdruckverfahren heutzutage nicht mehr angewendet. Es werden im Stand der Technik weitestgehend Kupfer-Zink-Katalysatoren auf Aluminiumoxid genutzt.Methanol (CH 3 OH), as the simplest representative of the substance group of alcohols, is one of the most frequently produced organic chemicals and serves as the starting material for many other chemical products (eg formaldehyde, formic acid, etc.). The technical production is carried out mainly by a catalytically assisted reaction of CO and H 2 . The processes for methanol production are based on the prevailing reaction pressures in high pressure processes (250-350 bar, ~370 ° C), medium pressure (100-250 bar, ~220-300 ° C) and low pressure processes (50-100 bar, 200-300 ° C). Due to economic disadvantages, the high pressure process is no longer used today. It is widely used in the prior art copper-zinc catalysts on alumina.
Eine alternative Variante zur Herstellung von CH3OH ist die Reaktion von CO2 mit H2, um auch bei der Synthese dieser Grundchemikalie auf das bisherige Abfallprodukt CO2 zurückgreifen zu können. Bei dieser Reaktion entsteht neben CH3OH auch H2O. Im Vergleich zur Erzeugung von Methanol aus Synthesegas liegt die Produktivität bei der Erzeugung aus CO2 und H2 um den Faktor 3-10 geringer, da das Wasser die Reaktion behindert. Allerdings kann mit einer kontinuierlichen Abführung des Reaktionsproduktes Wasser die Ausbeute erhöht werden. Dies wird durch den Einsatz der Membranen erreicht.An alternative variant for the production of CH 3 OH the reaction of CO 2 with H 2 in order to have access to the existing waste product CO 2 in the synthesis of these basic chemical. In this reaction, in addition to CH 3 OH also H 2 O. In comparison to the production of methanol from synthesis gas, the productivity of the production of CO 2 and H 2 by a factor of 3-10 is lower, since the water hinders the reaction. However, with a continuous removal of the reaction product, the water yield can be increased. This is achieved by using the membranes.
Die Membranen können in flexibler Geometrie verwendet werden. Die Membranen erlauben eine selektive Abtrennung von Wasser unter Prozessbedingungen. Ausgestattet mit einem für die durchzuführende chemische Gleichgewichtsreaktion aktiven Katalysator kann die Ausbeute signifikant erhöht und die Erreichung der Einspeisequalität erleichtert werden.The membranes can be used in flexible geometry. The membranes allow selective separation of water under process conditions. Equipped with an active catalyst for the chemical equilibrium reaction to be carried out, the yield can be significantly increased and the achievement of the feed quality can be facilitated.
Durch ein erfindungsgemäßes Verfahren unter Verwendung organischer Membranen mit hydrophoben Oberflächen wird vorteilhaft selbst bei hohen Temperaturen selektiv Wasser aus der Reaktion abtrennt. Ein verwendeter Katalysator kann dabei als Schüttgut auf der Membran angeordnet sein oder es wird eine katalytisch aktive Membran verwendet. Bevorzugter Einsatz der Membran ist die Umsetzung von Kohlendioxid und Wasserstoff zu Methan (Sabatier-Reaktion) oder Methanol.By a method according to the invention using organic membranes having hydrophobic surfaces, it is advantageous to selectively separate water from the reaction, even at high temperatures. A catalyst used can be arranged as bulk material on the membrane or it is a catalytically active Membrane used. Preferred use of the membrane is the conversion of carbon dioxide and hydrogen to methane (Sabatier reaction) or methanol.
Die erfindungsgemäße Verwendung der beschriebenen Membranen wird beispielsweise zur Wasserabtrennung aus der Sabatier-Reaktion genutzt. Dazu ist ein direkter Kontakt zwischen wasserabtrennender Membran und Katalysator sinnvoll. Die trennaktive Membran kann als Katalysatorträger dienen. Der Katalysator oder ein Katalysatorvorläufer wird auf die trennaktive Schicht aufgebracht und gegebenenfalls in geeigneter Form, beispielsweise durch Wärmezufuhr, aktiviert. Die Aktivierung des Katalysators erfolgt beispielsweise unter Reaktionsbedingungen der Sabatier-Reaktion.The use according to the invention of the membranes described is used, for example, for the removal of water from the Sabatier reaction. For this purpose, a direct contact between water-separating membrane and catalyst makes sense. The separation-active membrane can serve as a catalyst carrier. The catalyst or catalyst precursor is applied to the release-active layer and optionally activated in a suitable form, for example by heat. The activation of the catalyst takes place, for example, under the reaction conditions of the Sabatier reaction.
Die erfindungsgemäße Verwendung der beschriebenen Membranen erlaubt es außerdem, effizient eine chemische Gleichgewichtsreaktion durchzuführen, bei der aus Kohlendioxid und Wasserstoff auf der Eduktseite Methanol und Wasser auf der Produktseite gewonnen werden. Durch die selektive Abtrennung von Wasser wird das Gleichgewicht in Richtung auf die Produkte verschoben und die Bildung von Methanol begünstigt.The use according to the invention of the membranes described also makes it possible to efficiently carry out a chemical equilibrium reaction in which methanol and water are recovered on the product side from carbon dioxide and hydrogen on the educt side. The selective separation of water shifts the equilibrium towards the products and promotes the formation of methanol.
Für das erfindungsgemäße Verfahren werden nachfolgend Ausführungsbeispiele angegeben.For the inventive method embodiments are given below.
Als Katalysator dient ein Aluminium-unterstütztes Nickeloxid, beispielsweise das kommerziell verfügbare Produkt METH 134. Der Katalysator wurde als Schüttung appliziert und in einem Wasserstoff-/Stickstoffstrom (1:9) entsprechend aktiviert. Der Eduktvolumenstrom beträgt insgesamt ca. 250 Nl/h (Normliter je Stunde). Das H2/CO2-Verhältnis beträgt 4,1:1 (19,6 Vol% CO2, 80,4 Vol% H2) bei einem Prozessdruck von 20 barÜ (20 bar Überdruck) und Reaktionstemperaturen von 275 - 450 °C. Es werden Umsätze zwischen 85 und 89 % bei einer CH4-Selektivität von > 99 % erreicht. Die CH4-Ausbeute beträgt ebenfalls zwischen 85 und 89 %.The catalyst used is an aluminum-supported nickel oxide, for example the commercially available product METH 134. The catalyst was applied as a bed and activated accordingly in a stream of hydrogen / nitrogen (1: 9). The educt volume flow is approximately 250 Nl / h (standard liters per hour). The H 2 / CO 2 ratio is 4.1: 1 (19.6 vol% CO 2 , 80.4 vol% H 2 ) at a process pressure of 20 bar (20 bar overpressure) and reaction temperatures of 275-450 ° C , Revenues of between 85 and 89% are achieved with> 99% CH 4 selectivity. The CH 4 yield is also between 85 and 89%.
Als Katalysator dient ein Aluminium-unterstütztes Nickeloxid, beispielsweise das kommerziell verfügbare Produkt METH 134 (Hersteller Clariant). Der Katalysator wurde als Schüttung appliziert und in einem Wasserstoff-/Stickstoffstrom (1:9) entsprechend aktiviert. Der Eduktvolumenstrom beträgt insgesamt ca. 250 Nl/h. Das H2/CO2-Verhältnis beträgt 4,1:1 (19,6 Vol% CO2, 80,4 Vol% H2) bei einem Prozessdruck von 20 barÜ und Reaktionstemperaturen von 240 - 450 °C. Die Raumgeschwindigkeit an der Membran beträgt ∼21,5 s-1 bzw. entspricht einer Lineargeschwindigkeit von ∼0,04 m/s. Es werden Umsätze > 90 % bei einer CH4-Selektivität von > 99 % erreicht. Die CH4-Ausbeute beträgt ebenfalls > 90 %.The catalyst used is an aluminum-supported nickel oxide, for example the commercially available product METH 134 (manufacturer Clariant). The catalyst was applied as a bed and activated in a hydrogen / nitrogen stream (1: 9) accordingly. The educt volume flow is approximately 250 Nl / h in total. The H 2 / CO 2 ratio is 4.1: 1 (19.6 vol% CO 2 , 80.4 vol% H 2 ) at a process pressure of 20 bar and reaction temperatures of 240-450 ° C. The space velocity at the membrane is ~21.5 s -1 or corresponds to a linear velocity of ~0.04 m / s. Revenues> 90% are achieved with a CH 4 selectivity of> 99%. The CH 4 yield is also> 90%.
Als Katalysatorvorläufer wird eine Beschichtung der Membran mit Nickeloxid verwendet. Dieser Vorläufer wird in einem Wasserstoff-/Stickstoffstrom (1:9) zum aktiven metallischen Nickel reduziert und entsprechend aktiviert. Der Eduktvolumenstrom beträgt insgesamt ca. 1000 Nl/h. Das H2/CO2-Verhältnis beträgt 4,1:1 (19,6 Vol% CO2, 80,4 Vol% H2) bei einem Prozessdruck von 20 barÜ und Reaktionstemperaturen von 240 - 450 °C. Die Raumgeschwindigkeit an der Membran beträgt ∼58 s-1 bzw. entspricht einer Lineargeschwindigkeit von ∼0,02 m/s. Es werden Umsätze > 95 % bei einer CH4-Selektivität von > 99 % erreicht. Die CH4-Ausbeute beträgt ebenfalls > 95 %.As catalyst precursor, a coating of the membrane with nickel oxide is used. This precursor is reduced in a stream of hydrogen / nitrogen (1: 9) to the active metallic nickel and activated accordingly. The educt volume flow is about 1000 Nl / h in total. The H 2 / CO 2 ratio is 4.1: 1 (19.6 vol% CO 2 , 80.4 vol% H 2 ) at a process pressure of 20 bar and reaction temperatures of 240-450 ° C. The space velocity at the membrane is ~58 s -1 or corresponds to a linear velocity of ~0.02 m / s. Revenues> 95% are achieved with a CH 4 selectivity of> 99%. The CH 4 yield is also> 95%.
Claims (12)
- Method for carrying out chemical equilibrium reactions in which carbon dioxide and hydrogen are converted, using a permselective membrane, wherein quantitative proportions of at least water as one of products obtained in the reaction are separated and removed from the reaction through the action of the permselective membrane, characterized in that the equilibrium reaction is either a Sabatier reaction or a methanol production reaction and a permselective membrane is used which is made from a material containing at least carbon and / or hydrocarbons, said material having a porous structure with mean pore sizes of less than 0.45 nm (4.5 Å) and being hydrophobic at least on the free surfaces thereof.
- Method according to claim 1, characterized in that- the permselective membrane is a carbon membrane,- the structure of the material is graphite-like and is formed by layers of the material,- the structure is formed by at least one series of layers, wherein the layers are arranged in planes,- there is a mean spacing of the layers of less than 0.45 nm (4.5 Å) between adjacent layers, and- the series of layers is turbostratically disordered.
- Method according to one of claims 1 or 2, characterized in that at least one metal-containing catalyst is arranged on a surface of the permselective membrane.
- Method according to claim 3, characterized in that metal-containing catalysts are selected from a group comprising the metals ruthenium, nickel, cobalt, rhodium, platinum and palladium, or alloys thereof.
- Method according to one of the preceding claims, characterized in that the chemical equilibrium reaction is carried out with a hydrogen surplus with respect to the stoichiometric use of molecular hydrogen.
- Method according to claim 5, characterized in that the hydrogen surplus amounts to 2.5% with respect to the stoichiometric use of molecular hydrogen.
- Method according to one of the preceding claims, characterized in that biogas, sewage gas, biomethane, molecular hydrogen-containing carbon dioxide streams, molecular hydrogen-releasing electrolysis, hydrogen streams or combinations thereof are used as sources of molecular hydrogen.
- Method according to claim 7, characterized in that the sources of molecular hydrogen are reduced and desulfurized and contain ≤ 1 ppm of oxygen (O2) and sulfur (S).
- Method according to claim 1, characterized in that the chemical equilibrium reaction is the Sabatier reaction, and this Sabatier reaction is carried out at a pressure selected from a range of 1 to 100 bar and at a temperature selected from a range of 150 to 600 °C.
- Method according to claim 9, characterized in that the Sabatier reaction is carried out at a pressure selected from a range of 10 to 20 bar and at a temperature selected from a range of 250 to 450 °C.
- Method according to claim 10, characterized in that the Sabatier reaction is carried out at a pressure of 20 bar and at a temperature of 300 °C.
- Method according to claim 1, characterized in that the chemical equilibrium reaction is a methanol production reaction and is carried out at a pressure selected from a range of 80 bar up to and including 250 bar and at a temperature selected from a range of 150 °C up to and including 400 °C.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014118894.2A DE102014118894A1 (en) | 2014-12-17 | 2014-12-17 | Process for carrying out chemical equilibrium reactions using a permselective membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3034485A1 EP3034485A1 (en) | 2016-06-22 |
EP3034485B1 true EP3034485B1 (en) | 2018-08-29 |
Family
ID=55411138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15200377.8A Active EP3034485B1 (en) | 2014-12-17 | 2015-12-16 | Reaction of carbon dioxide with hydrogen using a permselective membrane |
Country Status (6)
Country | Link |
---|---|
US (1) | US9611187B2 (en) |
EP (1) | EP3034485B1 (en) |
JP (1) | JP2016117726A (en) |
DE (1) | DE102014118894A1 (en) |
DK (1) | DK3034485T3 (en) |
ES (1) | ES2693529T3 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014118892A1 (en) * | 2014-12-17 | 2016-06-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Carbon membrane, process for producing carbon membranes and their use |
JP6746763B2 (en) * | 2018-08-01 | 2020-08-26 | 日本碍子株式会社 | Power generation system |
JP6741830B2 (en) * | 2018-08-01 | 2020-08-19 | 日本碍子株式会社 | Power generation system |
CN112512672A (en) | 2018-08-02 | 2021-03-16 | 三菱化学株式会社 | Bonded body, separation membrane module provided with bonded body, and alcohol production method |
DE202018106378U1 (en) * | 2018-11-09 | 2018-11-19 | Muw Screentec Filter- Und Präzisionstechnik Aus Metall Gmbh | Catalytic continuous membrane reactor for carrying out chemical equilibrium reactions |
DE202018106371U1 (en) * | 2018-11-09 | 2018-11-15 | Muw Screentec Filter- Und Präzisionstechnik Aus Metall Gmbh | Catalytic membrane reactor for carrying out chemical equilibrium reactions |
FR3109900B1 (en) * | 2020-05-07 | 2024-02-16 | Centre Nat Rech Scient | Process for preparing a supported metal catalyst, catalyst obtained according to this process and uses |
JPWO2022030203A1 (en) * | 2020-08-06 | 2022-02-10 | ||
DE112022002561T5 (en) * | 2021-05-13 | 2024-03-21 | ESEP Inc. | CO2 conversion device |
JP7190774B2 (en) * | 2021-05-13 | 2022-12-16 | イーセップ株式会社 | CO2 conversion device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4019170A1 (en) | 1990-06-15 | 1991-12-19 | Henkel Kgaa | METHOD FOR CARRYING OUT A BALANCE REACTION USING DAMPER PERMEATION |
JP3647985B2 (en) * | 1996-08-09 | 2005-05-18 | カネボウ株式会社 | Molecular sieving carbon membrane and its manufacturing method |
JP2003530999A (en) * | 2000-04-20 | 2003-10-21 | メンブラナ ムンディ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Separation of fluid mixtures using filmed sorbents |
DE10335131A1 (en) | 2003-07-31 | 2005-02-24 | Blue Membranes Gmbh | Porous carbon moldings, e.g. for catalyst support; insulant, tube membrane, ex or in vivo cell culture substrate or scaffold or implant, are made by molding carbonizable polymer and removing filler or partial oxidation to form pores |
CA2608400C (en) * | 2005-05-25 | 2014-08-19 | Velocys Inc. | Support for use in microchannel processing |
JP2007055970A (en) * | 2005-08-26 | 2007-03-08 | Mitsui Eng & Shipbuild Co Ltd | Reactor for producing methanol and method for producing methanol |
WO2012041998A1 (en) * | 2010-10-01 | 2012-04-05 | Basf Se | Method for producing carbon membranes |
US9308501B2 (en) * | 2012-11-01 | 2016-04-12 | Ut-Battelle, Llc | Super-surface selective nanomembranes providing simultaneous high permeation flux and high selectivity |
-
2014
- 2014-12-17 DE DE102014118894.2A patent/DE102014118894A1/en not_active Withdrawn
-
2015
- 2015-12-16 EP EP15200377.8A patent/EP3034485B1/en active Active
- 2015-12-16 US US14/970,681 patent/US9611187B2/en active Active
- 2015-12-16 DK DK15200377.8T patent/DK3034485T3/en active
- 2015-12-16 ES ES15200377.8T patent/ES2693529T3/en active Active
- 2015-12-17 JP JP2015246098A patent/JP2016117726A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3034485A1 (en) | 2016-06-22 |
DE102014118894A1 (en) | 2016-07-07 |
US9611187B2 (en) | 2017-04-04 |
ES2693529T3 (en) | 2018-12-12 |
DK3034485T3 (en) | 2018-11-19 |
JP2016117726A (en) | 2016-06-30 |
US20160176775A1 (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3034485B1 (en) | Reaction of carbon dioxide with hydrogen using a permselective membrane | |
DE69428245T2 (en) | Process for the partial oxidation of natural gas for the production of synthesis gas and formaldehyde | |
DE69905467T2 (en) | PARTIAL CATALYTIC OXIDATION WITH A RHODIUM-IRIDIUM ALLOY CATALYST | |
CH687004A5 (en) | Membrane reactor for the conversion of houses on gaseous precursors. | |
EP3515882B1 (en) | Novel, highly efficient eco-friendly processes for converting co2 or co-rich streams to liquid fuels and chemicals | |
WO2008145488A1 (en) | Process for continuously preparing methyl mercaptan from carbon- and hydrogen-containing compounds | |
EP2898943B1 (en) | Process and apparatus for the obtention of dimethylether from syngas | |
DE102008054760A1 (en) | Heterogeneous catalyst for the Fischer-Tropsch synthesis and a process for its preparation | |
DE102005042920A1 (en) | Inherently safe selective process for the direct synthesis of hydrogen peroxide from hydrogen and oxygen with a catalytically coated wettable porous membrane and an apparatus for carrying out the process | |
DE3688026T2 (en) | METHOD FOR PRODUCING A SYNTHESIS GAS FROM HYDROCARBON-BASED SUBSTANCES. | |
EP4324815A1 (en) | Method and system for producing methanol and synthesis gas | |
EP4225722A1 (en) | Process for preparing methanol | |
DE102016005418A1 (en) | Process for the isolation and methanation of carbon dioxide from exhaust gases | |
WO2010108974A1 (en) | Method for operating a fossil power plant and power plant | |
WO2017207110A1 (en) | Method and installation for producing ethanol | |
WO2003104143A1 (en) | Method for producing hydrogenous gases | |
WO2019206450A1 (en) | Producing a synthesis product | |
EP2102102B1 (en) | Method for removing no and n<sb>2</sb>o from gas mixtures | |
AT522823B1 (en) | Process for the production of carbon monoxide | |
DE112022002561T5 (en) | CO2 conversion device | |
DE102022114811A1 (en) | Process for producing dimethyl ether | |
WO2017207108A1 (en) | Method and installation for producing ethanol | |
DE102017003840A1 (en) | Process and plant for the production of ethanol | |
WO2021035266A1 (en) | Catalyst based on lacunar heteropolyacid supported in micropores, preparation process therefor and process for glycerol conversion therewith | |
EP3650118A1 (en) | Catalytic membrane reactor for carrying out chemical equilibrium reactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20161219 |
|
RAV | Requested validation state of the european patent: fee paid |
Extension state: MD Effective date: 20161219 Extension state: MA Effective date: 20161219 |
|
RAX | Requested extension states of the european patent have changed |
Extension state: BA Payment date: 20161219 Extension state: ME Payment date: 20161219 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20170425 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 1/12 20060101AFI20180207BHEP Ipc: C07C 9/04 20060101ALI20180207BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180308 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1034921 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015005645 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FELBER UND PARTNER AG, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2693529 Country of ref document: ES Kind code of ref document: T3 Effective date: 20181212 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181129 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181129 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
VS25 | Lapsed in a validation state [announced via postgrant information from nat. office to epo] |
Ref country code: MA Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151216 Ref country code: MD Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015005645 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180829 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180829 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015005645 Country of ref document: DE Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502015005645 Country of ref document: DE Representative=s name: GLEIM PETRI OEHMKE PATENT- UND RECHTSANWALTSPA, DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230606 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015005645 Country of ref document: DE Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231220 Year of fee payment: 9 Ref country code: NL Payment date: 20231220 Year of fee payment: 9 Ref country code: LU Payment date: 20231220 Year of fee payment: 9 Ref country code: IT Payment date: 20231228 Year of fee payment: 9 Ref country code: FR Payment date: 20231221 Year of fee payment: 9 Ref country code: DK Payment date: 20231227 Year of fee payment: 9 Ref country code: DE Payment date: 20231214 Year of fee payment: 9 Ref country code: AT Payment date: 20231221 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240129 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240102 Year of fee payment: 9 |