EP3018346B1 - Dispositif de regulation de puissance d'une pompe hydraulique - Google Patents

Dispositif de regulation de puissance d'une pompe hydraulique Download PDF

Info

Publication number
EP3018346B1
EP3018346B1 EP15193043.5A EP15193043A EP3018346B1 EP 3018346 B1 EP3018346 B1 EP 3018346B1 EP 15193043 A EP15193043 A EP 15193043A EP 3018346 B1 EP3018346 B1 EP 3018346B1
Authority
EP
European Patent Office
Prior art keywords
value
pump
torque
engine
consumed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15193043.5A
Other languages
German (de)
English (en)
Other versions
EP3018346A1 (fr
Inventor
Henri Marchetta
Maxime Boni
Jean-Baptiste Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Groupe Mecalac SAS
Original Assignee
Groupe Mecalac SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Groupe Mecalac SAS filed Critical Groupe Mecalac SAS
Publication of EP3018346A1 publication Critical patent/EP3018346A1/fr
Application granted granted Critical
Publication of EP3018346B1 publication Critical patent/EP3018346B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Definitions

  • the present application relates to the technical field of public works and in particular the construction machines including a hydraulic pump driven by a heat engine.
  • the invention relates to a device for regulating the hydraulic power delivered by a pump driven by a thermal engine of construction equipment.
  • Hydraulic pumps convert mechanical power into hydraulic power capable of enabling the operation of systems or tools.
  • the use of hydraulic tools is widespread in the field of public works.
  • a hydraulic pump comprises a regulating device making it possible to adapt its power according to the need of the tool which it supplies.
  • the regulating device is generally an electronic device measuring in real time the speed of the heat engine driving the pump. In the event of a drop in its speed, the electronic device reduces the torque consumed by the pump to lighten the load of the pump on the engine. In this way, the regulating device makes it possible to avoid a crushing of the engine speed when the pump is driving the engine too abruptly.
  • load is meant an action that opposes the work provided by another device.
  • This regulation system has the disadvantage of reducing the engine load after only having detected a fall in its speed.
  • the hydraulic power delivered by the pump driven by the engine also varies sharply during this drop in speed.
  • This variation is also amplified by the control device which decreases the torque value consumed by the pump to lighten the load of the engine.
  • the hydraulic power delivered by the pump to the tool decreases sharply when the engine speed drops.
  • This mode of regulation thus has the effect of causing a jerky behavior of the tool when the power demanded by the tool is momentarily greater than the power of the motor. It can thus be seen that the dynamics of changes in the need for torque and power are important.
  • This mode of regulation thus makes it possible to avoid too much crushing of the engine speed during an abrupt charging of the pump, but this is done to the detriment of the continuity of the hydraulic power available for the tool powered by said pump.
  • the Applicant aims to propose a regulating device of a hydraulic pump preserving the engine speed causing it, while allowing the hydraulic pump to respond best to a sudden power demand from a hydraulic system.
  • the term “instantaneous real torque” is meant the torque consumed by the pump at a time t on the motor driving it, corresponding to the hydraulic power supplied by the pump and consumed by the hydraulic system at the same time and by the term “theoretical maximum torque” denotes the maximum torque that can be consumed by the pump as a function of the reference value applied to the control device of said pump
  • control device can act either directly on the torque limiter of the pump, or on the cubic capacity of the latter;
  • control, calculation and storage means and the means for modifying the setpoint value can be grouped together in the same device of the calculator or microcontroller type.
  • the computer controls in real time the ratio of the value of the theoretical maximum torque divided by the actual instantaneous torque value vis-à-vis the reference value which corresponds to a perfect match between the adjustment torque of the pump (setpoint) and the real torque consumed.
  • the calculator constantly adjusts the setpoint value according to this ratio so that the pump is exactly adjusted in accordance with the hydraulic power demanded by the hydraulic system.
  • the computer tends to continuously adapt the torque setting of the pump to the use, so that any increase in power demanded by the hydraulic system can be controlled by a corresponding increase in the torque setting of the pump.
  • the reference value corresponding to the evaluated ratio is therefore equal to 1.
  • the computer gradually modifies the setpoint value by one or more increments so that each variation modifies the maximum torque consumed by the pump so as to respect the dynamics of the engine.
  • engine dynamics is meant the ability of the engine to respond to rapid load stresses that change the value of its current regime, that is to say, its ability to maintain its regime under heavy load and punctual .
  • the regulating device thus makes it possible gradually to postpone a sudden variation of power of the hydraulic system on the heat engine while respecting its dynamics. Therefore, the control device according to the invention advantageously allows the hydraulic pump to respond quickly and progressively to sudden stresses of the hydraulic system, while avoiding a sudden drop in the speed of the engine driving it.
  • a hydraulic pump comprising a regulating device according to the invention can be controlled by different types of control devices (solenoid valve acting on the plate, etc.), it is easier to characterize the value of an increment. compared to the maximum torque consumed by the pump compared to the control data of the device (current for the solenoid valve, etc ).
  • the value of an increment can for example correspond to a variation of the maximum torque consumed by the pump between 0% and 5%, preferably between 0.2% and 1%.
  • the ratio between an increment of the setpoint value and its associated time interval is chosen to be less than a predetermined value so that the torque variations consumed by the pump respect the dynamics of the engine.
  • the value of an increment and / or its associated time interval can be adapted for each motor driving the pump.
  • the predetermined value may for example be between 10 N.m per second and 5000 N.m per second, preferably between 500 N.m per second and 2000 N.m per second.
  • the time intervals are obviously adapted according to the value of the increments so as to be lower than the predetermined value mentioned above.
  • the time intervals can be between 1 and 40 milliseconds, preferably between 5 and 20 milliseconds.
  • the reference value may take into account the measurement uncertainties of the evaluation means of the torque actually consumed by the pump.
  • the value of reference may be less than 1, for example between 0.9 and 0.99; preferably of the order of 0.95.
  • the reference value can be adapted according to the uncertainties of the evaluation means.
  • the computer can set by default the maximum torque consumed by the pump to a minimum value when the hydraulic system solicits little or no the pump. In other words, when the hydraulic system is at rest, the computer maintains the maximum torque setting consumed by the pump at a low value.
  • the torque setting value may be minimal when the value of the actual instantaneous torque consumed is less than 100 Nm.
  • the present application also relates to a hydraulic pump as described above, coupled to a diesel engine preferably.
  • the dynamics of a heat engine can depend on its regime.
  • the setpoint value can be chosen according to the speed of the engine.
  • the computer can also limit the torque variations consumed by the pump as a function of the speed of the motor driving it, for example by limiting the variation of the setpoint value between two extreme values making it possible in particular to make the best use of its power curve. .
  • the hydraulic system powered by the pump can of course be coupled to one or more hydraulic tools belonging to a construction machine.
  • the present application relates to a control device of a hydraulic pump to preserve the engine speed causing it, while allowing the hydraulic pump to respond best to a sudden demand for power from a hydraulic system.
  • the figure 1 illustrates a simplified diagram of a construction machine 2 according to the invention.
  • the construction machine can be in particular an excavator comprising a diesel engine 4 thermal driving through a power shaft 6 a variable displacement hydraulic pump 8 variable.
  • the pump feeds via hydraulic channels 10 several hydraulic cylinders 12 for moving equipment, such as an articulated arm 14.
  • the maximum torque consumed by the pump is controlled via an electrohydraulic valve 16 .
  • the valve controls the inclination of a movable platen arranged vis-à-vis the pump pistons, depending on the value of a current supplying said valve and the hydraulic pressure.
  • the displacement of the pump can be modified according to a set value (VC), in the form of a current electrical power to the electrohydraulic valve.
  • the figure 2 shows the influence of the setpoint on the theoretical hydraulic power (PHT) of the pump 8, for a drive speed set at 2000 revolutions per minute.
  • a first iso-power curve A is represented for a set value equal to A1, as a function of the flow rate (in the abscissa) and the pressure (on the ordinate) of a fluid leaving the pump.
  • a second iso-power curve B is also represented for a set value equal to B1, it should be noted that the power value associated with the curve A is approximately twice the power value associated with the curve B .
  • the theoretical hydraulic power (PHT) generated by the pump depends on its flow rate which itself depends on the speed of the engine 4, and on the other hand the pressure of the fluid flowing in the pump 8, which feeds the hydraulic system 18 formed channels 10 and cylinders 12.
  • PHT theoretical hydraulic power
  • the flow and pressure of the fluid circulating in the hydraulic system may vary throughout the area bounded by axes zero flow and zero pressure, and curve B is between 50 and 185 l / min and between 110 and 350 bar.
  • the electrohydraulic valve 16 is advantageously configured so that the set value A1 is lower than the set value B1 in order to consume less current when the motor 4 is the most stressed.
  • the electrohydraulic valve 16 it is possible to envisage a reverse operation concerning the valve 16.
  • a pump dispensed by the company BOSCH REXROTH under the reference A11VO95LE2S2, whose maximum torque adjustment consumed is controlled by means of an electrohydraulic valve integrated into the pump, of the LEXSX type may be suitable for the production of the invention.
  • the curves A and B on the figure 2 can respectively correspond to a hydraulic power value of the pump equal to 90kW and 40kW, when a set value is applied to the electrohydraulic valve equal to 200mA and 511 mA, respectively.
  • different combinations of pumps and valves can be envisaged to achieve the invention.
  • the pressure in the hydraulic system 18 varies according to the effort made by the boom 14. For example, when the operator of the machine commands the boom 14 to lift a large load, the weight of the load creates a force opposing the displacement of the cylinders in the pistons 12 for actuating the arrow. This results in a sudden increase in the pressure in the hydraulic system 18. If the theoretical hydraulic power (PHT) of the pump corresponds to the value associated with the curve A with and the movement of the boom requires a flow equal to 140 l / min, the weight of the load can suddenly increase the pressure, for example, from 80 bar to 330 bar. The actual hydraulic power PHR of the pump then increases very rapidly from point C to point D on the curve A. This sudden change in power is imposed on the motor 4 via the power shaft 6.
  • PHT theoretical hydraulic power
  • the pump 8 exerts then a resistive torque much higher than the available engine torque. For example, if the instantaneous power rating of the engine is less than half of the maximum power corresponding to curve A, the engine will not be able to meet this sudden demand for power and its speed will drop very quickly until it stops. We will talk about a drop in speed or crushing when there is a decrease, even minimal, engine speed.
  • the invention makes it possible to manage the situations where a reduction in speed related to the load which would cause the speed of the engine to fall below its speed set point, defined by the position of the throttle control. Too high a load and / or applied to the heat engine too quickly can lead to the setting thereof.
  • the aim of the invention is to limit this phenomenon of loss of power in the hydraulic system 18 during sudden power variations by proposing a new pump control device 8 comprising a computer 20 as illustrated in FIG. figure 1 .
  • the computer 20 comprises at least one input connected to measurement devices 22 of the hydraulic power in the hydraulic system 18.
  • the computer comprises a control device 24 making it possible to send a reference value (VC) to the electrohydraulic valve 16 , a computing device 26 and a data storage device 28 .
  • VC reference value
  • the arrows represent the direction of information flow between different elements of the construction machine 2.
  • the operation of the computer 20 is represented in the form of a diagram at the figure 3 .
  • the computer 20 determines in real time the instantaneous torque consumed (CRI) in the hydraulic system 18, and the theoretical maximum torque (CMT) generated by the pump 8.
  • the actual instantaneous torque consumed is determined from values generated by the measuring device 22.
  • the theoretical maximum torque is evaluated by the computer from a database contained in the storage device 28, making it possible to identify from the reference value (VC), the pressure and / or the flow rate of the fluid present in the hydraulic system 18, the corresponding CMT value.
  • the calculator can identify the CMT from the data of the figure 2 when the setpoint is known.
  • the computer can perform this first step cyclically, for example every millisecond.
  • the computer determines the ratio between the instantaneous real torque and the theoretical maximum torque (CRI / CMT) and compares this ratio with a reference value (VR), also stored by the storage means 28.
  • this reference value may be equal to 0.9.
  • the computer modifies or not the setpoint value (VC) according to the following criteria.
  • the computer 20 modifies the target value (VC) addressed to the valve 16 so as to progressively increase the torque consumed by the pump and thus enable it to meet the power demand of the hydraulic system. More precisely, the computer controls the increase in the theoretical maximum torque setting CMT of the pump so as to respect the dynamics of the motor 4.
  • the motor is designed to withstand limited variations (in amplitude and / or dynamics) of his load without significantly changing his regime.
  • the engine is able to go from a "zero" torque to its nominal torque at a given speed, in a time between 500 ms and 2000 ms depending on the speed, without falling below its set speed.
  • the computer 20 modifies the setting of the pump 8 so as to respect the capabilities of the engine and not to make it excessively fall in speed.
  • the dynamics of the engine varies depending on the engine considered.
  • the computer 20 allows the pump 8 to respond quickly to the power demand of the hydraulic system 18 while respecting the dynamics of the engine 4. As a result, a sudden increase in the power in the hydraulic system 18 no longer leads to a crushing of its speed, which allows the pump to respond gradually and quickly to the needs of the hydraulic system. More specifically, each bearing modifying the power of the pump is achieved respecting the dynamics of the motor 4. Thus, the important load mentioned above is raised by the boom 14 more regularly and progressively.
  • the value of the actual instantaneous torque (CRI) in the hydraulic system 18 can be determined by the measuring device 22 in different ways. To calculate the CRI, it is necessary to know the pressure and the flow rate of the fluid flowing in the hydraulic system 18. For this, one solution is to place pressure and flow sensors in the hydraulic system In practice, these sensors can be positioned on the main line of the pump, for better accuracy. However, by adapting the reference value VR, it is also possible to measure the pressure on the Load Sensing circuit.
  • the value of the actual instantaneous torque can be measured by any other means, for example by the use of a means for measuring the speed of displacement of a piston belonging to at least one jack 12 actuating the arrow 14.
  • the flow rate of the fluid can be determined from the measurement of the inclination angle of the movable plate making it possible to vary the stroke of the pistons of the pump 8, and the measurement of the engine speed. 4 training. Indeed, from these measurements it is possible to determine the flow rate of the fluid in the hydraulic system by multiplying the value of the displacement of the pump (determined from the measured angle of the moving plate) by the engine speed 4 . Obviously, other means for measuring the actual hydraulic power in the hydraulic system are possible.
  • the reference value is reduced so as to take into account these measurement uncertainties.
  • the reference value can be reduced from 1% to 10% depending on the accuracy of the measurements made, it can thus be between 0.99 and 0.9. According to an alternative, it is possible to subtract from the reference value a quantity taking into account these uncertainties.
  • the engine 4 of the construction machine 2 generally drives other systems which may be of the hydraulic type 42 (cylinders making it possible to stabilize the machine), mechanical 44 (gears enabling the cab of the machine to be pivoted) or electrical 46 (electric generator feeding such a cabin air conditioning system).
  • the power of the motor is distributed between these different systems, therefore the available power of the motor for the pump 8 varies according to the number of systems that the motor is supplying.
  • the computer may comprise a detection device 48 making it possible to take into account the power actually available for the pump. For example, this means can detect the operation of one of the systems mentioned above, such as the operation of the air conditioning system of the cabin, and allow the computer 20 to limit accordingly the power of the pump 8 to meet the dynamics of the engine 4.
  • the computer 20 can adapt the setpoint value (VC) and / or control the theoretical hydraulic power variation of the pump between a minimum value and a maximum value, in order to make the most of the power curve. 4.
  • the minimum hydraulic power value of the pump can be chosen to control the impact of load on the engine, when the hydraulic system solicits the pump for the first time.
  • the theoretical maximum torque value CMT can also be chosen to optimally use the motor torque curve. thermal, regardless of the operating regime.
  • the value of the engine speed can be measured by a suitable means, for example by a sensor 50 represented on the figure 4 , to measure in real time the speed of rotation of the power shaft 6.
  • the regulation device advantageously makes it possible to limit the dynamics of the load impact of the pump on a motor driving it so as to respect the dynamics of the motor.
  • the engine speed fluctuates much less and the power available to the pump is constantly adjusted, allowing the pump to continuously supply a hydraulic system regardless of the dynamics of the system.
  • the dynamics of the engine is thus preserved and the behavior of the hydraulic system is more fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente demande concerne le domaine technique des travaux publics et en particulier les engins de chantier comprenant une pompe hydraulique entrainée par un moteur thermique.
  • Plus précisément, l'invention a trait à un dispositif de régulation de la puissance hydraulique délivrée par une pompe entrainée par un moteur thermique d'engin de chantier.
  • ETAT ANTERIEUR DE LA TECHNIQUE
  • Les pompes hydrauliques convertissent une puissance mécanique en une puissance hydraulique apte à permettre le fonctionnement de systèmes ou d'outils. L'utilisation d'outils hydrauliques est très répandue dans le domaine des travaux publics.
  • Une pompe hydraulique comprend un dispositif de régulation permettant d'adapter sa puissance en fonction du besoin de l'outil qu'elle alimente. Le dispositif de régulation est généralement un dispositif électronique mesurant en temps réel le régime du moteur thermique entrainant la pompe. En cas de baisse de son régime, le dispositif électronique réduit le couple consommé par la pompe pour alléger la charge de la pompe sur le moteur thermique. De cette façon, le dispositif de régulation permet d'éviter un écrasement du régime du moteur lorsque la pompe sollicite trop brusquement le moteur. Par le terme « charge », on entend une action qui s'oppose au travail fourni par un autre dispositif.
  • Ce système de régulation a pour inconvénient de diminuer la charge du moteur après seulement avoir détecté une chute de son régime. La puissance hydraulique délivrée par la pompe entrainée par le moteur varie également brusquement lors de cette chute de régime. Cette variation est d'ailleurs amplifiée par le dispositif de régulation qui diminue la valeur de couple consommé par la pompe pour alléger la charge du moteur. De ce fait, la puissance hydraulique fournie par la pompe à l'outil diminue brusquement lorsque le régime du moteur chute. Cela se traduit par une perte de puissance momentanée pour l'outil qui se reproduit à chaque fois que la puissance demandée par l'outil est supérieure à la capacité instantanée d'entrainement du moteur. Ce mode de régulation a ainsi pour effet d'entrainer un comportement saccadé de l'outil lorsque la puissance demandée par l'outil est momentanément supérieure à la puissance du moteur. On constate ainsi que la dynamique des évolutions de besoin en couple et en puissance est importante.
  • Ce phénomène de chute de puissance est amplifié par l'application des nouvelles normes de pollution de type Tier 3B / Tier 4. Ces nouvelles normes ont pour effet de dégrader la dynamique de reprise de couple des moteurs thermiques, diminuant de façon importante leur réactivité. Le comportement dynamique de l'outil en est encore plus dégradé.
  • Ce mode de régulation permet donc d'éviter un écrasement trop important du régime moteur lors d'une mise en charge brusque de la pompe, mais cela s'effectue au détriment de la continuité de la puissance hydraulique disponible pour l'outil alimenté par ladite pompe.
  • On connait par ailleurs du document US 2007/204604 un procédé de régulation qui vise à optimiser la consommation en carburant du moteur thermique entrainant la pompe. Un tel procédé sans impact sur les à-coup de charge.
  • Le Demandeur vise à proposer un dispositif de régulation d'une pompe hydraulique préservant le régime du moteur l'entrainant, tout en permettant à la pompe hydraulique de répondre au mieux à une brusque demande de puissance de la part d'un système hydraulique.
  • EXPOSE DE L'INVENTION
  • La présente demande résout le problème technique mentionné ci-dessus, en proposant un dispositif de régulation de la puissance hydraulique fournie par une pompe hydraulique volumétrique à cylindrée variable alimentant un système hydraulique. Le dispositif de régulation comprend :
    • une pompe hydraulique volumétrique à cylindrée variable apte à être entraînée par un moteur, par exemple de type thermique ;
    • un dispositif de contrôle connecté à ladite pompe et apte à faire varier la valeur du couple consommé par la pompe en fonction d'une valeur de consigne;
    • des moyens de commande aptes à adresser une valeur de consigne au dispositif de contrôle ;
    • des moyens d'évaluation d'une valeur du couple instantané réel-consommé par la pompe.
  • Le dispositif de régulation se caractérise en ce qu'il comprend :
    • des moyens pour évaluer une valeur du couple théorique maximum pouvant être consommé par la pompe en fonction d'une valeur de consigne appliquée au dispositif de contrôle ;
    • des moyens pour évaluer une valeur du couple réel instantané consommé par la pompe ;
    • des moyens de calcul pour calculer un rapport entre la valeur du couple maximum théorique et le couple réel instantané ;
    • des moyens de mémorisation d'au moins une valeur de référence ;
    • des moyens pour modifier la valeur de consigne pour faire tendre vers ou rendre égal ledit rapport à la valeur de référence ;
    • la valeur de la consigne étant modifiée par un ou plusieurs incréments dont les valeurs correspondent à une fraction du couple maximal pouvant être consommé par la pompe, lesdits incréments étant appliqués selon des intervalles de temps, le rapport entre la valeur d'un incrément et son intervalle de temps associé étant inférieur à une valeur prédéterminée.
  • Par les termes « couple réel instantané », on entend le couple consommé par la pompe à un instant t sur le moteur l'entraînant, correspondant à la puissance hydraulique fournie par la pompe et-consommée par le système hydraulique à ce même instant et par les termes « couple maximum théorique », on désigne le couple maximum pouvant être consommé par la pompe en fonction de la valeur de consigne appliquée au dispositif de contrôle de ladite pompe
  • En pratique, suivant le type de pompe choisi, le dispositif de contrôle peut agir soit directement sur le limiteur de couple de la pompe, soit sur la cylindrée de celle-ci ;
  • En pratique, les moyens de commande, de calcul, de mémorisation et les moyens pour modifier la valeur de consigne peuvent être regroupés dans un même dispositif de type calculateur ou microcontrôleur.
  • Le calculateur contrôle en temps réel le rapport de la valeur du couple maximum théorique divisée par la valeur couple réel instantané vis-à-vis de la valeur de référence qui correspond une adéquation parfaite entre le couple de réglage de la pompe (consigne) et le couple réel consommé. Le calculateur adapte en permanence la valeur de consigne en fonction de ce rapport pour que la pompe soit exactement réglée en adéquation avec la puissance hydraulique demandée par le système hydraulique. Autrement dit, le calculateur tend à adapter en continu le réglage de couple de la pompe à l'utilisation, afin que toute augmentation de puissance demandée par le système hydraulique puisse être contrôlée par une augmentation correspondante du réglage de couple de la pompe. Idéalement, la valeur de référence correspondant au rapport évalué est donc égale à 1.
  • De façon avantageuse, le calculateur modifie graduellement la valeur de consigne par un ou plusieurs incréments de sorte que chaque variation modifie le couple maximum consommé par la pompe de manière à respecter la dynamique du moteur thermique. Par les termes « dynamique du moteur », on entend la capacité du moteur à répondre à des sollicitations rapides de charge qui modifient la valeur de son régime courant, c'est-à-dire sa capacité à maintenir son régime sous charge importante et ponctuelle. Le dispositif de régulation permet ainsi de reporter graduellement une brusque variation de puissance du système hydraulique sur le moteur thermique en respectant sa dynamique. De ce fait, le dispositif de régulation selon l'invention permet de façon avantageuse à la pompe hydraulique de répondre rapidement et de façon progressive à des sollicitations brusques du système hydraulique, tout en évitant une brusque chute du régime du moteur thermique l'entraînant.
  • Du fait qu'une pompe hydraulique comprenant un dispositif de régulation selon l'invention peut être commandée par différents types dispositifs de contrôle (électrovanne agissant sur le plateau, etc...), il est plus aisé de caractériser la valeur d'un incrément par rapport au couple maximal consommé par la pompe que par rapport à la donnée de contrôle du dispositif (courant pour l'électrovanne, etc...). La valeur d'un incrément peut par exemple correspondre à une variation du couple maximal consommé par la pompe entre 0% et 5%, de préférence entre 0.2% et 1%.
  • Le rapport entre un incrément de la valeur de consigne et son intervalle de temps associé est choisi de manière à être inférieur à une valeur prédéterminée de sorte que les variations de couple consommé par la pompe respectent la dynamique du moteur thermique. Afin que ce rapport soit inférieur à la valeur prédéterminée, la valeur d'un incrément et/ou son intervalle de temps associé peuvent être adaptés pour chaque moteur entrainant la pompe. La valeur prédéterminée peut par exemple être comprise entre 10 N.m par seconde et 5000 N.m par seconde, de préférence entre 500 N.m par seconde et 2000 N.m par seconde.
  • Les intervalles de temps sont évidemment adaptés en fonction de la valeur des incréments de manière à être inférieurs à la valeur prédéterminée mentionnée ci-dessus. A titre d'exemple, les intervalles de temps peuvent être compris entre 1 et 40 millisecondes, de préférence entre 5 et 20 millisecondes.
  • Pour éviter que la pompe ne sollicite le moteur au-delà de ses capacités dynamiques, la valeur de référence peut prendre en compte les incertitudes de mesures des moyens d'évaluation du couple réellement consommé par la pompe. Pour cela, la valeur de référence peut être inférieure à 1, par exemple être comprise entre 0,9 et 0,99 ; de préférence de l'ordre de 0,95. Bien entendu, la valeur de référence peut être adaptée en fonction des incertitudes des moyens d'évaluation.
  • Pour limiter un impact de charge de la pompe sur le moteur thermique lors d'une variation de puissance brusque du système hydraulique, le calculateur peut régler par défaut le couple maximal consommé par la pompe à une valeur minimale lorsque le système hydraulique sollicite peu ou pas la pompe. En d'autres termes, lorsque le système hydraulique est au repos, le calculateur maintient le réglage de couple maximal consommé de la pompe à une valeur basse. Par exemple, la valeur de réglage de couple peut être minimale lorsque la valeur du couple réel instantané consommé est inférieure à 100 N.m. Ainsi, un appel brusque de puissance de la part du système hydraulique aura un impact limité sur le moteur en raison de la faible valeur de réglage de la pompe.
  • La présente demande concerne également une pompe hydraulique telle que décrite ci-dessus, couplée à un moteur thermique de préférence de type diesel. Or, la dynamique d'un moteur thermique peut dépendre de son régime. Afin de prendre en compte les variations de sa dynamique en fonction de son régime moteur, la valeur de consigne peut être choisie en fonction du régime du moteur thermique.
  • Le calculateur peut également limiter les variations de couple consommé par la pompe en fonction du régime du moteur qui l'entraine, en limitant par exemple la variation de la valeur de consigne entre deux valeurs extrêmes permettant notamment d'exploiter au mieux sa courbe de puissance.
  • Le système hydraulique alimenté par la pompe peut bien entendu être couplé à un ou plusieurs outils hydrauliques appartenant à un engin de chantier.
  • DESCRIPTION DES FIGURES
  • Certains aspects de l'invention seront mieux compris à la lecture de la description qui suit, donnée uniquement à titre d'exemple et réalisée en relation avec les dessins annexés, dans lesquels les mêmes références désignent des éléments identiques ou analogues et dans lesquels :
    • la figure 1 est une représentation schématique simplifiée d'un engin de chantier selon l'invention ;
    • la figure 2 est un graphique représentant la puissance hydraulique théorique d'une pompe en fonction de la valeur du courant appliqué à une vanne électrohydraulique commandant la cylindrée de la pompe ;
    • la figure 3 est une représentation schématique simplifiée d'un diagramme de fonctionnement d'un dispositif de régulation selon l'invention ;
    • la figure 4 est une représentation schématique simplifiée d'une variante d'un engin de chantier selon la figure 1.
    EXEMPLES DE REALISATION DE L'INVENTION
  • Pour rappel, la présente demande concerne un dispositif de régulation d'une pompe hydraulique visant à préserver le régime du moteur l'entrainant, tout en permettant à la pompe hydraulique de répondre au mieux à une brusque demande de puissance de la part d'un système hydraulique.
  • La figure 1 illustre un schéma simplifié d'un engin de chantier 2 selon l'invention. L'engin de chantier peut être en particulier une pelleteuse comprenant un moteur 4 thermique de type diesel, entrainant par l'intermédiaire d'un arbre de puissance 6 une pompe 8 hydraulique volumétrique à cylindrée variable. La pompe alimente par l'intermédiaire de canaux 10 hydrauliques plusieurs vérins 12 hydrauliques permettant de déplacer un équipement, comme par exemple un bras articulé 14.
  • Dans cet exemple de réalisation, le couple maximal consommé par la pompe est commandée par l'intermédiaire d'une valve 16 électrohydraulique. La valve contrôle l'inclinaison d'un plateau mobile agencé en vis-à-vis des pistons de la pompe, en fonction de la valeur d'un courant alimentant ladite valve et de la pression hydraulique. Ainsi, pour une même vitesse de révolution de l'arbre de puissance 6 et de pression hydraulique dans le circuit, la cylindrée de la pompe peut être modifiée en fonction d'une valeur de consigne (VC), sous la forme d'un courant électrique adressée à la valve électrohydraulique.
  • La figure 2 montre l'influence de la valeur de consigne sur la puissance hydraulique théorique (PHT) de la pompe 8, pour un régime d'entraînement fixé à 2000 tours par minute. Une première courbe A d'iso-puissance est représentée pour une valeur de consigne égale à A1, en fonction du débit (en abscisse) et de la pression (en ordonnée) d'un fluide sortant de la pompe. Une deuxième courbe B d'iso-puissance est également représentée pour une valeur de consigne égale à B1, il est à noter que la valeur de puissance associée à la courbe A est environ deux fois supérieure à la valeur de puissance associée à la courbe B. Comme on peut observer à la figure 2, la puissance hydraulique théorique (PHT) générée par la pompe dépend de son débit qui dépend lui-même du régime du moteur 4, et d'autre part de la pression du fluide circulant dans la pompe 8, laquelle alimente le système hydraulique 18 formé des canaux 10 et des vérins 12. Par exemple pour une valeur de consigne égale à B1, le débit et la pression du fluide circulant dans le système hydraulique peuvent varier dans toute l'aire délimitée par les axes débit nul et pression nulle, et par la courbe B soit entre 50 et 185 1/min et entre 110 et 350 bars.
  • Selon le présent exemple, la valve 16 électrohydraulique est avantageusement configurée de sorte que la valeur de consigne A1 est inférieure à la valeur de consigne B1 afin de consommer moins de courant lorsque le moteur 4 est le plus sollicité. Bien entendu, on peut envisager un fonctionnement inverse concernant la valve 16.
  • A titre d'exemple, une pompe distribuée par la société BOSCH REXROTH sous la référence A11VO95LE2S2, dont le réglage de couple maximal consommé est contrôlé par l'intermédiaire d'une valve électrohydraulique intégrée à la pompe, de type LEXSX peut convenir à la réalisation de l'invention. Dans ce cas, les courbes A et B sur la figure 2 peuvent respectivement correspondre à une valeur de puissance hydraulique de la pompe égale à 90kW et 40kW, lorsqu'on applique une valeur de consigne à la valve électrohydraulique égale respectivement à 200mA et 511 mA. Bien entendu, différentes combinaisons de pompes et de valves peuvent être envisagées pour réaliser l'invention.
  • La pression dans le système hydraulique 18 varie en fonction de l'effort effectué par la flèche 14. Par exemple, lorsque l'opérateur de l'engin commande à la flèche 14 de soulever une charge importante, le poids de la charge crée une force s'opposant au déplacement des vérins dans les pistons 12 permettant d'actionner la flèche. Cela se traduit par une augmentation brusque de la pression dans le système hydraulique 18. Si la puissance hydraulique théorique (PHT) de la pompe correspond à la valeur associée à la courbe A avec et que le mouvement de la flèche demande un débit égale 140 l/min, le poids de la charge peut brusquement faire passer la pression, par exemple, de 80 bars à 330 bars. La puissance hydraulique réelle PHR de la pompe augmente alors très rapidement passant du point C au point D sur la courbe A. Cette variation brutale de puissance est imposée au moteur 4 par l'intermédiaire de l'arbre de puissance 6. La pompe 8 exerce alors un couple résistif bien supérieur au couple du moteur disponible. Par exemple, si la puissance nominale instantanée du moteur est inférieure à la moitié de la puissance maximale correspondant à la courbe A, le moteur ne pourra pas répondre à cette demande brusque de puissance et son régime chutera très rapidement jusqu'à son arrêt. On parlera de chute de régime voire d'écrasement lorsqu'on constate une diminution, même minime, du régime du moteur. L'invention permet de gérer les situations où une diminution de régime liée à la charge qui ferait passer le régime du moteur thermique en dessous de sa consigne de régime, définie par la position de la commande d'accélérateur. Une charge trop importante et/ou appliquée au moteur thermique trop rapidement peut amener jusqu'au calage de celui-ci.
  • L'invention vise à limiter ce phénomène de perte de puissance dans le système hydraulique 18 lors de brusques variations de puissance, en proposant un nouveau dispositif de régulation de la pompe 8 comprenant un calculateur 20 tel qu'illustré à la figure 1. Le calculateur 20 comporte au moins une entrée connectée à des dispositifs de mesure 22 de la puissance hydraulique dans le système hydraulique 18. Le calculateur comporte un dispositif de commande 24 permettant d'adresser une valeur de consigne (VC) à la valve 16 électrohydraulique, un dispositif de calcul 26 et un dispositif de mémorisation 28 de données. Sur les figures 1, 3 et 4, les flèches représentent le sens de circulation d'informations entre différents éléments de l'engin de chantier 2.
  • Le fonctionnement du calculateur 20 est représenté sous forme d'un diagramme à la figure 3. Selon une première étape 30, le calculateur 20 détermine en temps réel le couple réel instantané consommé (CRI) dans le système hydraulique 18, et le couple maximum théorique (CMT) généré par la pompe 8. Le couple réel instantané consommé est déterminé à partir des valeurs générées par le dispositif de mesure 22. Le couple maximum théorique est évalué par le calculateur à partir d'une base de données contenue dans le dispositif de mémorisation 28, permettant d'identifier à partir de la valeur de consigne (VC), de la pression et/ou du débit du fluide présent dans le système hydraulique 18, la valeur de CMT correspondante. A titre d'exemple, le calculateur peut identifier le CMT à partir des données de la figure 2 lorsque la valeur de consigne est connue. Le calculateur peut réaliser cette première étape de façon cyclique par exemple toutes les millisecondes.
  • Selon une deuxième étape 32, le calculateur détermine le rapport entre le couple réel instantané et le couple maximum théorique (CRI/CMT) et compare ce rapport à une valeur de référence (VR), également mémorisée par les moyens de mémorisation 28. A titre d'exemple, cette valeur de référence peut être égale à 0.9.
  • Selon une troisième étape 34, le calculateur modifie ou non la valeur de consigne (VC) selon les critères suivants.
  • Dans le cas où la valeur de ce rapport est supérieure à la valeur de référence, cela signifie que la puissance hydraulique disponible pour le système hydraulique 18 est limitée par le réglage de la pompe (CMT défini par VC). Afin d'éviter cela et de répondre à la demande de puissance du système hydraulique 18, le calculateur 20 modifie la valeur de consigne (VC) adressée à la valve 16 de manière à augmenter progressivement le couple consommé par la pompe et ainsi lui permettre de répondre à l'appel de puissance du système hydraulique. Plus précisément, le calculateur commande l'augmentation du réglage de couple maximal théorique CMT de la pompe de sorte à respecter la dynamique du moteur 4. Le moteur est conçu de manière à supporter des variations limitées (en amplitude et/ou en dynamique) de sa charge sans que cela ne modifie son régime de façon significative. Dans le cas présent, le moteur est capable de passer d'un couple « nul » à son couple nominal à un régime donné, en un temps compris entre 500 ms et 2000 ms suivant le régime considéré, sans chuter en dessous de son régime de consigne. Avantageusement, le calculateur 20 modifie le réglage de la pompe 8 de manière à respecter les capacités du moteur et à ne pas le faire exagérément baisser en régime. Bien entendu, la dynamique du moteur varie en fonction du moteur considéré.
  • Ces étapes sont reproduites autant de fois que nécessaire pour que le rapport entre le couple réel instantané et le couple maximum théorique soit égal ou légèrement inférieur à la valeur de référence (VR). Ainsi, le calculateur 20 permet à la pompe 8 de répondre rapidement à la demande de puissance du système hydraulique 18 tout en respectant la dynamique du moteur 4. De ce fait, une hausse brutale de la puissance dans le système hydraulique 18 n'entraîne plus un écrasement de son régime, ce qui permet à la pompe de répondre progressivement et rapidement aux besoins du système hydraulique. Plus précisément, chaque palier modifiant la puissance de la pompe est réalisé en respectant la dynamique du moteur 4. Ainsi, la charge importante mentionnée ci-dessus est soulevée par la flèche 14 de façon plus régulière et progressive.
  • Dans le cas où le rapport entre le couple réel instantané (CRI) et le couple maximum théorique (CMT) est supérieur à la valeur de référence (VR), cela signifie que la pompe hydraulique est réglée pour une puissance supérieure aux besoins du système hydraulique 18. Dans ce cas, une éventuelle augmentation de charge demandée par le système hydraulique 18 ne serait plus contrôlée par modification du réglage de CMT de la pompe, le calculateur modifie la valeur de consigne (VC) de manière à diminuer le réglage de la pompe, afin d'être en adéquation avec la puissance effectivement consommée par le système hydraulique 18. La variation de la valeur de consigne est également choisie de manière à respecter la dynamique du moteur. Ces étapes sont reproduites autant de fois que nécessaire pour que le rapport entre la puissance hydraulique théorique et la puissance hydraulique réelle reste égal ou légèrement inférieur à la valeur de référence (VR).
  • Par exemple, pour une même amplitude de variation de la valeur de consigne, celle-ci peut être réalisée environ trois fois plus rapidement lorsqu'on augmente sa valeur (baisse de réglage de la pompe) que quand on la diminue (augmentation du réglage). Cela permet avantageusement de mettre rapidement la pompe en condition d'attente avec un CMT limité, afin de contrôler précisément la demande suivante de puissance appliquée par le système hydraulique 18 sur la pompe 8 et donc sur le moteur 4.
  • Enfin, dans le cas où la valeur du rapport entre le couple réel instantané (CRI) et le couple maximum théorique (CMT) est égal à la valeur de référence (VR), le calculateur maintient la valeur de consigne (VC).
  • La valeur du couple réel instantané (CRI) dans le système hydraulique 18 peut être déterminée par le dispositif de mesure 22 de différentes façons. Pour calculer le CRI, il est nécessaire de connaître la pression et le débit du fluide circulant dans le système hydraulique 18. Pour cela, une solution consiste à placer des capteurs de pression et de débit dans le système hydraulique En pratique, ces capteurs peuvent être positionnés sur la ligne principale de sortie de la pompe, pour une meilleure précision. Cependant, en adaptant la valeur de référence VR, il est également possible de mesurer la pression sur le circuit de Load Sensing. La valeur du couple réel instantané peut être mesurée par tous autres moyens, comme par exemple par l'utilisation d'un moyen de mesure de la vitesse de déplacement d'un piston appartenant à au moins un vérin 12 actionnant la flèche 14. A partir de la vitesse de déplacement du piston et du volume connu de la chambre dudit piston, on peut aisément déterminer le débit du fluide l'actionnant. Selon un autre mode de réalisation, le débit du fluide peut être déterminé à partir de la mesure de l'angle d'inclinaison du plateau mobile permettant de faire varier la course des pistons de la pompe 8, et de la mesure du régime du moteur 4 l'entrainant. En effet, à partir de ces mesures il est possible de déterminer le débit du fluide dans le système hydraulique en multipliant la valeur de la cylindrée de la pompe (déterminée à partir de l'angle mesuré du plateau mobile) par le régime du moteur 4. Evidemment, d'autres moyens pour mesurer la puissance hydraulique réelle dans le système hydraulique sont envisageables.
  • Quels que soient les dispositifs de mesures utilisés, il est inévitable que ces mesures comportent des incertitudes. Afin de tenir compte de celles-ci pour que la pompe 8 fournisse effectivement la puissance demandée par le système hydraulique sans être bridée par son réglage CMT, la valeur de référence (VR) est minorée de manière à prendre en compte ces incertitudes de mesures. Par exemple, la valeur de référence peut être réduite de 1% à 10% en fonction de la précision des mesures réalisées, elle peut ainsi être comprise entre 0,99 et 0,9. Selon une alternative, on peut soustraire à la valeur de consigne une quantité prenant en compte ces incertitudes.
  • Comme illustré à la figure 4, le moteur 4 de l'engin de chantier 2 entraine généralement d'autres systèmes qui peuvent être de type hydraulique 42 (vérins permettant de stabiliser l'engin), mécanique 44 (engrenages permettant le pivotement de la cabine de l'engin) ou électrique 46 (générateur électrique alimentant par exemple un système de climatisation de la cabine). La puissance du moteur est répartie entre ces différents systèmes, de ce fait la puissance disponible du moteur pour la pompe 8 varie en fonction du nombre de systèmes que le moteur alimente. Afin de tenir compte de cela, le calculateur peut comprendre un dispositif de détection 48 permettant de prendre en compte la puissance réellement disponible pour la pompe. Par exemple, ce moyen peut détecter le fonctionnement de l'un des systèmes mentionnés ci-dessus, comme par exemple le fonctionnement du système de climatisation de la cabine, et permettre au calculateur 20 de limiter en conséquence la puissance de la pompe 8 pour respecter la dynamique du moteur 4.
  • Il est à noter que le couple nominal et la dynamique du moteur 4 varient en fonction de son régime. Afin de prendre en compte ces caractéristiques, le calculateur 20 peut adapter la valeur de consigne (VC) et/ou contrôler la variation de puissance hydraulique théorique de la pompe entre une valeur minimale et une valeur maximale, pour exploiter au mieux la courbe de puissance du moteur 4. De façon avantageuse, la valeur de puissance hydraulique minimale de la pompe peut être choisie de manière à maîtriser l'impact de charge sur le moteur, lorsque le système hydraulique sollicite pour la première fois la pompe. La valeur de couple maximum théorique CMT peut également être choisie pour utiliser de manière optimale la courbe de couple du moteur thermique, quel que soit le régime d'utilisation. La valeur du régime du moteur peut être mesurée par un moyen approprié, comme par exemple par un capteur 50 représenté sur la figure 4, permettant de mesurer en temps réel la vitesse de rotation de l'arbre de puissance 6.
  • En conclusion, le dispositif de régulation selon l'invention permet de façon avantageuse de limiter la dynamique d'impact de charge de la pompe sur un moteur l'entrainant de sorte à respecter la dynamique du moteur. Ainsi, le régime du moteur fluctue beaucoup moins et la puissance disponible pour la pompe est constamment ajustée, permettant à la pompe d'alimenter de façon continue un système hydraulique quelle que soit la dynamique du système. La dynamique du moteur est donc préservée et le comportement du système hydraulique est plus fluide.

Claims (10)

  1. Dispositif de régulation de la puissance hydraulique fournie par une pompe (8) hydraulique volumétrique à cylindrée variable alimentant un système hydraulique (18) comprenant :
    - une pompe (4) hydraulique volumétrique à cylindrée variable apte à être entraînée par un moteur thermique (4) ;
    - un dispositif de contrôle (16) connecté à ladite pompe et apte à faire varier la valeur de couple maximal consommé par la pompe en fonction d'une valeur de consigne (VC) ;
    - des moyens de commande (24) aptes à adresser une valeur de consigne (VC) au dispositif de contrôle (16) ;
    - des moyens d'évaluation (22) d'une valeur du couple réel instantané (CRI) consommé par la pompe, caractérisé en ce que le dispositif de régulation comprend :
    - des moyens (26, 28) pour évaluer une valeur du couple maximum théorique (CMT) consommé par la pompe (8), en fonction d'une valeur de consigne (VC) appliquée au dispositif de contrôle (16); de
    - des moyens (26) pour calculer un rapport entre la valeur de couple réel instantané (CRI) et le couple maximum théorique (CMT) ;
    - des moyens de mémorisation (28) d'au moins une valeur de référence (VR) ;
    - des moyens (24, 26) pour modifier la valeur de consigne (VC) pour faire tendre vers ou rendre égal ledit rapport à la valeur de référence (VR) ;
    - la valeur de la consigne (VC) étant modifiée par un ou plusieurs incréments dont les valeurs correspondent à une fraction du couple maximal pouvant être consommé par la pompe (4), lesdits incréments étant appliqués selon des intervalles de temps, le rapport entre la valeur d'un incrément et son intervalle de temps associé étant inférieur à une valeur prédéterminée.
  2. Dispositif selon la revendication 2, caractérisé en ce que la valeur prédéterminée est inférieure à 2000 N.m par seconde.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la valeur d'un incrément correspond à une variation du couple maximal consommé par la pompe comprise entre 0% et 5%.
  4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les intervalles de temps sont compris entre 1 et 40 millisecondes.
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la valeur de référence est comprise entre 0,9 et 0,99.
  6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le moyen de calcul (22) règle le couple maximum théorique de la pompe à une valeur minimale lorsque la valeur du couple réel consommé est inférieure à 100 Nm.
  7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que la pompe (8) est actionnée par un moteur (4).
  8. Dispositif selon la revendication 7, caractérisé en ce que la valeur de consigne (VC) dépend du régime du moteur (4).
  9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que le moyen (24) limite la valeur de consigne (VC) entre deux valeurs extrêmes dépendantes du régime du moteur (4).
  10. Engin de chantier comprenant un dispositif de régulation selon l'une des revendications 1 à 9.
EP15193043.5A 2014-11-05 2015-11-04 Dispositif de regulation de puissance d'une pompe hydraulique Active EP3018346B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1460653A FR3027971B1 (fr) 2014-11-05 2014-11-05 Dispositif de regulation de puissance d'une pompe hydraulique

Publications (2)

Publication Number Publication Date
EP3018346A1 EP3018346A1 (fr) 2016-05-11
EP3018346B1 true EP3018346B1 (fr) 2016-11-09

Family

ID=52345358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15193043.5A Active EP3018346B1 (fr) 2014-11-05 2015-11-04 Dispositif de regulation de puissance d'une pompe hydraulique

Country Status (2)

Country Link
EP (1) EP3018346B1 (fr)
FR (1) FR3027971B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153722B (zh) * 2021-03-16 2023-05-23 四川宏华电气有限责任公司 一种应用于页岩气开采的压裂泵扭矩异常自动检测系统
CN114561985B (zh) * 2022-02-08 2023-03-24 徐州徐工挖掘机械有限公司 一种基于负载循环变化的挖掘机油门控制方法及系统
CN115434819B (zh) * 2022-08-12 2024-04-12 中联重科股份有限公司 用于控制功率匹配的方法、装置、电子设备及工程机械

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520771B2 (ja) * 1990-07-18 1996-07-31 株式会社小松製作所 積み込み作業車両の制御方法及び装置
JP3561667B2 (ja) * 1999-11-18 2004-09-02 新キャタピラー三菱株式会社 油圧ポンプの制御装置
JP4675320B2 (ja) * 2004-04-08 2011-04-20 株式会社小松製作所 作業機械の油圧駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3018346A1 (fr) 2016-05-11
FR3027971B1 (fr) 2016-11-11
FR3027971A1 (fr) 2016-05-06

Similar Documents

Publication Publication Date Title
EP3018346B1 (fr) Dispositif de regulation de puissance d'une pompe hydraulique
CN103670750B (zh) 极限功率匹配控制系统、方法、装置及工程机械
EP2551524A1 (fr) Circuit de commande hydraulique
CA2774159C (fr) Passage d'un etat de non sychronisation a un etat de synchronisation entre un moteur et un rotor
FR3005374A1 (fr) Procede de gestion du refroidissement d'une batterie a seuils de refroidissement ajustables
EP2500266B1 (fr) Actionneur à puissance électrique et procédé de commande d'un tel actionneur.
CN103649563A (zh) 用于控制多个可变排量液压泵的转矩负载的方法、装置和计算机可读储存介质
FR2903736A1 (fr) Procede de regulation de la pression de suralimentation d'un moteur a combustion interne pour vehicules automobiles.
EP2756193B1 (fr) Procede de suivi du rendement volumetrique d'une pompe hp d'un systeme de regulation hydraulique de turbomachine
WO2019016013A1 (fr) Commande d'une machine de manutention
FR2986191A1 (fr) Crabotage desynchronise d'un appareil hydraulique
WO2015189324A1 (fr) Procede d'activation d'une assistance hydraulique d'un systeme de transmission de vehicule
FR2738613A1 (fr) Procede d'asservissement d'une servovalve hydraulique pouvant etre asservie en debit et en pression
EP2721308B1 (fr) Banc d'alimentation fluidique, par exemple pour un aéronef en phase de maintenance
WO2014016304A1 (fr) Circuit de commande hydraulique avec sécurité en cas de coupure de commande
FR2502248A1 (fr) Moteur a combustion interne multi-cylindres
WO2015063401A2 (fr) Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef
FR3005703A1 (fr) Systeme hydraulique a controle electronique de pression et de debit
FR3076322A1 (fr) Procede et dispositif de demarrage pour une turbomachine par temps froid
EP2687718B1 (fr) Circuit hydraulique de mise en cylindrée progressive d'un appareil hydraulique
EP2042222A1 (fr) Dispositif et procédé de détection de l'encrassement d'un filtre à carburant d'un système d'alimentation en carburant d'un moteur à combustion interne
WO2023214127A1 (fr) Système hydraulique amélioré pour la génération de vibrations
WO2023041875A1 (fr) Dispositif et procede pour le pilotage en traction d'un circuit d'assistance hydraulique
FR2706951A1 (fr)
WO2023118755A1 (fr) Dispositif et procede de commande pour une transmission electrohydraulique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160527

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 844186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015000686

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015000686

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 844186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231109

Year of fee payment: 9

Ref country code: FR

Payment date: 20231130

Year of fee payment: 9

Ref country code: DE

Payment date: 20231107

Year of fee payment: 9

Ref country code: AT

Payment date: 20231020

Year of fee payment: 9