WO2010108974A1 - Method for operating a fossil power plant and power plant - Google Patents

Method for operating a fossil power plant and power plant Download PDF

Info

Publication number
WO2010108974A1
WO2010108974A1 PCT/EP2010/053875 EP2010053875W WO2010108974A1 WO 2010108974 A1 WO2010108974 A1 WO 2010108974A1 EP 2010053875 W EP2010053875 W EP 2010053875W WO 2010108974 A1 WO2010108974 A1 WO 2010108974A1
Authority
WO
WIPO (PCT)
Prior art keywords
power plant
membrane
reaction
carbon dioxide
plant according
Prior art date
Application number
PCT/EP2010/053875
Other languages
German (de)
French (fr)
Inventor
Heinrich Zeininger
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010108974A1 publication Critical patent/WO2010108974A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the invention relates to a device and a method for reducing carbon dioxide emissions in fossil-fueled power plants.
  • Carbon dioxide is a greenhouse gas and is responsible among other things for the global earth warming.
  • Object of the present invention is therefore to provide a method and an apparatus for the separation of carbon dioxide from ei ⁇ nem fossil-powered power plant.
  • Solution of the problem and object of the invention are in the present description, the figure and the claims of ⁇ fenbart.
  • a method for operating a power plant in which the Verga ⁇ tion of the fuel following process step, the exhaust gas from the power plant of a reaction (hereinafter also called “follow-reaction") is subjected, the gaseous Product of this reaction is introduced into a membrane.
  • Au ⁇ ßerdem is the subject of the invention, a power plant for the combustion of fossil fuels, in which in the Ablassoff- the reaction chamber for a subsequent combustion reaction to the actual drying, a membrane is provided.
  • the membrane is a siloxane membrane, more preferably it is a polydimethylsiloxane membrane.
  • the membrane is coupled with a porous catalytically active carrier, for example a mixed oxide layer.
  • a porous catalytically active carrier for example a mixed oxide layer.
  • the mixed oxide layer is a mixture of the following oxides: zinc oxide, aluminum oxide, zirconium oxide, titanium oxide, and further transition metal oxides and / or the oxides of the rare earth group.
  • Precursor chemicals can be implemented.
  • a catalyst for example, copper, platinum, palladium, and others, preferably on the surface finely dispersed precious metals.
  • an asymmetric membrane is used, in which the membrane layer for separating the carbon dioxide on the porous mixed oxide layer is applied.
  • hydrogen plus carbon dioxide is enriched in the permeate from the gas mixture leaving the reaction chamber of the reaction sequence, preferably the CO shift reaction.
  • the temperature of the subsequent reaction is between 200 0 C and 400 0 C, in particular between 230 ° C and 380 ° C and more preferably between 280 0 C and 320 0 C.
  • the exhaust gas from the secondary reaction is at a high pressure, in particular from 25 to 45 bar.
  • the exhaust gas from the reaction chamber of the reaction has a relatively high carbon dioxide content of up to 60%, in particular about 35 to 50%, in particular from 40 to 45% and is therefore very favorable for carbon dioxide separation.
  • the waste gas from the reaction chamber of the follow-up reaction is preferably conducted with a relatively low flow of, for example, about 5 to 20 m 3 / s, in particular of about 10 m 3 / s, which is favorable for passage through a membrane.
  • a relatively low flow of, for example, about 5 to 20 m 3 / s, in particular of about 10 m 3 / s, which is favorable for passage through a membrane.
  • hydrogen is simultaneously separated by the membrane, since it is a Bulk method. This can be done, for example, in an amount of up to 30%.
  • a mixture of carbon dioxide and hydrogen is then held, which offer itself for the reaction of catalysts to products such as methanol and water or other industrial precursor materials directly.
  • the greatest driving force is the already existing pressure difference between feed flow and permeate of> 25, in particular> 30 bar. This reduces the carbon dioxide concentration in the retentate.
  • the relatively low flow allows the large-scale use of membrane technology.
  • the membrane may be made of various plastics that are thermally stable, inert to acid gases and bind carbon dioxide.
  • PI polyimide
  • PDMS polydimethylsiloxanes
  • pebax polyether block amides
  • tissue support materials based on PET (type TH100), PEI and PPS (Freudenberg) are used.
  • the membrane is made of siloxane or a similar synthetically created synthetic material. fabric or a plastic mixture.
  • the polydimethylsiloxane membrane is particularly suitable because it is thermally stable up to about 330 ° C. and inert to the acidic ambient conditions.
  • the selectivity of the Polydimethylsi ⁇ loxanmembran can be increased.
  • the membrane itself is preferably applied to a carrier foil, for example on a metal, plastic, glass or ceramic foil.
  • a catalyst for converting the gases bound through the membrane is preferably provided.
  • a mixed oxide is arranged between the carrier film and the membrane.
  • the mixed oxide will still be doped with a catalyst, so that a mixed oxide catalyst is present.
  • this mixed oxide catalyst is still porous, so that a high surface at which the reaction can take place from the gas phase results.
  • the figure shows a schematic diagram of an asymmetric membrane according to an exemplary embodiment of the invention.
  • On display is an asymmetric membrane for carbon dioxide separation and catalytic conversion of carbon dioxide and hydrogen in methanol.
  • the layer structure of the asymmetric membrane shows the following from bottom to top:
  • the carrier film 1 is shown at the bottom, it is made of metal, ceramic and / or plastic, for example.
  • the Tragerfo ⁇ lie 1 may also be a laminate of different films.
  • a porous mixed oxide catalyst 2 is arranged.
  • the thickness of the mixed oxide catalyst layer is not quite as big as the thickness of the carrier foil.
  • the actual membrane ⁇ layer 3 On the mixed oxide catalyst layer 2 is the actual membrane ⁇ layer 3, whose thickness is for example in the range of 30 to 150 nm, in particular from 50 to 120 nm, in particular less than 100 nm.
  • selectivities of> 10, preferably> 20 are achieved with modified polydimethylsiloxane membranes.
  • the remaining carbon dioxide remains after the condensation of catalytically assisted reaction products as a clean gas. It can be used as desired, for example, liquefied or fed to a further implementation.
  • the hydrogen which is separated off is used as fuel for the production of methanol, and any remnants can later be used to generate energy.
  • methanol hydrogen can be used for example in the fuel cell.
  • Methanol is, so to speak, a "chemical storage" for hydrogen.
  • the remaining carbon dioxide can be used as desired.
  • the invention relates to a device and a method for reducing carbon dioxide emissions in fossil-fueled power plants.
  • the gaseous product is passed through a membrane which absorbs carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to an apparatus and to a method for lowering carbon dioxide emissions in fossil-operated power plants. For this purpose, the gaseous product is conducted through a membrane that absorbs carbon dioxide in a reaction that follows the actual combustion process.

Description

Beschreibungdescription
Verfahren zum Betreiben eines fossilen Kraftwerks und KraftwerkMethod of operating a fossil power plant and power plant
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Verminderung des Kohlendioxidausstoßes bei fossil betriebenen Kraftwerken .The invention relates to a device and a method for reducing carbon dioxide emissions in fossil-fueled power plants.
Die globale Kohlendioxid Konzentration in der Atmosphäre nimmt seit Jahrzehnten zu. Kohlendioxid ist ein Treibhausgas und wird unter anderem für die globale Erderwarmung verantwortlich gemacht.The global carbon dioxide concentration in the atmosphere has been increasing for decades. Carbon dioxide is a greenhouse gas and is responsible among other things for the global earth warming.
Bislang wird zwar Kohlendioxid-Abtrennung bei Kraftwerken erforscht, aber es gibt noch keine Vorrichtung und kein Verfahren mit dem der Anteil an Kohlendioxidausstoß bei fossil betriebenen Kraftwerken signifikant erniedrigt wird. Der Anteil an Kohlendioxid im Kraftwerkabgas ist jedoch signifikant und liegt bei ca. 25% des gesamten Abgases.So far, although carbon dioxide separation is being researched at power plants, there is still no device and no method with which the proportion of carbon dioxide emissions in fossil-fueled power plants is significantly reduced. However, the proportion of carbon dioxide in the power plant exhaust gas is significant and is about 25% of the total exhaust gas.
Derzeit wird großtechnisch die Ammwasche in Demonstra- torkraftwerken getestet, bei der CO2 aus Rauchgasen in einem aufwandigen Verfahren absorbiert und anschließend nach Erwar- mung hochrein gewonnen wird. Der Nachteil des Verfahrens liegt im hohen Energieaufwand. Der Wirkungsgrad des Kraftwerks wird durch die CO2 Abtrennung bei Integration der Amm¬ wasche um ca. 10-14% reduziert, wobei wertvolle Ressourcen an fossilen Brennstoffen verbraucht werden.Currently, on a large scale, the wet waste is tested in demonstration power plants, where CO2 from flue gases is absorbed in an elaborate process and then recovered after heating to high purity. The disadvantage of the method is the high energy consumption. The efficiency of the power plant is reduced by the CO2 separation with integration of Amm ¬ wash by about 10-14%, whereby valuable resources are consumed on fossil fuels.
Em Hauptproblem bei der CÜ2-Abtrennung aus Kraftwerken liegt darin, dass die Effizienz des Kraftwerks durch die Abtrennung möglichst wenig beeinträchtigt wird.The main problem with the CÜ 2 separation from power plants is that the efficiency of the power plant is affected as little as possible by the separation.
Aufgabe der vorliegenden Erfindung ist daher, einen Verfahren und eine Vorrichtung zur Abtrennung von Kohlendioxid aus ei¬ nem fossil betriebenen Kraftwerk zu schaffen. Losung der Aufgabe und Gegenstand der Erfindung sind in der vorliegenden Beschreibung, der Figur und den Ansprüchen of¬ fenbart .Object of the present invention is therefore to provide a method and an apparatus for the separation of carbon dioxide from ei ¬ nem fossil-powered power plant. Solution of the problem and object of the invention are in the present description, the figure and the claims of ¬ fenbart.
Demnach ist es Gegenstand der Erfindung ein Verfahren zum Betreiben eines Kraftwerks, bei dem in einem auf die Verga¬ sung des Brennstoffs folgenden Prozessschritt das Abgas aus dem Kraftwerk einer Reaktion (im Folgenden auch "Folge- Reaktion" genannt) unterworfen wird, wobei das gasformige Produkt dieser Reaktion in eine Membran eingeleitet wird. Au¬ ßerdem ist Gegenstand der Erfindung ein Kraftwerk zur Verbrennung fossiler Brennstoffe, bei dem in der Ablassoff- nung der Reaktionskammer für eine an die eigentliche Verbrennung anschließende Reaktion eine Membran vorgesehen ist.Accordingly, it is the subject of the invention a method for operating a power plant, in which the Verga ¬ tion of the fuel following process step, the exhaust gas from the power plant of a reaction (hereinafter also called "follow-reaction") is subjected, the gaseous Product of this reaction is introduced into a membrane. Au ¬ ßerdem is the subject of the invention, a power plant for the combustion of fossil fuels, in which in the Ablassoff- the reaction chamber for a subsequent combustion reaction to the actual drying, a membrane is provided.
Nach einer vorteilhaften Ausfuhrungsform der Erfindung ist die Membran eine Siloxanmembran, insbesondere bevorzugt ist es eine Polydimethylsiloxanmembran.According to an advantageous embodiment of the invention, the membrane is a siloxane membrane, more preferably it is a polydimethylsiloxane membrane.
Nach einer weiteren vorteilhaften Ausfuhrungsform der Erfindung ist die Membran gekoppelt mit einem porösen katalytisch aktiven Trager, beispielsweise einer Mischoxidschicht. Diese kann selbsttragend oder auch auf einer Tragerfolie aufge¬ bracht sein. Nach einer besonders bevorzugten Ausfuhrungs- form ist die Mischoxidschicht eine Mischung aus ausgewählt aus den folgenden Oxiden: Zinkoxid, Aluminiumoxid, Zirkon- oxid, Titanoxid, sowie weiterer Nebengruppenmetalloxide und/oder der Oxide der Gruppe der seltenen Erden.According to a further advantageous embodiment of the invention, the membrane is coupled with a porous catalytically active carrier, for example a mixed oxide layer. This may be done ¬ self-supporting or on a carrier foil. According to a particularly preferred embodiment, the mixed oxide layer is a mixture of the following oxides: zinc oxide, aluminum oxide, zirconium oxide, titanium oxide, and further transition metal oxides and / or the oxides of the rare earth group.
Nach einer besonders bevorzugten Ausfuhrungsform ist dieAccording to a particularly preferred embodiment, the
Oberflache des Mischoxid-Tragers noch mit einem Katalysator dotiert, damit das in der Membranschicht abgetrennte Kohlendioxid mit dem bei der Abtrennung ebenfalls anfallenden Wasserstoff am Mischoxidtrager, bevorzugt bei den in der CO- Shift Reaktionskammer vorliegenden Temperaturen, gleich inSurface of the mixed oxide Tragers still doped with a catalyst, so that the separated in the membrane layer of carbon dioxide with the also obtained in the separation of hydrogen in the mixed oxide, preferably at the present in the CO shift reaction chamber temperatures, right in
Precursor-Chemikalien umsetzbar ist. Als Katalysator eigenen sich beispielsweise Kupfer, Platin, Palladium, und andere, bevorzugt auf der Oberflache fein verteilte Edelmetalle. Vorzugsweise wird eine asymmetrische Membran eingesetzt, in der die Membranschicht zur Abtrennung des Kohlendioxids auf der porösen Mischoxidschicht aufgebracht ist.Precursor chemicals can be implemented. As a catalyst, for example, copper, platinum, palladium, and others, preferably on the surface finely dispersed precious metals. Preferably, an asymmetric membrane is used, in which the membrane layer for separating the carbon dioxide on the porous mixed oxide layer is applied.
Durch die hier beschriebene Membrantechnologie mit vorzugs¬ weise asymmetrischen Membranen wird aus dem Gasgemisch, das die Reaktionskammer der Folge-Reaktion, bevorzugt der CO- Shift-Reaktion, verlasst, Wasserstoff plus Kohlendioxid im Permeat angereichert. Die Temperatur der Folge-Reaktion liegt zwischen 2000C und 4000C, insbesondere zwischen 230°C und 380°C und besonders bevorzugt zwischen 2800C und 3200C.By the membrane technology described here with preference ¬ asymmetric membranes, hydrogen plus carbon dioxide is enriched in the permeate from the gas mixture leaving the reaction chamber of the reaction sequence, preferably the CO shift reaction. The temperature of the subsequent reaction is between 200 0 C and 400 0 C, in particular between 230 ° C and 380 ° C and more preferably between 280 0 C and 320 0 C.
Vorteilhafterweise liegt das Abgas aus der Folge-Reaktion un- ter einem hohen Druck vor, insbesondere von 25 bis 45 bar.Advantageously, the exhaust gas from the secondary reaction is at a high pressure, in particular from 25 to 45 bar.
In der Reaktionskammer für die CO Shift Reaktion entstehen Wasserstoff, Kohlendioxid und Wasser. Der Anteil von Kohlen- monoxid liegt dort im Abgas beispielsweise nur noch 3 bis 10%. Eine Abtrennung vom Kohlendioxid an der Stelle im Kraft- werksprozess ist im Vergleich etwa zum Post Combustion Pro- zess wegen eines dort möglichen hohen Gasdrucks nach der CO Shift Reaktion von ca. > 25 bar, insbesondere von > 30 bar sehr gunstig.In the reaction chamber for the CO shift reaction arise hydrogen, carbon dioxide and water. The proportion of carbon monoxide in the exhaust gas, for example, is only 3 to 10%. Separation from carbon dioxide at the point in the power plant process is very favorable compared to, for example, the post-combustion process because of a possible high gas pressure after the CO shift reaction of about> 25 bar, in particular> 30 bar.
Des Weiteren ist bevorzugt, dass das Abgas aus der Reaktionskammer der Reaktion einen relativ hohen Kohlendioxidanteil von bis zu 60 %, insbesondere ca. 35 bis 50 %, insbesondere von 40 bis 45 % hat und daher für die Kohlendioxidabscheidung sehr gunstig ist.Furthermore, it is preferred that the exhaust gas from the reaction chamber of the reaction has a relatively high carbon dioxide content of up to 60%, in particular about 35 to 50%, in particular from 40 to 45% and is therefore very favorable for carbon dioxide separation.
Das Abgas aus der Reaktionskammer der Folge-Reaktion wird bevorzugt mit einem für die Durchleitung durch eine Membran gunstigen relativ geringen Fluss von beispielsweise ca. 5 bis 20 m3/s, insbesondere von ca. 10 m3/s, gefuhrt werden. Vorteilhafterweise reichen bei hohen Drucken bereits relativ geringe Selektivitäten der Membranen von CO2/H2 >5, vorzugs¬ weise >10 und insbesondere >15 aus.The waste gas from the reaction chamber of the follow-up reaction is preferably conducted with a relatively low flow of, for example, about 5 to 20 m 3 / s, in particular of about 10 m 3 / s, which is favorable for passage through a membrane. Advantageously, at high pressures already relatively low selectivities of the membranes of CO 2 / H 2 > 5, preferably ¬ > 10 and in particular> 15 from.
Nach einer vorteilhaften Ausfuhrungsform wird durch die Membran, da es sich um eine Bulkmethode handelt, gleichzeitig Wasserstoff mit abgetrennt. Dies kann beispielsweise in einer Menge von bis zu 30% erfolgen. In der Membran wird dann eine Mischung aus Kohlendioxid und Wasserstoff gehalten, die sich zur Umsetzung an Katalysatoren zu Produkten wie Methanol und Wasser oder anderen industriellen Precursormaterialien direkt anbieten .According to an advantageous embodiment, hydrogen is simultaneously separated by the membrane, since it is a Bulk method. This can be done, for example, in an amount of up to 30%. In the membrane, a mixture of carbon dioxide and hydrogen is then held, which offer itself for the reaction of catalysts to products such as methanol and water or other industrial precursor materials directly.
Größte Triebkraft ist die bereits bestehende Druckdifferenz zwischen Feedstrom und Permeat von > 25, insbesondere > 30 bar. Dadurch verringert sich die Kohlendioxid Konzentration im Retentat. Der relativ geringe Fluss erlaubt die großtechnische Nutzung der Membrantechnologie.The greatest driving force is the already existing pressure difference between feed flow and permeate of> 25, in particular> 30 bar. This reduces the carbon dioxide concentration in the retentate. The relatively low flow allows the large-scale use of membrane technology.
Die Membran kann aus verschiedenen Kunststoffen, die thermisch stabil sind, gegen saure Gase inert und Kohlendioxid binden, sein.The membrane may be made of various plastics that are thermally stable, inert to acid gases and bind carbon dioxide.
Die Entwicklung von Membranen für die Gasseparation erfolgt schwerpunktmäßig mit Polyimid (PI) , Polydimethylsiloxane (PDMS) und Polyether-Blockamide (pebax) als polymere Matrix- mateπalen. Diese Werkstoffe weisen eine hohe thermooxidative und chemische Beständigkeit in Rauchgasen auf. Weiterhin ist aus Voruntersuchungen bekannt, dass für beide Materialien ei- ne gunstige Gasselektivitat bei guten Flusseigenschaften vorliegt .The development of membranes for gas separation is predominantly with polyimide (PI), polydimethylsiloxanes (PDMS) and polyether block amides (pebax) as polymeric matrix mateπalen. These materials have a high thermooxidative and chemical resistance in flue gases. Furthermore, it is known from preliminary investigations that a favorable gas selectivity with good flow properties is present for both materials.
Es werden zwei Wege verfolgt. Zum einen werden freistehende Filme hergestellt, zum anderen dünne Schichten auf einen Ge- webesupport aufgezogen. Als Gewebesupport kommen Materialien auf Basis von PET (Typ THlOO), PEI und PPS (Fa. Freudenberg) zum Einsatz.Two ways are pursued. On the one hand, free-standing films are produced, on the other hand, thin layers are applied to a tissue support. As tissue support, materials based on PET (type TH100), PEI and PPS (Freudenberg) are used.
Nach einer vorteilhaften Ausfuhrungsform ist die Membran aus Siloxan oder einem ähnlichen synthetisch geschaffenen Kunst- stoff oder einem Kunststoffgemisch. Insbesondere geeignet ist unter anderen die Polydimethylsiloxanmembran, weil sie bis ca. 330°C thermisch stabil ist und gegen die sauren Umgebungsbedingungen inert. Durch Modifikationen, insbesondere auch eine chemische Modifikationen, also Bindung andererAccording to an advantageous embodiment, the membrane is made of siloxane or a similar synthetically created synthetic material. fabric or a plastic mixture. Among others, the polydimethylsiloxane membrane is particularly suitable because it is thermally stable up to about 330 ° C. and inert to the acidic ambient conditions. By modifications, in particular also a chemical modification, thus binding of other
Oberflachengruppen, kann die Selektivität der Polydimethylsi¬ loxanmembran erhöht werden.Surface groups, the selectivity of the Polydimethylsi ¬ loxanmembran can be increased.
Die Membran selbst ist bevorzugt auf einer Tragerfolie aufge- bracht, so beispielsweise auf einer Metall-, Kunststoff- Glas- oder Keramikfolie.The membrane itself is preferably applied to a carrier foil, for example on a metal, plastic, glass or ceramic foil.
Zwischen der Membran und der Tragerfolie ist bevorzugt ein Katalysator zur Umsetzung der durch die Membran gebundenen Gase vorgesehen. Insbesondere bevorzugt wird ein Mischoxid zwischen der Tragerfolie und der Membran angeordnet. Insbesondere bevorzugt wird das Mischoxid dabei noch mit einem Katalysator dotiert sein, so dass ein Mischoxid-Katalysator vorliegt. Nach einer besonders bevorzugten Ausfuhrungsform ist dieser Mischoxid-Katalysator noch porös gestaltet, so dass eine hohe Oberflache, an der die Reaktion aus der Gasphase stattfinden kann, resultiert.Between the membrane and the carrier film, a catalyst for converting the gases bound through the membrane is preferably provided. Particularly preferably, a mixed oxide is arranged between the carrier film and the membrane. Particularly preferably, the mixed oxide will still be doped with a catalyst, so that a mixed oxide catalyst is present. According to a particularly preferred embodiment, this mixed oxide catalyst is still porous, so that a high surface at which the reaction can take place from the gas phase results.
Die Figur zeigt eine Prinzipskizze einer asymmetrischen Memb- ran nach einer beispielhaften Ausfuhrungsform der Erfindung.The figure shows a schematic diagram of an asymmetric membrane according to an exemplary embodiment of the invention.
Zu sehen ist eine asymmetrische Membran zur Kohlendioxid- Abtrennung und katalytischen Umwandlung von Kohlendioxid und Wasserstoff in Methanol.On display is an asymmetric membrane for carbon dioxide separation and catalytic conversion of carbon dioxide and hydrogen in methanol.
Der Schichtaufbau der asymmetrischen Membran zeigt von unten nach oben folgende Abfolgt:The layer structure of the asymmetric membrane shows the following from bottom to top:
Die Tragerfolie 1 ist ganz unten gezeigt, sie ist beispiels- weise aus Metall, Keramik und/oder Kunststoff. Die Tragerfo¬ lie 1 kann auch ein Laminat verschiedener Folien sein. Darauffolgend ist ein poröser Mischoxid-Katalysator 2 angeordnet. Die Dicke der Mischoxid-Katalysatorschicht ist nicht ganz so groß wie die Dicke der Tragerfolie. Auf der Misch- oxid-Katalysatorschicht 2 liegt die eigentliche Membran¬ schicht 3, deren Dicke beispielsweise im Bereich von 30 bis 150 nm, insbesondere von 50 bis 120 nm, insbesondere kleiner 100 nm ist.The carrier film 1 is shown at the bottom, it is made of metal, ceramic and / or plastic, for example. The Tragerfo ¬ lie 1 may also be a laminate of different films. Subsequently, a porous mixed oxide catalyst 2 is arranged. The thickness of the mixed oxide catalyst layer is not quite as big as the thickness of the carrier foil. On the mixed oxide catalyst layer 2 is the actual membrane ¬ layer 3, whose thickness is for example in the range of 30 to 150 nm, in particular from 50 to 120 nm, in particular less than 100 nm.
Beispielsweise werden mit modifizierten Polydimethylsiloxan- membranen Selektivitäten von > 10, vorzugsweise > 20 erreicht .For example, selectivities of> 10, preferably> 20 are achieved with modified polydimethylsiloxane membranes.
Das restliche Kohlendioxid bleibt nach der Kondensation der katalytisch unterstutzten Reaktionsprodukte als sauberes Gas zurück. Es kann beliebig genutzt werden, beispielsweise verflüssigt oder einer weiteren Umsetzung zugeführt werden.The remaining carbon dioxide remains after the condensation of catalytically assisted reaction products as a clean gas. It can be used as desired, for example, liquefied or fed to a further implementation.
Im durch die Membran geleiteten Abgas verbleiben Spurengase der Verbrennung, insbesondere Sox, NOx, oder ahnliche. Die CO2 Abtrennung über die Membran verringert den Wasserstoffdruck im Retentat für die GuD nicht.In the guided through the membrane exhaust trace gases of combustion remain, in particular So x , NO x , or the like. CO 2 separation across the membrane does not reduce the hydrogen pressure in the retentate for the gas.
Beim Einsatz von dünnen Polydimethylsiloxanmembranen können > 70% des Kohlendioxids abgetrennt werden.When using thin polydimethylsiloxane membranes> 70% of the carbon dioxide can be separated.
Der mit abgetrennte Wasserstoff ist als Brennstoff zur Metha- nolproduktion genutzt, eventuelle Überreste können auch spater noch zur Energiegewinnung nutzbar gemacht werden. Als Methanol kann Wasserstoff beispielsweise in der Brennstoffzelle eingesetzt werden. Methanol ist so zu sagen ein "chemischer Speicher" für Wasserstoff.The hydrogen which is separated off is used as fuel for the production of methanol, and any remnants can later be used to generate energy. As methanol, hydrogen can be used for example in the fuel cell. Methanol is, so to speak, a "chemical storage" for hydrogen.
Die Eigenschaften des Retentats werden bei der Abtrennung über die asymmetrische Polydimethylsiloxanmembran nicht geändert: der Feed-Druck bleibt im Retentat unverändert bestehen und die nachfolgende Oxidation von Wasserstoff wird nicht be- eintrachtigt. Für die Prozessfuhrung ist es sogar vorteil¬ haft, wenn Wasserstoff, wie nach dem Verfahren gemäß der Erfindung möglich, noch verdünnt vorliegt. Nach vorliegenden Versuchen und Berechnungen wird der Wirkungsgrad eines fossil betriebenen Kraftwerks durch die Koh- lendioxid-Abtrennung weniger als 5 % belastet. Eine Optimierung des Gesamtverbrauchs durch Integration von beispielswei- se Brennstoffzellen ist denkbar.The properties of the retentate are not changed in the separation via the asymmetric polydimethylsiloxane membrane: the feed pressure remains unchanged in the retentate and the subsequent oxidation of hydrogen is not hindered. For the Prozessfuhrung it is even advantageous ¬ way, when hydrogen as possible by the method according to the invention is present or diluting. According to existing tests and calculations, the efficiency of a fossil-fueled power plant is burdened by the carbon dioxide separation less than 5%. An optimization of the total consumption by integration of example fuel cells is conceivable.
Das noch vorhandene Kohlendioxid kann beliebig weiter genutzt werden.The remaining carbon dioxide can be used as desired.
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Verminderung des Kohlendioxidausstoßes bei fossil betriebenen Kraftwerken. Dazu wird in einer auf die eigentliche Verbrennung folgenden Reaktion das gasformige Produkt durch eine Membran, die Kohlendioxid absorbiert, gefuhrt. The invention relates to a device and a method for reducing carbon dioxide emissions in fossil-fueled power plants. For this purpose, in a reaction following the actual combustion, the gaseous product is passed through a membrane which absorbs carbon dioxide.

Claims

Patentansprüche claims
1. Verfahren zum Betrerben ernes Kraftwerks, bei dem in einem auf die Vergasung des Brennstoffs folgenden Prozess- schritt das Abgas aus dem Kraftwerk einer Reaktion unterworfen wird, wobei das gasformige Produkt dieser Reaktion in ei¬ ne Membran eingeleitet wird.1. A method for Betrerben Ernes power plant, in which in a to the gasification of the fuel following process step the exhaust gas is subjected to a reaction from the power plant, wherein the gaseous product of this reaction in egg ¬ ne membrane is initiated.
2. Verfahren nach Anspruch 1, wobei die Reaktion eine CO- Shift Reaktion ist.2. The method of claim 1, wherein the reaction is a CO shift reaction.
3. Verfahren nach Anspruch 1 oder 2, wobei die Reaktion bei einer Temperatur von 2000C bis 400 0C durchgeführt wird.3. The method according to claim 1 or 2, wherein the reaction is carried out at a temperature of 200 0 C to 400 0 C.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei das Abgas aus der Reaktion einen Kohlendioxid-Anteil von zumindest 35% hat.4. The method according to any one of the preceding claims, wherein the exhaust gas from the reaction has a carbon dioxide content of at least 35%.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei das Abgas aus der Reaktion unter einem Druck von zumindest 25 bar vorliegt.5. The method according to any one of the preceding claims, wherein the exhaust gas from the reaction is present under a pressure of at least 25 bar.
6. Kraftwerk zur Verbrennung fossiler Brennstoffe, bei dem in einer Ablassoffnung der Reaktionskammer für eine auf die eigentliche Verbrennung folgende Reaktion eine Membran vorgesehen ist.6. Power plant for the combustion of fossil fuels, in which a membrane is provided in a Ablassoffnung the reaction chamber for a reaction following the actual combustion a membrane.
7. Kraftwerk nach Anspruch 6, bei dem die Membran eine Si- loxanmembran, insbesondere eine Polydimethylsiloxanmembran ist.7. Power plant according to claim 6, in which the membrane is a siloxane membrane, in particular a polydimethylsiloxane membrane.
8. Kraftwerk nach Anspruch 6 oder 7, bei dem die Membran noch ein Mischoxid umfasst.8. Power plant according to claim 6 or 7, wherein the membrane still comprises a mixed oxide.
9. Kraftwerk nach einem der Ansprüche 6 bis 8, bei dem das Mischoxid Oxide aus der Gruppe folgender Metalloxide umfasst: Zinkoxid, Aluminiumoxid, Zirkonoxid, Titanoxid, sowie weite- rer Nebengruppenmetalloxide und/oder der Oxide der Gruppe der seltenen Erden.9. Power plant according to one of claims 6 to 8, wherein the mixed oxide comprises oxides from the group of the following metal oxides: zinc oxide, alumina, zirconium oxide, titanium oxide, as well as Subgroup metal oxides and / or rare earth group oxides.
10. Kraftwerk nach einem der Ansprüche 6 bis 9, bei dem das Mischoxid mit einem Katalysator dotiert ist.10. Power plant according to one of claims 6 to 9, wherein the mixed oxide is doped with a catalyst.
11. Kraftwerk nach Anspruch 6 bis 10, bei dem der Katalysator ausgewählt ist aus der Reihe Kupfer, Platin, Palladium, und/oder anderer Edelmetalle.11. Power plant according to claim 6 to 10, wherein the catalyst is selected from the series copper, platinum, palladium, and / or other precious metals.
12. Kraftwerk nach einem der vorstehenden Ansprüche 6 bis 11, wobei die Membran eine Tragerfolie umfasst. 12. Power plant according to one of the preceding claims 6 to 11, wherein the membrane comprises a carrier film.
PCT/EP2010/053875 2009-03-26 2010-03-25 Method for operating a fossil power plant and power plant WO2010108974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009015035.8 2009-03-26
DE102009015035A DE102009015035A1 (en) 2009-03-26 2009-03-26 Method of operating a fossil power plant and power plant

Publications (1)

Publication Number Publication Date
WO2010108974A1 true WO2010108974A1 (en) 2010-09-30

Family

ID=42269854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053875 WO2010108974A1 (en) 2009-03-26 2010-03-25 Method for operating a fossil power plant and power plant

Country Status (2)

Country Link
DE (1) DE102009015035A1 (en)
WO (1) WO2010108974A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354261B2 (en) 2010-06-30 2013-01-15 Codexis, Inc. Highly stable β-class carbonic anhydrases useful in carbon capture systems
US8354262B2 (en) 2010-06-30 2013-01-15 Codexis, Inc. Chemically modified carbonic anhydrases useful in carbon capture systems
US8420364B2 (en) 2010-06-30 2013-04-16 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181675A (en) * 1978-09-19 1980-01-01 Monsanto Company Process for methanol production
WO2001080981A1 (en) * 2000-04-20 2001-11-01 Membrana Mundi Gmbh Separation of fluid mixtures using membranized sorption bodies
WO2009025003A2 (en) * 2007-08-20 2009-02-26 Ast Engineering S.R.L. Modular plant for removal of pollutants from flue gases produced bv industrial processes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817534A1 (en) * 1998-04-16 1999-10-21 Mannesmann Ag Production of electrical energy from hydrogen-rich crude gas
US7744675B2 (en) * 2006-11-08 2010-06-29 Shell Oil Company Gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181675A (en) * 1978-09-19 1980-01-01 Monsanto Company Process for methanol production
WO2001080981A1 (en) * 2000-04-20 2001-11-01 Membrana Mundi Gmbh Separation of fluid mixtures using membranized sorption bodies
WO2009025003A2 (en) * 2007-08-20 2009-02-26 Ast Engineering S.R.L. Modular plant for removal of pollutants from flue gases produced bv industrial processes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GALLUCCI F ET AL: "An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor", CHEMICAL ENGINEERING AND PROCESSING, ELSEVIER SEQUOIA, LAUSANNE, CH LNKD- DOI:10.1016/J.CEP.2003.10.005, vol. 43, 1 January 2004 (2004-01-01), pages 1029 - 1036, XP002546298, ISSN: 0255-2701, [retrieved on 20031213] *
RAHIMPOUR M R ET AL: "Enhancement of methanol production in a novel fluidized-bed hydrogen-permselective membrane reactor in the presence of catalyst deactivation", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB LNKD- DOI:10.1016/J.IJHYDENE.2008.12.009, vol. 34, no. 5, 1 March 2009 (2009-03-01), pages 2208 - 2223, XP025988098, ISSN: 0360-3199, [retrieved on 20090204] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354261B2 (en) 2010-06-30 2013-01-15 Codexis, Inc. Highly stable β-class carbonic anhydrases useful in carbon capture systems
US8354262B2 (en) 2010-06-30 2013-01-15 Codexis, Inc. Chemically modified carbonic anhydrases useful in carbon capture systems
US8420364B2 (en) 2010-06-30 2013-04-16 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
US8512989B2 (en) 2010-06-30 2013-08-20 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
US8569031B2 (en) 2010-06-30 2013-10-29 Codexis, Inc. Chemically modified carbonic anhydrases useful in carbon capture systems

Also Published As

Publication number Publication date
DE102009015035A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
Llosa Tanco et al. Recent advances on carbon molecular sieve membranes (CMSMs) and reactors
DE60103911T2 (en) COMPOSITE CONDUCTIVE MEMBRANES FOR SYNTHESEGAS PRODUCTION
EP3034485B1 (en) Reaction of carbon dioxide with hydrogen using a permselective membrane
EP1634946B1 (en) Environmentally safe process for generating biological natural gas
CN101069844B (en) Calcium-titanium-ore type composite oxide La1-xSrxMO3-0.5 beta F beta and its preparation method and uses
DE102005060171A1 (en) Oxidation reactor and oxidation process
DE102009039149A1 (en) Catalytic membrane material coating
EP0754172A1 (en) Diaphragm reactor for converting gaseous base materials
Tosti et al. Production of hydrogen in a Pd-membrane reactor via catalytic reforming of olive mill wastewater
AT514614B1 (en) Method and system for storing energy
EP3638827A1 (en) Method and system for producing a gas product containing carbon monoxide
DE69308784T2 (en) Process for deoxidizing non-cryogenically produced nitrogen with a hydrocarbon
DE102012001804A1 (en) Process for direct dimethyl ether synthesis from synthesis gas
DE102011016759A1 (en) Preparing ammonia comprises conducting alkane dehydrogenation to produce hydrogen-rich stream, purifying the stream, optionally mixing purified nitrogen with hydrogen-rich stream, compressing the stream, preparing ammonia and liquefying
WO2010108974A1 (en) Method for operating a fossil power plant and power plant
Roostaie et al. RETRACTED ARTICLE: Synthesis and Characterization of Biotemplate γ-Al2O3 Nanoparticles Based on Morus alba Leaves
CN101248031A (en) High efficiency process for producing methanol from a synthesis gas
EP2862849B1 (en) Method for the conversion of CO2 to hydrocarbons
RU2530066C1 (en) Method of producing hydrogen-containing gas
DE102005042920A1 (en) Inherently safe selective process for the direct synthesis of hydrogen peroxide from hydrogen and oxygen with a catalytically coated wettable porous membrane and an apparatus for carrying out the process
DE102018106076A1 (en) Process and arrangement for methanol synthesis
DE102004013539A1 (en) Co-production of methanol and ammonia from natural gas comprises mixing steam and oxygen with natural gas; converting carbon monoxide into carbon dioxide; and compressing the gas mixture to obtain ratios for methanol and ammonia synthesis
AT515137B1 (en) Process for the separation, purification and concentration of gas mixtures
DE102016005418A1 (en) Process for the isolation and methanation of carbon dioxide from exhaust gases
Dey et al. An insight into the recent developments in membrane-based carbon dioxide capture and utilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10714865

Country of ref document: EP

Kind code of ref document: A1